APInt.cpp revision f451cb870efcf9e0302d25ed05f4cac6bb494e42
1//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/StringRef.h"
18#include "llvm/ADT/FoldingSet.h"
19#include "llvm/ADT/SmallString.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Support/ErrorHandling.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Support/raw_ostream.h"
24#include <cmath>
25#include <limits>
26#include <cstring>
27#include <cstdlib>
28using namespace llvm;
29
30/// A utility function for allocating memory, checking for allocation failures,
31/// and ensuring the contents are zeroed.
32inline static uint64_t* getClearedMemory(unsigned numWords) {
33  uint64_t * result = new uint64_t[numWords];
34  assert(result && "APInt memory allocation fails!");
35  memset(result, 0, numWords * sizeof(uint64_t));
36  return result;
37}
38
39/// A utility function for allocating memory and checking for allocation
40/// failure.  The content is not zeroed.
41inline static uint64_t* getMemory(unsigned numWords) {
42  uint64_t * result = new uint64_t[numWords];
43  assert(result && "APInt memory allocation fails!");
44  return result;
45}
46
47/// A utility function that converts a character to a digit.
48inline static unsigned getDigit(char cdigit, uint8_t radix) {
49  unsigned r;
50
51  if (radix == 16) {
52    r = cdigit - '0';
53    if (r <= 9)
54      return r;
55
56    r = cdigit - 'A';
57    if (r <= 5)
58      return r + 10;
59
60    r = cdigit - 'a';
61    if (r <= 5)
62      return r + 10;
63  }
64
65  r = cdigit - '0';
66  if (r < radix)
67    return r;
68
69  return -1U;
70}
71
72
73void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
74  pVal = getClearedMemory(getNumWords());
75  pVal[0] = val;
76  if (isSigned && int64_t(val) < 0)
77    for (unsigned i = 1; i < getNumWords(); ++i)
78      pVal[i] = -1ULL;
79}
80
81void APInt::initSlowCase(const APInt& that) {
82  pVal = getMemory(getNumWords());
83  memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
84}
85
86
87APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
88  : BitWidth(numBits), VAL(0) {
89  assert(BitWidth && "Bitwidth too small");
90  assert(bigVal && "Null pointer detected!");
91  if (isSingleWord())
92    VAL = bigVal[0];
93  else {
94    // Get memory, cleared to 0
95    pVal = getClearedMemory(getNumWords());
96    // Calculate the number of words to copy
97    unsigned words = std::min<unsigned>(numWords, getNumWords());
98    // Copy the words from bigVal to pVal
99    memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
100  }
101  // Make sure unused high bits are cleared
102  clearUnusedBits();
103}
104
105APInt::APInt(unsigned numbits, const StringRef& Str, uint8_t radix)
106  : BitWidth(numbits), VAL(0) {
107  assert(BitWidth && "Bitwidth too small");
108  fromString(numbits, Str, radix);
109}
110
111APInt& APInt::AssignSlowCase(const APInt& RHS) {
112  // Don't do anything for X = X
113  if (this == &RHS)
114    return *this;
115
116  if (BitWidth == RHS.getBitWidth()) {
117    // assume same bit-width single-word case is already handled
118    assert(!isSingleWord());
119    memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
120    return *this;
121  }
122
123  if (isSingleWord()) {
124    // assume case where both are single words is already handled
125    assert(!RHS.isSingleWord());
126    VAL = 0;
127    pVal = getMemory(RHS.getNumWords());
128    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
129  } else if (getNumWords() == RHS.getNumWords())
130    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
131  else if (RHS.isSingleWord()) {
132    delete [] pVal;
133    VAL = RHS.VAL;
134  } else {
135    delete [] pVal;
136    pVal = getMemory(RHS.getNumWords());
137    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
138  }
139  BitWidth = RHS.BitWidth;
140  return clearUnusedBits();
141}
142
143APInt& APInt::operator=(uint64_t RHS) {
144  if (isSingleWord())
145    VAL = RHS;
146  else {
147    pVal[0] = RHS;
148    memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
149  }
150  return clearUnusedBits();
151}
152
153/// Profile - This method 'profiles' an APInt for use with FoldingSet.
154void APInt::Profile(FoldingSetNodeID& ID) const {
155  ID.AddInteger(BitWidth);
156
157  if (isSingleWord()) {
158    ID.AddInteger(VAL);
159    return;
160  }
161
162  unsigned NumWords = getNumWords();
163  for (unsigned i = 0; i < NumWords; ++i)
164    ID.AddInteger(pVal[i]);
165}
166
167/// add_1 - This function adds a single "digit" integer, y, to the multiple
168/// "digit" integer array,  x[]. x[] is modified to reflect the addition and
169/// 1 is returned if there is a carry out, otherwise 0 is returned.
170/// @returns the carry of the addition.
171static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
172  for (unsigned i = 0; i < len; ++i) {
173    dest[i] = y + x[i];
174    if (dest[i] < y)
175      y = 1; // Carry one to next digit.
176    else {
177      y = 0; // No need to carry so exit early
178      break;
179    }
180  }
181  return y;
182}
183
184/// @brief Prefix increment operator. Increments the APInt by one.
185APInt& APInt::operator++() {
186  if (isSingleWord())
187    ++VAL;
188  else
189    add_1(pVal, pVal, getNumWords(), 1);
190  return clearUnusedBits();
191}
192
193/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
194/// the multi-digit integer array, x[], propagating the borrowed 1 value until
195/// no further borrowing is neeeded or it runs out of "digits" in x.  The result
196/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
197/// In other words, if y > x then this function returns 1, otherwise 0.
198/// @returns the borrow out of the subtraction
199static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
200  for (unsigned i = 0; i < len; ++i) {
201    uint64_t X = x[i];
202    x[i] -= y;
203    if (y > X)
204      y = 1;  // We have to "borrow 1" from next "digit"
205    else {
206      y = 0;  // No need to borrow
207      break;  // Remaining digits are unchanged so exit early
208    }
209  }
210  return bool(y);
211}
212
213/// @brief Prefix decrement operator. Decrements the APInt by one.
214APInt& APInt::operator--() {
215  if (isSingleWord())
216    --VAL;
217  else
218    sub_1(pVal, getNumWords(), 1);
219  return clearUnusedBits();
220}
221
222/// add - This function adds the integer array x to the integer array Y and
223/// places the result in dest.
224/// @returns the carry out from the addition
225/// @brief General addition of 64-bit integer arrays
226static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
227                unsigned len) {
228  bool carry = false;
229  for (unsigned i = 0; i< len; ++i) {
230    uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
231    dest[i] = x[i] + y[i] + carry;
232    carry = dest[i] < limit || (carry && dest[i] == limit);
233  }
234  return carry;
235}
236
237/// Adds the RHS APint to this APInt.
238/// @returns this, after addition of RHS.
239/// @brief Addition assignment operator.
240APInt& APInt::operator+=(const APInt& RHS) {
241  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
242  if (isSingleWord())
243    VAL += RHS.VAL;
244  else {
245    add(pVal, pVal, RHS.pVal, getNumWords());
246  }
247  return clearUnusedBits();
248}
249
250/// Subtracts the integer array y from the integer array x
251/// @returns returns the borrow out.
252/// @brief Generalized subtraction of 64-bit integer arrays.
253static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
254                unsigned len) {
255  bool borrow = false;
256  for (unsigned i = 0; i < len; ++i) {
257    uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
258    borrow = y[i] > x_tmp || (borrow && x[i] == 0);
259    dest[i] = x_tmp - y[i];
260  }
261  return borrow;
262}
263
264/// Subtracts the RHS APInt from this APInt
265/// @returns this, after subtraction
266/// @brief Subtraction assignment operator.
267APInt& APInt::operator-=(const APInt& RHS) {
268  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
269  if (isSingleWord())
270    VAL -= RHS.VAL;
271  else
272    sub(pVal, pVal, RHS.pVal, getNumWords());
273  return clearUnusedBits();
274}
275
276/// Multiplies an integer array, x, by a uint64_t integer and places the result
277/// into dest.
278/// @returns the carry out of the multiplication.
279/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
280static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
281  // Split y into high 32-bit part (hy)  and low 32-bit part (ly)
282  uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
283  uint64_t carry = 0;
284
285  // For each digit of x.
286  for (unsigned i = 0; i < len; ++i) {
287    // Split x into high and low words
288    uint64_t lx = x[i] & 0xffffffffULL;
289    uint64_t hx = x[i] >> 32;
290    // hasCarry - A flag to indicate if there is a carry to the next digit.
291    // hasCarry == 0, no carry
292    // hasCarry == 1, has carry
293    // hasCarry == 2, no carry and the calculation result == 0.
294    uint8_t hasCarry = 0;
295    dest[i] = carry + lx * ly;
296    // Determine if the add above introduces carry.
297    hasCarry = (dest[i] < carry) ? 1 : 0;
298    carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
299    // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
300    // (2^32 - 1) + 2^32 = 2^64.
301    hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
302
303    carry += (lx * hy) & 0xffffffffULL;
304    dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
305    carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
306            (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
307  }
308  return carry;
309}
310
311/// Multiplies integer array x by integer array y and stores the result into
312/// the integer array dest. Note that dest's size must be >= xlen + ylen.
313/// @brief Generalized multiplicate of integer arrays.
314static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
315                unsigned ylen) {
316  dest[xlen] = mul_1(dest, x, xlen, y[0]);
317  for (unsigned i = 1; i < ylen; ++i) {
318    uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
319    uint64_t carry = 0, lx = 0, hx = 0;
320    for (unsigned j = 0; j < xlen; ++j) {
321      lx = x[j] & 0xffffffffULL;
322      hx = x[j] >> 32;
323      // hasCarry - A flag to indicate if has carry.
324      // hasCarry == 0, no carry
325      // hasCarry == 1, has carry
326      // hasCarry == 2, no carry and the calculation result == 0.
