FoldingSet.cpp revision c81c7fe643e91bc6ed817bf5e17379b74e161b91
1//===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a hash set that can be used to remove duplication of
11// nodes in a graph.  This code was originally created by Chris Lattner for use
12// with SelectionDAGCSEMap, but was isolated to provide use across the llvm code
13// set.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/ADT/FoldingSet.h"
18#include "llvm/Support/Allocator.h"
19#include "llvm/Support/ErrorHandling.h"
20#include "llvm/Support/MathExtras.h"
21#include "llvm/System/Host.h"
22#include <cassert>
23#include <cstring>
24using namespace llvm;
25
26//===----------------------------------------------------------------------===//
27// FoldingSetNodeIDRef Implementation
28
29/// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
30/// used to lookup the node in the FoldingSetImpl.
31unsigned FoldingSetNodeIDRef::ComputeHash() const {
32  // This is adapted from SuperFastHash by Paul Hsieh.
33  unsigned Hash = static_cast<unsigned>(Size);
34  for (const unsigned *BP = Data, *E = BP+Size; BP != E; ++BP) {
35    unsigned Data = *BP;
36    Hash         += Data & 0xFFFF;
37    unsigned Tmp  = ((Data >> 16) << 11) ^ Hash;
38    Hash          = (Hash << 16) ^ Tmp;
39    Hash         += Hash >> 11;
40  }
41
42  // Force "avalanching" of final 127 bits.
43  Hash ^= Hash << 3;
44  Hash += Hash >> 5;
45  Hash ^= Hash << 4;
46  Hash += Hash >> 17;
47  Hash ^= Hash << 25;
48  Hash += Hash >> 6;
49  return Hash;
50}
51
52bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const {
53  if (Size != RHS.Size) return false;
54  return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0;
55}
56
57//===----------------------------------------------------------------------===//
58// FoldingSetNodeID Implementation
59
60/// Add* - Add various data types to Bit data.
61///
62void FoldingSetNodeID::AddPointer(const void *Ptr) {
63  // Note: this adds pointers to the hash using sizes and endianness that
64  // depend on the host.  It doesn't matter however, because hashing on
65  // pointer values in inherently unstable.  Nothing  should depend on the
66  // ordering of nodes in the folding set.
67  intptr_t PtrI = (intptr_t)Ptr;
68  Bits.push_back(unsigned(PtrI));
69  if (sizeof(intptr_t) > sizeof(unsigned))
70    Bits.push_back(unsigned(uint64_t(PtrI) >> 32));
71}
72void FoldingSetNodeID::AddInteger(signed I) {
73  Bits.push_back(I);
74}
75void FoldingSetNodeID::AddInteger(unsigned I) {
76  Bits.push_back(I);
77}
78void FoldingSetNodeID::AddInteger(long I) {
79  AddInteger((unsigned long)I);
80}
81void FoldingSetNodeID::AddInteger(unsigned long I) {
82  if (sizeof(long) == sizeof(int))
83    AddInteger(unsigned(I));
84  else if (sizeof(long) == sizeof(long long)) {
85    AddInteger((unsigned long long)I);
86  } else {
87    llvm_unreachable("unexpected sizeof(long)");
88  }
89}
90void FoldingSetNodeID::AddInteger(long long I) {
91  AddInteger((unsigned long long)I);
92}
93void FoldingSetNodeID::AddInteger(unsigned long long I) {
94  AddInteger(unsigned(I));
95  if ((uint64_t)(int)I != I)
96    Bits.push_back(unsigned(I >> 32));
97}
98
99void FoldingSetNodeID::AddString(StringRef String) {
100  unsigned Size =  String.size();
101  Bits.push_back(Size);
102  if (!Size) return;
103
104  unsigned Units = Size / 4;
105  unsigned Pos = 0;
106  const unsigned *Base = (const unsigned*) String.data();
107
108  // If the string is aligned do a bulk transfer.
