APInt.cpp revision fb0709a180e55325f8b13754df4c9d9671b7b285
1//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Sheng Zhou and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/MathExtras.h"
20#include <math.h>
21#include <limits>
22#include <cstring>
23#include <cstdlib>
24#ifndef NDEBUG
25#include <iomanip>
26#endif
27
28using namespace llvm;
29
30/// A utility function for allocating memory, checking for allocation failures,
31/// and ensuring the contents are zeroed.
32inline static uint64_t* getClearedMemory(uint32_t numWords) {
33  uint64_t * result = new uint64_t[numWords];
34  assert(result && "APInt memory allocation fails!");
35  memset(result, 0, numWords * sizeof(uint64_t));
36  return result;
37}
38
39/// A utility function for allocating memory and checking for allocation
40/// failure.  The content is not zeroed.
41inline static uint64_t* getMemory(uint32_t numWords) {
42  uint64_t * result = new uint64_t[numWords];
43  assert(result && "APInt memory allocation fails!");
44  return result;
45}
46
47APInt::APInt(uint32_t numBits, uint64_t val, bool isSigned)
48  : BitWidth(numBits), VAL(0) {
49  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
50  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
51  if (isSingleWord())
52    VAL = val;
53  else {
54    pVal = getClearedMemory(getNumWords());
55    pVal[0] = val;
56    if (isSigned && int64_t(val) < 0)
57      for (unsigned i = 1; i < getNumWords(); ++i)
58        pVal[i] = -1ULL;
59  }
60  clearUnusedBits();
61}
62
63APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
64  : BitWidth(numBits), VAL(0)  {
65  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
66  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
67  assert(bigVal && "Null pointer detected!");
68  if (isSingleWord())
69    VAL = bigVal[0];
70  else {
71    // Get memory, cleared to 0
72    pVal = getClearedMemory(getNumWords());
73    // Calculate the number of words to copy
74    uint32_t words = std::min<uint32_t>(numWords, getNumWords());
75    // Copy the words from bigVal to pVal
76    memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
77  }
78  // Make sure unused high bits are cleared
79  clearUnusedBits();
80}
81
82APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
83             uint8_t radix)
84  : BitWidth(numbits), VAL(0) {
85  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
86  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
87  fromString(numbits, StrStart, slen, radix);
88}
89
90APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
91  : BitWidth(numbits), VAL(0) {
92  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
93  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
94  assert(!Val.empty() && "String empty?");
95  fromString(numbits, Val.c_str(), Val.size(), radix);
96}
97
98APInt::APInt(const APInt& that)
99  : BitWidth(that.BitWidth), VAL(0) {
100  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
101  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
102  if (isSingleWord())
103    VAL = that.VAL;
104  else {
105    pVal = getMemory(getNumWords());
106    memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
107  }
108}
109
110APInt::~APInt() {
111  if (!isSingleWord() && pVal)
112    delete [] pVal;
113}
114
115APInt& APInt::operator=(const APInt& RHS) {
116  // Don't do anything for X = X
117  if (this == &RHS)
118    return *this;
119
120  // If the bitwidths are the same, we can avoid mucking with memory
121  if (BitWidth == RHS.getBitWidth()) {
122    if (isSingleWord())
123      VAL = RHS.VAL;
124    else
125      memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
126    return *this;
127  }
128
129  if (isSingleWord())
130    if (RHS.isSingleWord())
131      VAL = RHS.VAL;
132    else {
133      VAL = 0;
134      pVal = getMemory(RHS.getNumWords());
135      memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
136    }
137  else if (getNumWords() == RHS.getNumWords())
138    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
139  else if (RHS.isSingleWord()) {
140    delete [] pVal;
141    VAL = RHS.VAL;
142  } else {
143    delete [] pVal;
144    pVal = getMemory(RHS.getNumWords());
145    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
146  }
147  BitWidth = RHS.BitWidth;
148  return clearUnusedBits();
149}
150
151APInt& APInt::operator=(uint64_t RHS) {
152  if (isSingleWord())
153    VAL = RHS;
154  else {
155    pVal[0] = RHS;
156    memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
157  }
158  return clearUnusedBits();
159}
160
161/// add_1 - This function adds a single "digit" integer, y, to the multiple
162/// "digit" integer array,  x[]. x[] is modified to reflect the addition and
163/// 1 is returned if there is a carry out, otherwise 0 is returned.
164/// @returns the carry of the addition.
165static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
166  for (uint32_t i = 0; i < len; ++i) {
167    dest[i] = y + x[i];
168    if (dest[i] < y)
169      y = 1; // Carry one to next digit.
170    else {
171      y = 0; // No need to carry so exit early
172      break;
173    }
174  }
175  return y;
176}
177
178/// @brief Prefix increment operator. Increments the APInt by one.
179APInt& APInt::operator++() {
180  if (isSingleWord())
181    ++VAL;
182  else
183    add_1(pVal, pVal, getNumWords(), 1);
184  return clearUnusedBits();
185}
186
187/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
188/// the multi-digit integer array, x[], propagating the borrowed 1 value until
189/// no further borrowing is neeeded or it runs out of "digits" in x.  The result
190/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
191/// In other words, if y > x then this function returns 1, otherwise 0.
192/// @returns the borrow out of the subtraction
193static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
194  for (uint32_t i = 0; i < len; ++i) {
195    uint64_t X = x[i];
196    x[i] -= y;
197    if (y > X)
198      y = 1;  // We have to "borrow 1" from next "digit"
199    else {
200      y = 0;  // No need to borrow
201      break;  // Remaining digits are unchanged so exit early
202    }
203  }
204  return bool(y);
205}
206
207/// @brief Prefix decrement operator. Decrements the APInt by one.
208APInt& APInt::operator--() {
209  if (isSingleWord())
210    --VAL;
211  else
212    sub_1(pVal, getNumWords(), 1);
213  return clearUnusedBits();
214}
215
216/// add - This function adds the integer array x to the integer array Y and
217/// places the result in dest.
218/// @returns the carry out from the addition
219/// @brief General addition of 64-bit integer arrays
220static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
221                uint32_t len) {
222  bool carry = false;
223  for (uint32_t i = 0; i< len; ++i) {
224    uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
225    dest[i] = x[i] + y[i] + carry;
226    carry = dest[i] < limit || (carry && dest[i] == limit);
227  }
228  return carry;
229}
230
231/// Adds the RHS APint to this APInt.
232/// @returns this, after addition of RHS.
233/// @brief Addition assignment operator.
234APInt& APInt::operator+=(const APInt& RHS) {
235  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
236  if (isSingleWord())
237    VAL += RHS.VAL;
238  else {
239    add(pVal, pVal, RHS.pVal, getNumWords());
240  }
241  return clearUnusedBits();
242}
243
244/// Subtracts the integer array y from the integer array x
245/// @returns returns the borrow out.
246/// @brief Generalized subtraction of 64-bit integer arrays.
247static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
248                uint32_t len) {
249  bool borrow = false;
250  for (uint32_t i = 0; i < len; ++i) {
251    uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
252    borrow = y[i] > x_tmp || (borrow && x[i] == 0);
253    dest[i] = x_tmp - y[i];
254  }
255  return borrow;
256}
257
258/// Subtracts the RHS APInt from this APInt
259/// @returns this, after subtraction
260/// @brief Subtraction assignment operator.
261APInt& APInt::operator-=(const APInt& RHS) {
262  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
263  if (isSingleWord())
264    VAL -= RHS.VAL;
265  else
266    sub(pVal, pVal, RHS.pVal, getNumWords());
267  return clearUnusedBits();
268}
269
270/// Multiplies an integer array, x by a a uint64_t integer and places the result
271/// into dest.
272/// @returns the carry out of the multiplication.
273/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
274static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
275  // Split y into high 32-bit part (hy)  and low 32-bit part (ly)
276  uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
277  uint64_t carry = 0;
278
279  // For each digit of x.
280  for (uint32_t i = 0; i < len; ++i) {
281    // Split x into high and low words
282    uint64_t lx = x[i] & 0xffffffffULL;
283    uint64_t hx = x[i] >> 32;
284    // hasCarry - A flag to indicate if there is a carry to the next digit.
285    // hasCarry == 0, no carry
286    // hasCarry == 1, has carry
287    // hasCarry == 2, no carry and the calculation result == 0.
288    uint8_t hasCarry = 0;
289    dest[i] = carry + lx * ly;
290    // Determine if the add above introduces carry.
