1//===----- HexagonPacketizer.cpp - vliw packetizer ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a simple VLIW packetizer using DFA. The packetizer works on
11// machine basic blocks. For each instruction I in BB, the packetizer consults
12// the DFA to see if machine resources are available to execute I. If so, the
13// packetizer checks if I depends on any instruction J in the current packet.
14// If no dependency is found, I is added to current packet and machine resource
15// is marked as taken. If any dependency is found, a target API call is made to
16// prune the dependence.
17//
18//===----------------------------------------------------------------------===//
19#include "llvm/CodeGen/DFAPacketizer.h"
20#include "Hexagon.h"
21#include "HexagonMachineFunctionInfo.h"
22#include "HexagonRegisterInfo.h"
23#include "HexagonSubtarget.h"
24#include "HexagonTargetMachine.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/CodeGen/LatencyPriorityQueue.h"
28#include "llvm/CodeGen/MachineDominators.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunctionAnalysis.h"
31#include "llvm/CodeGen/MachineFunctionPass.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineLoopInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/Passes.h"
36#include "llvm/CodeGen/ScheduleDAG.h"
37#include "llvm/CodeGen/ScheduleDAGInstrs.h"
38#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39#include "llvm/CodeGen/SchedulerRegistry.h"
40#include "llvm/MC/MCInstrItineraries.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Compiler.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetRegisterInfo.h"
48#include <map>
49#include <vector>
50
51using namespace llvm;
52
53#define DEBUG_TYPE "packets"
54
55static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
56      cl::ZeroOrMore, cl::Hidden, cl::init(true),
57      cl::desc("Allow non-solo packetization of volatile memory references"));
58
59namespace llvm {
60  void initializeHexagonPacketizerPass(PassRegistry&);
61}
62
63
64namespace {
65  class HexagonPacketizer : public MachineFunctionPass {
66
67  public:
68    static char ID;
69    HexagonPacketizer() : MachineFunctionPass(ID) {
70      initializeHexagonPacketizerPass(*PassRegistry::getPassRegistry());
71    }
72
73    void getAnalysisUsage(AnalysisUsage &AU) const override {
74      AU.setPreservesCFG();
75      AU.addRequired<MachineDominatorTree>();
76      AU.addRequired<MachineBranchProbabilityInfo>();
77      AU.addPreserved<MachineDominatorTree>();
78      AU.addRequired<MachineLoopInfo>();
79      AU.addPreserved<MachineLoopInfo>();
80      MachineFunctionPass::getAnalysisUsage(AU);
81    }
82
83    const char *getPassName() const override {
84      return "Hexagon Packetizer";
85    }
86
87    bool runOnMachineFunction(MachineFunction &Fn) override;
88  };
89  char HexagonPacketizer::ID = 0;
90
91  class HexagonPacketizerList : public VLIWPacketizerList {
92
93  private:
94
95    // Has the instruction been promoted to a dot-new instruction.
96    bool PromotedToDotNew;
97
98    // Has the instruction been glued to allocframe.
99    bool GlueAllocframeStore;
100
101    // Has the feeder instruction been glued to new value jump.
102    bool GlueToNewValueJump;
103
104    // Check if there is a dependence between some instruction already in this
105    // packet and this instruction.
106    bool Dependence;
107
108    // Only check for dependence if there are resources available to
109    // schedule this instruction.
110    bool FoundSequentialDependence;
111
112    /// \brief A handle to the branch probability pass.
113   const MachineBranchProbabilityInfo *MBPI;
114
115   // Track MIs with ignored dependece.
116   std::vector<MachineInstr*> IgnoreDepMIs;
117
118  public:
119    // Ctor.
120    HexagonPacketizerList(MachineFunction &MF, MachineLoopInfo &MLI,
121                          MachineDominatorTree &MDT,
122                          const MachineBranchProbabilityInfo *MBPI);
123
124    // initPacketizerState - initialize some internal flags.
125    void initPacketizerState() override;
126
127    // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
128    bool ignorePseudoInstruction(MachineInstr *MI,
129                                 MachineBasicBlock *MBB) override;
130
131    // isSoloInstruction - return true if instruction MI can not be packetized
132    // with any other instruction, which means that MI itself is a packet.
133    bool isSoloInstruction(MachineInstr *MI) override;
134
135    // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
136    // together.
137    bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override;
138
139    // isLegalToPruneDependencies - Is it legal to prune dependece between SUI
140    // and SUJ.
141    bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override;
142
143    MachineBasicBlock::iterator addToPacket(MachineInstr *MI) override;
144  private:
145    bool IsCallDependent(MachineInstr* MI, SDep::Kind DepType, unsigned DepReg);
146    bool PromoteToDotNew(MachineInstr* MI, SDep::Kind DepType,
147                         MachineBasicBlock::iterator &MII,
148                         const TargetRegisterClass* RC);
149    bool CanPromoteToDotNew(MachineInstr* MI, SUnit* PacketSU,
150                            unsigned DepReg,
151                            std::map <MachineInstr*, SUnit*> MIToSUnit,
152                            MachineBasicBlock::iterator &MII,
153                            const TargetRegisterClass* RC);
154    bool CanPromoteToNewValue(MachineInstr* MI, SUnit* PacketSU,
155                              unsigned DepReg,
156                              std::map <MachineInstr*, SUnit*> MIToSUnit,
157                              MachineBasicBlock::iterator &MII);
158    bool CanPromoteToNewValueStore(MachineInstr* MI, MachineInstr* PacketMI,
159                                   unsigned DepReg,
160                                   std::map <MachineInstr*, SUnit*> MIToSUnit);
161    bool DemoteToDotOld(MachineInstr* MI);
162    bool ArePredicatesComplements(MachineInstr* MI1, MachineInstr* MI2,
163                    std::map <MachineInstr*, SUnit*> MIToSUnit);
164    bool RestrictingDepExistInPacket(MachineInstr*,
165                    unsigned, std::map <MachineInstr*, SUnit*>);
166    bool isNewifiable(MachineInstr* MI);
167    bool isCondInst(MachineInstr* MI);
168    bool tryAllocateResourcesForConstExt(MachineInstr* MI);
169    bool canReserveResourcesForConstExt(MachineInstr *MI);
170    void reserveResourcesForConstExt(MachineInstr* MI);
171    bool isNewValueInst(MachineInstr* MI);
172  };
173}
174
175INITIALIZE_PASS_BEGIN(HexagonPacketizer, "packets", "Hexagon Packetizer",
176                      false, false)
177INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
178INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
179INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
180INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
181INITIALIZE_PASS_END(HexagonPacketizer, "packets", "Hexagon Packetizer",
182                    false, false)
183
184
185// HexagonPacketizerList Ctor.