109  if (!((intptr_t)Base & 3)) {
110    Bits.append(Base, Base + Units);
111    Pos = (Units + 1) * 4;
112  } else {
113    // Otherwise do it the hard way.
114    // To be compatible with above bulk transfer, we need to take endianness
115    // into account.
116    if (sys::isBigEndianHost()) {
117      for (Pos += 4; Pos <= Size; Pos += 4) {
118        unsigned V = ((unsigned char)String[Pos - 4] << 24) |
119                     ((unsigned char)String[Pos - 3] << 16) |
120                     ((unsigned char)String[Pos - 2] << 8) |
121                      (unsigned char)String[Pos - 1];
122        Bits.push_back(V);
123      }
124    } else {
125      assert(sys::isLittleEndianHost() && "Unexpected host endianness");
126      for (Pos += 4; Pos <= Size; Pos += 4) {
127        unsigned V = ((unsigned char)String[Pos - 1] << 24) |
128                     ((unsigned char)String[Pos - 2] << 16) |
129                     ((unsigned char)String[Pos - 3] << 8) |
130                      (unsigned char)String[Pos - 4];
131        Bits.push_back(V);
132      }
133    }
134  }
135
136  // With the leftover bits.
137  unsigned V = 0;
138  // Pos will have overshot size by 4 - #bytes left over.
139  // No need to take endianness into account here - this is always executed.
140  switch (Pos - Size) {
141  case 1: V = (V << 8) | (unsigned char)String[Size - 3]; // Fall thru.
142  case 2: V = (V << 8) | (unsigned char)String[Size - 2]; // Fall thru.
143  case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
144  default: return; // Nothing left.
145  }
146
147  Bits.push_back(V);
148}
149
150/// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to
151/// lookup the node in the FoldingSetImpl.
152unsigned FoldingSetNodeID::ComputeHash() const {
153  return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash();
154}
155
156/// operator== - Used to compare two nodes to each other.
157///
158bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS)const{
159  return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
160}
161
162/// operator== - Used to compare two nodes to each other.
163///
164bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const {
165  return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS;
166}
167
168/// Intern - Copy this node's data to a memory region allocated from the
169/// given allocator and return a FoldingSetNodeIDRef describing the
170/// interned data.
171FoldingSetNodeIDRef
172FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const {
173  unsigned *New = Allocator.Allocate<unsigned>(Bits.size());
174  std::uninitialized_copy(Bits.begin(), Bits.end(), New);
175  return FoldingSetNodeIDRef(New, Bits.size());
176}
177
178//===----------------------------------------------------------------------===//
179/// Helper functions for FoldingSetImpl.
180
181/// GetNextPtr - In order to save space, each bucket is a
182/// singly-linked-list. In order to make deletion more efficient, we make
183/// the list circular, so we can delete a node without computing its hash.
184/// The problem with this is that the start of the hash buckets are not
185/// Nodes.  If NextInBucketPtr is a bucket pointer, this method returns null:
186/// use GetBucketPtr when this happens.
187static FoldingSetImpl::Node *GetNextPtr(void *NextInBucketPtr) {
188  // The low bit is set if this is the pointer back to the bucket.
189  if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1)
190    return 0;
191
192  return static_cast<FoldingSetImpl::Node*>(NextInBucketPtr);
193}
194
195
196/// testing.
197static void **GetBucketPtr(void *NextInBucketPtr) {
198  intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr);
199  assert((Ptr & 1) && "Not a bucket pointer");
200  return reinterpret_cast<void**>(Ptr & ~intptr_t(1));
201}
202
203/// GetBucketFor - Hash the specified node ID and return the hash bucket for
204/// the specified ID.
205static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) {
206  // NumBuckets is always a power of 2.
207  unsigned BucketNum = Hash & (NumBuckets-1);
208  return Buckets + BucketNum;
209}
210
211/// AllocateBuckets - Allocated initialized bucket memory.