291    hasCarry = (dest[i] < carry) ? 1 : 0;
292    carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
293    // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
294    // (2^32 - 1) + 2^32 = 2^64.
295    hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
296
297    carry += (lx * hy) & 0xffffffffULL;
298    dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
299    carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
300            (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
301  }
302  return carry;
303}
304
305/// Multiplies integer array x by integer array y and stores the result into
306/// the integer array dest. Note that dest's size must be >= xlen + ylen.
307/// @brief Generalized multiplicate of integer arrays.
308static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
309                uint32_t ylen) {
310  dest[xlen] = mul_1(dest, x, xlen, y[0]);
311  for (uint32_t i = 1; i < ylen; ++i) {
312    uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
313    uint64_t carry = 0, lx = 0, hx = 0;
314    for (uint32_t j = 0; j < xlen; ++j) {
315      lx = x[j] & 0xffffffffULL;
316      hx = x[j] >> 32;
317      // hasCarry - A flag to indicate if has carry.
318      // hasCarry == 0, no carry
319      // hasCarry == 1, has carry
320      // hasCarry == 2, no carry and the calculation result == 0.
321      uint8_t hasCarry = 0;
322      uint64_t resul = carry + lx * ly;
323      hasCarry = (resul < carry) ? 1 : 0;
324      carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
325      hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
326
327      carry += (lx * hy) & 0xffffffffULL;
328      resul = (carry << 32) | (resul & 0xffffffffULL);
329      dest[i+j] += resul;
330      carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
331              (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
332              ((lx * hy) >> 32) + hx * hy;
333    }
334    dest[i+xlen] = carry;
335  }
336}
337
338APInt& APInt::operator*=(const APInt& RHS) {
339  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
340  if (isSingleWord()) {
341    VAL *= RHS.VAL;
342    clearUnusedBits();
343    return *this;
344  }
345
346  // Get some bit facts about LHS and check for zero
347  uint32_t lhsBits = getActiveBits();
348  uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
349  if (!lhsWords)
350    // 0 * X ===> 0
351    return *this;
352
353  // Get some bit facts about RHS and check for zero
354  uint32_t rhsBits = RHS.getActiveBits();
355  uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
356  if (!rhsWords) {
357    // X * 0 ===> 0
358    clear();
359    return *this;
360  }
361
362  // Allocate space for the result
363  uint32_t destWords = rhsWords + lhsWords;
364  uint64_t *dest = getMemory(destWords);
365
366  // Perform the long multiply
367  mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
368
369  // Copy result back into *this
370  clear();
371  uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
372  memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
373
374  // delete dest array and return
375  delete[] dest;
376  return *this;
377}
378
379APInt& APInt::operator&=(const APInt& RHS) {
380  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
381  if (isSingleWord()) {
382    VAL &= RHS.VAL;
383    return *this;
384  }
385  uint32_t numWords = getNumWords();
386  for (uint32_t i = 0; i < numWords; ++i)
387    pVal[i] &= RHS.pVal[i];
388  return *this;
389}
390
391APInt& APInt::operator|=(const APInt& RHS) {
392  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
393  if (isSingleWord()) {
394    VAL |= RHS.VAL;
395    return *this;
396  }
397  uint32_t numWords = getNumWords();
398  for (uint32_t i = 0; i < numWords; ++i)
399    pVal[i] |= RHS.pVal[i];
400  return *this;
401}
402
403APInt& APInt::operator^=(const APInt& RHS) {
404  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
405  if (isSingleWord()) {
406    VAL ^= RHS.VAL;
407    this->clearUnusedBits();
408    return *this;
409  }
410  uint32_t numWords = getNumWords();
411  for (uint32_t i = 0; i < numWords; ++i)
412    pVal[i] ^= RHS.pVal[i];
413  return clearUnusedBits();
414}
415
416APInt APInt::operator&(const APInt& RHS) const {
417  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
418  if (isSingleWord())
419    return APInt(getBitWidth(), VAL & RHS.VAL);
420
421  uint32_t numWords = getNumWords();
422  uint64_t* val = getMemory(numWords);
423  for (uint32_t i = 0; i < numWords; ++i)
424    val[i] = pVal[i] & RHS.pVal[i];
425  return APInt(val, getBitWidth());
426}
427
428APInt APInt::operator|(const APInt& RHS) const {
429  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
430  if (isSingleWord())
431    return APInt(getBitWidth(), VAL | RHS.VAL);
432
433  uint32_t numWords = getNumWords();
434  uint64_t *val = getMemory(numWords);
435  for (uint32_t i = 0; i < numWords; ++i)
436    val[i] = pVal[i] | RHS.pVal[i];
437  return APInt(val, getBitWidth());
438}
439
440APInt APInt::operator^(const APInt& RHS) const {
441  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
442  if (isSingleWord())
443    return APInt(BitWidth, VAL ^ RHS.VAL);
444
445  uint32_t numWords = getNumWords();
446  uint64_t *val = getMemory(numWords);
447  for (uint32_t i = 0; i < numWords; ++i)
448    val[i] = pVal[i] ^ RHS.pVal[i];
449
450  // 0^0==1 so clear the high bits in case they got set.
451  return APInt(val, getBitWidth()).clearUnusedBits();
452}
453
454bool APInt::operator !() const {
455  if (isSingleWord())
456    return !VAL;
457
458  for (uint32_t i = 0; i < getNumWords(); ++i)
459    if (pVal[i])
460      return false;
461  return true;
462}
463
464APInt APInt::operator*(const APInt& RHS) const {
465  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
466  if (isSingleWord())
467    return APInt(BitWidth, VAL * RHS.VAL);
468  APInt Result(*this);
469  Result *= RHS;
470  return Result.clearUnusedBits();
471}
472
473APInt APInt::operator+(const APInt& RHS) const {
474  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
475  if (isSingleWord())
476    return APInt(BitWidth, VAL + RHS.VAL);
477  APInt Result(BitWidth, 0);
478  add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
479  return Result.clearUnusedBits();
480}
481
482APInt APInt::operator-(const APInt& RHS) const {
483  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
484  if (isSingleWord())
485    return APInt(BitWidth, VAL - RHS.VAL);
486  APInt Result(BitWidth, 0);
487  sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
488  return Result.clearUnusedBits();
489}
490
491bool APInt::operator[](uint32_t bitPosition) const {
492  return (maskBit(bitPosition) &
493          (isSingleWord() ?  VAL : pVal[whichWord(bitPosition)])) != 0;
494}
495
496bool APInt::operator==(const APInt& RHS) const {
497  assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
498  if (isSingleWord())
499    return VAL == RHS.VAL;
500
501  // Get some facts about the number of bits used in the two operands.
502  uint32_t n1 = getActiveBits();
503  uint32_t n2 = RHS.getActiveBits();
504
505  // If the number of bits isn't the same, they aren't equal
506  if (n1 != n2)
507    return false;
508
509  // If the number of bits fits in a word, we only need to compare the low word.
510  if (n1 <= APINT_BITS_PER_WORD)
511    return pVal[0] == RHS.pVal[0];
512
513  // Otherwise, compare everything
514  for (int i = whichWord(n1 - 1); i >= 0; --i)
515    if (pVal[i] != RHS.pVal[i])
516      return false;
517  return true;
518}
519
520bool APInt::operator==(uint64_t Val) const {
521  if (isSingleWord())
522    return VAL == Val;
523
524  uint32_t n = getActiveBits();
525  if (n <= APINT_BITS_PER_WORD)
526    return pVal[0] == Val;
527  else
528    return false;
529}
530
531bool APInt::ult(const APInt& RHS) const {
532  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
533  if (isSingleWord())
534    return VAL < RHS.VAL;
535
536  // Get active bit length of both operands
537  uint32_t n1 = getActiveBits();
538  uint32_t n2 = RHS.getActiveBits();
539
540  // If magnitude of LHS is less than RHS, return true.
541  if (n1 < n2)
542    return true;
543
544  // If magnitude of RHS is greather than LHS, return false.