186HexagonPacketizerList::HexagonPacketizerList(
187  MachineFunction &MF, MachineLoopInfo &MLI,MachineDominatorTree &MDT,
188  const MachineBranchProbabilityInfo *MBPI)
189  : VLIWPacketizerList(MF, MLI, MDT, true){
190  this->MBPI = MBPI;
191}
192
193bool HexagonPacketizer::runOnMachineFunction(MachineFunction &Fn) {
194  const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo();
195  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
196  MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
197  const MachineBranchProbabilityInfo *MBPI =
198    &getAnalysis<MachineBranchProbabilityInfo>();
199  // Instantiate the packetizer.
200  HexagonPacketizerList Packetizer(Fn, MLI, MDT, MBPI);
201
202  // DFA state table should not be empty.
203  assert(Packetizer.getResourceTracker() && "Empty DFA table!");
204
205  //
206  // Loop over all basic blocks and remove KILL pseudo-instructions
207  // These instructions confuse the dependence analysis. Consider:
208  // D0 = ...   (Insn 0)
209  // R0 = KILL R0, D0 (Insn 1)
210  // R0 = ... (Insn 2)
211  // Here, Insn 1 will result in the dependence graph not emitting an output
212  // dependence between Insn 0 and Insn 2. This can lead to incorrect
213  // packetization
214  //
215  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
216       MBB != MBBe; ++MBB) {
217    MachineBasicBlock::iterator End = MBB->end();
218    MachineBasicBlock::iterator MI = MBB->begin();
219    while (MI != End) {
220      if (MI->isKill()) {
221        MachineBasicBlock::iterator DeleteMI = MI;
222        ++MI;
223        MBB->erase(DeleteMI);
224        End = MBB->end();
225        continue;
226      }
227      ++MI;
228    }
229  }
230
231  // Loop over all of the basic blocks.
232  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
233       MBB != MBBe; ++MBB) {
234    // Find scheduling regions and schedule / packetize each region.
235    unsigned RemainingCount = MBB->size();
236    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
237        RegionEnd != MBB->begin();) {
238      // The next region starts above the previous region. Look backward in the
239      // instruction stream until we find the nearest boundary.
240      MachineBasicBlock::iterator I = RegionEnd;
241      for(;I != MBB->begin(); --I, --RemainingCount) {
242        if (TII->isSchedulingBoundary(std::prev(I), MBB, Fn))
243          break;
244      }
245      I = MBB->begin();
246
247      // Skip empty scheduling regions.
248      if (I == RegionEnd) {
249        RegionEnd = std::prev(RegionEnd);
250        --RemainingCount;
251        continue;
252      }
253      // Skip regions with one instruction.
254      if (I == std::prev(RegionEnd)) {
255        RegionEnd = std::prev(RegionEnd);
256        continue;
257      }
258
259      Packetizer.PacketizeMIs(MBB, I, RegionEnd);
260      RegionEnd = I;
261    }
262  }
263
264  return true;
265}
266
267
268static bool IsIndirectCall(MachineInstr* MI) {
269  return ((MI->getOpcode() == Hexagon::CALLR) ||
270          (MI->getOpcode() == Hexagon::CALLRv3));
271}
272
273// Reserve resources for constant extender. Trigure an assertion if
274// reservation fail.
275void HexagonPacketizerList::reserveResourcesForConstExt(MachineInstr* MI) {
276  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
277  MachineFunction *MF = MI->getParent()->getParent();
278  MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
279                                                  MI->getDebugLoc());
280
281  if (ResourceTracker->canReserveResources(PseudoMI)) {
282    ResourceTracker->reserveResources(PseudoMI);
283    MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
284  } else {
285    MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
286    llvm_unreachable("can not reserve resources for constant extender.");
287  }
288  return;
289}
290
291bool HexagonPacketizerList::canReserveResourcesForConstExt(MachineInstr *MI) {
292  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
293  assert((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
294         "Should only be called for constant extended instructions");
295  MachineFunction *MF = MI->getParent()->getParent();
296  MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
297                                                  MI->getDebugLoc());
298  bool CanReserve = ResourceTracker->canReserveResources(PseudoMI);
299  MF->DeleteMachineInstr(PseudoMI);
300  return CanReserve;
301}
302
303// Allocate resources (i.e. 4 bytes) for constant extender. If succeed, return
304// true, otherwise, return false.
305bool HexagonPacketizerList::tryAllocateResourcesForConstExt(MachineInstr* MI) {
306  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
307  MachineFunction *MF = MI->getParent()->getParent();
308  MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
309                                                  MI->getDebugLoc());
310
311  if (ResourceTracker->canReserveResources(PseudoMI)) {
312    ResourceTracker->reserveResources(PseudoMI);
313    MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
314    return true;
315  } else {
316    MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
317    return false;
318  }
319}
320
321
322bool HexagonPacketizerList::IsCallDependent(MachineInstr* MI,
323                                          SDep::Kind DepType,
324                                          unsigned DepReg) {
325
326  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
327  const HexagonRegisterInfo* QRI =
328              (const HexagonRegisterInfo *) TM.getRegisterInfo();
329
330  // Check for lr dependence
331  if (DepReg == QRI->getRARegister()) {
332    return true;
333  }
334
335  if (QII->isDeallocRet(MI)) {
336    if (DepReg == QRI->getFrameRegister() ||
337        DepReg == QRI->getStackRegister())
338      return true;
339  }
340
341  // Check if this is a predicate dependence
342  const TargetRegisterClass* RC = QRI->getMinimalPhysRegClass(DepReg);
343  if (RC == &Hexagon::PredRegsRegClass) {
344    return true;
345  }
346
347  //
348  // Lastly check for an operand used in an indirect call
349  // If we had an attribute for checking if an instruction is an indirect call,
350  // then we could have avoided this relatively brittle implementation of
351  // IsIndirectCall()
352  //
353  // Assumes that the first operand of the CALLr is the function address
354  //
355  if (IsIndirectCall(MI) && (DepType == SDep::Data)) {
356    MachineOperand MO = MI->getOperand(0);
357    if (MO.isReg() && MO.isUse() && (MO.getReg() == DepReg)) {
358      return true;
359    }
360  }
361
362  return false;
363}
364
365static bool IsRegDependence(const SDep::Kind DepType) {
366  return (DepType == SDep::Data || DepType == SDep::Anti ||
367          DepType == SDep::Output);
368}
369
370static bool IsDirectJump(MachineInstr* MI) {
371  return (MI->getOpcode() == Hexagon::JMP);
372}
373
374static bool IsSchedBarrier(MachineInstr* MI) {
375  switch (MI->getOpcode()) {
376  case Hexagon::BARRIER:
377    return true;
378  }
379  return false;
380}
381
382static bool IsControlFlow(MachineInstr* MI) {
383  return (MI->getDesc().isTerminator() || MI->getDesc().isCall());
384}
385
386static bool IsLoopN(MachineInstr *MI) {
387  return (MI->getOpcode() == Hexagon::LOOP0_i ||
388          MI->getOpcode() == Hexagon::LOOP0_r);
389}
390
391/// DoesModifyCalleeSavedReg - Returns true if the instruction modifies a
392/// callee-saved register.