212static void **AllocateBuckets(unsigned NumBuckets) {
213  void **Buckets = static_cast<void**>(calloc(NumBuckets+1, sizeof(void*)));
214  // Set the very last bucket to be a non-null "pointer".
215  Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
216  return Buckets;
217}
218
219//===----------------------------------------------------------------------===//
220// FoldingSetImpl Implementation
221
222FoldingSetImpl::FoldingSetImpl(unsigned Log2InitSize) {
223  assert(5 < Log2InitSize && Log2InitSize < 32 &&
224         "Initial hash table size out of range");
225  NumBuckets = 1 << Log2InitSize;
226  Buckets = AllocateBuckets(NumBuckets);
227  NumNodes = 0;
228}
229FoldingSetImpl::~FoldingSetImpl() {
230  free(Buckets);
231}
232void FoldingSetImpl::clear() {
233  // Set all but the last bucket to null pointers.
234  memset(Buckets, 0, NumBuckets*sizeof(void*));
235
236  // Set the very last bucket to be a non-null "pointer".
237  Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
238
239  // Reset the node count to zero.
240  NumNodes = 0;
241}
242
243/// GrowHashTable - Double the size of the hash table and rehash everything.
244///
245void FoldingSetImpl::GrowHashTable() {
246  void **OldBuckets = Buckets;
247  unsigned OldNumBuckets = NumBuckets;
248  NumBuckets <<= 1;
249
250  // Clear out new buckets.
251  Buckets = AllocateBuckets(NumBuckets);
252  NumNodes = 0;
253
254  // Walk the old buckets, rehashing nodes into their new place.
255  FoldingSetNodeID TempID;
256  for (unsigned i = 0; i != OldNumBuckets; ++i) {
257    void *Probe = OldBuckets[i];
258    if (!Probe) continue;
259    while (Node *NodeInBucket = GetNextPtr(Probe)) {
260      // Figure out the next link, remove NodeInBucket from the old link.
261      Probe = NodeInBucket->getNextInBucket();
262      NodeInBucket->SetNextInBucket(0);
263
264      // Insert the node into the new bucket, after recomputing the hash.
265      InsertNode(NodeInBucket,
266                 GetBucketFor(ComputeNodeHash(NodeInBucket, TempID),
267                              Buckets, NumBuckets));
268      TempID.clear();
269    }
270  }
271
272  free(OldBuckets);
273}
274
275/// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
276/// return it.  If not, return the insertion token that will make insertion
277/// faster.
278FoldingSetImpl::Node
279*FoldingSetImpl::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
280                                     void *&InsertPos) {
281
282  void **Bucket = GetBucketFor(ID.ComputeHash(), Buckets, NumBuckets);
283  void *Probe = *Bucket;
284
285  InsertPos = 0;
286
287  FoldingSetNodeID TempID;
288  while (Node *NodeInBucket = GetNextPtr(Probe)) {
289    if (NodeEquals(NodeInBucket, ID, TempID))
290      return NodeInBucket;
291    TempID.clear();
292
293    Probe = NodeInBucket->getNextInBucket();
294  }
295
296  // Didn't find the node, return null with the bucket as the InsertPos.
297  InsertPos = Bucket;
298  return 0;
299}
300
301/// InsertNode - Insert the specified node into the folding set, knowing that it
302/// is not already in the map.  InsertPos must be obtained from
303/// FindNodeOrInsertPos.
304void FoldingSetImpl::InsertNode(Node *N, void *InsertPos) {
305  assert(N->getNextInBucket() == 0);
306  // Do we need to grow the hashtable?
307  if (NumNodes+1 > NumBuckets*2) {
308    GrowHashTable();
309    FoldingSetNodeID TempID;
310    InsertPos = GetBucketFor(ComputeNodeHash(N, TempID), Buckets, NumBuckets);
311  }
312
313  ++NumNodes;
314
315  /// The insert position is actually a bucket pointer.