545  if (n2 < n1)
546    return false;
547
548  // If they bot fit in a word, just compare the low order word
549  if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
550    return pVal[0] < RHS.pVal[0];
551
552  // Otherwise, compare all words
553  uint32_t topWord = whichWord(std::max(n1,n2)-1);
554  for (int i = topWord; i >= 0; --i) {
555    if (pVal[i] > RHS.pVal[i])
556      return false;
557    if (pVal[i] < RHS.pVal[i])
558      return true;
559  }
560  return false;
561}
562
563bool APInt::slt(const APInt& RHS) const {
564  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
565  if (isSingleWord()) {
566    int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
567    int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
568    return lhsSext < rhsSext;
569  }
570
571  APInt lhs(*this);
572  APInt rhs(RHS);
573  bool lhsNeg = isNegative();
574  bool rhsNeg = rhs.isNegative();
575  if (lhsNeg) {
576    // Sign bit is set so perform two's complement to make it positive
577    lhs.flip();
578    lhs++;
579  }
580  if (rhsNeg) {
581    // Sign bit is set so perform two's complement to make it positive
582    rhs.flip();
583    rhs++;
584  }
585
586  // Now we have unsigned values to compare so do the comparison if necessary
587  // based on the negativeness of the values.
588  if (lhsNeg)
589    if (rhsNeg)
590      return lhs.ugt(rhs);
591    else
592      return true;
593  else if (rhsNeg)
594    return false;
595  else
596    return lhs.ult(rhs);
597}
598
599APInt& APInt::set(uint32_t bitPosition) {
600  if (isSingleWord())
601    VAL |= maskBit(bitPosition);
602  else
603    pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
604  return *this;
605}
606
607APInt& APInt::set() {
608  if (isSingleWord()) {
609    VAL = -1ULL;
610    return clearUnusedBits();
611  }
612
613  // Set all the bits in all the words.
614  for (uint32_t i = 0; i < getNumWords(); ++i)
615    pVal[i] = -1ULL;
616  // Clear the unused ones
617  return clearUnusedBits();
618}
619
620/// Set the given bit to 0 whose position is given as "bitPosition".
621/// @brief Set a given bit to 0.
622APInt& APInt::clear(uint32_t bitPosition) {
623  if (isSingleWord())
624    VAL &= ~maskBit(bitPosition);
625  else
626    pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
627  return *this;
628}
629
630/// @brief Set every bit to 0.
631APInt& APInt::clear() {
632  if (isSingleWord())
633    VAL = 0;
634  else
635    memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
636  return *this;
637}
638
639/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
640/// this APInt.
641APInt APInt::operator~() const {
642  APInt Result(*this);
643  Result.flip();
644  return Result;
645}
646
647/// @brief Toggle every bit to its opposite value.
648APInt& APInt::flip() {
649  if (isSingleWord()) {
650    VAL ^= -1ULL;
651    return clearUnusedBits();
652  }
653  for (uint32_t i = 0; i < getNumWords(); ++i)
654    pVal[i] ^= -1ULL;
655  return clearUnusedBits();
656}
657
658/// Toggle a given bit to its opposite value whose position is given
659/// as "bitPosition".
660/// @brief Toggles a given bit to its opposite value.
661APInt& APInt::flip(uint32_t bitPosition) {
662  assert(bitPosition < BitWidth && "Out of the bit-width range!");
663  if ((*this)[bitPosition]) clear(bitPosition);
664  else set(bitPosition);
665  return *this;
666}
667
668uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) {
669  assert(str != 0 && "Invalid value string");
670  assert(slen > 0 && "Invalid string length");
671
672  // Each computation below needs to know if its negative
673  uint32_t isNegative = str[0] == '-';
674  if (isNegative) {
675    slen--;
676    str++;
677  }
678  // For radixes of power-of-two values, the bits required is accurately and
679  // easily computed
680  if (radix == 2)
681    return slen + isNegative;
682  if (radix == 8)
683    return slen * 3 + isNegative;
684  if (radix == 16)
685    return slen * 4 + isNegative;
686
687  // Otherwise it must be radix == 10, the hard case
688  assert(radix == 10 && "Invalid radix");
689
690  // This is grossly inefficient but accurate. We could probably do something
691  // with a computation of roughly slen*64/20 and then adjust by the value of
692  // the first few digits. But, I'm not sure how accurate that could be.
693
694  // Compute a sufficient number of bits that is always large enough but might
695  // be too large. This avoids the assertion in the constructor.
696  uint32_t sufficient = slen*64/18;
697
698  // Convert to the actual binary value.
699  APInt tmp(sufficient, str, slen, radix);
700
701  // Compute how many bits are required.
702  return isNegative + tmp.logBase2() + 1;
703}
704
705uint64_t APInt::getHashValue() const {
706  // Put the bit width into the low order bits.
707  uint64_t hash = BitWidth;
708
709  // Add the sum of the words to the hash.
710  if (isSingleWord())
711    hash += VAL << 6; // clear separation of up to 64 bits
712  else
713    for (uint32_t i = 0; i < getNumWords(); ++i)
714      hash += pVal[i] << 6; // clear sepration of up to 64 bits
715  return hash;
716}
717
718/// HiBits - This function returns the high "numBits" bits of this APInt.
719APInt APInt::getHiBits(uint32_t numBits) const {
720  return APIntOps::lshr(*this, BitWidth - numBits);
721}
722
723/// LoBits - This function returns the low "numBits" bits of this APInt.
724APInt APInt::getLoBits(uint32_t numBits) const {
725  return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
726                        BitWidth - numBits);
727}
728
729bool APInt::isPowerOf2() const {
730  return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
731}
732
733uint32_t APInt::countLeadingZeros() const {
734  uint32_t Count = 0;
735  if (isSingleWord())
736    Count = CountLeadingZeros_64(VAL);
737  else {
738    for (uint32_t i = getNumWords(); i > 0u; --i) {
739      if (pVal[i-1] == 0)
740        Count += APINT_BITS_PER_WORD;
741      else {
742        Count += CountLeadingZeros_64(pVal[i-1]);
743        break;
744      }
745    }
746  }
747  uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
748  if (remainder)
749    Count -= APINT_BITS_PER_WORD - remainder;
750  return Count;
751}
752
753static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
754  uint32_t Count = 0;
755  if (skip)
756    V <<= skip;
757  while (V && (V & (1ULL << 63))) {
758    Count++;
759    V <<= 1;
760  }
761  return Count;
762}
763
764uint32_t APInt::countLeadingOnes() const {
765  if (isSingleWord())
766    return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
767
768  uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD;
769  uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
770  int i = getNumWords() - 1;
771  uint32_t Count = countLeadingOnes_64(pVal[i], shift);
772  if (Count == highWordBits) {
773    for (i--; i >= 0; --i) {
774      if (pVal[i] == -1ULL)
775        Count += APINT_BITS_PER_WORD;
776      else {
777        Count += countLeadingOnes_64(pVal[i], 0);
778        break;
779      }
780    }
781  }
782  return Count;
783}
784
785uint32_t APInt::countTrailingZeros() const {
786  if (isSingleWord())
787    return CountTrailingZeros_64(VAL);
788  uint32_t Count = 0;
789  uint32_t i = 0;
790  for (; i < getNumWords() && pVal[i] == 0; ++i)
791    Count += APINT_BITS_PER_WORD;
792  if (i < getNumWords())
793    Count += CountTrailingZeros_64(pVal[i]);
794  return Count;
795}
796
797uint32_t APInt::countPopulation() const {
798  if (isSingleWord())
799    return CountPopulation_64(VAL);
800  uint32_t Count = 0;
801  for (uint32_t i = 0; i < getNumWords(); ++i)
802    Count += CountPopulation_64(pVal[i]);
803  return Count;
804}
805
806APInt APInt::byteSwap() const {
807  assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
808  if (BitWidth == 16)
809    return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
810  else if (BitWidth == 32)
811    return APInt(BitWidth, ByteSwap_32(uint32_t(VAL)));
812  else if (BitWidth == 48) {
813    uint32_t Tmp1 = uint32_t(VAL >> 16);
814    Tmp1 = ByteSwap_32(Tmp1);
815    uint16_t Tmp2 = uint16_t(VAL);
816    Tmp2 = ByteSwap_16(Tmp2);
817    return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
818  } else if (BitWidth == 64)
819    return APInt(BitWidth, ByteSwap_64(VAL));
820  else {
821    APInt Result(BitWidth, 0);
822    char *pByte = (char*)Result.pVal;
823    for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
824      char Tmp = pByte[i];
825      pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
826      pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
827    }
828    return Result;
829  }
830}
831
832APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
833                                            const APInt& API2) {
834  APInt A = API1, B = API2;
835  while (!!B) {
836    APInt T = B;
837    B = APIntOps::urem(A, B);
838    A = T;
839  }
840  return A;
841}
842
843APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
844  union {
845    double D;
846    uint64_t I;
847  } T;
848  T.D = Double;
849
850  // Get the sign bit from the highest order bit
851  bool isNeg = T.I >> 63;
852
853  // Get the 11-bit exponent and adjust for the 1023 bit bias
854  int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
855
856  // If the exponent is negative, the value is < 0 so just return 0.