327      uint8_t hasCarry = 0;
328      uint64_t resul = carry + lx * ly;
329      hasCarry = (resul < carry) ? 1 : 0;
330      carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
331      hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
332
333      carry += (lx * hy) & 0xffffffffULL;
334      resul = (carry << 32) | (resul & 0xffffffffULL);
335      dest[i+j] += resul;
336      carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
337              (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
338              ((lx * hy) >> 32) + hx * hy;
339    }
340    dest[i+xlen] = carry;
341  }
342}
343
344APInt& APInt::operator*=(const APInt& RHS) {
345  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
346  if (isSingleWord()) {
347    VAL *= RHS.VAL;
348    clearUnusedBits();
349    return *this;
350  }
351
352  // Get some bit facts about LHS and check for zero
353  unsigned lhsBits = getActiveBits();
354  unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
355  if (!lhsWords)
356    // 0 * X ===> 0
357    return *this;
358
359  // Get some bit facts about RHS and check for zero
360  unsigned rhsBits = RHS.getActiveBits();
361  unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
362  if (!rhsWords) {
363    // X * 0 ===> 0
364    clear();
365    return *this;
366  }
367
368  // Allocate space for the result
369  unsigned destWords = rhsWords + lhsWords;
370  uint64_t *dest = getMemory(destWords);
371
372  // Perform the long multiply
373  mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
374
375  // Copy result back into *this
376  clear();
377  unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
378  memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
379
380  // delete dest array and return
381  delete[] dest;
382  return *this;
383}
384
385APInt& APInt::operator&=(const APInt& RHS) {
386  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
387  if (isSingleWord()) {
388    VAL &= RHS.VAL;
389    return *this;
390  }
391  unsigned numWords = getNumWords();
392  for (unsigned i = 0; i < numWords; ++i)
393    pVal[i] &= RHS.pVal[i];
394  return *this;
395}
396
397APInt& APInt::operator|=(const APInt& RHS) {
398  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
399  if (isSingleWord()) {
400    VAL |= RHS.VAL;
401    return *this;
402  }
403  unsigned numWords = getNumWords();
404  for (unsigned i = 0; i < numWords; ++i)
405    pVal[i] |= RHS.pVal[i];
406  return *this;
407}
408
409APInt& APInt::operator^=(const APInt& RHS) {
410  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
411  if (isSingleWord()) {
412    VAL ^= RHS.VAL;
413    this->clearUnusedBits();
414    return *this;
415  }
416  unsigned numWords = getNumWords();
417  for (unsigned i = 0; i < numWords; ++i)
418    pVal[i] ^= RHS.pVal[i];
419  return clearUnusedBits();
420}
421
422APInt APInt::AndSlowCase(const APInt& RHS) const {
423  unsigned numWords = getNumWords();
424  uint64_t* val = getMemory(numWords);
425  for (unsigned i = 0; i < numWords; ++i)
426    val[i] = pVal[i] & RHS.pVal[i];
427  return APInt(val, getBitWidth());
428}
429
430APInt APInt::OrSlowCase(const APInt& RHS) const {
431  unsigned numWords = getNumWords();
432  uint64_t *val = getMemory(numWords);
433  for (unsigned i = 0; i < numWords; ++i)
434    val[i] = pVal[i] | RHS.pVal[i];
435  return APInt(val, getBitWidth());
436}
437
438APInt APInt::XorSlowCase(const APInt& RHS) const {
439  unsigned numWords = getNumWords();
440  uint64_t *val = getMemory(numWords);
441  for (unsigned i = 0; i < numWords; ++i)
442    val[i] = pVal[i] ^ RHS.pVal[i];
443
444  // 0^0==1 so clear the high bits in case they got set.
445  return APInt(val, getBitWidth()).clearUnusedBits();
446}
447
448bool APInt::operator !() const {
449  if (isSingleWord())
450    return !VAL;
451
452  for (unsigned i = 0; i < getNumWords(); ++i)
453    if (pVal[i])
454      return false;
455  return true;
456}
457
458APInt APInt::operator*(const APInt& RHS) const {
459  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
460  if (isSingleWord())
461    return APInt(BitWidth, VAL * RHS.VAL);
462  APInt Result(*this);
463  Result *= RHS;
464  return Result.clearUnusedBits();
465}
466
467APInt APInt::operator+(const APInt& RHS) const {
468  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
469  if (isSingleWord())
470    return APInt(BitWidth, VAL + RHS.VAL);
471  APInt Result(BitWidth, 0);
472  add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
473  return Result.clearUnusedBits();
474}
475
476APInt APInt::operator-(const APInt& RHS) const {
477  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
478  if (isSingleWord())
479    return APInt(BitWidth, VAL - RHS.VAL);
480  APInt Result(BitWidth, 0);
481  sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
482  return Result.clearUnusedBits();
483}
484
485bool APInt::operator[](unsigned bitPosition) const {
486  return (maskBit(bitPosition) &
487          (isSingleWord() ?  VAL : pVal[whichWord(bitPosition)])) != 0;
488}
489
490bool APInt::EqualSlowCase(const APInt& RHS) const {
491  // Get some facts about the number of bits used in the two operands.
492  unsigned n1 = getActiveBits();
493  unsigned n2 = RHS.getActiveBits();
494
495  // If the number of bits isn't the same, they aren't equal
496  if (n1 != n2)
497    return false;
498
499  // If the number of bits fits in a word, we only need to compare the low word.
500  if (n1 <= APINT_BITS_PER_WORD)
501    return pVal[0] == RHS.pVal[0];
502
503  // Otherwise, compare everything
504  for (int i = whichWord(n1 - 1); i >= 0; --i)
505    if (pVal[i] != RHS.pVal[i])
506      return false;
507  return true;
508}
509
510bool APInt::EqualSlowCase(uint64_t Val) const {
511  unsigned n = getActiveBits();
512  if (n <= APINT_BITS_PER_WORD)
513    return pVal[0] == Val;
514  else
515    return false;
516}
517
518bool APInt::ult(const APInt& RHS) const {
519  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
520  if (isSingleWord())
521    return VAL < RHS.VAL;
522
523  // Get active bit length of both operands
524  unsigned n1 = getActiveBits();
525  unsigned n2 = RHS.getActiveBits();
526
527  // If magnitude of LHS is less than RHS, return true.
528  if (n1 < n2)
529    return true;
530
531  // If magnitude of RHS is greather than LHS, return false.
532  if (n2 < n1)
533    return false;
534
535  // If they bot fit in a word, just compare the low order word
536  if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
537    return pVal[0] < RHS.pVal[0];
538
539  // Otherwise, compare all words
540  unsigned topWord = whichWord(std::max(n1,n2)-1);
541  for (int i = topWord; i >= 0; --i) {
542    if (pVal[i] > RHS.pVal[i])
543      return false;
544    if (pVal[i] < RHS.pVal[i])
545      return true;
546  }
547  return false;
548}
549
550bool APInt::slt(const APInt& RHS) const {
551  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
552  if (isSingleWord()) {
553    int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
554    int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
555    return lhsSext < rhsSext;
556  }
557
558  APInt lhs(*this);
559  APInt rhs(RHS);
560  bool lhsNeg = isNegative();
561  bool rhsNeg = rhs.isNegative();
562  if (lhsNeg) {
563    // Sign bit is set so perform two's complement to make it positive
564    lhs.flip();
565    lhs++;
566  }
567  if (rhsNeg) {
568    // Sign bit is set so perform two's complement to make it positive
569    rhs.flip();
570    rhs++;
571  }
572
573  // Now we have unsigned values to compare so do the comparison if necessary
574  // based on the negativeness of the values.
575  if (lhsNeg)
576    if (rhsNeg)
577      return lhs.ugt(rhs);
578    else
579      return true;
580  else if (rhsNeg)
581    return false;
582  else
583    return lhs.ult(rhs);
584}
585
586APInt& APInt::set(unsigned bitPosition) {
587  if (isSingleWord())
588    VAL |= maskBit(bitPosition);
589  else
590    pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
591  return *this;
592}
593
594/// Set the given bit to 0 whose position is given as "bitPosition".
595/// @brief Set a given bit to 0.
596APInt& APInt::clear(unsigned bitPosition) {
597  if (isSingleWord())
598    VAL &= ~maskBit(bitPosition);
599  else
600    pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
601  return *this;
602}
603
604/// @brief Toggle every bit to its opposite value.
605
606/// Toggle a given bit to its opposite value whose position is given
607/// as "bitPosition".
608/// @brief Toggles a given bit to its opposite value.
609APInt& APInt::flip(unsigned bitPosition) {
610  assert(bitPosition < BitWidth && "Out of the bit-width range!");
611  if ((*this)[bitPosition]) clear(bitPosition);
612  else set(bitPosition);
613  return *this;
614}
615
616unsigned APInt::getBitsNeeded(const StringRef& str, uint8_t radix) {
617  assert(!str.empty() && "Invalid string length");
618  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
619         "Radix should be 2, 8, 10, or 16!");
620
621  size_t slen = str.size();
622
623  // Each computation below needs to know if it's negative.
624  StringRef::iterator p = str.begin();
625  unsigned isNegative = *p == '-';
626  if (*p == '-' || *p == '+') {
627    p++;
628    slen--;
629    assert(slen && "String is only a sign, needs a value.");
630  }
631
632  // For radixes of power-of-two values, the bits required is accurately and
633  // easily computed
634  if (radix == 2)
635    return slen + isNegative;
636  if (radix == 8)
637    return slen * 3 + isNegative;
638  if (radix == 16)
639    return slen * 4 + isNegative;
640
641  // This is grossly inefficient but accurate. We could probably do something
642  // with a computation of roughly slen*64/20 and then adjust by the value of
643  // the first few digits. But, I'm not sure how accurate that could be.
644
645  // Compute a sufficient number of bits that is always large enough but might
646  // be too large. This avoids the assertion in the constructor. This
647  // calculation doesn't work appropriately for the numbers 0-9, so just use 4
648  // bits in that case.
649  unsigned sufficient = slen == 1 ? 4 : slen * 64/18;
650
651  // Convert to the actual binary value.
652  APInt tmp(sufficient, StringRef(p, slen), radix);
653
654  // Compute how many bits are required. If the log is infinite, assume we need
655  // just bit.
656  unsigned log = tmp.logBase2();
657  if (log == (unsigned)-1) {
658    return isNegative + 1;
659  } else {
660    return isNegative + log + 1;
661  }
662}
663
664// From http://www.burtleburtle.net, byBob Jenkins.
665// When targeting x86, both GCC and LLVM seem to recognize this as a
666// rotate instruction.
667#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
668
669// From http://www.burtleburtle.net, by Bob Jenkins.
670#define mix(a,b,c) \
671  { \
672    a -= c;  a ^= rot(c, 4);  c += b; \
673    b -= a;  b ^= rot(a, 6);  a += c; \
674    c -= b;  c ^= rot(b, 8);  b += a; \
675    a -= c;  a ^= rot(c,16);  c += b; \
676    b -= a;  b ^= rot(a,19);  a += c; \
677    c -= b;  c ^= rot(b, 4);  b += a; \
678  }
679
680// From http://www.burtleburtle.net, by Bob Jenkins.
681#define final(a,b,c) \
682  { \
683    c ^= b; c -= rot(b,14); \
684    a ^= c; a -= rot(c,11); \
685    b ^= a; b -= rot(a,25); \
686    c ^= b; c -= rot(b,16); \
687    a ^= c; a -= rot(c,4);  \
688    b ^= a; b -= rot(a,14); \
689    c ^= b; c -= rot(b,24); \
690  }
691
692// hashword() was adapted from http://www.burtleburtle.net, by Bob
693// Jenkins.  k is a pointer to an array of uint32_t values; length is
694// the length of the key, in 32-bit chunks.  This version only handles
695// keys that are a multiple of 32 bits in size.
696static inline uint32_t hashword(const uint64_t *k64, size_t length)
697{
698  const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
699  uint32_t a,b,c;
700
701  /* Set up the internal state */
702  a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
703
704  /*------------------------------------------------- handle most of the key */
705  while (length > 3)
706    {
707      a += k[0];
708      b += k[1];
709      c += k[2];
710      mix(a,b,c);
711      length -= 3;
712      k += 3;
713    }
714
715  /*------------------------------------------- handle the last 3 uint32_t's */
716  switch (length) {                  /* all the case statements fall through */
717  case 3 : c+=k[2];
718  case 2 : b+=k[1];
719  case 1 : a+=k[0];
720    final(a,b,c);
721    case 0:     /* case 0: nothing left to add */
722      break;
723    }
724  /*------------------------------------------------------ report the result */
725  return c;
726}
727
728// hashword8() was adapted from http://www.burtleburtle.net, by Bob
729// Jenkins.  This computes a 32-bit hash from one 64-bit word.  When
730// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
731// function into about 35 instructions when inlined.
