FoldingSet.cpp revision 535de1a8c14fdfeb3912d3192accb58d9aa1e9e7
1//===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a hash set that can be used to remove duplication of
11// nodes in a graph.  This code was originally created by Chris Lattner for use
12// with SelectionDAGCSEMap, but was isolated to provide use across the llvm code
13// set.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/ADT/FoldingSet.h"
18#include "llvm/Support/MathExtras.h"
19#include <cassert>
20#include <cstring>
21using namespace llvm;
22
23//===----------------------------------------------------------------------===//
24// FoldingSetNodeID Implementation
25
26/// Add* - Add various data types to Bit data.
27///
28void FoldingSetNodeID::AddPointer(const void *Ptr) {
29  // Note: this adds pointers to the hash using sizes and endianness that
30  // depend on the host.  It doesn't matter however, because hashing on
31  // pointer values in inherently unstable.  Nothing  should depend on the
32  // ordering of nodes in the folding set.
33  intptr_t PtrI = (intptr_t)Ptr;
34  Bits.push_back(unsigned(PtrI));
35  if (sizeof(intptr_t) > sizeof(unsigned))
36    Bits.push_back(unsigned(uint64_t(PtrI) >> 32));
37}
38void FoldingSetNodeID::AddInteger(signed I) {
39  Bits.push_back(I);
40}
41void FoldingSetNodeID::AddInteger(unsigned I) {
42  Bits.push_back(I);
43}
44void FoldingSetNodeID::AddInteger(int64_t I) {
45  AddInteger((uint64_t)I);
46}
47void FoldingSetNodeID::AddInteger(uint64_t I) {
48  Bits.push_back(unsigned(I));
49
50  // If the integer is small, encode it just as 32-bits.
51  if ((uint64_t)(int)I != I)
52    Bits.push_back(unsigned(I >> 32));
53}
54void FoldingSetNodeID::AddFloat(float F) {
55  Bits.push_back(FloatToBits(F));
56}
57void FoldingSetNodeID::AddDouble(double D) {
58 AddInteger(DoubleToBits(D));
59}
60
61void FoldingSetNodeID::AddString(const char *String) {
62  unsigned Size = static_cast<unsigned>(strlen(String));
63  Bits.push_back(Size);
64  if (!Size) return;
65
66  unsigned Units = Size / 4;
67  unsigned Pos = 0;
68  const unsigned *Base = (const unsigned *)String;
69
70  // If the string is aligned do a bulk transfer.
71  if (!((intptr_t)Base & 3)) {
72    Bits.append(Base, Base + Units);
73    Pos = (Units + 1) * 4;
74  } else {
75    // Otherwise do it the hard way.
76    for ( Pos += 4; Pos <= Size; Pos += 4) {
77      unsigned V = ((unsigned char)String[Pos - 4] << 24) |
78                   ((unsigned char)String[Pos - 3] << 16) |
79                   ((unsigned char)String[Pos - 2] << 8) |
80                    (unsigned char)String[Pos - 1];
81      Bits.push_back(V);
82    }
83  }
84
85  // With the leftover bits.
86  unsigned V = 0;
87  // Pos will have overshot size by 4 - #bytes left over.
88  switch (Pos - Size) {
89  case 1: V = (V << 8) | (unsigned char)String[Size - 3]; // Fall thru.
90  case 2: V = (V << 8) | (unsigned char)String[Size - 2]; // Fall thru.
91  case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
92  default: return; // Nothing left.
93  }
94
95  Bits.push_back(V);
96}
97
98void FoldingSetNodeID::AddString(const std::string &String) {
99  unsigned Size = static_cast<unsigned>(String.size());
100  Bits.push_back(Size);
101  if (!Size) return;
102
103  unsigned Units = Size / 4;
104  unsigned Pos = 0;
105  const unsigned *Base = (const unsigned *)String.data();
106
107  // If the string is aligned do a bulk transfer.
108  if (!((intptr_t)Base & 3)) {
109    Bits.append(Base, Base + Units);
110    Pos = (Units + 1) * 4;
111  } else {
112    // Otherwise do it the hard way.
113    for ( Pos += 4; Pos <= Size; Pos += 4) {
114      unsigned V = ((unsigned char)String[Pos - 4] << 24) |
115                   ((unsigned char)String[Pos - 3] << 16) |
116                   ((unsigned char)String[Pos - 2] << 8) |
117                    (unsigned char)String[Pos - 1];
118      Bits.push_back(V);
119    }
120  }
121
122  // With the leftover bits.
123  unsigned V = 0;
124  // Pos will have overshot size by 4 - #bytes left over.
125  switch (Pos - Size) {
126  case 1: V = (V << 8) | (unsigned char)String[Size - 3]; // Fall thru.
127  case 2: V = (V << 8) | (unsigned char)String[Size - 2]; // Fall thru.
128  case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
129  default: return; // Nothing left.
130  }
131
132  Bits.push_back(V);
133}
134
135/// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to
136/// lookup the node in the FoldingSetImpl.