857  if (exp < 0)
858    return APInt(width, 0u);
859
860  // Extract the mantissa by clearing the top 12 bits (sign + exponent).
861  uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
862
863  // If the exponent doesn't shift all bits out of the mantissa
864  if (exp < 52)
865    return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
866                    APInt(width, mantissa >> (52 - exp));
867
868  // If the client didn't provide enough bits for us to shift the mantissa into
869  // then the result is undefined, just return 0
870  if (width <= exp - 52)
871    return APInt(width, 0);
872
873  // Otherwise, we have to shift the mantissa bits up to the right location
874  APInt Tmp(width, mantissa);
875  Tmp = Tmp.shl(exp - 52);
876  return isNeg ? -Tmp : Tmp;
877}
878
879/// RoundToDouble - This function convert this APInt to a double.
880/// The layout for double is as following (IEEE Standard 754):
881///  --------------------------------------
882/// |  Sign    Exponent    Fraction    Bias |
883/// |-------------------------------------- |
884/// |  1[63]   11[62-52]   52[51-00]   1023 |
885///  --------------------------------------
886double APInt::roundToDouble(bool isSigned) const {
887
888  // Handle the simple case where the value is contained in one uint64_t.
889  if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
890    if (isSigned) {
891      int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
892      return double(sext);
893    } else
894      return double(VAL);
895  }
896
897  // Determine if the value is negative.
898  bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
899
900  // Construct the absolute value if we're negative.
901  APInt Tmp(isNeg ? -(*this) : (*this));
902
903  // Figure out how many bits we're using.
904  uint32_t n = Tmp.getActiveBits();
905
906  // The exponent (without bias normalization) is just the number of bits
907  // we are using. Note that the sign bit is gone since we constructed the
908  // absolute value.
909  uint64_t exp = n;
910
911  // Return infinity for exponent overflow
912  if (exp > 1023) {
913    if (!isSigned || !isNeg)
914      return std::numeric_limits<double>::infinity();
915    else
916      return -std::numeric_limits<double>::infinity();
917  }
918  exp += 1023; // Increment for 1023 bias
919
920  // Number of bits in mantissa is 52. To obtain the mantissa value, we must
921  // extract the high 52 bits from the correct words in pVal.
922  uint64_t mantissa;
923  unsigned hiWord = whichWord(n-1);
924  if (hiWord == 0) {
925    mantissa = Tmp.pVal[0];
926    if (n > 52)
927      mantissa >>= n - 52; // shift down, we want the top 52 bits.
928  } else {
929    assert(hiWord > 0 && "huh?");
930    uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
931    uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
932    mantissa = hibits | lobits;
933  }
934
935  // The leading bit of mantissa is implicit, so get rid of it.
936  uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
937  union {
938    double D;
939    uint64_t I;
940  } T;
941  T.I = sign | (exp << 52) | mantissa;
942  return T.D;
943}
944
945// Truncate to new width.
946APInt &APInt::trunc(uint32_t width) {
947  assert(width < BitWidth && "Invalid APInt Truncate request");
948  assert(width >= IntegerType::MIN_INT_BITS && "Can't truncate to 0 bits");
949  uint32_t wordsBefore = getNumWords();
950  BitWidth = width;
951  uint32_t wordsAfter = getNumWords();
952  if (wordsBefore != wordsAfter) {
953    if (wordsAfter == 1) {
954      uint64_t *tmp = pVal;
955      VAL = pVal[0];
956      delete [] tmp;
957    } else {
958      uint64_t *newVal = getClearedMemory(wordsAfter);
959      for (uint32_t i = 0; i < wordsAfter; ++i)
960        newVal[i] = pVal[i];
961      delete [] pVal;
962      pVal = newVal;
963    }
964  }
965  return clearUnusedBits();
966}
967
968// Sign extend to a new width.
969APInt &APInt::sext(uint32_t width) {
970  assert(width > BitWidth && "Invalid APInt SignExtend request");
971  assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
972  // If the sign bit isn't set, this is the same as zext.
973  if (!isNegative()) {
974    zext(width);
975    return *this;
976  }
977
978  // The sign bit is set. First, get some facts
979  uint32_t wordsBefore = getNumWords();
980  uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
981  BitWidth = width;
982  uint32_t wordsAfter = getNumWords();
983
984  // Mask the high order word appropriately
985  if (wordsBefore == wordsAfter) {
986    uint32_t newWordBits = width % APINT_BITS_PER_WORD;
987    // The extension is contained to the wordsBefore-1th word.
988    uint64_t mask = ~0ULL;
989    if (newWordBits)
990      mask >>= APINT_BITS_PER_WORD - newWordBits;
991    mask <<= wordBits;
992    if (wordsBefore == 1)
993      VAL |= mask;
994    else
995      pVal[wordsBefore-1] |= mask;
996    return clearUnusedBits();
997  }
998
999  uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1000  uint64_t *newVal = getMemory(wordsAfter);
1001  if (wordsBefore == 1)
1002    newVal[0] = VAL | mask;
1003  else {
1004    for (uint32_t i = 0; i < wordsBefore; ++i)
1005      newVal[i] = pVal[i];
1006    newVal[wordsBefore-1] |= mask;
1007  }
1008  for (uint32_t i = wordsBefore; i < wordsAfter; i++)
1009    newVal[i] = -1ULL;
1010  if (wordsBefore != 1)
1011    delete [] pVal;
1012  pVal = newVal;
1013  return clearUnusedBits();
1014}
1015
1016//  Zero extend to a new width.
1017APInt &APInt::zext(uint32_t width) {
1018  assert(width > BitWidth && "Invalid APInt ZeroExtend request");
1019  assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
1020  uint32_t wordsBefore = getNumWords();
1021  BitWidth = width;
1022  uint32_t wordsAfter = getNumWords();
1023  if (wordsBefore != wordsAfter) {
1024    uint64_t *newVal = getClearedMemory(wordsAfter);
1025    if (wordsBefore == 1)
1026      newVal[0] = VAL;
1027    else
1028      for (uint32_t i = 0; i < wordsBefore; ++i)
1029        newVal[i] = pVal[i];
1030    if (wordsBefore != 1)
1031      delete [] pVal;
1032    pVal = newVal;
1033  }
1034  return *this;
1035}
1036
1037APInt &APInt::zextOrTrunc(uint32_t width) {
1038  if (BitWidth < width)
1039    return zext(width);
1040  if (BitWidth > width)
1041    return trunc(width);
1042  return *this;
1043}
1044
1045APInt &APInt::sextOrTrunc(uint32_t width) {
1046  if (BitWidth < width)
1047    return sext(width);
1048  if (BitWidth > width)
1049    return trunc(width);
1050  return *this;
1051}
1052
1053/// Arithmetic right-shift this APInt by shiftAmt.
1054/// @brief Arithmetic right-shift function.
1055APInt APInt::ashr(uint32_t shiftAmt) const {
1056  assert(shiftAmt <= BitWidth && "Invalid shift amount");
1057  // Handle a degenerate case
1058  if (shiftAmt == 0)
1059    return *this;
1060
1061  // Handle single word shifts with built-in ashr
1062  if (isSingleWord()) {
1063    if (shiftAmt == BitWidth)
1064      return APInt(BitWidth, 0); // undefined
1065    else {
1066      uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
1067      return APInt(BitWidth,
1068        (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1069    }
1070  }
1071
1072  // If all the bits were shifted out, the result is, technically, undefined.
1073  // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1074  // issues in the algorithm below.
1075  if (shiftAmt == BitWidth) {
1076    if (isNegative())
1077      return APInt(BitWidth, -1ULL);
1078    else
1079      return APInt(BitWidth, 0);
1080  }
1081
1082  // Create some space for the result.
1083  uint64_t * val = new uint64_t[getNumWords()];
1084
1085  // Compute some values needed by the following shift algorithms
1086  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1087  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1088  uint32_t breakWord = getNumWords() - 1 - offset; // last word affected
1089  uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word?