732static inline uint32_t hashword8(const uint64_t k64)
733{
734  uint32_t a,b,c;
735  a = b = c = 0xdeadbeef + 4;
736  b += k64 >> 32;
737  a += k64 & 0xffffffff;
738  final(a,b,c);
739  return c;
740}
741#undef final
742#undef mix
743#undef rot
744
745uint64_t APInt::getHashValue() const {
746  uint64_t hash;
747  if (isSingleWord())
748    hash = hashword8(VAL);
749  else
750    hash = hashword(pVal, getNumWords()*2);
751  return hash;
752}
753
754/// HiBits - This function returns the high "numBits" bits of this APInt.
755APInt APInt::getHiBits(unsigned numBits) const {
756  return APIntOps::lshr(*this, BitWidth - numBits);
757}
758
759/// LoBits - This function returns the low "numBits" bits of this APInt.
760APInt APInt::getLoBits(unsigned numBits) const {
761  return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
762                        BitWidth - numBits);
763}
764
765bool APInt::isPowerOf2() const {
766  return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
767}
768
769unsigned APInt::countLeadingZerosSlowCase() const {
770  // Treat the most significand word differently because it might have
771  // meaningless bits set beyond the precision.
772  unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD;
773  integerPart MSWMask;
774  if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1;
775  else {
776    MSWMask = ~integerPart(0);
777    BitsInMSW = APINT_BITS_PER_WORD;
778  }
779
780  unsigned i = getNumWords();
781  integerPart MSW = pVal[i-1] & MSWMask;
782  if (MSW)
783    return CountLeadingZeros_64(MSW) - (APINT_BITS_PER_WORD - BitsInMSW);
784
785  unsigned Count = BitsInMSW;
786  for (--i; i > 0u; --i) {
787    if (pVal[i-1] == 0)
788      Count += APINT_BITS_PER_WORD;
789    else {
790      Count += CountLeadingZeros_64(pVal[i-1]);
791      break;
792    }
793  }
794  return Count;
795}
796
797static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
798  unsigned Count = 0;
799  if (skip)
800    V <<= skip;
801  while (V && (V & (1ULL << 63))) {
802    Count++;
803    V <<= 1;
804  }
805  return Count;
806}
807
808unsigned APInt::countLeadingOnes() const {
809  if (isSingleWord())
810    return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
811
812  unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
813  unsigned shift;
814  if (!highWordBits) {
815    highWordBits = APINT_BITS_PER_WORD;
816    shift = 0;
817  } else {
818    shift = APINT_BITS_PER_WORD - highWordBits;
819  }
820  int i = getNumWords() - 1;
821  unsigned Count = countLeadingOnes_64(pVal[i], shift);
822  if (Count == highWordBits) {
823    for (i--; i >= 0; --i) {
824      if (pVal[i] == -1ULL)
825        Count += APINT_BITS_PER_WORD;
826      else {
827        Count += countLeadingOnes_64(pVal[i], 0);
828        break;
829      }
830    }
831  }
832  return Count;
833}
834
835unsigned APInt::countTrailingZeros() const {
836  if (isSingleWord())
837    return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
838  unsigned Count = 0;
839  unsigned i = 0;
840  for (; i < getNumWords() && pVal[i] == 0; ++i)
841    Count += APINT_BITS_PER_WORD;
842  if (i < getNumWords())
843    Count += CountTrailingZeros_64(pVal[i]);
844  return std::min(Count, BitWidth);
845}
846
847unsigned APInt::countTrailingOnesSlowCase() const {
848  unsigned Count = 0;
849  unsigned i = 0;
850  for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
851    Count += APINT_BITS_PER_WORD;
852  if (i < getNumWords())
853    Count += CountTrailingOnes_64(pVal[i]);
854  return std::min(Count, BitWidth);
855}
856
857unsigned APInt::countPopulationSlowCase() const {
858  unsigned Count = 0;
859  for (unsigned i = 0; i < getNumWords(); ++i)
860    Count += CountPopulation_64(pVal[i]);
861  return Count;
862}
863
864APInt APInt::byteSwap() const {
865  assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
866  if (BitWidth == 16)
867    return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
868  else if (BitWidth == 32)
869    return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
870  else if (BitWidth == 48) {
871    unsigned Tmp1 = unsigned(VAL >> 16);
872    Tmp1 = ByteSwap_32(Tmp1);
873    uint16_t Tmp2 = uint16_t(VAL);
874    Tmp2 = ByteSwap_16(Tmp2);
875    return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
876  } else if (BitWidth == 64)
877    return APInt(BitWidth, ByteSwap_64(VAL));
878  else {
879    APInt Result(BitWidth, 0);
880    char *pByte = (char*)Result.pVal;
881    for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
882      char Tmp = pByte[i];
883      pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
884      pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
885    }
886    return Result;
887  }
888}
889
890APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
891                                            const APInt& API2) {
892  APInt A = API1, B = API2;
893  while (!!B) {
894    APInt T = B;
895    B = APIntOps::urem(A, B);
896    A = T;
897  }
898  return A;
899}
900
901APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
902  union {
903    double D;
904    uint64_t I;
905  } T;
906  T.D = Double;
907
908  // Get the sign bit from the highest order bit
909  bool isNeg = T.I >> 63;
910
911  // Get the 11-bit exponent and adjust for the 1023 bit bias
912  int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
913
914  // If the exponent is negative, the value is < 0 so just return 0.
915  if (exp < 0)
916    return APInt(width, 0u);
917
918  // Extract the mantissa by clearing the top 12 bits (sign + exponent).
919  uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
920
921  // If the exponent doesn't shift all bits out of the mantissa
922  if (exp < 52)
923    return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
924                    APInt(width, mantissa >> (52 - exp));
925
926  // If the client didn't provide enough bits for us to shift the mantissa into
927  // then the result is undefined, just return 0
928  if (width <= exp - 52)
929    return APInt(width, 0);
930
931  // Otherwise, we have to shift the mantissa bits up to the right location
932  APInt Tmp(width, mantissa);
933  Tmp = Tmp.shl((unsigned)exp - 52);
934  return isNeg ? -Tmp : Tmp;
935}
936
937/// RoundToDouble - This function converts this APInt to a double.
938/// The layout for double is as following (IEEE Standard 754):
939///  --------------------------------------
940/// |  Sign    Exponent    Fraction    Bias |
941/// |-------------------------------------- |
942/// |  1[63]   11[62-52]   52[51-00]   1023 |
943///  --------------------------------------
944double APInt::roundToDouble(bool isSigned) const {
945
946  // Handle the simple case where the value is contained in one uint64_t.
947  // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
948  if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
949    if (isSigned) {
950      int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
951      return double(sext);
952    } else
953      return double(getWord(0));
954  }
955
956  // Determine if the value is negative.
957  bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
958
959  // Construct the absolute value if we're negative.
960  APInt Tmp(isNeg ? -(*this) : (*this));
961
962  // Figure out how many bits we're using.
963  unsigned n = Tmp.getActiveBits();
964
965  // The exponent (without bias normalization) is just the number of bits
966  // we are using. Note that the sign bit is gone since we constructed the
967  // absolute value.
968  uint64_t exp = n;
969
970  // Return infinity for exponent overflow
971  if (exp > 1023) {
972    if (!isSigned || !isNeg)
973      return std::numeric_limits<double>::infinity();
974    else
975      return -std::numeric_limits<double>::infinity();
976  }
977  exp += 1023; // Increment for 1023 bias
978
979  // Number of bits in mantissa is 52. To obtain the mantissa value, we must
980  // extract the high 52 bits from the correct words in pVal.
981  uint64_t mantissa;
982  unsigned hiWord = whichWord(n-1);
983  if (hiWord == 0) {
984    mantissa = Tmp.pVal[0];
985    if (n > 52)
986      mantissa >>= n - 52; // shift down, we want the top 52 bits.
987  } else {
988    assert(hiWord > 0 && "huh?");
989    uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
990    uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
991    mantissa = hibits | lobits;
992  }
993
994  // The leading bit of mantissa is implicit, so get rid of it.
995  uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
996  union {
997    double D;
998    uint64_t I;
999  } T;
1000  T.I = sign | (exp << 52) | mantissa;
1001  return T.D;
1002}
1003
1004// Truncate to new width.
1005APInt &APInt::trunc(unsigned width) {
1006  assert(width < BitWidth && "Invalid APInt Truncate request");
1007  assert(width && "Can't truncate to 0 bits");
1008  unsigned wordsBefore = getNumWords();
1009  BitWidth = width;
1010  unsigned wordsAfter = getNumWords();
1011  if (wordsBefore != wordsAfter) {
1012    if (wordsAfter == 1) {
1013      uint64_t *tmp = pVal;
1014      VAL = pVal[0];
1015      delete [] tmp;
1016    } else {
1017      uint64_t *newVal = getClearedMemory(wordsAfter);
1018      for (unsigned i = 0; i < wordsAfter; ++i)
1019        newVal[i] = pVal[i];
1020      delete [] pVal;
1021      pVal = newVal;
1022    }
1023  }
1024  return clearUnusedBits();
1025}
1026
1027// Sign extend to a new width.
1028APInt &APInt::sext(unsigned width) {
1029  assert(width > BitWidth && "Invalid APInt SignExtend request");
1030  // If the sign bit isn't set, this is the same as zext.
1031  if (!isNegative()) {
1032    zext(width);
1033    return *this;
1034  }
1035
1036  // The sign bit is set. First, get some facts
1037  unsigned wordsBefore = getNumWords();
1038  unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
1039  BitWidth = width;
1040  unsigned wordsAfter = getNumWords();
1041
1042  // Mask the high order word appropriately
1043  if (wordsBefore == wordsAfter) {
1044    unsigned newWordBits = width % APINT_BITS_PER_WORD;
1045    // The extension is contained to the wordsBefore-1th word.
1046    uint64_t mask = ~0ULL;
1047    if (newWordBits)
1048      mask >>= APINT_BITS_PER_WORD - newWordBits;
1049    mask <<= wordBits;
1050    if (wordsBefore == 1)
1051      VAL |= mask;
1052    else
1053      pVal[wordsBefore-1] |= mask;
1054    return clearUnusedBits();
1055  }
1056
1057  uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1058  uint64_t *newVal = getMemory(wordsAfter);
1059  if (wordsBefore == 1)
1060    newVal[0] = VAL | mask;
1061  else {
1062    for (unsigned i = 0; i < wordsBefore; ++i)
1063      newVal[i] = pVal[i];
1064    newVal[wordsBefore-1] |= mask;
1065  }
1066  for (unsigned i = wordsBefore; i < wordsAfter; i++)
1067    newVal[i] = -1ULL;
1068  if (wordsBefore != 1)
1069    delete [] pVal;
1070  pVal = newVal;
1071  return clearUnusedBits();
1072}
1073
1074//  Zero extend to a new width.
1075APInt &APInt::zext(unsigned width) {
1076  assert(width > BitWidth && "Invalid APInt ZeroExtend request");
1077  unsigned wordsBefore = getNumWords();
1078  BitWidth = width;
1079  unsigned wordsAfter = getNumWords();
1080  if (wordsBefore != wordsAfter) {
1081    uint64_t *newVal = getClearedMemory(wordsAfter);
1082    if (wordsBefore == 1)
1083      newVal[0] = VAL;
1084    else
1085      for (unsigned i = 0; i < wordsBefore; ++i)
1086        newVal[i] = pVal[i];
1087    if (wordsBefore != 1)
1088      delete [] pVal;
1089    pVal = newVal;
1090  }
1091  return *this;
1092}
1093
1094APInt &APInt::zextOrTrunc(unsigned width) {
1095  if (BitWidth < width)
1096    return zext(width);
1097  if (BitWidth > width)
1098    return trunc(width);
1099  return *this;
1100}
1101
1102APInt &APInt::sextOrTrunc(unsigned width) {
1103  if (BitWidth < width)
1104    return sext(width);
1105  if (BitWidth > width)
1106    return trunc(width);
1107  return *this;
1108}
1109
1110/// Arithmetic right-shift this APInt by shiftAmt.