393static bool DoesModifyCalleeSavedReg(MachineInstr *MI,
394                                     const TargetRegisterInfo *TRI) {
395  for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(); *CSR; ++CSR) {
396    unsigned CalleeSavedReg = *CSR;
397    if (MI->modifiesRegister(CalleeSavedReg, TRI))
398      return true;
399  }
400  return false;
401}
402
403// Returns true if an instruction can be promoted to .new predicate
404// or new-value store.
405bool HexagonPacketizerList::isNewifiable(MachineInstr* MI) {
406  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
407  if ( isCondInst(MI) || QII->mayBeNewStore(MI))
408    return true;
409  else
410    return false;
411}
412
413bool HexagonPacketizerList::isCondInst (MachineInstr* MI) {
414  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
415  const MCInstrDesc& TID = MI->getDesc();
416                                    // bug 5670: until that is fixed,
417                                    // this portion is disabled.
418  if (   TID.isConditionalBranch()  // && !IsRegisterJump(MI)) ||
419      || QII->isConditionalTransfer(MI)
420      || QII->isConditionalALU32(MI)
421      || QII->isConditionalLoad(MI)
422      || QII->isConditionalStore(MI)) {
423    return true;
424  }
425  return false;
426}
427
428
429// Promote an instructiont to its .new form.
430// At this time, we have already made a call to CanPromoteToDotNew
431// and made sure that it can *indeed* be promoted.
432bool HexagonPacketizerList::PromoteToDotNew(MachineInstr* MI,
433                        SDep::Kind DepType, MachineBasicBlock::iterator &MII,
434                        const TargetRegisterClass* RC) {
435
436  assert (DepType == SDep::Data);
437  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
438
439  int NewOpcode;
440  if (RC == &Hexagon::PredRegsRegClass)
441    NewOpcode = QII->GetDotNewPredOp(MI, MBPI);
442  else
443    NewOpcode = QII->GetDotNewOp(MI);
444  MI->setDesc(QII->get(NewOpcode));
445
446  return true;
447}
448
449bool HexagonPacketizerList::DemoteToDotOld(MachineInstr* MI) {
450  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
451  int NewOpcode = QII->GetDotOldOp(MI->getOpcode());
452  MI->setDesc(QII->get(NewOpcode));
453  return true;
454}
455
456enum PredicateKind {
457  PK_False,
458  PK_True,
459  PK_Unknown
460};
461
462/// Returns true if an instruction is predicated on p0 and false if it's
463/// predicated on !p0.
464static PredicateKind getPredicateSense(MachineInstr* MI,
465                                       const HexagonInstrInfo *QII) {
466  if (!QII->isPredicated(MI))
467    return PK_Unknown;
468
469  if (QII->isPredicatedTrue(MI))
470    return PK_True;
471
472  return PK_False;
473}
474
475static MachineOperand& GetPostIncrementOperand(MachineInstr *MI,
476                                               const HexagonInstrInfo *QII) {
477  assert(QII->isPostIncrement(MI) && "Not a post increment operation.");
478#ifndef NDEBUG
479  // Post Increment means duplicates. Use dense map to find duplicates in the
480  // list. Caution: Densemap initializes with the minimum of 64 buckets,
481  // whereas there are at most 5 operands in the post increment.
482  DenseMap<unsigned,  unsigned> DefRegsSet;
483  for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
484    if (MI->getOperand(opNum).isReg() &&
485        MI->getOperand(opNum).isDef()) {
486      DefRegsSet[MI->getOperand(opNum).getReg()] = 1;
487    }
488
489  for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
490    if (MI->getOperand(opNum).isReg() &&
491        MI->getOperand(opNum).isUse()) {
492      if (DefRegsSet[MI->getOperand(opNum).getReg()]) {
493        return MI->getOperand(opNum);
494      }
495    }
496#else
497  if (MI->getDesc().mayLoad()) {
498    // The 2nd operand is always the post increment operand in load.
499    assert(MI->getOperand(1).isReg() &&
500                "Post increment operand has be to a register.");
501    return (MI->getOperand(1));
502  }
503  if (MI->getDesc().mayStore()) {
504    // The 1st operand is always the post increment operand in store.
505    assert(MI->getOperand(0).isReg() &&
506                "Post increment operand has be to a register.");
507    return (MI->getOperand(0));
508  }
509#endif
510  // we should never come here.
511  llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
512}
513
514// get the value being stored
515static MachineOperand& GetStoreValueOperand(MachineInstr *MI) {
516  // value being stored is always the last operand.
517  return (MI->getOperand(MI->getNumOperands()-1));
518}
519
520// can be new value store?
521// Following restrictions are to be respected in convert a store into
522// a new value store.
523// 1. If an instruction uses auto-increment, its address register cannot
524//    be a new-value register. Arch Spec 5.4.2.1
525// 2. If an instruction uses absolute-set addressing mode,
526//    its address register cannot be a new-value register.
527//    Arch Spec 5.4.2.1.TODO: This is not enabled as
528//    as absolute-set address mode patters are not implemented.
529// 3. If an instruction produces a 64-bit result, its registers cannot be used
530//    as new-value registers. Arch Spec 5.4.2.2.
531// 4. If the instruction that sets a new-value register is conditional, then
532//    the instruction that uses the new-value register must also be conditional,
533//    and both must always have their predicates evaluate identically.
534//    Arch Spec 5.4.2.3.
535// 5. There is an implied restriction of a packet can not have another store,
536//    if there is a  new value store in the packet. Corollary, if there is
537//    already a store in a packet, there can not be a new value store.
538//    Arch Spec: 3.4.4.2
539bool HexagonPacketizerList::CanPromoteToNewValueStore( MachineInstr *MI,
540                MachineInstr *PacketMI, unsigned DepReg,
541                std::map <MachineInstr*, SUnit*> MIToSUnit) {
542  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
543  // Make sure we are looking at the store, that can be promoted.
544  if (!QII->mayBeNewStore(MI))
545    return false;
546
547  // Make sure there is dependency and can be new value'ed
548  if (GetStoreValueOperand(MI).isReg() &&
549      GetStoreValueOperand(MI).getReg() != DepReg)
550    return false;
551
552  const HexagonRegisterInfo* QRI =
553                            (const HexagonRegisterInfo *) TM.getRegisterInfo();
554  const MCInstrDesc& MCID = PacketMI->getDesc();
555  // first operand is always the result
556
557  const TargetRegisterClass* PacketRC = QII->getRegClass(MCID, 0, QRI, MF);
558
559  // if there is already an store in the packet, no can do new value store
560  // Arch Spec 3.4.4.2.