1090  if (bitsInWord == 0)
1091    bitsInWord = APINT_BITS_PER_WORD;
1092
1093  // If we are shifting whole words, just move whole words
1094  if (wordShift == 0) {
1095    // Move the words containing significant bits
1096    for (uint32_t i = 0; i <= breakWord; ++i)
1097      val[i] = pVal[i+offset]; // move whole word
1098
1099    // Adjust the top significant word for sign bit fill, if negative
1100    if (isNegative())
1101      if (bitsInWord < APINT_BITS_PER_WORD)
1102        val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1103  } else {
1104    // Shift the low order words
1105    for (uint32_t i = 0; i < breakWord; ++i) {
1106      // This combines the shifted corresponding word with the low bits from
1107      // the next word (shifted into this word's high bits).
1108      val[i] = (pVal[i+offset] >> wordShift) |
1109               (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1110    }
1111
1112    // Shift the break word. In this case there are no bits from the next word
1113    // to include in this word.
1114    val[breakWord] = pVal[breakWord+offset] >> wordShift;
1115
1116    // Deal with sign extenstion in the break word, and possibly the word before
1117    // it.
1118    if (isNegative()) {
1119      if (wordShift > bitsInWord) {
1120        if (breakWord > 0)
1121          val[breakWord-1] |=
1122            ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1123        val[breakWord] |= ~0ULL;
1124      } else
1125        val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1126    }
1127  }
1128
1129  // Remaining words are 0 or -1, just assign them.
1130  uint64_t fillValue = (isNegative() ? -1ULL : 0);
1131  for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1132    val[i] = fillValue;
1133  return APInt(val, BitWidth).clearUnusedBits();
1134}
1135
1136/// Logical right-shift this APInt by shiftAmt.
1137/// @brief Logical right-shift function.
1138APInt APInt::lshr(uint32_t shiftAmt) const {
1139  if (isSingleWord()) {
1140    if (shiftAmt == BitWidth)
1141      return APInt(BitWidth, 0);
1142    else
1143      return APInt(BitWidth, this->VAL >> shiftAmt);
1144  }
1145
1146  // If all the bits were shifted out, the result is 0. This avoids issues
1147  // with shifting by the size of the integer type, which produces undefined
1148  // results. We define these "undefined results" to always be 0.
1149  if (shiftAmt == BitWidth)
1150    return APInt(BitWidth, 0);
1151
1152  // If none of the bits are shifted out, the result is *this. This avoids
1153  // issues with shifting byt he size of the integer type, which produces
1154  // undefined results in the code below. This is also an optimization.
1155  if (shiftAmt == 0)
1156    return *this;
1157
1158  // Create some space for the result.
1159  uint64_t * val = new uint64_t[getNumWords()];
1160
1161  // If we are shifting less than a word, compute the shift with a simple carry
1162  if (shiftAmt < APINT_BITS_PER_WORD) {
1163    uint64_t carry = 0;
1164    for (int i = getNumWords()-1; i >= 0; --i) {
1165      val[i] = (pVal[i] >> shiftAmt) | carry;
1166      carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1167    }
1168    return APInt(val, BitWidth).clearUnusedBits();
1169  }
1170
1171  // Compute some values needed by the remaining shift algorithms
1172  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1173  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1174
1175  // If we are shifting whole words, just move whole words
1176  if (wordShift == 0) {
1177    for (uint32_t i = 0; i < getNumWords() - offset; ++i)
1178      val[i] = pVal[i+offset];
1179    for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
1180      val[i] = 0;
1181    return APInt(val,BitWidth).clearUnusedBits();
1182  }
1183
1184  // Shift the low order words
1185  uint32_t breakWord = getNumWords() - offset -1;
1186  for (uint32_t i = 0; i < breakWord; ++i)
1187    val[i] = (pVal[i+offset] >> wordShift) |
1188             (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1189  // Shift the break word.
1190  val[breakWord] = pVal[breakWord+offset] >> wordShift;
1191
1192  // Remaining words are 0
1193  for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1194    val[i] = 0;
1195  return APInt(val, BitWidth).clearUnusedBits();
1196}
1197
1198/// Left-shift this APInt by shiftAmt.
1199/// @brief Left-shift function.
1200APInt APInt::shl(uint32_t shiftAmt) const {
1201  assert(shiftAmt <= BitWidth && "Invalid shift amount");
1202  if (isSingleWord()) {
1203    if (shiftAmt == BitWidth)
1204      return APInt(BitWidth, 0); // avoid undefined shift results
1205    return APInt(BitWidth, VAL << shiftAmt);
1206  }
1207
1208  // If all the bits were shifted out, the result is 0. This avoids issues
1209  // with shifting by the size of the integer type, which produces undefined
1210  // results. We define these "undefined results" to always be 0.
1211  if (shiftAmt == BitWidth)
1212    return APInt(BitWidth, 0);
1213
1214  // If none of the bits are shifted out, the result is *this. This avoids a
1215  // lshr by the words size in the loop below which can produce incorrect
1216  // results. It also avoids the expensive computation below for a common case.
1217  if (shiftAmt == 0)
1218    return *this;
1219
1220  // Create some space for the result.
1221  uint64_t * val = new uint64_t[getNumWords()];
1222
1223  // If we are shifting less than a word, do it the easy way
1224  if (shiftAmt < APINT_BITS_PER_WORD) {
1225    uint64_t carry = 0;
1226    for (uint32_t i = 0; i < getNumWords(); i++) {
1227      val[i] = pVal[i] << shiftAmt | carry;
1228      carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1229    }
1230    return APInt(val, BitWidth).clearUnusedBits();
1231  }
1232
1233  // Compute some values needed by the remaining shift algorithms
1234  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1235  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1236
1237  // If we are shifting whole words, just move whole words
1238  if (wordShift == 0) {
1239    for (uint32_t i = 0; i < offset; i++)
1240      val[i] = 0;
1241    for (uint32_t i = offset; i < getNumWords(); i++)
1242      val[i] = pVal[i-offset];
1243    return APInt(val,BitWidth).clearUnusedBits();
1244  }
1245
1246  // Copy whole words from this to Result.
1247  uint32_t i = getNumWords() - 1;
1248  for (; i > offset; --i)
1249    val[i] = pVal[i-offset] << wordShift |
1250             pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1251  val[offset] = pVal[0] << wordShift;
1252  for (i = 0; i < offset; ++i)
1253    val[i] = 0;
1254  return APInt(val, BitWidth).clearUnusedBits();
1255}
1256
1257APInt APInt::rotl(uint32_t rotateAmt) const {
1258  if (rotateAmt == 0)
1259    return *this;
1260  // Don't get too fancy, just use existing shift/or facilities
1261  APInt hi(*this);
1262  APInt lo(*this);
1263  hi.shl(rotateAmt);
1264  lo.lshr(BitWidth - rotateAmt);
1265  return hi | lo;
1266}
1267
1268APInt APInt::rotr(uint32_t rotateAmt) const {
1269  if (rotateAmt == 0)
1270    return *this;
1271  // Don't get too fancy, just use existing shift/or facilities
1272  APInt hi(*this);
1273  APInt lo(*this);
1274  lo.lshr(rotateAmt);
1275  hi.shl(BitWidth - rotateAmt);
1276  return hi | lo;
1277}
1278
1279// Square Root - this method computes and returns the square root of "this".
1280// Three mechanisms are used for computation. For small values (<= 5 bits),
1281// a table lookup is done. This gets some performance for common cases. For
1282// values using less than 52 bits, the value is converted to double and then
1283// the libc sqrt function is called. The result is rounded and then converted
1284// back to a uint64_t which is then used to construct the result. Finally,
1285// the Babylonian method for computing square roots is used.
1286APInt APInt::sqrt() const {
1287
1288  // Determine the magnitude of the value.
1289  uint32_t magnitude = getActiveBits();
1290
1291  // Use a fast table for some small values. This also gets rid of some
1292  // rounding errors in libc sqrt for small values.
1293  if (magnitude <= 5) {
1294    static const uint8_t results[32] = {
1295      /*     0 */ 0,
1296      /*  1- 2 */ 1, 1,
1297      /*  3- 6 */ 2, 2, 2, 2,
1298      /*  7-12 */ 3, 3, 3, 3, 3, 3,
1299      /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1300      /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1301      /*    31 */ 6
1302    };
1303    return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1304  }
1305
1306  // If the magnitude of the value fits in less than 52 bits (the precision of
1307  // an IEEE double precision floating point value), then we can use the
1308  // libc sqrt function which will probably use a hardware sqrt computation.
1309  // This should be faster than the algorithm below.
