Mips64InstrInfo.td revision 2c78be01f682e8b24bf5e5d4213016483a2fb54e
1//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips64 instructions.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Mips Operand, Complex Patterns and Transformations Definitions.
16//===----------------------------------------------------------------------===//
17
18// Instruction operand types
19def shamt_64       : Operand<i64>;
20
21// Unsigned Operand
22def uimm16_64      : Operand<i64> {
23  let PrintMethod = "printUnsignedImm";
24}
25
26// Transformation Function - get Imm - 32.
27def Subtract32 : SDNodeXForm<imm, [{
28  return getImm(N, (unsigned)N->getZExtValue() - 32);
29}]>;
30
31// shamt field must fit in 5 bits.
32def immZExt5_64 : ImmLeaf<i64, [{return Imm == (Imm & 0x1f);}]>;
33
34// imm32_63 predicate - True if imm is in range [32, 63].
35def imm32_63 : ImmLeaf<i32,
36                       [{return (int32_t)Imm >= 32 && (int32_t)Imm < 64;}],
37                       Subtract32>;
38
39// Is a 32-bit int.
40def immSExt32 : ImmLeaf<i64, [{return isInt<32>(Imm);}]>;
41
42// Transformation Function - get the higher 16 bits.
43def HIGHER : SDNodeXForm<imm, [{
44  return getImm(N, (N->getZExtValue() >> 32) & 0xFFFF);
45}]>;
46
47// Transformation Function - get the highest 16 bits.
48def HIGHEST : SDNodeXForm<imm, [{
49  return getImm(N, (N->getZExtValue() >> 48) & 0xFFFF);
50}]>;
51
52//===----------------------------------------------------------------------===//
53// Instructions specific format
54//===----------------------------------------------------------------------===//
55// Shifts
56// 64-bit shift instructions.
57class shift_rotate_imm64<bits<6> func, bits<5> isRotate, string instr_asm,
58                         SDNode OpNode>:
59  shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt,
60                   CPU64Regs>;
61
62class shift_rotate_imm64_32<bits<6> func, bits<5> isRotate, string instr_asm,
63                            SDNode OpNode>:
64  shift_rotate_imm<func, isRotate, instr_asm, OpNode, imm32_63, shamt,
65                   CPU64Regs>;
66
67// Jump and Link (Call)
68let isCall=1, hasDelaySlot=1,
69  // All calls clobber the non-callee saved registers...
70  Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9,
71          K0, K1, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9], Uses = [GP] in {
72  class JumpLink64<bits<6> op, string instr_asm>:
73    FJ<op, (outs), (ins calltarget64:$target, variable_ops),
74       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
75       IIBranch>;
76
77  class JumpLinkReg64<bits<6> op, bits<6> func, string instr_asm>:
78    FR<op, func, (outs), (ins CPU64Regs:$rs, variable_ops),
79       !strconcat(instr_asm, "\t$rs"),
80       [(MipsJmpLink CPU64Regs:$rs)], IIBranch> {
81    let rt = 0;
82    let rd = 31;
83    let shamt = 0;
84  }
85
86  class BranchLink64<string instr_asm>:
87    FI<0x1, (outs), (ins CPU64Regs:$rs, brtarget:$imm16, variable_ops),
88       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch>;
89}
90
91// Mul, Div
92class Mult64<bits<6> func, string instr_asm, InstrItinClass itin>:
93  Mult<func, instr_asm, itin, CPU64Regs, [HI64, LO64]>;
94class Div64<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