561  for (std::vector<MachineInstr*>::iterator VI = CurrentPacketMIs.begin(),
562         VE = CurrentPacketMIs.end();
563       (VI != VE); ++VI) {
564    SUnit* PacketSU = MIToSUnit[*VI];
565    if (PacketSU->getInstr()->getDesc().mayStore() ||
566        // if we have mayStore = 1 set on ALLOCFRAME and DEALLOCFRAME,
567        // then we don't need this
568        PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME ||
569        PacketSU->getInstr()->getOpcode() == Hexagon::DEALLOCFRAME)
570      return false;
571  }
572
573  if (PacketRC == &Hexagon::DoubleRegsRegClass) {
574    // new value store constraint: double regs can not feed into new value store
575    // arch spec section: 5.4.2.2
576    return false;
577  }
578
579  // Make sure it's NOT the post increment register that we are going to
580  // new value.
581  if (QII->isPostIncrement(MI) &&
582      MI->getDesc().mayStore() &&
583      GetPostIncrementOperand(MI, QII).getReg() == DepReg) {
584    return false;
585  }
586
587  if (QII->isPostIncrement(PacketMI) &&
588      PacketMI->getDesc().mayLoad() &&
589      GetPostIncrementOperand(PacketMI, QII).getReg() == DepReg) {
590    // if source is post_inc, or absolute-set addressing,
591    // it can not feed into new value store
592    //  r3 = memw(r2++#4)
593    //  memw(r30 + #-1404) = r2.new -> can not be new value store
594    // arch spec section: 5.4.2.1
595    return false;
596  }
597
598  // If the source that feeds the store is predicated, new value store must
599  // also be predicated.
600  if (QII->isPredicated(PacketMI)) {
601    if (!QII->isPredicated(MI))
602      return false;
603
604    // Check to make sure that they both will have their predicates
605    // evaluate identically
606    unsigned predRegNumSrc = 0;
607    unsigned predRegNumDst = 0;
608    const TargetRegisterClass* predRegClass = nullptr;
609
610    // Get predicate register used in the source instruction
611    for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
612      if ( PacketMI->getOperand(opNum).isReg())
613      predRegNumSrc = PacketMI->getOperand(opNum).getReg();
614      predRegClass = QRI->getMinimalPhysRegClass(predRegNumSrc);
615      if (predRegClass == &Hexagon::PredRegsRegClass) {
616        break;
617      }
618    }
619    assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
620        ("predicate register not found in a predicated PacketMI instruction"));
621
622    // Get predicate register used in new-value store instruction
623    for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
624      if ( MI->getOperand(opNum).isReg())
625      predRegNumDst = MI->getOperand(opNum).getReg();
626      predRegClass = QRI->getMinimalPhysRegClass(predRegNumDst);
627      if (predRegClass == &Hexagon::PredRegsRegClass) {
628        break;
629      }
630    }
631    assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
632            ("predicate register not found in a predicated MI instruction"));
633
634    // New-value register producer and user (store) need to satisfy these
635    // constraints:
636    // 1) Both instructions should be predicated on the same register.
637    // 2) If producer of the new-value register is .new predicated then store
638    // should also be .new predicated and if producer is not .new predicated
639    // then store should not be .new predicated.
640    // 3) Both new-value register producer and user should have same predicate
641    // sense, i.e, either both should be negated or both should be none negated.
642
643    if (( predRegNumDst != predRegNumSrc) ||
644          QII->isDotNewInst(PacketMI) != QII->isDotNewInst(MI)  ||
645          getPredicateSense(MI, QII) != getPredicateSense(PacketMI, QII)) {
646      return false;
647    }
648  }
649
650  // Make sure that other than the new-value register no other store instruction
651  // register has been modified in the same packet. Predicate registers can be
652  // modified by they should not be modified between the producer and the store
653  // instruction as it will make them both conditional on different values.
654  // We already know this to be true for all the instructions before and
655  // including PacketMI. Howerver, we need to perform the check for the
656  // remaining instructions in the packet.
657
658  std::vector<MachineInstr*>::iterator VI;
659  std::vector<MachineInstr*>::iterator VE;
660  unsigned StartCheck = 0;
661
662  for (VI=CurrentPacketMIs.begin(), VE = CurrentPacketMIs.end();
663      (VI != VE); ++VI) {
664    SUnit* TempSU = MIToSUnit[*VI];
665    MachineInstr* TempMI = TempSU->getInstr();
666
667    // Following condition is true for all the instructions until PacketMI is
668    // reached (StartCheck is set to 0 before the for loop).
669    // StartCheck flag is 1 for all the instructions after PacketMI.
670    if (TempMI != PacketMI && !StartCheck) // start processing only after
671      continue;                            // encountering PacketMI
672
673    StartCheck = 1;
674    if (TempMI == PacketMI) // We don't want to check PacketMI for dependence
675      continue;
676
677    for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
678      if (MI->getOperand(opNum).isReg() &&
679          TempSU->getInstr()->modifiesRegister(MI->getOperand(opNum).getReg(),
680                                               QRI))
681        return false;
682    }
683  }
684
685  // Make sure that for non-POST_INC stores:
686  // 1. The only use of reg is DepReg and no other registers.
687  //    This handles V4 base+index registers.
688  //    The following store can not be dot new.
689  //    Eg.   r0 = add(r0, #3)a
690  //          memw(r1+r0<<#2) = r0
691  if (!QII->isPostIncrement(MI) &&
692      GetStoreValueOperand(MI).isReg() &&
693      GetStoreValueOperand(MI).getReg() == DepReg) {
694    for(unsigned opNum = 0; opNum < MI->getNumOperands()-1; opNum++) {
695      if (MI->getOperand(opNum).isReg() &&
696          MI->getOperand(opNum).getReg() == DepReg) {
697        return false;
698      }
699    }
700    // 2. If data definition is because of implicit definition of the register,
701    //    do not newify the store. Eg.
702    //    %R9<def> = ZXTH %R12, %D6<imp-use>, %R12<imp-def>
703    //    STrih_indexed %R8, 2, %R12<kill>; mem:ST2[%scevgep343]
704    for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
705      if (PacketMI->getOperand(opNum).isReg() &&
706          PacketMI->getOperand(opNum).getReg() == DepReg &&
707          PacketMI->getOperand(opNum).isDef() &&
708          PacketMI->getOperand(opNum).isImplicit()) {
709        return false;
710      }
711    }
712  }
713
714  // Can be dot new store.
715  return true;
716}
717
718// can this MI to promoted to either
719// new value store or new value jump
720bool HexagonPacketizerList::CanPromoteToNewValue( MachineInstr *MI,
721                SUnit *PacketSU, unsigned DepReg,
722                std::map <MachineInstr*, SUnit*> MIToSUnit,
723                MachineBasicBlock::iterator &MII)
724{
725
726  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
727  const HexagonRegisterInfo* QRI =
728                            (const HexagonRegisterInfo *) TM.getRegisterInfo();
729  if (!QRI->Subtarget.hasV4TOps() ||
730      !QII->mayBeNewStore(MI))
731    return false;
732
733  MachineInstr *PacketMI = PacketSU->getInstr();
734
735  // Check to see the store can be new value'ed.