1310  if (magnitude < 52) {
1311#ifdef _MSC_VER
1312    // Amazingly, VC++ doesn't have round().
1313    return APInt(BitWidth,
1314                 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1315#else
1316    return APInt(BitWidth,
1317                 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1318#endif
1319  }
1320
1321  // Okay, all the short cuts are exhausted. We must compute it. The following
1322  // is a classical Babylonian method for computing the square root. This code
1323  // was adapted to APINt from a wikipedia article on such computations.
1324  // See http://www.wikipedia.org/ and go to the page named
1325  // Calculate_an_integer_square_root.
1326  uint32_t nbits = BitWidth, i = 4;
1327  APInt testy(BitWidth, 16);
1328  APInt x_old(BitWidth, 1);
1329  APInt x_new(BitWidth, 0);
1330  APInt two(BitWidth, 2);
1331
1332  // Select a good starting value using binary logarithms.
1333  for (;; i += 2, testy = testy.shl(2))
1334    if (i >= nbits || this->ule(testy)) {
1335      x_old = x_old.shl(i / 2);
1336      break;
1337    }
1338
1339  // Use the Babylonian method to arrive at the integer square root:
1340  for (;;) {
1341    x_new = (this->udiv(x_old) + x_old).udiv(two);
1342    if (x_old.ule(x_new))
1343      break;
1344    x_old = x_new;
1345  }
1346
1347  // Make sure we return the closest approximation
1348  // NOTE: The rounding calculation below is correct. It will produce an
1349  // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1350  // determined to be a rounding issue with pari/gp as it begins to use a
1351  // floating point representation after 192 bits. There are no discrepancies
1352  // between this algorithm and pari/gp for bit widths < 192 bits.
1353  APInt square(x_old * x_old);
1354  APInt nextSquare((x_old + 1) * (x_old +1));
1355  if (this->ult(square))
1356    return x_old;
1357  else if (this->ule(nextSquare)) {
1358    APInt midpoint((nextSquare - square).udiv(two));
1359    APInt offset(*this - square);
1360    if (offset.ult(midpoint))
1361      return x_old;
1362    else
1363      return x_old + 1;
1364  } else
1365    assert(0 && "Error in APInt::sqrt computation");
1366  return x_old + 1;
1367}
1368
1369/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1370/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1371/// variables here have the same names as in the algorithm. Comments explain
1372/// the algorithm and any deviation from it.
1373static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1374                     uint32_t m, uint32_t n) {
1375  assert(u && "Must provide dividend");
1376  assert(v && "Must provide divisor");
1377  assert(q && "Must provide quotient");
1378  assert(u != v && u != q && v != q && "Must us different memory");
1379  assert(n>1 && "n must be > 1");
1380
1381  // Knuth uses the value b as the base of the number system. In our case b
1382  // is 2^31 so we just set it to -1u.
1383  uint64_t b = uint64_t(1) << 32;
1384
1385  DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1386  DEBUG(cerr << "KnuthDiv: original:");
1387  DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1388  DEBUG(cerr << " by");
1389  DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1390  DEBUG(cerr << '\n');
1391  // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1392  // u and v by d. Note that we have taken Knuth's advice here to use a power
1393  // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1394  // 2 allows us to shift instead of multiply and it is easy to determine the
1395  // shift amount from the leading zeros.  We are basically normalizing the u
1396  // and v so that its high bits are shifted to the top of v's range without
1397  // overflow. Note that this can require an extra word in u so that u must
1398  // be of length m+n+1.
1399  uint32_t shift = CountLeadingZeros_32(v[n-1]);
1400  uint32_t v_carry = 0;
1401  uint32_t u_carry = 0;
1402  if (shift) {
1403    for (uint32_t i = 0; i < m+n; ++i) {
1404      uint32_t u_tmp = u[i] >> (32 - shift);
1405      u[i] = (u[i] << shift) | u_carry;
1406      u_carry = u_tmp;
1407    }
1408    for (uint32_t i = 0; i < n; ++i) {
1409      uint32_t v_tmp = v[i] >> (32 - shift);
1410      v[i] = (v[i] << shift) | v_carry;
1411      v_carry = v_tmp;
1412    }
1413  }
1414  u[m+n] = u_carry;
1415  DEBUG(cerr << "KnuthDiv:   normal:");
1416  DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1417  DEBUG(cerr << " by");
1418  DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1419  DEBUG(cerr << '\n');
1420
1421  // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1422  int j = m;
1423  do {
1424    DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
1425    // D3. [Calculate q'.].
1426    //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1427    //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1428    // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1429    // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1430    // on v[n-2] determines at high speed most of the cases in which the trial
1431    // value qp is one too large, and it eliminates all cases where qp is two
1432    // too large.
1433    uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1434    DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
1435    uint64_t qp = dividend / v[n-1];
1436    uint64_t rp = dividend % v[n-1];
1437    if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1438      qp--;
1439      rp += v[n-1];
1440      if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1441        qp--;
1442    }
1443    DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1444
1445    // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1446    // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1447    // consists of a simple multiplication by a one-place number, combined with
1448    // a subtraction.
1449    bool isNeg = false;
1450    for (uint32_t i = 0; i < n; ++i) {
1451      uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1452      uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1453      bool borrow = subtrahend > u_tmp;
1454      DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
1455                 << ", subtrahend == " << subtrahend
1456                 << ", borrow = " << borrow << '\n');
1457
1458      uint64_t result = u_tmp - subtrahend;
1459      uint32_t k = j + i;
1460      u[k++] = result & (b-1); // subtract low word
1461      u[k++] = result >> 32;   // subtract high word
1462      while (borrow && k <= m+n) { // deal with borrow to the left
1463        borrow = u[k] == 0;
1464        u[k]--;
1465        k++;
1466      }
1467      isNeg |= borrow;
1468      DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ",  u[j+i+1] == " <<
1469                    u[j+i+1] << '\n');
1470    }
1471    DEBUG(cerr << "KnuthDiv: after subtraction:");
1472    DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1473    DEBUG(cerr << '\n');
1474    // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1475    // this step is actually negative, (u[j+n]...u[j]) should be left as the
1476    // true value plus b**(n+1), namely as the b's complement of
1477    // the true value, and a "borrow" to the left should be remembered.
1478    //
1479    if (isNeg) {
1480      bool carry = true;  // true because b's complement is "complement + 1"
1481      for (uint32_t i = 0; i <= m+n; ++i) {
1482        u[i] = ~u[i] + carry; // b's complement
1483        carry = carry && u[i] == 0;
1484      }
1485    }
1486    DEBUG(cerr << "KnuthDiv: after complement:");
1487    DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1488    DEBUG(cerr << '\n');
1489
1490    // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1491    // negative, go to step D6; otherwise go on to step D7.
1492    q[j] = qp;
1493    if (isNeg) {
1494      // D6. [Add back]. The probability that this step is necessary is very
1495      // small, on the order of only 2/b. Make sure that test data accounts for
1496      // this possibility. Decrease q[j] by 1
1497      q[j]--;
1498      // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1499      // A carry will occur to the left of u[j+n], and it should be ignored
1500      // since it cancels with the borrow that occurred in D4.
1501      bool carry = false;
1502      for (uint32_t i = 0; i < n; i++) {
1503        uint32_t limit = std::min(u[j+i],v[i]);
1504        u[j+i] += v[i] + carry;
1505        carry = u[j+i] < limit || (carry && u[j+i] == limit);
1506      }
1507      u[j+n] += carry;
1508    }
1509    DEBUG(cerr << "KnuthDiv: after correction:");
1510    DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1511    DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
1512
1513  // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1514  } while (--j >= 0);
1515
1516  DEBUG(cerr << "KnuthDiv: quotient:");
1517  DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1518  DEBUG(cerr << '\n');
1519
1520  // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1521  // remainder may be obtained by dividing u[...] by d. If r is non-null we
1522  // compute the remainder (urem uses this).