95  Div<op, func, instr_asm, itin, CPU64Regs, [HI64, LO64]>;
96
97multiclass Atomic2Ops64<PatFrag Op, string Opstr> {
98  def #NAME# : Atomic2Ops<Op, Opstr, CPU64Regs, CPURegs>, Requires<[NotN64]>;
99  def _P8    : Atomic2Ops<Op, Opstr, CPU64Regs, CPU64Regs>, Requires<[IsN64]>;
100}
101
102multiclass AtomicCmpSwap64<PatFrag Op, string Width>  {
103  def #NAME# : AtomicCmpSwap<Op, Width, CPU64Regs, CPURegs>, Requires<[NotN64]>;
104  def _P8    : AtomicCmpSwap<Op, Width, CPU64Regs, CPU64Regs>,
105               Requires<[IsN64]>;
106}
107
108let usesCustomInserter = 1, Predicates = [HasMips64] in {
109  defm ATOMIC_LOAD_ADD_I64  : Atomic2Ops64<atomic_load_add_64, "load_add_64">;
110  defm ATOMIC_LOAD_SUB_I64  : Atomic2Ops64<atomic_load_sub_64, "load_sub_64">;
111  defm ATOMIC_LOAD_AND_I64  : Atomic2Ops64<atomic_load_and_64, "load_and_64">;
112  defm ATOMIC_LOAD_OR_I64   : Atomic2Ops64<atomic_load_or_64, "load_or_64">;
113  defm ATOMIC_LOAD_XOR_I64  : Atomic2Ops64<atomic_load_xor_64, "load_xor_64">;
114  defm ATOMIC_LOAD_NAND_I64 : Atomic2Ops64<atomic_load_nand_64, "load_nand_64">;
115  defm ATOMIC_SWAP_I64      : Atomic2Ops64<atomic_swap_64, "swap_64">;
116  defm ATOMIC_CMP_SWAP_I64  : AtomicCmpSwap64<atomic_cmp_swap_64, "64">;
117}
118
119//===----------------------------------------------------------------------===//
120// Instruction definition
121//===----------------------------------------------------------------------===//
122
123/// Arithmetic Instructions (ALU Immediate)
124def DADDiu   : ArithLogicI<0x19, "daddiu", add, simm16_64, immSExt16,
125                           CPU64Regs>;
126def DANDi    : ArithLogicI<0x0c, "andi", and, uimm16_64, immZExt16, CPU64Regs>;
127def SLTi64   : SetCC_I<0x0a, "slti", setlt, simm16_64, immSExt16, CPU64Regs>;
128def SLTiu64  : SetCC_I<0x0b, "sltiu", setult, simm16_64, immSExt16, CPU64Regs>;
129def ORi64    : ArithLogicI<0x0d, "ori", or, uimm16_64, immZExt16, CPU64Regs>;
130def XORi64   : ArithLogicI<0x0e, "xori", xor, uimm16_64, immZExt16, CPU64Regs>;
131def LUi64    : LoadUpper<0x0f, "lui", CPU64Regs, uimm16_64>;
132
133/// Arithmetic Instructions (3-Operand, R-Type)
134def DADDu    : ArithLogicR<0x00, 0x2d, "daddu", add, IIAlu, CPU64Regs, 1>;
135def DSUBu    : ArithLogicR<0x00, 0x2f, "dsubu", sub, IIAlu, CPU64Regs>;
136def SLT64    : SetCC_R<0x00, 0x2a, "slt", setlt, CPU64Regs>;
137def SLTu64   : SetCC_R<0x00, 0x2b, "sltu", setult, CPU64Regs>;
138def AND64    : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPU64Regs, 1>;
139def OR64     : ArithLogicR<0x00, 0x25, "or", or, IIAlu, CPU64Regs, 1>;
140def XOR64    : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPU64Regs, 1>;
141def NOR64    : LogicNOR<0x00, 0x27, "nor", CPU64Regs>;
142
143/// Shift Instructions
144def DSLL     : shift_rotate_imm64<0x38, 0x00, "dsll", shl>;
145def DSRL     : shift_rotate_imm64<0x3a, 0x00, "dsrl", srl>;
146def DSRA     : shift_rotate_imm64<0x3b, 0x00, "dsra", sra>;
147def DSLL32   : shift_rotate_imm64_32<0x3c, 0x00, "dsll32", shl>;
148def DSRL32   : shift_rotate_imm64_32<0x3e, 0x00, "dsrl32", srl>;
149def DSRA32   : shift_rotate_imm64_32<0x3f, 0x00, "dsra32", sra>;
150def DSLLV    : shift_rotate_reg<0x24, 0x00, "dsllv", shl, CPU64Regs>;
151def DSRLV    : shift_rotate_reg<0x26, 0x00, "dsrlv", srl, CPU64Regs>;