316  void **Bucket = static_cast<void**>(InsertPos);
317
318  void *Next = *Bucket;
319
320  // If this is the first insertion into this bucket, its next pointer will be
321  // null.  Pretend as if it pointed to itself, setting the low bit to indicate
322  // that it is a pointer to the bucket.
323  if (Next == 0)
324    Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1);
325
326  // Set the node's next pointer, and make the bucket point to the node.
327  N->SetNextInBucket(Next);
328  *Bucket = N;
329}
330
331/// RemoveNode - Remove a node from the folding set, returning true if one was
332/// removed or false if the node was not in the folding set.
333bool FoldingSetImpl::RemoveNode(Node *N) {
334  // Because each bucket is a circular list, we don't need to compute N's hash
335  // to remove it.
336  void *Ptr = N->getNextInBucket();
337  if (Ptr == 0) return false;  // Not in folding set.
338
339  --NumNodes;
340  N->SetNextInBucket(0);
341
342  // Remember what N originally pointed to, either a bucket or another node.
343  void *NodeNextPtr = Ptr;
344
345  // Chase around the list until we find the node (or bucket) which points to N.
346  while (true) {
347    if (Node *NodeInBucket = GetNextPtr(Ptr)) {
348      // Advance pointer.
349      Ptr = NodeInBucket->getNextInBucket();
350
351      // We found a node that points to N, change it to point to N's next node,
352      // removing N from the list.
353      if (Ptr == N) {
354        NodeInBucket->SetNextInBucket(NodeNextPtr);
355        return true;
356      }
357    } else {
358      void **Bucket = GetBucketPtr(Ptr);
359      Ptr = *Bucket;
360
361      // If we found that the bucket points to N, update the bucket to point to
362      // whatever is next.
363      if (Ptr == N) {
364        *Bucket = NodeNextPtr;
365        return true;
366      }
367    }
368  }
369}
370
371/// GetOrInsertNode - If there is an existing simple Node exactly
372/// equal to the specified node, return it.  Otherwise, insert 'N' and it
373/// instead.
374FoldingSetImpl::Node *FoldingSetImpl::GetOrInsertNode(FoldingSetImpl::Node *N) {
375  FoldingSetNodeID ID;
376  GetNodeProfile(N, ID);
377  void *IP;
378  if (Node *E = FindNodeOrInsertPos(ID, IP))
379    return E;
380  InsertNode(N, IP);
381  return N;
382}
383
384//===----------------------------------------------------------------------===//
385// FoldingSetIteratorImpl Implementation
386
387FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) {
388  // Skip to the first non-null non-self-cycle bucket.
389  while (*Bucket != reinterpret_cast<void*>(-1) &&
390         (*Bucket == 0 || GetNextPtr(*Bucket) == 0))
391    ++Bucket;
392
393  NodePtr = static_cast<FoldingSetNode*>(*Bucket);
394}
395
396void FoldingSetIteratorImpl::advance() {
397  // If there is another link within this bucket, go to it.
398  void *Probe = NodePtr->getNextInBucket();
399
400  if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe))
401    NodePtr = NextNodeInBucket;
402  else {
403    // Otherwise, this is the last link in this bucket.
404    void **Bucket = GetBucketPtr(Probe);
405
406    // Skip to the next non-null non-self-cycle bucket.
407    do {
408      ++Bucket;
409    } while (*Bucket != reinterpret_cast<void*>(-1) &&
410             (*Bucket == 0 || GetNextPtr(*Bucket) == 0));
411
412    NodePtr = static_cast<FoldingSetNode*>(*Bucket);
413  }
414}
415
416//===----------------------------------------------------------------------===//
417// FoldingSetBucketIteratorImpl Implementation
418
419FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) {
420  Ptr = (*Bucket == 0 || GetNextPtr(*Bucket) == 0) ? (void*) Bucket : *Bucket;
421}
422