1111/// @brief Arithmetic right-shift function.
1112APInt APInt::ashr(const APInt &shiftAmt) const {
1113  return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1114}
1115
1116/// Arithmetic right-shift this APInt by shiftAmt.
1117/// @brief Arithmetic right-shift function.
1118APInt APInt::ashr(unsigned shiftAmt) const {
1119  assert(shiftAmt <= BitWidth && "Invalid shift amount");
1120  // Handle a degenerate case
1121  if (shiftAmt == 0)
1122    return *this;
1123
1124  // Handle single word shifts with built-in ashr
1125  if (isSingleWord()) {
1126    if (shiftAmt == BitWidth)
1127      return APInt(BitWidth, 0); // undefined
1128    else {
1129      unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
1130      return APInt(BitWidth,
1131        (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1132    }
1133  }
1134
1135  // If all the bits were shifted out, the result is, technically, undefined.
1136  // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1137  // issues in the algorithm below.
1138  if (shiftAmt == BitWidth) {
1139    if (isNegative())
1140      return APInt(BitWidth, -1ULL, true);
1141    else
1142      return APInt(BitWidth, 0);
1143  }
1144
1145  // Create some space for the result.
1146  uint64_t * val = new uint64_t[getNumWords()];
1147
1148  // Compute some values needed by the following shift algorithms
1149  unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1150  unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1151  unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1152  unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
1153  if (bitsInWord == 0)
1154    bitsInWord = APINT_BITS_PER_WORD;
1155
1156  // If we are shifting whole words, just move whole words
1157  if (wordShift == 0) {
1158    // Move the words containing significant bits
1159    for (unsigned i = 0; i <= breakWord; ++i)
1160      val[i] = pVal[i+offset]; // move whole word
1161
1162    // Adjust the top significant word for sign bit fill, if negative
1163    if (isNegative())
1164      if (bitsInWord < APINT_BITS_PER_WORD)
1165        val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1166  } else {
1167    // Shift the low order words
1168    for (unsigned i = 0; i < breakWord; ++i) {
1169      // This combines the shifted corresponding word with the low bits from
1170      // the next word (shifted into this word's high bits).
1171      val[i] = (pVal[i+offset] >> wordShift) |
1172               (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1173    }
1174
1175    // Shift the break word. In this case there are no bits from the next word
1176    // to include in this word.
1177    val[breakWord] = pVal[breakWord+offset] >> wordShift;
1178
1179    // Deal with sign extenstion in the break word, and possibly the word before
1180    // it.
1181    if (isNegative()) {
1182      if (wordShift > bitsInWord) {
1183        if (breakWord > 0)
1184          val[breakWord-1] |=
1185            ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1186        val[breakWord] |= ~0ULL;
1187      } else
1188        val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1189    }
1190  }
1191
1192  // Remaining words are 0 or -1, just assign them.
1193  uint64_t fillValue = (isNegative() ? -1ULL : 0);
1194  for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1195    val[i] = fillValue;
1196  return APInt(val, BitWidth).clearUnusedBits();
1197}
1198
1199/// Logical right-shift this APInt by shiftAmt.
1200/// @brief Logical right-shift function.
1201APInt APInt::lshr(const APInt &shiftAmt) const {
1202  return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1203}
1204
1205/// Logical right-shift this APInt by shiftAmt.
1206/// @brief Logical right-shift function.
1207APInt APInt::lshr(unsigned shiftAmt) const {
1208  if (isSingleWord()) {
1209    if (shiftAmt == BitWidth)
1210      return APInt(BitWidth, 0);
1211    else
1212      return APInt(BitWidth, this->VAL >> shiftAmt);
1213  }
1214
1215  // If all the bits were shifted out, the result is 0. This avoids issues
1216  // with shifting by the size of the integer type, which produces undefined
1217  // results. We define these "undefined results" to always be 0.
1218  if (shiftAmt == BitWidth)
1219    return APInt(BitWidth, 0);
1220
1221  // If none of the bits are shifted out, the result is *this. This avoids
1222  // issues with shifting by the size of the integer type, which produces
1223  // undefined results in the code below. This is also an optimization.
1224  if (shiftAmt == 0)
1225    return *this;
1226
1227  // Create some space for the result.
1228  uint64_t * val = new uint64_t[getNumWords()];
1229
1230  // If we are shifting less than a word, compute the shift with a simple carry
1231  if (shiftAmt < APINT_BITS_PER_WORD) {
1232    uint64_t carry = 0;
1233    for (int i = getNumWords()-1; i >= 0; --i) {
1234      val[i] = (pVal[i] >> shiftAmt) | carry;
1235      carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1236    }
1237    return APInt(val, BitWidth).clearUnusedBits();
1238  }
1239
1240  // Compute some values needed by the remaining shift algorithms
1241  unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1242  unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1243
1244  // If we are shifting whole words, just move whole words
1245  if (wordShift == 0) {
1246    for (unsigned i = 0; i < getNumWords() - offset; ++i)
1247      val[i] = pVal[i+offset];
1248    for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
1249      val[i] = 0;
1250    return APInt(val,BitWidth).clearUnusedBits();
1251  }
1252
1253  // Shift the low order words
1254  unsigned breakWord = getNumWords() - offset -1;
1255  for (unsigned i = 0; i < breakWord; ++i)
1256    val[i] = (pVal[i+offset] >> wordShift) |
1257             (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1258  // Shift the break word.
1259  val[breakWord] = pVal[breakWord+offset] >> wordShift;
1260
1261  // Remaining words are 0
1262  for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1263    val[i] = 0;
1264  return APInt(val, BitWidth).clearUnusedBits();
1265}
1266
1267/// Left-shift this APInt by shiftAmt.
1268/// @brief Left-shift function.
1269APInt APInt::shl(const APInt &shiftAmt) const {
1270  // It's undefined behavior in C to shift by BitWidth or greater.
1271  return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
1272}
1273
1274APInt APInt::shlSlowCase(unsigned shiftAmt) const {
1275  // If all the bits were shifted out, the result is 0. This avoids issues
1276  // with shifting by the size of the integer type, which produces undefined
1277  // results. We define these "undefined results" to always be 0.
1278  if (shiftAmt == BitWidth)
1279    return APInt(BitWidth, 0);
1280
1281  // If none of the bits are shifted out, the result is *this. This avoids a
1282  // lshr by the words size in the loop below which can produce incorrect
1283  // results. It also avoids the expensive computation below for a common case.
1284  if (shiftAmt == 0)
1285    return *this;
1286
1287  // Create some space for the result.
1288  uint64_t * val = new uint64_t[getNumWords()];
1289
1290  // If we are shifting less than a word, do it the easy way
1291  if (shiftAmt < APINT_BITS_PER_WORD) {
1292    uint64_t carry = 0;
1293    for (unsigned i = 0; i < getNumWords(); i++) {
1294      val[i] = pVal[i] << shiftAmt | carry;
1295      carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1296    }
1297    return APInt(val, BitWidth).clearUnusedBits();
1298  }
1299
1300  // Compute some values needed by the remaining shift algorithms
1301  unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1302  unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1303
1304  // If we are shifting whole words, just move whole words
1305  if (wordShift == 0) {
1306    for (unsigned i = 0; i < offset; i++)
1307      val[i] = 0;
1308    for (unsigned i = offset; i < getNumWords(); i++)
1309      val[i] = pVal[i-offset];
1310    return APInt(val,BitWidth).clearUnusedBits();
1311  }
1312
1313  // Copy whole words from this to Result.
1314  unsigned i = getNumWords() - 1;
1315  for (; i > offset; --i)
1316    val[i] = pVal[i-offset] << wordShift |
1317             pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1318  val[offset] = pVal[0] << wordShift;
1319  for (i = 0; i < offset; ++i)
1320    val[i] = 0;
1321  return APInt(val, BitWidth).clearUnusedBits();
1322}
1323
1324APInt APInt::rotl(const APInt &rotateAmt) const {
1325  return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
1326}
1327
1328APInt APInt::rotl(unsigned rotateAmt) const {
1329  if (rotateAmt == 0)
1330    return *this;
1331  // Don't get too fancy, just use existing shift/or facilities
1332  APInt hi(*this);
1333  APInt lo(*this);
1334  hi.shl(rotateAmt);
1335  lo.lshr(BitWidth - rotateAmt);
1336  return hi | lo;
1337}
1338
1339APInt APInt::rotr(const APInt &rotateAmt) const {
1340  return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
1341}
1342
1343APInt APInt::rotr(unsigned rotateAmt) const {
1344  if (rotateAmt == 0)
1345    return *this;
1346  // Don't get too fancy, just use existing shift/or facilities
1347  APInt hi(*this);
1348  APInt lo(*this);
1349  lo.lshr(rotateAmt);
1350  hi.shl(BitWidth - rotateAmt);
1351  return hi | lo;
1352}
1353
1354// Square Root - this method computes and returns the square root of "this".
1355// Three mechanisms are used for computation. For small values (<= 5 bits),
1356// a table lookup is done. This gets some performance for common cases. For
1357// values using less than 52 bits, the value is converted to double and then
1358// the libc sqrt function is called. The result is rounded and then converted
1359// back to a uint64_t which is then used to construct the result. Finally,
1360// the Babylonian method for computing square roots is used.
1361APInt APInt::sqrt() const {
1362
1363  // Determine the magnitude of the value.
1364  unsigned magnitude = getActiveBits();
1365
1366  // Use a fast table for some small values. This also gets rid of some
1367  // rounding errors in libc sqrt for small values.
1368  if (magnitude <= 5) {
1369    static const uint8_t results[32] = {
1370      /*     0 */ 0,
1371      /*  1- 2 */ 1, 1,
1372      /*  3- 6 */ 2, 2, 2, 2,
1373      /*  7-12 */ 3, 3, 3, 3, 3, 3,
1374      /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1375      /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1376      /*    31 */ 6
1377    };
1378    return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1379  }
1380
1381  // If the magnitude of the value fits in less than 52 bits (the precision of
1382  // an IEEE double precision floating point value), then we can use the
1383  // libc sqrt function which will probably use a hardware sqrt computation.
1384  // This should be faster than the algorithm below.
1385  if (magnitude < 52) {
1386#ifdef _MSC_VER
1387    // Amazingly, VC++ doesn't have round().
1388    return APInt(BitWidth,
1389                 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1390#else
1391    return APInt(BitWidth,
1392                 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1393#endif
1394  }
1395
1396  // Okay, all the short cuts are exhausted. We must compute it. The following
1397  // is a classical Babylonian method for computing the square root. This code
1398  // was adapted to APINt from a wikipedia article on such computations.
1399  // See http://www.wikipedia.org/ and go to the page named
1400  // Calculate_an_integer_square_root.
1401  unsigned nbits = BitWidth, i = 4;
1402  APInt testy(BitWidth, 16);
1403  APInt x_old(BitWidth, 1);
1404  APInt x_new(BitWidth, 0);
1405  APInt two(BitWidth, 2);
1406
1407  // Select a good starting value using binary logarithms.