152def DSRAV    : shift_rotate_reg<0x27, 0x00, "dsrav", sra, CPU64Regs>;
153
154// Rotate Instructions
155let Predicates = [HasMips64r2] in {
156  def DROTR    : shift_rotate_imm64<0x3a, 0x01, "drotr", rotr>;
157  def DROTR32  : shift_rotate_imm64_32<0x3e, 0x01, "drotr32", rotr>;
158  def DROTRV   : shift_rotate_reg<0x16, 0x01, "drotrv", rotr, CPU64Regs>;
159}
160
161/// Load and Store Instructions
162///  aligned 
163defm LB64    : LoadM64<0x20, "lb",  sextloadi8>;
164defm LBu64   : LoadM64<0x24, "lbu", zextloadi8>;
165defm LH64    : LoadM64<0x21, "lh",  sextloadi16_a>;
166defm LHu64   : LoadM64<0x25, "lhu", zextloadi16_a>;
167defm LW64    : LoadM64<0x23, "lw",  sextloadi32_a>;
168defm LWu64   : LoadM64<0x27, "lwu", zextloadi32_a>;
169defm SB64    : StoreM64<0x28, "sb", truncstorei8>;
170defm SH64    : StoreM64<0x29, "sh", truncstorei16_a>;
171defm SW64    : StoreM64<0x2b, "sw", truncstorei32_a>;
172defm LD      : LoadM64<0x37, "ld",  load_a>;
173defm SD      : StoreM64<0x3f, "sd", store_a>;
174
175///  unaligned
176defm ULH64     : LoadM64<0x21, "ulh",  sextloadi16_u, 1>;
177defm ULHu64    : LoadM64<0x25, "ulhu", zextloadi16_u, 1>;
178defm ULW64     : LoadM64<0x23, "ulw",  sextloadi32_u, 1>;
179defm USH64     : StoreM64<0x29, "ush", truncstorei16_u, 1>;
180defm USW64     : StoreM64<0x2b, "usw", truncstorei32_u, 1>;
181defm ULD       : LoadM64<0x37, "uld",  load_u, 1>;
182defm USD       : StoreM64<0x3f, "usd", store_u, 1>;
183
184/// Load-linked, Store-conditional
185def LLD    : LLBase<0x34, "lld", CPU64Regs, mem>, Requires<[NotN64]>;
186def LLD_P8 : LLBase<0x34, "lld", CPU64Regs, mem64>, Requires<[IsN64]>;
187def SCD    : SCBase<0x3c, "scd", CPU64Regs, mem>, Requires<[NotN64]>;
188def SCD_P8 : SCBase<0x3c, "scd", CPU64Regs, mem64>, Requires<[IsN64]>;
189
190/// Jump and Branch Instructions
191def JR64   : JumpFR<0x00, 0x08, "jr", CPU64Regs>;
192def JAL64  : JumpLink64<0x03, "jal">;
193def JALR64 : JumpLinkReg64<0x00, 0x09, "jalr">;
194def BEQ64  : CBranch<0x04, "beq", seteq, CPU64Regs>;
195def BNE64  : CBranch<0x05, "bne", setne, CPU64Regs>;
196def BGEZ64 : CBranchZero<0x01, 1, "bgez", setge, CPU64Regs>;
197def BGTZ64 : CBranchZero<0x07, 0, "bgtz", setgt, CPU64Regs>;
198def BLEZ64 : CBranchZero<0x07, 0, "blez", setle, CPU64Regs>;
199def BLTZ64 : CBranchZero<0x01, 0, "bltz", setlt, CPU64Regs>;
200
201/// Multiply and Divide Instructions.
202def DMULT    : Mult64<0x1c, "dmult", IIImul>;
203def DMULTu   : Mult64<0x1d, "dmultu", IIImul>;
204def DSDIV    : Div64<MipsDivRem, 0x1e, "ddiv", IIIdiv>;
205def DUDIV    : Div64<MipsDivRemU, 0x1f, "ddivu", IIIdiv>;
206
207def MTHI64 : MoveToLOHI<0x11, "mthi", CPU64Regs, [HI64]>;
208def MTLO64 : MoveToLOHI<0x13, "mtlo", CPU64Regs, [LO64]>;
209def MFHI64 : MoveFromLOHI<0x10, "mfhi", CPU64Regs, [HI64]>;
210def MFLO64 : MoveFromLOHI<0x12, "mflo", CPU64Regs, [LO64]>;
211
212/// Count Leading
213def DCLZ : CountLeading0<0x24, "dclz", CPU64Regs>;
214def DCLO : CountLeading1<0x25, "dclo", CPU64Regs>;
215
216def LEA_ADDiu64 : EffectiveAddress<"addiu\t$rt, $addr", CPU64Regs, mem_ea_64>;
217
218let Uses = [SP_64] in
219def DynAlloc64 : EffectiveAddress<"daddiu\t$rt, $addr", CPU64Regs, mem_ea_64>,
220                 Requires<[IsN64]>;
221