137unsigned FoldingSetNodeID::ComputeHash() const {
138  // This is adapted from SuperFastHash by Paul Hsieh.
139  unsigned Hash = static_cast<unsigned>(Bits.size());
140  for (const unsigned *BP = &Bits[0], *E = BP+Bits.size(); BP != E; ++BP) {
141    unsigned Data = *BP;
142    Hash         += Data & 0xFFFF;
143    unsigned Tmp  = ((Data >> 16) << 11) ^ Hash;
144    Hash          = (Hash << 16) ^ Tmp;
145    Hash         += Hash >> 11;
146  }
147
148  // Force "avalanching" of final 127 bits.
149  Hash ^= Hash << 3;
150  Hash += Hash >> 5;
151  Hash ^= Hash << 4;
152  Hash += Hash >> 17;
153  Hash ^= Hash << 25;
154  Hash += Hash >> 6;
155  return Hash;
156}
157
158/// operator== - Used to compare two nodes to each other.
159///
160bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS)const{
161  if (Bits.size() != RHS.Bits.size()) return false;
162  return memcmp(&Bits[0], &RHS.Bits[0], Bits.size()*sizeof(Bits[0])) == 0;
163}
164
165
166//===----------------------------------------------------------------------===//
167/// Helper functions for FoldingSetImpl.
168
169/// GetNextPtr - In order to save space, each bucket is a
170/// singly-linked-list. In order to make deletion more efficient, we make
171/// the list circular, so we can delete a node without computing its hash.
172/// The problem with this is that the start of the hash buckets are not
173/// Nodes.  If NextInBucketPtr is a bucket pointer, this method returns null:
174/// use GetBucketPtr when this happens.
175static FoldingSetImpl::Node *GetNextPtr(void *NextInBucketPtr) {
176  // The low bit is set if this is the pointer back to the bucket.
177  if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1)
178    return 0;
179
180  return static_cast<FoldingSetImpl::Node*>(NextInBucketPtr);
181}
182
183
184/// testing.
185static void **GetBucketPtr(void *NextInBucketPtr) {
186  intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr);
187  assert((Ptr & 1) && "Not a bucket pointer");
188  return reinterpret_cast<void**>(Ptr & ~intptr_t(1));
189}
190
191/// GetBucketFor - Hash the specified node ID and return the hash bucket for
192/// the specified ID.
193static void **GetBucketFor(const FoldingSetNodeID &ID,
194                           void **Buckets, unsigned NumBuckets) {
195  // NumBuckets is always a power of 2.
196  unsigned BucketNum = ID.ComputeHash() & (NumBuckets-1);
197  return Buckets + BucketNum;
198}
199
200//===----------------------------------------------------------------------===//
201// FoldingSetImpl Implementation
202
203FoldingSetImpl::FoldingSetImpl(unsigned Log2InitSize) {
204  assert(5 < Log2InitSize && Log2InitSize < 32 &&
205         "Initial hash table size out of range");
206  NumBuckets = 1 << Log2InitSize;
207  Buckets = new void*[NumBuckets+1];
208  clear();
209}
210FoldingSetImpl::~FoldingSetImpl() {
211  delete [] Buckets;
212}
213void FoldingSetImpl::clear() {
214  // Set all but the last bucket to null pointers.
215  memset(Buckets, 0, NumBuckets*sizeof(void*));
216
217  // Set the very last bucket to be a non-null "pointer".
218  Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
219
220  // Reset the node count to zero.
221  NumNodes = 0;
222}
223
224/// GrowHashTable - Double the size of the hash table and rehash everything.
225///
226void FoldingSetImpl::GrowHashTable() {
227  void **OldBuckets = Buckets;
228  unsigned OldNumBuckets = NumBuckets;
229  NumBuckets <<= 1;
230
231  // Clear out new buckets.
232  Buckets = new void*[NumBuckets+1];
233  clear();
234
235  // Walk the old buckets, rehashing nodes into their new place.
236  FoldingSetNodeID ID;
237  for (unsigned i = 0; i != OldNumBuckets; ++i) {
238    void *Probe = OldBuckets[i];
239    if (!Probe) continue;
240    while (Node *NodeInBucket = GetNextPtr(Probe)) {
241      // Figure out the next link, remove NodeInBucket from the old link.
242      Probe = NodeInBucket->getNextInBucket();
243      NodeInBucket->SetNextInBucket(0);
244
245      // Insert the node into the new bucket, after recomputing the hash.
246      GetNodeProfile(ID, NodeInBucket);
247      InsertNode(NodeInBucket, GetBucketFor(ID, Buckets, NumBuckets));
248      ID.clear();
249    }
250  }
251
252  delete[] OldBuckets;
253}
254
255/// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
256/// return it.  If not, return the insertion token that will make insertion
257/// faster.