1408  for (;; i += 2, testy = testy.shl(2))
1409    if (i >= nbits || this->ule(testy)) {
1410      x_old = x_old.shl(i / 2);
1411      break;
1412    }
1413
1414  // Use the Babylonian method to arrive at the integer square root:
1415  for (;;) {
1416    x_new = (this->udiv(x_old) + x_old).udiv(two);
1417    if (x_old.ule(x_new))
1418      break;
1419    x_old = x_new;
1420  }
1421
1422  // Make sure we return the closest approximation
1423  // NOTE: The rounding calculation below is correct. It will produce an
1424  // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1425  // determined to be a rounding issue with pari/gp as it begins to use a
1426  // floating point representation after 192 bits. There are no discrepancies
1427  // between this algorithm and pari/gp for bit widths < 192 bits.
1428  APInt square(x_old * x_old);
1429  APInt nextSquare((x_old + 1) * (x_old +1));
1430  if (this->ult(square))
1431    return x_old;
1432  else if (this->ule(nextSquare)) {
1433    APInt midpoint((nextSquare - square).udiv(two));
1434    APInt offset(*this - square);
1435    if (offset.ult(midpoint))
1436      return x_old;
1437    else
1438      return x_old + 1;
1439  } else
1440    llvm_unreachable("Error in APInt::sqrt computation");
1441  return x_old + 1;
1442}
1443
1444/// Computes the multiplicative inverse of this APInt for a given modulo. The
1445/// iterative extended Euclidean algorithm is used to solve for this value,
1446/// however we simplify it to speed up calculating only the inverse, and take
1447/// advantage of div+rem calculations. We also use some tricks to avoid copying
1448/// (potentially large) APInts around.
1449APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1450  assert(ult(modulo) && "This APInt must be smaller than the modulo");
1451
1452  // Using the properties listed at the following web page (accessed 06/21/08):
1453  //   http://www.numbertheory.org/php/euclid.html
1454  // (especially the properties numbered 3, 4 and 9) it can be proved that
1455  // BitWidth bits suffice for all the computations in the algorithm implemented
1456  // below. More precisely, this number of bits suffice if the multiplicative
1457  // inverse exists, but may not suffice for the general extended Euclidean
1458  // algorithm.
1459
1460  APInt r[2] = { modulo, *this };
1461  APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1462  APInt q(BitWidth, 0);
1463
1464  unsigned i;
1465  for (i = 0; r[i^1] != 0; i ^= 1) {
1466    // An overview of the math without the confusing bit-flipping:
1467    // q = r[i-2] / r[i-1]
1468    // r[i] = r[i-2] % r[i-1]
1469    // t[i] = t[i-2] - t[i-1] * q
1470    udivrem(r[i], r[i^1], q, r[i]);
1471    t[i] -= t[i^1] * q;
1472  }
1473
1474  // If this APInt and the modulo are not coprime, there is no multiplicative
1475  // inverse, so return 0. We check this by looking at the next-to-last
1476  // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1477  // algorithm.
1478  if (r[i] != 1)
1479    return APInt(BitWidth, 0);
1480
1481  // The next-to-last t is the multiplicative inverse.  However, we are
1482  // interested in a positive inverse. Calcuate a positive one from a negative
1483  // one if necessary. A simple addition of the modulo suffices because
1484  // abs(t[i]) is known to be less than *this/2 (see the link above).
1485  return t[i].isNegative() ? t[i] + modulo : t[i];
1486}
1487
1488/// Calculate the magic numbers required to implement a signed integer division
1489/// by a constant as a sequence of multiplies, adds and shifts.  Requires that
1490/// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S.
1491/// Warren, Jr., chapter 10.
1492APInt::ms APInt::magic() const {
1493  const APInt& d = *this;
1494  unsigned p;
1495  APInt ad, anc, delta, q1, r1, q2, r2, t;
1496  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1497  struct ms mag;
1498
1499  ad = d.abs();
1500  t = signedMin + (d.lshr(d.getBitWidth() - 1));
1501  anc = t - 1 - t.urem(ad);   // absolute value of nc
1502  p = d.getBitWidth() - 1;    // initialize p
1503  q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc)
1504  r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc))
1505  q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d)
1506  r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d))
1507  do {
1508    p = p + 1;
1509    q1 = q1<<1;          // update q1 = 2p/abs(nc)
1510    r1 = r1<<1;          // update r1 = rem(2p/abs(nc))
1511    if (r1.uge(anc)) {  // must be unsigned comparison
1512      q1 = q1 + 1;
1513      r1 = r1 - anc;
1514    }
1515    q2 = q2<<1;          // update q2 = 2p/abs(d)
1516    r2 = r2<<1;          // update r2 = rem(2p/abs(d))
1517    if (r2.uge(ad)) {   // must be unsigned comparison
1518      q2 = q2 + 1;
1519      r2 = r2 - ad;
1520    }
1521    delta = ad - r2;
1522  } while (q1.ule(delta) || (q1 == delta && r1 == 0));
1523
1524  mag.m = q2 + 1;
1525  if (d.isNegative()) mag.m = -mag.m;   // resulting magic number
1526  mag.s = p - d.getBitWidth();          // resulting shift
1527  return mag;
1528}
1529
1530/// Calculate the magic numbers required to implement an unsigned integer
1531/// division by a constant as a sequence of multiplies, adds and shifts.
1532/// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry
1533/// S. Warren, Jr., chapter 10.
1534APInt::mu APInt::magicu() const {
1535  const APInt& d = *this;
1536  unsigned p;
1537  APInt nc, delta, q1, r1, q2, r2;
1538  struct mu magu;
1539  magu.a = 0;               // initialize "add" indicator
1540  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1541  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1542  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1543
1544  nc = allOnes - (-d).urem(d);
1545  p = d.getBitWidth() - 1;  // initialize p
1546  q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
1547  r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc)
1548  q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
1549  r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d)
1550  do {
1551    p = p + 1;
1552    if (r1.uge(nc - r1)) {
1553      q1 = q1 + q1 + 1;  // update q1
1554      r1 = r1 + r1 - nc; // update r1
1555    }
1556    else {
1557      q1 = q1+q1; // update q1
1558      r1 = r1+r1; // update r1
1559    }
1560    if ((r2 + 1).uge(d - r2)) {
1561      if (q2.uge(signedMax)) magu.a = 1;
1562      q2 = q2+q2 + 1;     // update q2
1563      r2 = r2+r2 + 1 - d; // update r2
1564    }
1565    else {
1566      if (q2.uge(signedMin)) magu.a = 1;
1567      q2 = q2+q2;     // update q2
1568      r2 = r2+r2 + 1; // update r2
1569    }
1570    delta = d - 1 - r2;
1571  } while (p < d.getBitWidth()*2 &&
1572           (q1.ult(delta) || (q1 == delta && r1 == 0)));
1573  magu.m = q2 + 1; // resulting magic number
1574  magu.s = p - d.getBitWidth();  // resulting shift
1575  return magu;
1576}
1577
1578/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1579/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1580/// variables here have the same names as in the algorithm. Comments explain
1581/// the algorithm and any deviation from it.
1582static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1583                     unsigned m, unsigned n) {
1584  assert(u && "Must provide dividend");
1585  assert(v && "Must provide divisor");
1586  assert(q && "Must provide quotient");
1587  assert(u != v && u != q && v != q && "Must us different memory");
1588  assert(n>1 && "n must be > 1");
1589
1590  // Knuth uses the value b as the base of the number system. In our case b
1591  // is 2^31 so we just set it to -1u.
1592  uint64_t b = uint64_t(1) << 32;
1593
1594#if 0
1595  DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1596  DEBUG(dbgs() << "KnuthDiv: original:");
1597  DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1598  DEBUG(dbgs() << " by");
1599  DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1600  DEBUG(dbgs() << '\n');
1601#endif
1602  // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1603  // u and v by d. Note that we have taken Knuth's advice here to use a power
1604  // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1605  // 2 allows us to shift instead of multiply and it is easy to determine the
1606  // shift amount from the leading zeros.  We are basically normalizing the u
1607  // and v so that its high bits are shifted to the top of v's range without
1608  // overflow. Note that this can require an extra word in u so that u must
1609  // be of length m+n+1.
1610  unsigned shift = CountLeadingZeros_32(v[n-1]);
1611  unsigned v_carry = 0;
1612  unsigned u_carry = 0;
1613  if (shift) {
1614    for (unsigned i = 0; i < m+n; ++i) {
1615      unsigned u_tmp = u[i] >> (32 - shift);
1616      u[i] = (u[i] << shift) | u_carry;
1617      u_carry = u_tmp;
1618    }
1619    for (unsigned i = 0; i < n; ++i) {
1620      unsigned v_tmp = v[i] >> (32 - shift);
1621      v[i] = (v[i] << shift) | v_carry;
1622      v_carry = v_tmp;
1623    }
1624  }
1625  u[m+n] = u_carry;
1626#if 0
1627  DEBUG(dbgs() << "KnuthDiv:   normal:");
1628  DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1629  DEBUG(dbgs() << " by");
1630  DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1631  DEBUG(dbgs() << '\n');
1632#endif
1633
1634  // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1635  int j = m;
1636  do {
1637    DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1638    // D3. [Calculate q'.].
1639    //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1640    //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1641    // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1642    // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1643    // on v[n-2] determines at high speed most of the cases in which the trial
1644    // value qp is one too large, and it eliminates all cases where qp is two
1645    // too large.
1646    uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1647    DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1648    uint64_t qp = dividend / v[n-1];
1649    uint64_t rp = dividend % v[n-1];
1650    if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1651      qp--;
1652      rp += v[n-1];
1653      if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1654        qp--;
1655    }
1656    DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1657
1658    // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1659    // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1660    // consists of a simple multiplication by a one-place number, combined with
1661    // a subtraction.
1662    bool isNeg = false;
1663    for (unsigned i = 0; i < n; ++i) {
1664      uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1665      uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1666      bool borrow = subtrahend > u_tmp;
1667      DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
1668                   << ", subtrahend == " << subtrahend
1669                   << ", borrow = " << borrow << '\n');
1670
1671      uint64_t result = u_tmp - subtrahend;
1672      unsigned k = j + i;
1673      u[k++] = (unsigned)(result & (b-1)); // subtract low word
1674      u[k++] = (unsigned)(result >> 32);   // subtract high word
1675      while (borrow && k <= m+n) { // deal with borrow to the left
1676        borrow = u[k] == 0;
1677        u[k]--;
1678        k++;
1679      }
1680      isNeg |= borrow;
1681      DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ",  u[j+i+1] == " <<
1682                    u[j+i+1] << '\n');
1683    }
1684    DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1685    DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1686    DEBUG(dbgs() << '\n');
1687    // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1688    // this step is actually negative, (u[j+n]...u[j]) should be left as the
1689    // true value plus b**(n+1), namely as the b's complement of
1690    // the true value, and a "borrow" to the left should be remembered.
1691    //
1692    if (isNeg) {
1693      bool carry = true;  // true because b's complement is "complement + 1"
1694      for (unsigned i = 0; i <= m+n; ++i) {
1695        u[i] = ~u[i] + carry; // b's complement
1696        carry = carry && u[i] == 0;
1697      }
1698    }
1699    DEBUG(dbgs() << "KnuthDiv: after complement:");
1700    DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1701    DEBUG(dbgs() << '\n');
1702
1703    // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1704    // negative, go to step D6; otherwise go on to step D7.
1705    q[j] = (unsigned)qp;
1706    if (isNeg) {
1707      // D6. [Add back]. The probability that this step is necessary is very
1708      // small, on the order of only 2/b. Make sure that test data accounts for
1709      // this possibility. Decrease q[j] by 1
1710      q[j]--;
1711      // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1712      // A carry will occur to the left of u[j+n], and it should be ignored
1713      // since it cancels with the borrow that occurred in D4.