736  if (CanPromoteToNewValueStore(MI, PacketMI, DepReg, MIToSUnit))
737    return true;
738
739  // Check to see the compare/jump can be new value'ed.
740  // This is done as a pass on its own. Don't need to check it here.
741  return false;
742}
743
744// Check to see if an instruction can be dot new
745// There are three kinds.
746// 1. dot new on predicate - V2/V3/V4
747// 2. dot new on stores NV/ST - V4
748// 3. dot new on jump NV/J - V4 -- This is generated in a pass.
749bool HexagonPacketizerList::CanPromoteToDotNew( MachineInstr *MI,
750                              SUnit *PacketSU, unsigned DepReg,
751                              std::map <MachineInstr*, SUnit*> MIToSUnit,
752                              MachineBasicBlock::iterator &MII,
753                              const TargetRegisterClass* RC )
754{
755  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
756  // Already a dot new instruction.
757  if (QII->isDotNewInst(MI) && !QII->mayBeNewStore(MI))
758    return false;
759
760  if (!isNewifiable(MI))
761    return false;
762
763  // predicate .new
764  if (RC == &Hexagon::PredRegsRegClass && isCondInst(MI))
765      return true;
766  else if (RC != &Hexagon::PredRegsRegClass &&
767      !QII->mayBeNewStore(MI)) // MI is not a new-value store
768    return false;
769  else {
770    // Create a dot new machine instruction to see if resources can be
771    // allocated. If not, bail out now.
772    int NewOpcode = QII->GetDotNewOp(MI);
773    const MCInstrDesc &desc = QII->get(NewOpcode);
774    DebugLoc dl;
775    MachineInstr *NewMI =
776                    MI->getParent()->getParent()->CreateMachineInstr(desc, dl);
777    bool ResourcesAvailable = ResourceTracker->canReserveResources(NewMI);
778    MI->getParent()->getParent()->DeleteMachineInstr(NewMI);
779
780    if (!ResourcesAvailable)
781      return false;
782
783    // new value store only
784    // new new value jump generated as a passes
785    if (!CanPromoteToNewValue(MI, PacketSU, DepReg, MIToSUnit, MII)) {
786      return false;
787    }
788  }
789  return true;
790}
791
792// Go through the packet instructions and search for anti dependency
793// between them and DepReg from MI
794// Consider this case:
795// Trying to add
796// a) %R1<def> = TFRI_cdNotPt %P3, 2
797// to this packet:
798// {
799//   b) %P0<def> = OR_pp %P3<kill>, %P0<kill>
800//   c) %P3<def> = TFR_PdRs %R23
801//   d) %R1<def> = TFRI_cdnPt %P3, 4
802//  }
803// The P3 from a) and d) will be complements after
804// a)'s P3 is converted to .new form
805// Anti Dep between c) and b) is irrelevant for this case
806bool HexagonPacketizerList::RestrictingDepExistInPacket (MachineInstr* MI,
807      unsigned DepReg,
808      std::map <MachineInstr*, SUnit*> MIToSUnit) {
809
810  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
811  SUnit* PacketSUDep = MIToSUnit[MI];
812
813  for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
814       VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
815
816    // We only care for dependencies to predicated instructions
817    if(!QII->isPredicated(*VIN)) continue;
818
819    // Scheduling Unit for current insn in the packet
820    SUnit* PacketSU = MIToSUnit[*VIN];
821
822    // Look at dependencies between current members of the packet
823    // and predicate defining instruction MI.
824    // Make sure that dependency is on the exact register
825    // we care about.
826    if (PacketSU->isSucc(PacketSUDep)) {
827      for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
828        if ((PacketSU->Succs[i].getSUnit() == PacketSUDep) &&
829            (PacketSU->Succs[i].getKind() == SDep::Anti) &&
830            (PacketSU->Succs[i].getReg() == DepReg)) {
831          return true;
832        }
833      }
834    }
835  }
836
837  return false;
838}
839
840
841/// Gets the predicate register of a predicated instruction.
842static unsigned getPredicatedRegister(MachineInstr *MI,
843                                      const HexagonInstrInfo *QII) {
844  /// We use the following rule: The first predicate register that is a use is
845  /// the predicate register of a predicated instruction.
846
847  assert(QII->isPredicated(MI) && "Must be predicated instruction");
848
849  for (MachineInstr::mop_iterator OI = MI->operands_begin(),
850       OE = MI->operands_end(); OI != OE; ++OI) {
851    MachineOperand &Op = *OI;
852    if (Op.isReg() && Op.getReg() && Op.isUse() &&
853        Hexagon::PredRegsRegClass.contains(Op.getReg()))
854      return Op.getReg();
855  }
856
857  llvm_unreachable("Unknown instruction operand layout");
858
859  return 0;
860}
861
862// Given two predicated instructions, this function detects whether
863// the predicates are complements
864bool HexagonPacketizerList::ArePredicatesComplements (MachineInstr* MI1,
865     MachineInstr* MI2, std::map <MachineInstr*, SUnit*> MIToSUnit) {
866
867  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
868
869  // If we don't know the predicate sense of the instructions bail out early, we
870  // need it later.
871  if (getPredicateSense(MI1, QII) == PK_Unknown ||
872      getPredicateSense(MI2, QII) == PK_Unknown)
873    return false;
874
875  // Scheduling unit for candidate
876  SUnit* SU = MIToSUnit[MI1];
877
878  // One corner case deals with the following scenario:
879  // Trying to add
880  // a) %R24<def> = TFR_cPt %P0, %R25
881  // to this packet:
882  //
883  // {
884  //   b) %R25<def> = TFR_cNotPt %P0, %R24
885  //   c) %P0<def> = CMPEQri %R26, 1
886  // }
887  //
888  // On general check a) and b) are complements, but
889  // presence of c) will convert a) to .new form, and
890  // then it is not a complement
891  // We attempt to detect it by analyzing  existing
892  // dependencies in the packet
893
894  // Analyze relationships between all existing members of the packet.
895  // Look for Anti dependecy on the same predicate reg
896  // as used in the candidate
897  for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
898       VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
899
900    // Scheduling Unit for current insn in the packet
901    SUnit* PacketSU = MIToSUnit[*VIN];
902
903    // If this instruction in the packet is succeeded by the candidate...
904    if (PacketSU->isSucc(SU)) {
905      for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
906        // The corner case exist when there is true data
907        // dependency between candidate and one of current
908        // packet members, this dep is on predicate reg, and
909        // there already exist anti dep on the same pred in
910        // the packet.