1523  if (r) {
1524    // The value d is expressed by the "shift" value above since we avoided
1525    // multiplication by d by using a shift left. So, all we have to do is
1526    // shift right here. In order to mak
1527    if (shift) {
1528      uint32_t carry = 0;
1529      DEBUG(cerr << "KnuthDiv: remainder:");
1530      for (int i = n-1; i >= 0; i--) {
1531        r[i] = (u[i] >> shift) | carry;
1532        carry = u[i] << (32 - shift);
1533        DEBUG(cerr << " " << r[i]);
1534      }
1535    } else {
1536      for (int i = n-1; i >= 0; i--) {
1537        r[i] = u[i];
1538        DEBUG(cerr << " " << r[i]);
1539      }
1540    }
1541    DEBUG(cerr << '\n');
1542  }
1543  DEBUG(cerr << std::setbase(10) << '\n');
1544}
1545
1546void APInt::divide(const APInt LHS, uint32_t lhsWords,
1547                   const APInt &RHS, uint32_t rhsWords,
1548                   APInt *Quotient, APInt *Remainder)
1549{
1550  assert(lhsWords >= rhsWords && "Fractional result");
1551
1552  // First, compose the values into an array of 32-bit words instead of
1553  // 64-bit words. This is a necessity of both the "short division" algorithm
1554  // and the the Knuth "classical algorithm" which requires there to be native
1555  // operations for +, -, and * on an m bit value with an m*2 bit result. We
1556  // can't use 64-bit operands here because we don't have native results of
1557  // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
1558  // work on large-endian machines.
1559  uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
1560  uint32_t n = rhsWords * 2;
1561  uint32_t m = (lhsWords * 2) - n;
1562
1563  // Allocate space for the temporary values we need either on the stack, if
1564  // it will fit, or on the heap if it won't.
1565  uint32_t SPACE[128];
1566  uint32_t *U = 0;
1567  uint32_t *V = 0;
1568  uint32_t *Q = 0;
1569  uint32_t *R = 0;
1570  if ((Remainder?4:3)*n+2*m+1 <= 128) {
1571    U = &SPACE[0];
1572    V = &SPACE[m+n+1];
1573    Q = &SPACE[(m+n+1) + n];
1574    if (Remainder)
1575      R = &SPACE[(m+n+1) + n + (m+n)];
1576  } else {
1577    U = new uint32_t[m + n + 1];
1578    V = new uint32_t[n];
1579    Q = new uint32_t[m+n];
1580    if (Remainder)
1581      R = new uint32_t[n];
1582  }
1583
1584  // Initialize the dividend
1585  memset(U, 0, (m+n+1)*sizeof(uint32_t));
1586  for (unsigned i = 0; i < lhsWords; ++i) {
1587    uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1588    U[i * 2] = tmp & mask;
1589    U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1590  }
1591  U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1592
1593  // Initialize the divisor
1594  memset(V, 0, (n)*sizeof(uint32_t));
1595  for (unsigned i = 0; i < rhsWords; ++i) {
1596    uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1597    V[i * 2] = tmp & mask;
1598    V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1599  }
1600
1601  // initialize the quotient and remainder
1602  memset(Q, 0, (m+n) * sizeof(uint32_t));
1603  if (Remainder)
1604    memset(R, 0, n * sizeof(uint32_t));
1605
1606  // Now, adjust m and n for the Knuth division. n is the number of words in
1607  // the divisor. m is the number of words by which the dividend exceeds the
1608  // divisor (i.e. m+n is the length of the dividend). These sizes must not
1609  // contain any zero words or the Knuth algorithm fails.
1610  for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1611    n--;
1612    m++;
1613  }
1614  for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1615    m--;
1616
1617  // If we're left with only a single word for the divisor, Knuth doesn't work
1618  // so we implement the short division algorithm here. This is much simpler
1619  // and faster because we are certain that we can divide a 64-bit quantity
1620  // by a 32-bit quantity at hardware speed and short division is simply a
1621  // series of such operations. This is just like doing short division but we
1622  // are using base 2^32 instead of base 10.
1623  assert(n != 0 && "Divide by zero?");
1624  if (n == 1) {
1625    uint32_t divisor = V[0];
1626    uint32_t remainder = 0;
1627    for (int i = m+n-1; i >= 0; i--) {
1628      uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1629      if (partial_dividend == 0) {
1630        Q[i] = 0;
1631        remainder = 0;
1632      } else if (partial_dividend < divisor) {
1633        Q[i] = 0;
1634        remainder = partial_dividend;
1635      } else if (partial_dividend == divisor) {
1636        Q[i] = 1;
1637        remainder = 0;
1638      } else {
1639        Q[i] = partial_dividend / divisor;
1640        remainder = partial_dividend - (Q[i] * divisor);
1641      }
1642    }
1643    if (R)
1644      R[0] = remainder;
1645  } else {
1646    // Now we're ready to invoke the Knuth classical divide algorithm. In this
1647    // case n > 1.
1648    KnuthDiv(U, V, Q, R, m, n);
1649  }
1650
1651  // If the caller wants the quotient
1652  if (Quotient) {
1653    // Set up the Quotient value's memory.
1654    if (Quotient->BitWidth != LHS.BitWidth) {
1655      if (Quotient->isSingleWord())
1656        Quotient->VAL = 0;
1657      else
1658        delete [] Quotient->pVal;
1659      Quotient->BitWidth = LHS.BitWidth;
1660      if (!Quotient->isSingleWord())
1661        Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1662    } else
1663      Quotient->clear();
1664
1665    // The quotient is in Q. Reconstitute the quotient into Quotient's low
1666    // order words.
1667    if (lhsWords == 1) {
1668      uint64_t tmp =
1669        uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1670      if (Quotient->isSingleWord())
1671        Quotient->VAL = tmp;
1672      else
1673        Quotient->pVal[0] = tmp;
1674    } else {
1675      assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1676      for (unsigned i = 0; i < lhsWords; ++i)
1677        Quotient->pVal[i] =
1678          uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1679    }
1680  }
1681
1682  // If the caller wants the remainder
1683  if (Remainder) {
1684    // Set up the Remainder value's memory.
1685    if (Remainder->BitWidth != RHS.BitWidth) {
1686      if (Remainder->isSingleWord())
1687        Remainder->VAL = 0;
1688      else
1689        delete [] Remainder->pVal;
1690      Remainder->BitWidth = RHS.BitWidth;
1691      if (!Remainder->isSingleWord())
1692        Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1693    } else
1694      Remainder->clear();
1695
1696    // The remainder is in R. Reconstitute the remainder into Remainder's low
1697    // order words.
1698    if (rhsWords == 1) {
1699      uint64_t tmp =
1700        uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1701      if (Remainder->isSingleWord())
1702        Remainder->VAL = tmp;
1703      else
1704        Remainder->pVal[0] = tmp;
1705    } else {
1706      assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1707      for (unsigned i = 0; i < rhsWords; ++i)
1708        Remainder->pVal[i] =
1709          uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1710    }
1711  }
1712
1713  // Clean up the memory we allocated.
1714  if (U != &SPACE[0]) {
1715    delete [] U;
1716    delete [] V;
1717    delete [] Q;
1718    delete [] R;
1719  }
1720}
1721
1722APInt APInt::udiv(const APInt& RHS) const {
1723  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1724
1725  // First, deal with the easy case
1726  if (isSingleWord()) {
1727    assert(RHS.VAL != 0 && "Divide by zero?");
1728    return APInt(BitWidth, VAL / RHS.VAL);
1729  }
1730
1731  // Get some facts about the LHS and RHS number of bits and words
1732  uint32_t rhsBits = RHS.getActiveBits();
1733  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1734  assert(rhsWords && "Divided by zero???");
1735  uint32_t lhsBits = this->getActiveBits();
1736  uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1737
1738  // Deal with some degenerate cases
1739  if (!lhsWords)
1740    // 0 / X ===> 0
1741    return APInt(BitWidth, 0);
1742  else if (lhsWords < rhsWords || this->ult(RHS)) {
1743    // X / Y ===> 0, iff X < Y
1744    return APInt(BitWidth, 0);
1745  } else if (*this == RHS) {
1746    // X / X ===> 1
1747    return APInt(BitWidth, 1);
1748  } else if (lhsWords == 1 && rhsWords == 1) {
1749    // All high words are zero, just use native divide
1750    return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1751  }
1752
1753  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1754  APInt Quotient(1,0); // to hold result.