1714      bool carry = false;
1715      for (unsigned i = 0; i < n; i++) {
1716        unsigned limit = std::min(u[j+i],v[i]);
1717        u[j+i] += v[i] + carry;
1718        carry = u[j+i] < limit || (carry && u[j+i] == limit);
1719      }
1720      u[j+n] += carry;
1721    }
1722    DEBUG(dbgs() << "KnuthDiv: after correction:");
1723    DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]);
1724    DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1725
1726  // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1727  } while (--j >= 0);
1728
1729  DEBUG(dbgs() << "KnuthDiv: quotient:");
1730  DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1731  DEBUG(dbgs() << '\n');
1732
1733  // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1734  // remainder may be obtained by dividing u[...] by d. If r is non-null we
1735  // compute the remainder (urem uses this).
1736  if (r) {
1737    // The value d is expressed by the "shift" value above since we avoided
1738    // multiplication by d by using a shift left. So, all we have to do is
1739    // shift right here. In order to mak
1740    if (shift) {
1741      unsigned carry = 0;
1742      DEBUG(dbgs() << "KnuthDiv: remainder:");
1743      for (int i = n-1; i >= 0; i--) {
1744        r[i] = (u[i] >> shift) | carry;
1745        carry = u[i] << (32 - shift);
1746        DEBUG(dbgs() << " " << r[i]);
1747      }
1748    } else {
1749      for (int i = n-1; i >= 0; i--) {
1750        r[i] = u[i];
1751        DEBUG(dbgs() << " " << r[i]);
1752      }
1753    }
1754    DEBUG(dbgs() << '\n');
1755  }
1756#if 0
1757  DEBUG(dbgs() << '\n');
1758#endif
1759}
1760
1761void APInt::divide(const APInt LHS, unsigned lhsWords,
1762                   const APInt &RHS, unsigned rhsWords,
1763                   APInt *Quotient, APInt *Remainder)
1764{
1765  assert(lhsWords >= rhsWords && "Fractional result");
1766
1767  // First, compose the values into an array of 32-bit words instead of
1768  // 64-bit words. This is a necessity of both the "short division" algorithm
1769  // and the Knuth "classical algorithm" which requires there to be native
1770  // operations for +, -, and * on an m bit value with an m*2 bit result. We
1771  // can't use 64-bit operands here because we don't have native results of
1772  // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1773  // work on large-endian machines.
1774  uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
1775  unsigned n = rhsWords * 2;
1776  unsigned m = (lhsWords * 2) - n;
1777
1778  // Allocate space for the temporary values we need either on the stack, if
1779  // it will fit, or on the heap if it won't.
1780  unsigned SPACE[128];
1781  unsigned *U = 0;
1782  unsigned *V = 0;
1783  unsigned *Q = 0;
1784  unsigned *R = 0;
1785  if ((Remainder?4:3)*n+2*m+1 <= 128) {
1786    U = &SPACE[0];
1787    V = &SPACE[m+n+1];
1788    Q = &SPACE[(m+n+1) + n];
1789    if (Remainder)
1790      R = &SPACE[(m+n+1) + n + (m+n)];
1791  } else {
1792    U = new unsigned[m + n + 1];
1793    V = new unsigned[n];
1794    Q = new unsigned[m+n];
1795    if (Remainder)
1796      R = new unsigned[n];
1797  }
1798
1799  // Initialize the dividend
1800  memset(U, 0, (m+n+1)*sizeof(unsigned));
1801  for (unsigned i = 0; i < lhsWords; ++i) {
1802    uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1803    U[i * 2] = (unsigned)(tmp & mask);
1804    U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1805  }
1806  U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1807
1808  // Initialize the divisor
1809  memset(V, 0, (n)*sizeof(unsigned));
1810  for (unsigned i = 0; i < rhsWords; ++i) {
1811    uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1812    V[i * 2] = (unsigned)(tmp & mask);
1813    V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1814  }
1815
1816  // initialize the quotient and remainder
1817  memset(Q, 0, (m+n) * sizeof(unsigned));
1818  if (Remainder)
1819    memset(R, 0, n * sizeof(unsigned));
1820
1821  // Now, adjust m and n for the Knuth division. n is the number of words in
1822  // the divisor. m is the number of words by which the dividend exceeds the
1823  // divisor (i.e. m+n is the length of the dividend). These sizes must not
1824  // contain any zero words or the Knuth algorithm fails.
1825  for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1826    n--;
1827    m++;
1828  }
1829  for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1830    m--;
1831
1832  // If we're left with only a single word for the divisor, Knuth doesn't work
1833  // so we implement the short division algorithm here. This is much simpler
1834  // and faster because we are certain that we can divide a 64-bit quantity
1835  // by a 32-bit quantity at hardware speed and short division is simply a
1836  // series of such operations. This is just like doing short division but we
1837  // are using base 2^32 instead of base 10.
1838  assert(n != 0 && "Divide by zero?");
1839  if (n == 1) {
1840    unsigned divisor = V[0];
1841    unsigned remainder = 0;
1842    for (int i = m+n-1; i >= 0; i--) {
1843      uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1844      if (partial_dividend == 0) {
1845        Q[i] = 0;
1846        remainder = 0;
1847      } else if (partial_dividend < divisor) {
1848        Q[i] = 0;
1849        remainder = (unsigned)partial_dividend;
1850      } else if (partial_dividend == divisor) {
1851        Q[i] = 1;
1852        remainder = 0;
1853      } else {
1854        Q[i] = (unsigned)(partial_dividend / divisor);
1855        remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
1856      }
1857    }
1858    if (R)
1859      R[0] = remainder;
1860  } else {
1861    // Now we're ready to invoke the Knuth classical divide algorithm. In this
1862    // case n > 1.
1863    KnuthDiv(U, V, Q, R, m, n);
1864  }
1865
1866  // If the caller wants the quotient
1867  if (Quotient) {
1868    // Set up the Quotient value's memory.
1869    if (Quotient->BitWidth != LHS.BitWidth) {
1870      if (Quotient->isSingleWord())
1871        Quotient->VAL = 0;
1872      else
1873        delete [] Quotient->pVal;
1874      Quotient->BitWidth = LHS.BitWidth;
1875      if (!Quotient->isSingleWord())
1876        Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1877    } else
1878      Quotient->clear();
1879
1880    // The quotient is in Q. Reconstitute the quotient into Quotient's low
1881    // order words.
1882    if (lhsWords == 1) {
1883      uint64_t tmp =
1884        uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1885      if (Quotient->isSingleWord())
1886        Quotient->VAL = tmp;
1887      else
1888        Quotient->pVal[0] = tmp;
1889    } else {
1890      assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1891      for (unsigned i = 0; i < lhsWords; ++i)
1892        Quotient->pVal[i] =
1893          uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1894    }
1895  }
1896
1897  // If the caller wants the remainder
1898  if (Remainder) {
1899    // Set up the Remainder value's memory.
1900    if (Remainder->BitWidth != RHS.BitWidth) {
1901      if (Remainder->isSingleWord())
1902        Remainder->VAL = 0;
1903      else
1904        delete [] Remainder->pVal;
1905      Remainder->BitWidth = RHS.BitWidth;
1906      if (!Remainder->isSingleWord())
1907        Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1908    } else
1909      Remainder->clear();
1910
1911    // The remainder is in R. Reconstitute the remainder into Remainder's low
1912    // order words.
1913    if (rhsWords == 1) {
1914      uint64_t tmp =
1915        uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1916      if (Remainder->isSingleWord())
1917        Remainder->VAL = tmp;
1918      else
1919        Remainder->pVal[0] = tmp;
1920    } else {
1921      assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1922      for (unsigned i = 0; i < rhsWords; ++i)
1923        Remainder->pVal[i] =
1924          uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1925    }
1926  }
1927
1928  // Clean up the memory we allocated.
1929  if (U != &SPACE[0]) {
1930    delete [] U;
1931    delete [] V;
1932    delete [] Q;
1933    delete [] R;
1934  }
1935}
1936
1937APInt APInt::udiv(const APInt& RHS) const {
1938  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1939
1940  // First, deal with the easy case
1941  if (isSingleWord()) {
1942    assert(RHS.VAL != 0 && "Divide by zero?");
1943    return APInt(BitWidth, VAL / RHS.VAL);
1944  }
1945
1946  // Get some facts about the LHS and RHS number of bits and words
1947  unsigned rhsBits = RHS.getActiveBits();
1948  unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1949  assert(rhsWords && "Divided by zero???");
1950  unsigned lhsBits = this->getActiveBits();
1951  unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1952
1953  // Deal with some degenerate cases
1954  if (!lhsWords)
1955    // 0 / X ===> 0
1956    return APInt(BitWidth, 0);
1957  else if (lhsWords < rhsWords || this->ult(RHS)) {
1958    // X / Y ===> 0, iff X < Y
1959    return APInt(BitWidth, 0);
1960  } else if (*this == RHS) {
1961    // X / X ===> 1
1962    return APInt(BitWidth, 1);
1963  } else if (lhsWords == 1 && rhsWords == 1) {
1964    // All high words are zero, just use native divide
1965    return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1966  }
1967
1968  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1969  APInt Quotient(1,0); // to hold result.
1970  divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1971  return Quotient;
1972}
1973
1974APInt APInt::urem(const APInt& RHS) const {
1975  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1976  if (isSingleWord()) {
1977    assert(RHS.VAL != 0 && "Remainder by zero?");
1978    return APInt(BitWidth, VAL % RHS.VAL);
1979  }
1980
1981  // Get some facts about the LHS
1982  unsigned lhsBits = getActiveBits();
1983  unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1984
1985  // Get some facts about the RHS
1986  unsigned rhsBits = RHS.getActiveBits();
1987  unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1988  assert(rhsWords && "Performing remainder operation by zero ???");
1989
1990  // Check the degenerate cases
1991  if (lhsWords == 0) {
1992    // 0 % Y ===> 0
1993    return APInt(BitWidth, 0);
1994  } else if (lhsWords < rhsWords || this->ult(RHS)) {
1995    // X % Y ===> X, iff X < Y
1996    return *this;
1997  } else if (*this == RHS) {
1998    // X % X == 0;
1999    return APInt(BitWidth, 0);
2000  } else if (lhsWords == 1) {
2001    // All high words are zero, just use native remainder
2002    return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
2003  }
2004
2005  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
2006  APInt Remainder(1,0);
2007  divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
2008  return Remainder;
2009}
2010
2011void APInt::udivrem(const APInt &LHS, const APInt &RHS,
2012                    APInt &Quotient, APInt &Remainder) {
2013  // Get some size facts about the dividend and divisor
2014  unsigned lhsBits  = LHS.getActiveBits();
2015  unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
2016  unsigned rhsBits  = RHS.getActiveBits();
2017  unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
2018
2019  // Check the degenerate cases
2020  if (lhsWords == 0) {
2021    Quotient = 0;                // 0 / Y ===> 0
2022    Remainder = 0;               // 0 % Y ===> 0
2023    return;
2024  }
2025
2026  if (lhsWords < rhsWords || LHS.ult(RHS)) {
2027    Remainder = LHS;            // X % Y ===> X, iff X < Y
2028    Quotient = 0;               // X / Y ===> 0, iff X < Y
2029    return;
2030  }
2031
2032  if (LHS == RHS) {
2033    Quotient  = 1;              // X / X ===> 1
2034    Remainder = 0;              // X % X ===> 0;
2035    return;
2036  }
2037
2038  if (lhsWords == 1 && rhsWords == 1) {
2039    // There is only one word to consider so use the native versions.