911        if (PacketSU->Succs[i].getSUnit() == SU &&
912            PacketSU->Succs[i].getKind() == SDep::Data &&
913            Hexagon::PredRegsRegClass.contains(
914              PacketSU->Succs[i].getReg()) &&
915            // Here I know that *VIN is predicate setting instruction
916            // with true data dep to candidate on the register
917            // we care about - c) in the above example.
918            // Now I need to see if there is an anti dependency
919            // from c) to any other instruction in the
920            // same packet on the pred reg of interest
921            RestrictingDepExistInPacket(*VIN,PacketSU->Succs[i].getReg(),
922                                        MIToSUnit)) {
923           return false;
924        }
925      }
926    }
927  }
928
929  // If the above case does not apply, check regular
930  // complement condition.
931  // Check that the predicate register is the same and
932  // that the predicate sense is different
933  // We also need to differentiate .old vs. .new:
934  // !p0 is not complimentary to p0.new
935  unsigned PReg1 = getPredicatedRegister(MI1, QII);
936  unsigned PReg2 = getPredicatedRegister(MI2, QII);
937  return ((PReg1 == PReg2) &&
938          Hexagon::PredRegsRegClass.contains(PReg1) &&
939          Hexagon::PredRegsRegClass.contains(PReg2) &&
940          (getPredicateSense(MI1, QII) != getPredicateSense(MI2, QII)) &&
941          (QII->isDotNewInst(MI1) == QII->isDotNewInst(MI2)));
942}
943
944// initPacketizerState - Initialize packetizer flags
945void HexagonPacketizerList::initPacketizerState() {
946
947  Dependence = false;
948  PromotedToDotNew = false;
949  GlueToNewValueJump = false;
950  GlueAllocframeStore = false;
951  FoundSequentialDependence = false;
952
953  return;
954}
955
956// ignorePseudoInstruction - Ignore bundling of pseudo instructions.
957bool HexagonPacketizerList::ignorePseudoInstruction(MachineInstr *MI,
958                                                    MachineBasicBlock *MBB) {
959  if (MI->isDebugValue())
960    return true;
961
962  // We must print out inline assembly
963  if (MI->isInlineAsm())
964    return false;
965
966  // We check if MI has any functional units mapped to it.
967  // If it doesn't, we ignore the instruction.
968  const MCInstrDesc& TID = MI->getDesc();
969  unsigned SchedClass = TID.getSchedClass();
970  const InstrStage* IS =
971                    ResourceTracker->getInstrItins()->beginStage(SchedClass);
972  unsigned FuncUnits = IS->getUnits();
973  return !FuncUnits;
974}
975
976// isSoloInstruction: - Returns true for instructions that must be
977// scheduled in their own packet.
978bool HexagonPacketizerList::isSoloInstruction(MachineInstr *MI) {
979
980  if (MI->isInlineAsm())
981    return true;
982
983  if (MI->isEHLabel())
984    return true;
985
986  // From Hexagon V4 Programmer's Reference Manual 3.4.4 Grouping constraints:
987  // trap, pause, barrier, icinva, isync, and syncht are solo instructions.
988  // They must not be grouped with other instructions in a packet.
989  if (IsSchedBarrier(MI))
990    return true;
991
992  return false;
993}
994
995// isLegalToPacketizeTogether:
996// SUI is the current instruction that is out side of the current packet.
997// SUJ is the current instruction inside the current packet against which that
998// SUI will be packetized.
999bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
1000  MachineInstr *I = SUI->getInstr();
1001  MachineInstr *J = SUJ->getInstr();
1002  assert(I && J && "Unable to packetize null instruction!");
1003
1004  const MCInstrDesc &MCIDI = I->getDesc();
1005  const MCInstrDesc &MCIDJ = J->getDesc();
1006
1007  MachineBasicBlock::iterator II = I;
1008
1009  const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
1010  const HexagonRegisterInfo* QRI =
1011                      (const HexagonRegisterInfo *) TM.getRegisterInfo();
1012  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1013
1014  // Inline asm cannot go in the packet.
1015  if (I->getOpcode() == Hexagon::INLINEASM)
1016    llvm_unreachable("Should not meet inline asm here!");
1017
1018  if (isSoloInstruction(I))
1019    llvm_unreachable("Should not meet solo instr here!");
1020
1021  // A save callee-save register function call can only be in a packet
1022  // with instructions that don't write to the callee-save registers.
1023  if ((QII->isSaveCalleeSavedRegsCall(I) &&
1024       DoesModifyCalleeSavedReg(J, QRI)) ||
1025      (QII->isSaveCalleeSavedRegsCall(J) &&
1026       DoesModifyCalleeSavedReg(I, QRI))) {
1027    Dependence = true;
1028    return false;
1029  }
1030
1031  // Two control flow instructions cannot go in the same packet.
1032  if (IsControlFlow(I) && IsControlFlow(J)) {
1033    Dependence = true;
1034    return false;
1035  }
1036
1037  // A LoopN instruction cannot appear in the same packet as a jump or call.
1038  if (IsLoopN(I) &&
1039     (IsDirectJump(J) || MCIDJ.isCall() || QII->isDeallocRet(J))) {
1040    Dependence = true;
1041    return false;
1042  }
1043  if (IsLoopN(J) &&
1044     (IsDirectJump(I) || MCIDI.isCall() || QII->isDeallocRet(I))) {
1045    Dependence = true;
1046    return false;
1047  }
1048
1049  // dealloc_return cannot appear in the same packet as a conditional or
1050  // unconditional jump.
1051  if (QII->isDeallocRet(I) &&
1052     (MCIDJ.isBranch() || MCIDJ.isCall() || MCIDJ.isBarrier())) {
1053    Dependence = true;
1054    return false;
1055  }
1056
1057
1058  // V4 allows dual store. But does not allow second store, if the
1059  // first store is not in SLOT0. New value store, new value jump,
1060  // dealloc_return and memop always take SLOT0.
1061  // Arch spec 3.4.4.2
1062  if (QRI->Subtarget.hasV4TOps()) {
1063    if (MCIDI.mayStore() && MCIDJ.mayStore() &&
1064       (QII->isNewValueInst(J) || QII->isMemOp(J) || QII->isMemOp(I))) {
1065      Dependence = true;
1066      return false;
1067    }
1068
1069    if ((QII->isMemOp(J) && MCIDI.mayStore())
1070        || (MCIDJ.mayStore() && QII->isMemOp(I))
1071        || (QII->isMemOp(J) && QII->isMemOp(I))) {
1072      Dependence = true;
1073      return false;
1074    }
1075
1076    //if dealloc_return
1077    if (MCIDJ.mayStore() && QII->isDeallocRet(I)) {
1078      Dependence = true;
1079      return false;
1080    }
1081
1082    // If an instruction feeds new value jump, glue it.
