BlockFrequency.cpp revision e7a1e3ee8279f12d0f2b49fb198d577949795c88
1//====--------------- lib/Support/BlockFrequency.cpp -----------*- C++ -*-====//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements Block Frequency class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Support/BranchProbability.h"
15#include "llvm/Support/BlockFrequency.h"
16#include "llvm/Support/raw_ostream.h"
17#include <cassert>
18
19using namespace llvm;
20
21/// Multiply FREQ by N and store result in W array.
22static void mult96bit(uint64_t freq, uint32_t N, uint32_t W[3]) {
23  uint64_t u0 = freq & UINT32_MAX;
24  uint64_t u1 = freq >> 32;
25
26  // Represent 96-bit value as W[2]:W[1]:W[0];
27  uint64_t t = u0 * N;
28  uint64_t k = t >> 32;
29  W[0] = t;
30  t = u1 * N + k;
31  W[1] = t;
32  W[2] = t >> 32;
33}
34
35/// Divide 96-bit value stored in W[2]:W[1]:W[0] by D. Since our word size is a
36/// 32 bit unsigned integer, we can use a short division algorithm.
37static uint64_t divrem96bit(uint32_t W[3], uint32_t D, uint32_t *Rout) {
38  // We assume that W[2] is non-zero since if W[2] is not then the user should
39  // just use hardware division.
40  assert(W[2] && "This routine assumes that W[2] is non-zero since if W[2] is "
41         "zero, the caller should just use 64/32 hardware.");
42  uint32_t Q[3] = { 0, 0, 0 };
43
44  // The generalized short division algorithm sets i to m + n - 1, where n is
45  // the number of words in the divisior and m is the number of words by which
46  // the divident exceeds the divisor (i.e. m + n == the length of the dividend
47  // in words). Due to our assumption that W[2] is non-zero, we know that the
48  // dividend is of length 3 implying since n is 1 that m = 2. Thus we set i to
49  // m + n - 1 = 2 + 1 - 1 = 2.
50  uint32_t R = 0;
51  for (int i = 2; i >= 0; --i) {
52    uint64_t PartialD = uint64_t(R) << 32 | W[i];
53    if (PartialD == 0) {
54      Q[i] = 0;
55      R = 0;
56    } else if (PartialD < D) {
57      Q[i] = 0;
58      R = uint32_t(PartialD);
59    } else if (PartialD == D) {
60      Q[i] = 1;
61      R = 0;
62    } else {
63      Q[i] = uint32_t(PartialD / D);
64      R = uint32_t(PartialD - (Q[i] * D));
65    }
66  }
67
68  // If Q[2] is non-zero, then we overflowed.
69  uint64_t Result;
70  if (Q[2]) {
71    Result = UINT64_MAX;
72    R = D;
73  } else {
74    // Form the final uint64_t result, avoiding endianness issues.
75    Result = uint64_t(Q[0]) | (uint64_t(Q[1]) << 32);
76  }
77
78  if (Rout)
79    *Rout = R;
80
81  return Result;
82}
83
84uint32_t BlockFrequency::scale(uint32_t N, uint32_t D) {
85  assert(D != 0 && "Division by zero");
86
87  // Calculate Frequency * N.
88  uint64_t MulLo = (Frequency & UINT32_MAX) * N;
89  uint64_t MulHi = (Frequency >> 32) * N;
90  uint64_t MulRes = (MulHi << 32) + MulLo;
91
92  // If the product fits in 64 bits, just use built-in division.
93  if (MulHi <= UINT32_MAX && MulRes >= MulLo) {
94    Frequency = MulRes / D;
95    return MulRes % D;
96  }
97
98  // Product overflowed, use 96-bit operations.
99  // 96-bit value represented as W[2]:W[1]:W[0].
100  uint32_t W[3];
101  uint32_t R;
102  mult96bit(Frequency, N, W);
103  Frequency = divrem96bit(W, D, &R);
104  return R;
105}
106
107BlockFrequency &BlockFrequency::operator*=(const BranchProbability &Prob) {
108  scale(Prob.getNumerator(), Prob.getDenominator());
109  return *this;
110}
111
112const BlockFrequency
113BlockFrequency::operator*(const BranchProbability &Prob) const {
114  BlockFrequency Freq(Frequency);
115  Freq *= Prob;
116  return Freq;
117}
118
119BlockFrequency &BlockFrequency::operator/=(const BranchProbability &Prob) {
120  scale(Prob.getDenominator(), Prob.getNumerator());
121  return *this;
122}
123
124BlockFrequency BlockFrequency::operator/(const BranchProbability &Prob) const {
125  BlockFrequency Freq(Frequency);
126  Freq /= Prob;
127  return Freq;
128}
129
130BlockFrequency &BlockFrequency::operator+=(const BlockFrequency &Freq) {
131  uint64_t Before = Freq.Frequency;
132  Frequency += Freq.Frequency;
133
134  // If overflow, set frequency to the maximum value.
135  if (Frequency < Before)
136    Frequency = UINT64_MAX;
137
138  return *this;
139}
140
141const BlockFrequency
142BlockFrequency::operator+(const BlockFrequency &Prob) const {
143  BlockFrequency Freq(Frequency);
144  Freq += Prob;
145  return Freq;
146}
147
148uint32_t BlockFrequency::scale(const BranchProbability &Prob) {
149  return scale(Prob.getNumerator(), Prob.getDenominator());
150}
151
152void BlockFrequency::print(raw_ostream &OS) const {
153  // Convert fixed-point number to decimal.
154  OS << Frequency / getEntryFrequency() << ".";
155  uint64_t Rem = Frequency % getEntryFrequency();
156  uint64_t Eps = 1;
157  do {
158    Rem *= 10;
159    Eps *= 10;
160    OS << Rem / getEntryFrequency();
161    Rem = Rem % getEntryFrequency();
162  } while (Rem >= Eps/2);
163}
164
165namespace llvm {
166
167raw_ostream &operator<<(raw_ostream &OS, const BlockFrequency &Freq) {
168  Freq.print(OS);
169  return OS;
170}
171
172}
173