2040    uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
2041    uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
2042    Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
2043    Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
2044    return;
2045  }
2046
2047  // Okay, lets do it the long way
2048  divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2049}
2050
2051void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) {
2052  // Check our assumptions here
2053  assert(!str.empty() && "Invalid string length");
2054  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2055         "Radix should be 2, 8, 10, or 16!");
2056
2057  StringRef::iterator p = str.begin();
2058  size_t slen = str.size();
2059  bool isNeg = *p == '-';
2060  if (*p == '-' || *p == '+') {
2061    p++;
2062    slen--;
2063    assert(slen && "String is only a sign, needs a value.");
2064  }
2065  assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2066  assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2067  assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2068  assert((((slen-1)*64)/22 <= numbits || radix != 10)
2069         && "Insufficient bit width");
2070
2071  // Allocate memory
2072  if (!isSingleWord())
2073    pVal = getClearedMemory(getNumWords());
2074
2075  // Figure out if we can shift instead of multiply
2076  unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2077
2078  // Set up an APInt for the digit to add outside the loop so we don't
2079  // constantly construct/destruct it.
2080  APInt apdigit(getBitWidth(), 0);
2081  APInt apradix(getBitWidth(), radix);
2082
2083  // Enter digit traversal loop
2084  for (StringRef::iterator e = str.end(); p != e; ++p) {
2085    unsigned digit = getDigit(*p, radix);
2086    assert(digit < radix && "Invalid character in digit string");
2087
2088    // Shift or multiply the value by the radix
2089    if (slen > 1) {
2090      if (shift)
2091        *this <<= shift;
2092      else
2093        *this *= apradix;
2094    }
2095
2096    // Add in the digit we just interpreted
2097    if (apdigit.isSingleWord())
2098      apdigit.VAL = digit;
2099    else
2100      apdigit.pVal[0] = digit;
2101    *this += apdigit;
2102  }
2103  // If its negative, put it in two's complement form
2104  if (isNeg) {
2105    (*this)--;
2106    this->flip();
2107  }
2108}
2109
2110void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2111                     bool Signed) const {
2112  assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
2113         "Radix should be 2, 8, 10, or 16!");
2114
2115  // First, check for a zero value and just short circuit the logic below.
2116  if (*this == 0) {
2117    Str.push_back('0');
2118    return;
2119  }
2120
2121  static const char Digits[] = "0123456789ABCDEF";
2122
2123  if (isSingleWord()) {
2124    char Buffer[65];
2125    char *BufPtr = Buffer+65;
2126
2127    uint64_t N;
2128    if (Signed) {
2129      int64_t I = getSExtValue();
2130      if (I < 0) {
2131        Str.push_back('-');
2132        I = -I;
2133      }
2134      N = I;
2135    } else {
2136      N = getZExtValue();
2137    }
2138
2139    while (N) {
2140      *--BufPtr = Digits[N % Radix];
2141      N /= Radix;
2142    }
2143    Str.append(BufPtr, Buffer+65);
2144    return;
2145  }
2146
2147  APInt Tmp(*this);
2148
2149  if (Signed && isNegative()) {
2150    // They want to print the signed version and it is a negative value
2151    // Flip the bits and add one to turn it into the equivalent positive
2152    // value and put a '-' in the result.
2153    Tmp.flip();
2154    Tmp++;
2155    Str.push_back('-');
2156  }
2157
2158  // We insert the digits backward, then reverse them to get the right order.
2159  unsigned StartDig = Str.size();
2160
2161  // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2162  // because the number of bits per digit (1, 3 and 4 respectively) divides
2163  // equaly.  We just shift until the value is zero.
2164  if (Radix != 10) {
2165    // Just shift tmp right for each digit width until it becomes zero
2166    unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2167    unsigned MaskAmt = Radix - 1;
2168
2169    while (Tmp != 0) {
2170      unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2171      Str.push_back(Digits[Digit]);
2172      Tmp = Tmp.lshr(ShiftAmt);
2173    }
2174  } else {
2175    APInt divisor(4, 10);
2176    while (Tmp != 0) {
2177      APInt APdigit(1, 0);
2178      APInt tmp2(Tmp.getBitWidth(), 0);
2179      divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2180             &APdigit);
2181      unsigned Digit = (unsigned)APdigit.getZExtValue();
2182      assert(Digit < Radix && "divide failed");
2183      Str.push_back(Digits[Digit]);
2184      Tmp = tmp2;
2185    }
2186  }
2187
2188  // Reverse the digits before returning.
2189  std::reverse(Str.begin()+StartDig, Str.end());
2190}
2191
2192/// toString - This returns the APInt as a std::string.  Note that this is an
2193/// inefficient method.  It is better to pass in a SmallVector/SmallString
2194/// to the methods above.
2195std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2196  SmallString<40> S;
2197  toString(S, Radix, Signed);
2198  return S.str();
2199}
2200
2201
2202void APInt::dump() const {
2203  SmallString<40> S, U;
2204  this->toStringUnsigned(U);
2205  this->toStringSigned(S);
2206  dbgs() << "APInt(" << BitWidth << "b, "
2207         << U.str() << "u " << S.str() << "s)";
2208}
2209
2210void APInt::print(raw_ostream &OS, bool isSigned) const {
2211  SmallString<40> S;
2212  this->toString(S, 10, isSigned);
2213  OS << S.str();
2214}
2215
2216// This implements a variety of operations on a representation of
2217// arbitrary precision, two's-complement, bignum integer values.
2218
2219// Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
2220// and unrestricting assumption.
2221#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
2222COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
2223
2224/* Some handy functions local to this file.  */
2225namespace {
2226
2227  /* Returns the integer part with the least significant BITS set.
2228     BITS cannot be zero.  */
2229  static inline integerPart
2230  lowBitMask(unsigned int bits)
2231  {
2232    assert (bits != 0 && bits <= integerPartWidth);
2233
2234    return ~(integerPart) 0 >> (integerPartWidth - bits);
2235  }
2236
2237  /* Returns the value of the lower half of PART.  */
2238  static inline integerPart
2239  lowHalf(integerPart part)
2240  {
2241    return part & lowBitMask(integerPartWidth / 2);
2242  }
2243
2244  /* Returns the value of the upper half of PART.  */
2245  static inline integerPart
2246  highHalf(integerPart part)
2247  {
2248    return part >> (integerPartWidth / 2);
2249  }
2250
2251  /* Returns the bit number of the most significant set bit of a part.
2252     If the input number has no bits set -1U is returned.  */
2253  static unsigned int
2254  partMSB(integerPart value)
2255  {
2256    unsigned int n, msb;
2257
2258    if (value == 0)
2259      return -1U;
2260
2261    n = integerPartWidth / 2;
2262
2263    msb = 0;
2264    do {
2265      if (value >> n) {
2266        value >>= n;
2267        msb += n;
2268      }
2269
2270      n >>= 1;
2271    } while (n);
2272
2273    return msb;
2274  }
2275
2276  /* Returns the bit number of the least significant set bit of a
2277     part.  If the input number has no bits set -1U is returned.  */
2278  static unsigned int
2279  partLSB(integerPart value)
2280  {
2281    unsigned int n, lsb;
2282
2283    if (value == 0)
2284      return -1U;
2285
2286    lsb = integerPartWidth - 1;
2287    n = integerPartWidth / 2;
2288
2289    do {
2290      if (value << n) {
2291        value <<= n;
2292        lsb -= n;
2293      }
2294
2295      n >>= 1;
2296    } while (n);
2297
2298    return lsb;
2299  }
2300}
2301
2302/* Sets the least significant part of a bignum to the input value, and
2303   zeroes out higher parts.  */
2304void
2305APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2306{
2307  unsigned int i;
2308
2309  assert (parts > 0);
2310
2311  dst[0] = part;
2312  for(i = 1; i < parts; i++)
2313    dst[i] = 0;
2314}
2315
2316/* Assign one bignum to another.  */
2317void
2318APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2319{
2320  unsigned int i;
2321
2322  for(i = 0; i < parts; i++)
2323    dst[i] = src[i];
2324}
2325
2326/* Returns true if a bignum is zero, false otherwise.  */
2327bool
2328APInt::tcIsZero(const integerPart *src, unsigned int parts)
2329{
2330  unsigned int i;
2331
2332  for(i = 0; i < parts; i++)
2333    if (src[i])
2334      return false;
2335
2336  return true;
2337}
2338
2339/* Extract the given bit of a bignum; returns 0 or 1.  */
2340int
2341APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2342{
2343  return(parts[bit / integerPartWidth]
2344         & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2345}
2346
2347/* Set the given bit of a bignum.  */
2348void
2349APInt::tcSetBit(integerPart *parts, unsigned int bit)
2350{
2351  parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2352}
2353
2354/* Returns the bit number of the least significant set bit of a
2355   number.  If the input number has no bits set -1U is returned.  */
2356unsigned int
2357APInt::tcLSB(const integerPart *parts, unsigned int n)
2358{
2359  unsigned int i, lsb;
2360
2361  for(i = 0; i < n; i++) {
2362      if (parts[i] != 0) {
2363          lsb = partLSB(parts[i]);
2364
2365          return lsb + i * integerPartWidth;
2366      }
2367  }
2368
2369  return -1U;
2370}
2371
2372/* Returns the bit number of the most significant set bit of a number.
2373   If the input number has no bits set -1U is returned.  */
2374unsigned int
2375APInt::tcMSB(const integerPart *parts, unsigned int n)
2376{
2377  unsigned int msb;
2378
2379  do {
2380      --n;
2381
2382      if (parts[n] != 0) {
2383          msb = partMSB(parts[n]);
2384
2385          return msb + n * integerPartWidth;
2386      }
2387  } while (n);
2388
2389  return -1U;
2390}
2391
2392/* Copy the bit vector of width srcBITS from SRC, starting at bit
2393   srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2394   the least significant bit of DST.  All high bits above srcBITS in
2395   DST are zero-filled.  */
2396void
2397APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
2398                 unsigned int srcBits, unsigned int srcLSB)
2399{
2400  unsigned int firstSrcPart, dstParts, shift, n;
2401
2402  dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2403  assert (dstParts <= dstCount);
2404
2405  firstSrcPart = srcLSB / integerPartWidth;
2406  tcAssign (dst, src + firstSrcPart, dstParts);
2407
2408  shift = srcLSB % integerPartWidth;
2409  tcShiftRight (dst, dstParts, shift);
2410
2411  /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2412     in DST.  If this is less that srcBits, append the rest, else
2413     clear the high bits.  */
2414  n = dstParts * integerPartWidth - shift;
2415  if (n < srcBits) {
2416    integerPart mask = lowBitMask (srcBits - n);
2417    dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2418                          << n % integerPartWidth);
2419  } else if (n > srcBits) {
2420    if (srcBits % integerPartWidth)
2421      dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
2422  }
2423
2424  /* Clear high parts.  */
2425  while (dstParts < dstCount)
2426    dst[dstParts++] = 0;
2427}
2428
2429/* DST += RHS + C where C is zero or one.  Returns the carry flag.  */
2430integerPart
2431APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2432             integerPart c, unsigned int parts)
2433{
2434  unsigned int i;
2435
2436  assert(c <= 1);
2437
2438  for(i = 0; i < parts; i++) {
2439    integerPart l;
2440
2441    l = dst[i];
2442    if (c) {
2443      dst[i] += rhs[i] + 1;
2444      c = (dst[i] <= l);
2445    } else {
2446      dst[i] += rhs[i];
2447      c = (dst[i] < l);
2448    }
2449  }
2450
2451  return c;
2452}
2453
2454/* DST -= RHS + C where C is zero or one.  Returns the carry flag.  */
2455integerPart
2456APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2457                  integerPart c, unsigned int parts)
2458{
2459  unsigned int i;
2460
2461  assert(c <= 1);
2462
2463  for(i = 0; i < parts; i++) {
2464    integerPart l;
2465
2466    l = dst[i];
2467    if (c) {
2468      dst[i] -= rhs[i] + 1;
2469      c = (dst[i] >= l);
2470    } else {
2471      dst[i] -= rhs[i];
2472      c = (dst[i] > l);
2473    }
2474  }
2475
2476  return c;
2477}
2478
2479/* Negate a bignum in-place.  */
2480void
2481APInt::tcNegate(integerPart *dst, unsigned int parts)
2482{
2483  tcComplement(dst, parts);
2484  tcIncrement(dst, parts);
2485}
2486
2487/*  DST += SRC * MULTIPLIER + CARRY   if add is true
2488    DST  = SRC * MULTIPLIER + CARRY   if add is false
2489
2490    Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
2491    they must start at the same point, i.e. DST == SRC.