1083    MachineBasicBlock::iterator NextMII = I;
1084    ++NextMII;
1085    if (NextMII != I->getParent()->end() && QII->isNewValueJump(NextMII)) {
1086      MachineInstr *NextMI = NextMII;
1087
1088      bool secondRegMatch = false;
1089      bool maintainNewValueJump = false;
1090
1091      if (NextMI->getOperand(1).isReg() &&
1092          I->getOperand(0).getReg() == NextMI->getOperand(1).getReg()) {
1093        secondRegMatch = true;
1094        maintainNewValueJump = true;
1095      }
1096
1097      if (!secondRegMatch &&
1098           I->getOperand(0).getReg() == NextMI->getOperand(0).getReg()) {
1099        maintainNewValueJump = true;
1100      }
1101
1102      for (std::vector<MachineInstr*>::iterator
1103            VI = CurrentPacketMIs.begin(),
1104             VE = CurrentPacketMIs.end();
1105           (VI != VE && maintainNewValueJump); ++VI) {
1106        SUnit* PacketSU = MIToSUnit[*VI];
1107
1108        // NVJ can not be part of the dual jump - Arch Spec: section 7.8
1109        if (PacketSU->getInstr()->getDesc().isCall()) {
1110          Dependence = true;
1111          break;
1112        }
1113        // Validate
1114        // 1. Packet does not have a store in it.
1115        // 2. If the first operand of the nvj is newified, and the second
1116        //    operand is also a reg, it (second reg) is not defined in
1117        //    the same packet.
1118        // 3. If the second operand of the nvj is newified, (which means
1119        //    first operand is also a reg), first reg is not defined in
1120        //    the same packet.
1121        if (PacketSU->getInstr()->getDesc().mayStore()               ||
1122            PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME ||
1123            // Check #2.
1124            (!secondRegMatch && NextMI->getOperand(1).isReg() &&
1125             PacketSU->getInstr()->modifiesRegister(
1126                               NextMI->getOperand(1).getReg(), QRI)) ||
1127            // Check #3.
1128            (secondRegMatch &&
1129             PacketSU->getInstr()->modifiesRegister(
1130                               NextMI->getOperand(0).getReg(), QRI))) {
1131          Dependence = true;
1132          break;
1133        }
1134      }
1135      if (!Dependence)
1136        GlueToNewValueJump = true;
1137      else
1138        return false;
1139    }
1140  }
1141
1142  if (SUJ->isSucc(SUI)) {
1143    for (unsigned i = 0;
1144         (i < SUJ->Succs.size()) && !FoundSequentialDependence;
1145         ++i) {
1146
1147      if (SUJ->Succs[i].getSUnit() != SUI) {
1148        continue;
1149      }
1150
1151      SDep::Kind DepType = SUJ->Succs[i].getKind();
1152
1153      // For direct calls:
1154      // Ignore register dependences for call instructions for
1155      // packetization purposes except for those due to r31 and
1156      // predicate registers.
1157      //
1158      // For indirect calls:
1159      // Same as direct calls + check for true dependences to the register
1160      // used in the indirect call.
1161      //
1162      // We completely ignore Order dependences for call instructions
1163      //
1164      // For returns:
1165      // Ignore register dependences for return instructions like jumpr,
1166      // dealloc return unless we have dependencies on the explicit uses
1167      // of the registers used by jumpr (like r31) or dealloc return
1168      // (like r29 or r30).
1169      //
1170      // TODO: Currently, jumpr is handling only return of r31. So, the
1171      // following logic (specificaly IsCallDependent) is working fine.
1172      // We need to enable jumpr for register other than r31 and then,
1173      // we need to rework the last part, where it handles indirect call
1174      // of that (IsCallDependent) function. Bug 6216 is opened for this.
1175      //
1176      unsigned DepReg = 0;
1177      const TargetRegisterClass* RC = nullptr;
1178      if (DepType == SDep::Data) {
1179        DepReg = SUJ->Succs[i].getReg();
1180        RC = QRI->getMinimalPhysRegClass(DepReg);
1181      }
1182      if ((MCIDI.isCall() || MCIDI.isReturn()) &&
1183          (!IsRegDependence(DepType) ||
1184            !IsCallDependent(I, DepType, SUJ->Succs[i].getReg()))) {
1185        /* do nothing */
1186      }
1187
1188      // For instructions that can be promoted to dot-new, try to promote.
1189      else if ((DepType == SDep::Data) &&
1190               CanPromoteToDotNew(I, SUJ, DepReg, MIToSUnit, II, RC) &&
1191               PromoteToDotNew(I, DepType, II, RC)) {
1192        PromotedToDotNew = true;
1193        /* do nothing */
1194      }
1195
1196      else if ((DepType == SDep::Data) &&
1197               (QII->isNewValueJump(I))) {
1198        /* do nothing */
1199      }
1200
1201      // For predicated instructions, if the predicates are complements
1202      // then there can be no dependence.
1203      else if (QII->isPredicated(I) &&
1204               QII->isPredicated(J) &&
1205          ArePredicatesComplements(I, J, MIToSUnit)) {
1206        /* do nothing */
1207
1208      }
1209      else if (IsDirectJump(I) &&
1210               !MCIDJ.isBranch() &&
1211               !MCIDJ.isCall() &&
1212               (DepType == SDep::Order)) {
1213        // Ignore Order dependences between unconditional direct branches
1214        // and non-control-flow instructions
1215        /* do nothing */
1216      }
1217      else if (MCIDI.isConditionalBranch() && (DepType != SDep::Data) &&
1218               (DepType != SDep::Output)) {
1219        // Ignore all dependences for jumps except for true and output
1220        // dependences
1221        /* do nothing */
1222      }
1223
1224      // Ignore output dependences due to superregs. We can
1225      // write to two different subregisters of R1:0 for instance
1226      // in the same cycle
1227      //
1228
1229      //
1230      // Let the
1231      // If neither I nor J defines DepReg, then this is a
1232      // superfluous output dependence. The dependence must be of the
1233      // form:
1234      //  R0 = ...
1235      //  R1 = ...
1236      // and there is an output dependence between the two instructions
1237      // with
1238      // DepReg = D0
1239      // We want to ignore these dependences.
1240      // Ideally, the dependence constructor should annotate such
1241      // dependences. We can then avoid this relatively expensive check.
1242      //
1243      else if (DepType == SDep::Output) {
1244        // DepReg is the register that's responsible for the dependence.
1245        unsigned DepReg = SUJ->Succs[i].getReg();
1246
1247        // Check if I and J really defines DepReg.
1248        if (I->definesRegister(DepReg) ||
1249            J->definesRegister(DepReg)) {
1250          FoundSequentialDependence = true;
1251          break;
1252        }
1253      }
1254
1255      // We ignore Order dependences for
1256      // 1. Two loads unless they are volatile.
1257      // 2. Two stores in V4 unless they are volatile.