258FoldingSetImpl::Node
259*FoldingSetImpl::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
260                                     void *&InsertPos) {
261
262  void **Bucket = GetBucketFor(ID, Buckets, NumBuckets);
263  void *Probe = *Bucket;
264
265  InsertPos = 0;
266
267  FoldingSetNodeID OtherID;
268  while (Node *NodeInBucket = GetNextPtr(Probe)) {
269    GetNodeProfile(OtherID, NodeInBucket);
270    if (OtherID == ID)
271      return NodeInBucket;
272
273    Probe = NodeInBucket->getNextInBucket();
274    OtherID.clear();
275  }
276
277  // Didn't find the node, return null with the bucket as the InsertPos.
278  InsertPos = Bucket;
279  return 0;
280}
281
282/// InsertNode - Insert the specified node into the folding set, knowing that it
283/// is not already in the map.  InsertPos must be obtained from
284/// FindNodeOrInsertPos.
285void FoldingSetImpl::InsertNode(Node *N, void *InsertPos) {
286  assert(N->getNextInBucket() == 0);
287  // Do we need to grow the hashtable?
288  if (NumNodes+1 > NumBuckets*2) {
289    GrowHashTable();
290    FoldingSetNodeID ID;
291    GetNodeProfile(ID, N);
292    InsertPos = GetBucketFor(ID, Buckets, NumBuckets);
293  }
294
295  ++NumNodes;
296
297  /// The insert position is actually a bucket pointer.
298  void **Bucket = static_cast<void**>(InsertPos);
299
300  void *Next = *Bucket;
301
302  // If this is the first insertion into this bucket, its next pointer will be
303  // null.  Pretend as if it pointed to itself, setting the low bit to indicate
304  // that it is a pointer to the bucket.
305  if (Next == 0)
306    Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1);
307
308  // Set the node's next pointer, and make the bucket point to the node.
309  N->SetNextInBucket(Next);
310  *Bucket = N;
311}
312
313/// RemoveNode - Remove a node from the folding set, returning true if one was
314/// removed or false if the node was not in the folding set.
315bool FoldingSetImpl::RemoveNode(Node *N) {
316  // Because each bucket is a circular list, we don't need to compute N's hash
317  // to remove it.
318  void *Ptr = N->getNextInBucket();
319  if (Ptr == 0) return false;  // Not in folding set.
320
321  --NumNodes;
322  N->SetNextInBucket(0);
323
324  // Remember what N originally pointed to, either a bucket or another node.
325  void *NodeNextPtr = Ptr;
326
327  // Chase around the list until we find the node (or bucket) which points to N.
328  while (true) {
329    if (Node *NodeInBucket = GetNextPtr(Ptr)) {
330      // Advance pointer.
331      Ptr = NodeInBucket->getNextInBucket();
332
333      // We found a node that points to N, change it to point to N's next node,
334      // removing N from the list.
335      if (Ptr == N) {
336        NodeInBucket->SetNextInBucket(NodeNextPtr);
337        return true;
338      }
339    } else {
340      void **Bucket = GetBucketPtr(Ptr);
341      Ptr = *Bucket;
342
343      // If we found that the bucket points to N, update the bucket to point to
344      // whatever is next.
345      if (Ptr == N) {
346        *Bucket = NodeNextPtr;
347        return true;
348      }
349    }
350  }
351}
352
353/// GetOrInsertNode - If there is an existing simple Node exactly
354/// equal to the specified node, return it.  Otherwise, insert 'N' and it
355/// instead.
356FoldingSetImpl::Node *FoldingSetImpl::GetOrInsertNode(FoldingSetImpl::Node *N) {
357  FoldingSetNodeID ID;
358  GetNodeProfile(ID, N);
359  void *IP;
360  if (Node *E = FindNodeOrInsertPos(ID, IP))
361    return E;
362  InsertNode(N, IP);
363  return N;
364}
365
366//===----------------------------------------------------------------------===//
367// FoldingSetIteratorImpl Implementation
368
369FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) {
370  // Skip to the first non-null non-self-cycle bucket.
371  while (*Bucket != reinterpret_cast<void*>(-1) &&
372         (*Bucket == 0 || GetNextPtr(*Bucket) == 0))
373    ++Bucket;
374
375  NodePtr = static_cast<FoldingSetNode*>(*Bucket);
376}
377
378void FoldingSetIteratorImpl::advance() {
379  // If there is another link within this bucket, go to it.
380  void *Probe = NodePtr->getNextInBucket();
381
382  if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe))
383    NodePtr = NextNodeInBucket;
384  else {
385    // Otherwise, this is the last link in this bucket.
386    void **Bucket = GetBucketPtr(Probe);
387
388    // Skip to the next non-null non-self-cycle bucket.
389    do {
390      ++Bucket;
391    } while (*Bucket != reinterpret_cast<void*>(-1) &&
392             (*Bucket == 0 || GetNextPtr(*Bucket) == 0));
393
394    NodePtr = static_cast<FoldingSetNode*>(*Bucket);
395  }
396}
397
398//===----------------------------------------------------------------------===//
399// FoldingSetBucketIteratorImpl Implementation
400
401FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) {
402  Ptr = (*Bucket == 0 || GetNextPtr(*Bucket) == 0) ? (void*) Bucket : *Bucket;
403}
404