2492
2493    If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2494    returned.  Otherwise DST is filled with the least significant
2495    DSTPARTS parts of the result, and if all of the omitted higher
2496    parts were zero return zero, otherwise overflow occurred and
2497    return one.  */
2498int
2499APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2500                      integerPart multiplier, integerPart carry,
2501                      unsigned int srcParts, unsigned int dstParts,
2502                      bool add)
2503{
2504  unsigned int i, n;
2505
2506  /* Otherwise our writes of DST kill our later reads of SRC.  */
2507  assert(dst <= src || dst >= src + srcParts);
2508  assert(dstParts <= srcParts + 1);
2509
2510  /* N loops; minimum of dstParts and srcParts.  */
2511  n = dstParts < srcParts ? dstParts: srcParts;
2512
2513  for(i = 0; i < n; i++) {
2514    integerPart low, mid, high, srcPart;
2515
2516      /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2517
2518         This cannot overflow, because
2519
2520         (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2521
2522         which is less than n^2.  */
2523
2524    srcPart = src[i];
2525
2526    if (multiplier == 0 || srcPart == 0)        {
2527      low = carry;
2528      high = 0;
2529    } else {
2530      low = lowHalf(srcPart) * lowHalf(multiplier);
2531      high = highHalf(srcPart) * highHalf(multiplier);
2532
2533      mid = lowHalf(srcPart) * highHalf(multiplier);
2534      high += highHalf(mid);
2535      mid <<= integerPartWidth / 2;
2536      if (low + mid < low)
2537        high++;
2538      low += mid;
2539
2540      mid = highHalf(srcPart) * lowHalf(multiplier);
2541      high += highHalf(mid);
2542      mid <<= integerPartWidth / 2;
2543      if (low + mid < low)
2544        high++;
2545      low += mid;
2546
2547      /* Now add carry.  */
2548      if (low + carry < low)
2549        high++;
2550      low += carry;
2551    }
2552
2553    if (add) {
2554      /* And now DST[i], and store the new low part there.  */
2555      if (low + dst[i] < low)
2556        high++;
2557      dst[i] += low;
2558    } else
2559      dst[i] = low;
2560
2561    carry = high;
2562  }
2563
2564  if (i < dstParts) {
2565    /* Full multiplication, there is no overflow.  */
2566    assert(i + 1 == dstParts);
2567    dst[i] = carry;
2568    return 0;
2569  } else {
2570    /* We overflowed if there is carry.  */
2571    if (carry)
2572      return 1;
2573
2574    /* We would overflow if any significant unwritten parts would be
2575       non-zero.  This is true if any remaining src parts are non-zero
2576       and the multiplier is non-zero.  */
2577    if (multiplier)
2578      for(; i < srcParts; i++)
2579        if (src[i])
2580          return 1;
2581
2582    /* We fitted in the narrow destination.  */
2583    return 0;
2584  }
2585}
2586
2587/* DST = LHS * RHS, where DST has the same width as the operands and
2588   is filled with the least significant parts of the result.  Returns
2589   one if overflow occurred, otherwise zero.  DST must be disjoint
2590   from both operands.  */
2591int
2592APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2593                  const integerPart *rhs, unsigned int parts)
2594{
2595  unsigned int i;
2596  int overflow;
2597
2598  assert(dst != lhs && dst != rhs);
2599
2600  overflow = 0;
2601  tcSet(dst, 0, parts);
2602
2603  for(i = 0; i < parts; i++)
2604    overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2605                               parts - i, true);
2606
2607  return overflow;
2608}
2609
2610/* DST = LHS * RHS, where DST has width the sum of the widths of the
2611   operands.  No overflow occurs.  DST must be disjoint from both
2612   operands.  Returns the number of parts required to hold the
2613   result.  */
2614unsigned int
2615APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
2616                      const integerPart *rhs, unsigned int lhsParts,
2617                      unsigned int rhsParts)
2618{
2619  /* Put the narrower number on the LHS for less loops below.  */
2620  if (lhsParts > rhsParts) {
2621    return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2622  } else {
2623    unsigned int n;
2624
2625    assert(dst != lhs && dst != rhs);
2626
2627    tcSet(dst, 0, rhsParts);
2628
2629    for(n = 0; n < lhsParts; n++)
2630      tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
2631
2632    n = lhsParts + rhsParts;
2633
2634    return n - (dst[n - 1] == 0);
2635  }
2636}
2637
2638/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2639   Otherwise set LHS to LHS / RHS with the fractional part discarded,
2640   set REMAINDER to the remainder, return zero.  i.e.
2641
2642   OLD_LHS = RHS * LHS + REMAINDER
2643
2644   SCRATCH is a bignum of the same size as the operands and result for
2645   use by the routine; its contents need not be initialized and are
2646   destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
2647*/
2648int
2649APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2650                integerPart *remainder, integerPart *srhs,
2651                unsigned int parts)
2652{
2653  unsigned int n, shiftCount;
2654  integerPart mask;
2655
2656  assert(lhs != remainder && lhs != srhs && remainder != srhs);
2657
2658  shiftCount = tcMSB(rhs, parts) + 1;
2659  if (shiftCount == 0)
2660    return true;
2661
2662  shiftCount = parts * integerPartWidth - shiftCount;
2663  n = shiftCount / integerPartWidth;
2664  mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2665
2666  tcAssign(srhs, rhs, parts);
2667  tcShiftLeft(srhs, parts, shiftCount);
2668  tcAssign(remainder, lhs, parts);
2669  tcSet(lhs, 0, parts);
2670
2671  /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2672     the total.  */
2673  for(;;) {
2674      int compare;
2675
2676      compare = tcCompare(remainder, srhs, parts);
2677      if (compare >= 0) {
2678        tcSubtract(remainder, srhs, 0, parts);
2679        lhs[n] |= mask;
2680      }
2681
2682      if (shiftCount == 0)
2683        break;
2684      shiftCount--;
2685      tcShiftRight(srhs, parts, 1);
2686      if ((mask >>= 1) == 0)
2687        mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2688  }
2689
2690  return false;
2691}
2692
2693/* Shift a bignum left COUNT bits in-place.  Shifted in bits are zero.
2694   There are no restrictions on COUNT.  */
2695void
2696APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2697{
2698  if (count) {
2699    unsigned int jump, shift;
2700
2701    /* Jump is the inter-part jump; shift is is intra-part shift.  */
2702    jump = count / integerPartWidth;
2703    shift = count % integerPartWidth;
2704
2705    while (parts > jump) {
2706      integerPart part;
2707
2708      parts--;
2709
2710      /* dst[i] comes from the two parts src[i - jump] and, if we have
2711         an intra-part shift, src[i - jump - 1].  */
2712      part = dst[parts - jump];
2713      if (shift) {
2714        part <<= shift;
2715        if (parts >= jump + 1)
2716          part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2717      }
2718
2719      dst[parts] = part;
2720    }
2721
2722    while (parts > 0)
2723      dst[--parts] = 0;
2724  }
2725}
2726
2727/* Shift a bignum right COUNT bits in-place.  Shifted in bits are
2728   zero.  There are no restrictions on COUNT.  */
2729void
2730APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2731{
2732  if (count) {
2733    unsigned int i, jump, shift;
2734
2735    /* Jump is the inter-part jump; shift is is intra-part shift.  */
2736    jump = count / integerPartWidth;
2737    shift = count % integerPartWidth;
2738
2739    /* Perform the shift.  This leaves the most significant COUNT bits
2740       of the result at zero.  */
2741    for(i = 0; i < parts; i++) {
2742      integerPart part;
2743
2744      if (i + jump >= parts) {
2745        part = 0;
2746      } else {
2747        part = dst[i + jump];
2748        if (shift) {
2749          part >>= shift;
2750          if (i + jump + 1 < parts)
2751            part |= dst[i + jump + 1] << (integerPartWidth - shift);
2752        }
2753      }
2754
2755      dst[i] = part;
2756    }
2757  }
2758}
2759
2760/* Bitwise and of two bignums.  */
2761void
2762APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2763{
2764  unsigned int i;
2765
2766  for(i = 0; i < parts; i++)
2767    dst[i] &= rhs[i];
2768}
2769
2770/* Bitwise inclusive or of two bignums.  */
2771void
2772APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2773{
2774  unsigned int i;
2775
2776  for(i = 0; i < parts; i++)
2777    dst[i] |= rhs[i];
2778}
2779
2780/* Bitwise exclusive or of two bignums.  */
2781void
2782APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2783{
2784  unsigned int i;
2785
2786  for(i = 0; i < parts; i++)
2787    dst[i] ^= rhs[i];
2788}
2789
2790/* Complement a bignum in-place.  */
2791void
2792APInt::tcComplement(integerPart *dst, unsigned int parts)
2793{
2794  unsigned int i;
2795
2796  for(i = 0; i < parts; i++)
2797    dst[i] = ~dst[i];
2798}
2799
2800/* Comparison (unsigned) of two bignums.  */
2801int
2802APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2803                 unsigned int parts)
2804{
2805  while (parts) {
2806      parts--;
2807      if (lhs[parts] == rhs[parts])
2808        continue;
2809
2810      if (lhs[parts] > rhs[parts])
2811        return 1;
2812      else
2813        return -1;
2814    }
2815
2816  return 0;
2817}
2818
2819/* Increment a bignum in-place, return the carry flag.  */
2820integerPart
2821APInt::tcIncrement(integerPart *dst, unsigned int parts)
2822{
2823  unsigned int i;
2824
2825  for(i = 0; i < parts; i++)
2826    if (++dst[i] != 0)
2827      break;
2828
2829  return i == parts;
2830}
2831
2832/* Set the least significant BITS bits of a bignum, clear the
2833   rest.  */
2834void
2835APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2836                                 unsigned int bits)
2837{
2838  unsigned int i;
2839
2840  i = 0;
2841  while (bits > integerPartWidth) {
2842    dst[i++] = ~(integerPart) 0;
2843    bits -= integerPartWidth;
2844  }
2845
2846  if (bits)
2847    dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2848
2849  while (i < parts)
2850    dst[i++] = 0;
2851}
2852