1755  divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1756  return Quotient;
1757}
1758
1759APInt APInt::urem(const APInt& RHS) const {
1760  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1761  if (isSingleWord()) {
1762    assert(RHS.VAL != 0 && "Remainder by zero?");
1763    return APInt(BitWidth, VAL % RHS.VAL);
1764  }
1765
1766  // Get some facts about the LHS
1767  uint32_t lhsBits = getActiveBits();
1768  uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1769
1770  // Get some facts about the RHS
1771  uint32_t rhsBits = RHS.getActiveBits();
1772  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1773  assert(rhsWords && "Performing remainder operation by zero ???");
1774
1775  // Check the degenerate cases
1776  if (lhsWords == 0) {
1777    // 0 % Y ===> 0
1778    return APInt(BitWidth, 0);
1779  } else if (lhsWords < rhsWords || this->ult(RHS)) {
1780    // X % Y ===> X, iff X < Y
1781    return *this;
1782  } else if (*this == RHS) {
1783    // X % X == 0;
1784    return APInt(BitWidth, 0);
1785  } else if (lhsWords == 1) {
1786    // All high words are zero, just use native remainder
1787    return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1788  }
1789
1790  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1791  APInt Remainder(1,0);
1792  divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1793  return Remainder;
1794}
1795
1796void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1797                    APInt &Quotient, APInt &Remainder) {
1798  // Get some size facts about the dividend and divisor
1799  uint32_t lhsBits  = LHS.getActiveBits();
1800  uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1801  uint32_t rhsBits  = RHS.getActiveBits();
1802  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1803
1804  // Check the degenerate cases
1805  if (lhsWords == 0) {
1806    Quotient = 0;                // 0 / Y ===> 0
1807    Remainder = 0;               // 0 % Y ===> 0
1808    return;
1809  }
1810
1811  if (lhsWords < rhsWords || LHS.ult(RHS)) {
1812    Quotient = 0;               // X / Y ===> 0, iff X < Y
1813    Remainder = LHS;            // X % Y ===> X, iff X < Y
1814    return;
1815  }
1816
1817  if (LHS == RHS) {
1818    Quotient  = 1;              // X / X ===> 1
1819    Remainder = 0;              // X % X ===> 0;
1820    return;
1821  }
1822
1823  if (lhsWords == 1 && rhsWords == 1) {
1824    // There is only one word to consider so use the native versions.
1825    if (LHS.isSingleWord()) {
1826      Quotient = APInt(LHS.getBitWidth(), LHS.VAL / RHS.VAL);
1827      Remainder = APInt(LHS.getBitWidth(), LHS.VAL % RHS.VAL);
1828    } else {
1829      Quotient = APInt(LHS.getBitWidth(), LHS.pVal[0] / RHS.pVal[0]);
1830      Remainder = APInt(LHS.getBitWidth(), LHS.pVal[0] % RHS.pVal[0]);
1831    }
1832    return;
1833  }
1834
1835  // Okay, lets do it the long way
1836  divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
1837}
1838
1839void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
1840                       uint8_t radix) {
1841  // Check our assumptions here
1842  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1843         "Radix should be 2, 8, 10, or 16!");
1844  assert(str && "String is null?");
1845  bool isNeg = str[0] == '-';
1846  if (isNeg)
1847    str++, slen--;
1848  assert((slen <= numbits || radix != 2) && "Insufficient bit width");
1849  assert((slen*3 <= numbits || radix != 8) && "Insufficient bit width");
1850  assert((slen*4 <= numbits || radix != 16) && "Insufficient bit width");
1851  assert(((slen*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
1852
1853  // Allocate memory
1854  if (!isSingleWord())
1855    pVal = getClearedMemory(getNumWords());
1856
1857  // Figure out if we can shift instead of multiply
1858  uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1859
1860  // Set up an APInt for the digit to add outside the loop so we don't
1861  // constantly construct/destruct it.
1862  APInt apdigit(getBitWidth(), 0);
1863  APInt apradix(getBitWidth(), radix);
1864
1865  // Enter digit traversal loop
1866  for (unsigned i = 0; i < slen; i++) {
1867    // Get a digit
1868    uint32_t digit = 0;
1869    char cdigit = str[i];
1870    if (radix == 16) {
1871      if (!isxdigit(cdigit))
1872        assert(0 && "Invalid hex digit in string");
1873      if (isdigit(cdigit))
1874        digit = cdigit - '0';
1875      else if (cdigit >= 'a')
1876        digit = cdigit - 'a' + 10;
1877      else if (cdigit >= 'A')
1878        digit = cdigit - 'A' + 10;
1879      else
1880        assert(0 && "huh? we shouldn't get here");
1881    } else if (isdigit(cdigit)) {
1882      digit = cdigit - '0';
1883    } else {
1884      assert(0 && "Invalid character in digit string");
1885    }
1886
1887    // Shift or multiply the value by the radix
1888    if (shift)
1889      *this <<= shift;
1890    else
1891      *this *= apradix;
1892
1893    // Add in the digit we just interpreted
1894    if (apdigit.isSingleWord())
1895      apdigit.VAL = digit;
1896    else
1897      apdigit.pVal[0] = digit;
1898    *this += apdigit;
1899  }
1900  // If its negative, put it in two's complement form
1901  if (isNeg) {
1902    (*this)--;
1903    this->flip();
1904  }
1905}
1906
1907std::string APInt::toString(uint8_t radix, bool wantSigned) const {
1908  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1909         "Radix should be 2, 8, 10, or 16!");
1910  static const char *digits[] = {
1911    "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
1912  };
1913  std::string result;
1914  uint32_t bits_used = getActiveBits();
1915  if (isSingleWord()) {
1916    char buf[65];
1917    const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
1918       (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
1919    if (format) {
1920      if (wantSigned) {
1921        int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
1922                           (APINT_BITS_PER_WORD-BitWidth);
1923        sprintf(buf, format, sextVal);
1924      } else
1925        sprintf(buf, format, VAL);
1926    } else {
1927      memset(buf, 0, 65);
1928      uint64_t v = VAL;
1929      while (bits_used) {
1930        uint32_t bit = v & 1;
1931        bits_used--;
1932        buf[bits_used] = digits[bit][0];
1933        v >>=1;
1934      }
1935    }
1936    result = buf;
1937    return result;
1938  }
1939
1940  if (radix != 10) {
1941    // For the 2, 8 and 16 bit cases, we can just shift instead of divide
1942    // because the number of bits per digit (1,3 and 4 respectively) divides
1943    // equaly. We just shift until there value is zero.
1944
1945    // First, check for a zero value and just short circuit the logic below.
1946    if (*this == 0)
1947      result = "0";
1948    else {
1949      APInt tmp(*this);
1950      size_t insert_at = 0;
1951      if (wantSigned && this->isNegative()) {
1952        // They want to print the signed version and it is a negative value
1953        // Flip the bits and add one to turn it into the equivalent positive
1954        // value and put a '-' in the result.
1955        tmp.flip();
1956        tmp++;
1957        result = "-";
1958        insert_at = 1;
1959      }
1960      // Just shift tmp right for each digit width until it becomes zero
1961      uint32_t shift = (radix == 16 ? 4 : (radix == 8 ? 3 : 1));
1962      uint64_t mask = radix - 1;
1963      APInt zero(tmp.getBitWidth(), 0);
1964      while (tmp.ne(zero)) {
1965        unsigned digit = tmp.getZExtValue() & mask;
1966        tmp = tmp.lshr(shift);
1967        result.insert(insert_at, digits[digit]);
1968      }
1969    }
1970    return result;
1971  }
1972
1973  APInt tmp(*this);
1974  APInt divisor(4, radix);
1975  APInt zero(tmp.getBitWidth(), 0);
1976  size_t insert_at = 0;
1977  if (wantSigned && tmp[BitWidth-1]) {
1978    // They want to print the signed version and it is a negative value
1979    // Flip the bits and add one to turn it into the equivalent positive
1980    // value and put a '-' in the result.
1981    tmp.flip();
1982    tmp++;
1983    result = "-";
1984    insert_at = 1;
1985  }
1986  if (tmp == APInt(tmp.getBitWidth(), 0))
1987    result = "0";
1988  else while (tmp.ne(zero)) {
1989    APInt APdigit(1,0);
1990    APInt tmp2(tmp.getBitWidth(), 0);
1991    divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
1992           &APdigit);
1993    uint32_t digit = APdigit.getZExtValue();
1994    assert(digit < radix && "divide failed");
1995    result.insert(insert_at,digits[digit]);
1996    tmp = tmp2;
1997  }
1998
1999  return result;
2000}
2001
2002#ifndef NDEBUG
2003void APInt::dump() const
2004{
2005  cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
2006  if (isSingleWord())
2007    cerr << VAL;
2008  else for (unsigned i = getNumWords(); i > 0; i--) {
2009    cerr << pVal[i-1] << " ";
2010  }
2011  cerr << " U(" << this->toString(10) << ") S(" << this->toStringSigned(10)
2012       << ")\n" << std::setbase(10);
2013}
2014#endif
2015