1258      else if ((DepType == SDep::Order) &&
1259               !I->hasOrderedMemoryRef() &&
1260               !J->hasOrderedMemoryRef()) {
1261        if (QRI->Subtarget.hasV4TOps() &&
1262            // hexagonv4 allows dual store.
1263            MCIDI.mayStore() && MCIDJ.mayStore()) {
1264          /* do nothing */
1265        }
1266        // store followed by store-- not OK on V2
1267        // store followed by load -- not OK on all (OK if addresses
1268        // are not aliased)
1269        // load followed by store -- OK on all
1270        // load followed by load  -- OK on all
1271        else if ( !MCIDJ.mayStore()) {
1272          /* do nothing */
1273        }
1274        else {
1275          FoundSequentialDependence = true;
1276          break;
1277        }
1278      }
1279
1280      // For V4, special case ALLOCFRAME. Even though there is dependency
1281      // between ALLOCAFRAME and subsequent store, allow it to be
1282      // packetized in a same packet. This implies that the store is using
1283      // caller's SP. Hense, offset needs to be updated accordingly.
1284      else if (DepType == SDep::Data
1285               && QRI->Subtarget.hasV4TOps()
1286               && J->getOpcode() == Hexagon::ALLOCFRAME
1287               && (I->getOpcode() == Hexagon::STrid
1288                   || I->getOpcode() == Hexagon::STriw
1289                   || I->getOpcode() == Hexagon::STrib)
1290               && I->getOperand(0).getReg() == QRI->getStackRegister()
1291               && QII->isValidOffset(I->getOpcode(),
1292                                     I->getOperand(1).getImm() -
1293                                     (FrameSize + HEXAGON_LRFP_SIZE)))
1294      {
1295        GlueAllocframeStore = true;
1296        // Since this store is to be glued with allocframe in the same
1297        // packet, it will use SP of the previous stack frame, i.e
1298        // caller's SP. Therefore, we need to recalculate offset according
1299        // to this change.
1300        I->getOperand(1).setImm(I->getOperand(1).getImm() -
1301                                        (FrameSize + HEXAGON_LRFP_SIZE));
1302      }
1303
1304      //
1305      // Skip over anti-dependences. Two instructions that are
1306      // anti-dependent can share a packet
1307      //
1308      else if (DepType != SDep::Anti) {
1309        FoundSequentialDependence = true;
1310        break;
1311      }
1312    }
1313
1314    if (FoundSequentialDependence) {
1315      Dependence = true;
1316      return false;
1317    }
1318  }
1319
1320  return true;
1321}
1322
1323// isLegalToPruneDependencies
1324bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
1325  MachineInstr *I = SUI->getInstr();
1326  assert(I && SUJ->getInstr() && "Unable to packetize null instruction!");
1327
1328  const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
1329
1330  if (Dependence) {
1331
1332    // Check if the instruction was promoted to a dot-new. If so, demote it
1333    // back into a dot-old.
1334    if (PromotedToDotNew) {
1335      DemoteToDotOld(I);
1336    }
1337
1338    // Check if the instruction (must be a store) was glued with an Allocframe
1339    // instruction. If so, restore its offset to its original value, i.e. use
1340    // curent SP instead of caller's SP.
1341    if (GlueAllocframeStore) {
1342      I->getOperand(1).setImm(I->getOperand(1).getImm() +
1343                                             FrameSize + HEXAGON_LRFP_SIZE);
1344    }
1345
1346    return false;
1347  }
1348  return true;
1349}
1350
1351MachineBasicBlock::iterator
1352HexagonPacketizerList::addToPacket(MachineInstr *MI) {
1353
1354    MachineBasicBlock::iterator MII = MI;
1355    MachineBasicBlock *MBB = MI->getParent();
1356
1357    const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1358
1359    if (GlueToNewValueJump) {
1360
1361      ++MII;
1362      MachineInstr *nvjMI = MII;
1363      assert(ResourceTracker->canReserveResources(MI));
1364      ResourceTracker->reserveResources(MI);
1365      if ((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
1366          !tryAllocateResourcesForConstExt(MI)) {
1367        endPacket(MBB, MI);
1368        ResourceTracker->reserveResources(MI);
1369        assert(canReserveResourcesForConstExt(MI) &&
1370               "Ensure that there is a slot");
1371        reserveResourcesForConstExt(MI);
1372        // Reserve resources for new value jump constant extender.
1373        assert(canReserveResourcesForConstExt(MI) &&
1374               "Ensure that there is a slot");
1375        reserveResourcesForConstExt(nvjMI);
1376        assert(ResourceTracker->canReserveResources(nvjMI) &&
1377               "Ensure that there is a slot");
1378
1379      } else if (   // Extended instruction takes two slots in the packet.
1380        // Try reserve and allocate 4-byte in the current packet first.
1381        (QII->isExtended(nvjMI)
1382            && (!tryAllocateResourcesForConstExt(nvjMI)
1383                || !ResourceTracker->canReserveResources(nvjMI)))
1384        || // For non-extended instruction, no need to allocate extra 4 bytes.
1385        (!QII->isExtended(nvjMI) &&
1386              !ResourceTracker->canReserveResources(nvjMI)))
1387      {
1388        endPacket(MBB, MI);
1389        // A new and empty packet starts.
1390        // We are sure that the resources requirements can be satisfied.
1391        // Therefore, do not need to call "canReserveResources" anymore.
1392        ResourceTracker->reserveResources(MI);
1393        if (QII->isExtended(nvjMI))
1394          reserveResourcesForConstExt(nvjMI);
1395      }
1396      // Here, we are sure that "reserveResources" would succeed.
1397      ResourceTracker->reserveResources(nvjMI);
1398      CurrentPacketMIs.push_back(MI);
1399      CurrentPacketMIs.push_back(nvjMI);
1400    } else {
1401      if (   (QII->isExtended(MI) || QII->isConstExtended(MI))
1402          && (   !tryAllocateResourcesForConstExt(MI)
1403              || !ResourceTracker->canReserveResources(MI)))
1404      {
1405        endPacket(MBB, MI);
1406        // Check if the instruction was promoted to a dot-new. If so, demote it
1407        // back into a dot-old
1408        if (PromotedToDotNew) {
1409          DemoteToDotOld(MI);
1410        }
1411        reserveResourcesForConstExt(MI);
1412      }
1413      // In case that "MI" is not an extended insn,
1414      // the resource availability has already been checked.
1415      ResourceTracker->reserveResources(MI);
1416      CurrentPacketMIs.push_back(MI);
1417    }
1418    return MII;
1419}
1420
1421//===----------------------------------------------------------------------===//
1422//                         Public Constructor Functions
1423//===----------------------------------------------------------------------===//
1424
1425FunctionPass *llvm::createHexagonPacketizer() {
1426  return new HexagonPacketizer();
1427}
1428
1429