222def DEXT : ExtBase<3, "dext", CPU64Regs>;
223def DINS : InsBase<7, "dins", CPU64Regs>;
224
225//===----------------------------------------------------------------------===//
226//  Arbitrary patterns that map to one or more instructions
227//===----------------------------------------------------------------------===//
228
229// Small immediates
230def : Pat<(i64 immSExt16:$in),
231          (DADDiu ZERO_64, imm:$in)>;
232def : Pat<(i64 immZExt16:$in),
233          (ORi64 ZERO_64, imm:$in)>;
234
235// 32-bit immediates
236def : Pat<(i64 immSExt32:$imm),
237          (ORi64 (LUi64 (HI16 imm:$imm)), (LO16 imm:$imm))>;
238
239// Arbitrary immediates
240def : Pat<(i64 imm:$imm),
241          (ORi64 (DSLL (ORi64 (DSLL (ORi64 (LUi64 (HIGHEST imm:$imm)),
242           (HIGHER imm:$imm)), 16), (HI16 imm:$imm)), 16),
243           (LO16 imm:$imm))>;
244
245// extended loads
246let Predicates = [NotN64] in {
247  def : Pat<(extloadi32_a addr:$a), (DSRL32 (DSLL32 (LW64 addr:$a), 0), 0)>;
248  def : Pat<(zextloadi32_u addr:$a), (DSRL32 (DSLL32 (ULW64 addr:$a), 0), 0)>;
249}
250let Predicates = [IsN64] in {
251  def : Pat<(extloadi32_a addr:$a), (DSRL32 (DSLL32 (LW64_P8 addr:$a), 0), 0)>;
252  def : Pat<(zextloadi32_u addr:$a), 
253            (DSRL32 (DSLL32 (ULW64_P8 addr:$a), 0), 0)>;
254}
255
256// hi/lo relocs
257def : Pat<(MipsHi tglobaladdr:$in), (LUi64 tglobaladdr:$in)>;
258def : Pat<(MipsHi tblockaddress:$in), (LUi64 tblockaddress:$in)>;
259def : Pat<(MipsHi tjumptable:$in), (LUi64 tjumptable:$in)>;
260def : Pat<(MipsHi tconstpool:$in), (LUi64 tconstpool:$in)>;
261
262def : Pat<(MipsLo tglobaladdr:$in), (DADDiu ZERO_64, tglobaladdr:$in)>;
263def : Pat<(MipsLo tblockaddress:$in), (DADDiu ZERO_64, tblockaddress:$in)>;
264def : Pat<(MipsLo tjumptable:$in), (DADDiu ZERO_64, tjumptable:$in)>;
265def : Pat<(MipsLo tconstpool:$in), (DADDiu ZERO_64, tconstpool:$in)>;
266
267def : Pat<(add CPU64Regs:$hi, (MipsLo tglobaladdr:$lo)),
268          (DADDiu CPU64Regs:$hi, tglobaladdr:$lo)>;
269def : Pat<(add CPU64Regs:$hi, (MipsLo tblockaddress:$lo)),
270          (DADDiu CPU64Regs:$hi, tblockaddress:$lo)>;
271def : Pat<(add CPU64Regs:$hi, (MipsLo tjumptable:$lo)),
272          (DADDiu CPU64Regs:$hi, tjumptable:$lo)>;
273def : Pat<(add CPU64Regs:$hi, (MipsLo tconstpool:$lo)),
274          (DADDiu CPU64Regs:$hi, tconstpool:$lo)>;
275
276def : WrapperPICPat<tglobaladdr, DADDiu, GP_64>;
277def : WrapperPICPat<tconstpool, DADDiu, GP_64>;
278def : WrapperPICPat<texternalsym, DADDiu, GP_64>;
279def : WrapperPICPat<tblockaddress, DADDiu, GP_64>;
280def : WrapperPICPat<tjumptable, DADDiu, GP_64>;
281
282defm : BrcondPats<CPU64Regs, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64,
283                  ZERO_64>;
284
285// setcc patterns
286defm : SeteqPats<CPU64Regs, SLTiu64, XOR64, SLTu64, ZERO_64>;
287defm : SetlePats<CPU64Regs, SLT64, SLTu64>;
288defm : SetgtPats<CPU64Regs, SLT64, SLTu64>;
289defm : SetgePats<CPU64Regs, SLT64, SLTu64>;
290defm : SetgeImmPats<CPU64Regs, SLTi64, SLTiu64>;
291
292// select MipsDynAlloc
293def : Pat<(MipsDynAlloc addr:$f), (DynAlloc64 addr:$f)>, Requires<[IsN64]>;
294
295// truncate
296def : Pat<(i32 (trunc CPU64Regs:$src)),
297          (SLL (EXTRACT_SUBREG CPU64Regs:$src, sub_32), 0)>, Requires<[IsN64]>;
298 
299