Mips64InstrInfo.td revision 77e1ebd18fc558620b97fe38f3ebbf825533655f
1//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips64 instructions.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Mips Operand, Complex Patterns and Transformations Definitions.
16//===----------------------------------------------------------------------===//
17
18// Instruction operand types
19def shamt_64       : Operand<i64>;
20
21// Unsigned Operand
22def uimm16_64      : Operand<i64> {
23  let PrintMethod = "printUnsignedImm";
24}
25
26// Transformation Function - get Imm - 32.
27def Subtract32 : SDNodeXForm<imm, [{
28  return getImm(N, (unsigned)N->getZExtValue() - 32);
29}]>;
30
31// shamt must fit in 6 bits.
32def immZExt6 : ImmLeaf<i32, [{return Imm == (Imm & 0x3f);}]>;
33
34//===----------------------------------------------------------------------===//
35// Instructions specific format
36//===----------------------------------------------------------------------===//
37let usesCustomInserter = 1 in {
38  def ATOMIC_LOAD_ADD_I64  : Atomic2Ops<atomic_load_add_64, GPR64>;
39  def ATOMIC_LOAD_SUB_I64  : Atomic2Ops<atomic_load_sub_64, GPR64>;
40  def ATOMIC_LOAD_AND_I64  : Atomic2Ops<atomic_load_and_64, GPR64>;
41  def ATOMIC_LOAD_OR_I64   : Atomic2Ops<atomic_load_or_64, GPR64>;
42  def ATOMIC_LOAD_XOR_I64  : Atomic2Ops<atomic_load_xor_64, GPR64>;
43  def ATOMIC_LOAD_NAND_I64 : Atomic2Ops<atomic_load_nand_64, GPR64>;
44  def ATOMIC_SWAP_I64      : Atomic2Ops<atomic_swap_64, GPR64>;
45  def ATOMIC_CMP_SWAP_I64  : AtomicCmpSwap<atomic_cmp_swap_64, GPR64>;
46}
47
48/// Pseudo instructions for loading and storing accumulator registers.
49let isPseudo = 1, isCodeGenOnly = 1 in {
50  def LOAD_ACC128  : Load<"", ACC128>;
51  def STORE_ACC128 : Store<"", ACC128>;
52}
53
54//===----------------------------------------------------------------------===//
55// Instruction definition
56//===----------------------------------------------------------------------===//
57let DecoderNamespace = "Mips64" in {
58/// Arithmetic Instructions (ALU Immediate)
59def DADDi   : ArithLogicI<"daddi", simm16_64, GPR64Opnd>, ADDI_FM<0x18>;
60def DADDiu  : ArithLogicI<"daddiu", simm16_64, GPR64Opnd, IIArith,
61                          immSExt16, add>,
62              ADDI_FM<0x19>, IsAsCheapAsAMove;
63
64let isCodeGenOnly = 1 in {
65def SLTi64  : SetCC_I<"slti", setlt, simm16_64, immSExt16, GPR64Opnd>,
66              SLTI_FM<0xa>;
67def SLTiu64 : SetCC_I<"sltiu", setult, simm16_64, immSExt16, GPR64Opnd>,
68              SLTI_FM<0xb>;
69def ANDi64 : ArithLogicI<"andi", uimm16_64, GPR64Opnd, IILogic, immZExt16,
70                         and>,
71             ADDI_FM<0xc>;
72def ORi64   : ArithLogicI<"ori", uimm16_64, GPR64Opnd, IILogic, immZExt16,
73                          or>,
74              ADDI_FM<0xd>;
75def XORi64  : ArithLogicI<"xori", uimm16_64, GPR64Opnd, IILogic, immZExt16,
76                          xor>,
77              ADDI_FM<0xe>;
78def LUi64   : LoadUpper<"lui", GPR64Opnd, uimm16_64>, LUI_FM;
79}
80
81/// Arithmetic Instructions (3-Operand, R-Type)
82def DADD   : ArithLogicR<"dadd", GPR64Opnd>, ADD_FM<0, 0x2c>;
83def DADDu  : ArithLogicR<"daddu", GPR64Opnd, 1, IIArith, add>,
84                              ADD_FM<0, 0x2d>;
85def DSUBu  : ArithLogicR<"dsubu", GPR64Opnd, 0, IIArith, sub>,
86                              ADD_FM<0, 0x2f>;
87
88let isCodeGenOnly = 1 in {
89def SLT64  : SetCC_R<"slt", setlt, GPR64Opnd>, ADD_FM<0, 0x2a>;
90def SLTu64 : SetCC_R<"sltu", setult, GPR64Opnd>, ADD_FM<0, 0x2b>;
91def AND64  : ArithLogicR<"and", GPR64Opnd, 1, IIArith, and>, ADD_FM<0, 0x24>;
92def OR64   : ArithLogicR<"or", GPR64Opnd, 1, IIArith, or>, ADD_FM<0, 0x25>;
93def XOR64  : ArithLogicR<"xor", GPR64Opnd, 1, IIArith, xor>, ADD_FM<0, 0x26>;
94def NOR64  : LogicNOR<"nor", GPR64Opnd>, ADD_FM<0, 0x27>;
95}
96
97/// Shift Instructions
98def DSLL   : shift_rotate_imm<"dsll", shamt, GPR64Opnd, shl, immZExt6>,
99             SRA_FM<0x38, 0>;
100def DSRL   : shift_rotate_imm<"dsrl", shamt, GPR64Opnd, srl, immZExt6>,
101             SRA_FM<0x3a, 0>;
102def DSRA   : shift_rotate_imm<"dsra", shamt, GPR64Opnd, sra, immZExt6>,
103             SRA_FM<0x3b, 0>;
104def DSLLV  : shift_rotate_reg<"dsllv", GPR64Opnd, shl>, SRLV_FM<0x14, 0>;
105def DSRLV  : shift_rotate_reg<"dsrlv", GPR64Opnd, srl>, SRLV_FM<0x16, 0>;
106def DSRAV  : shift_rotate_reg<"dsrav", GPR64Opnd, sra>, SRLV_FM<0x17, 0>;
107def DSLL32 : shift_rotate_imm<"dsll32", shamt, GPR64Opnd>, SRA_FM<0x3c, 0>;
108def DSRL32 : shift_rotate_imm<"dsrl32", shamt, GPR64Opnd>, SRA_FM<0x3e, 0>;
109def DSRA32 : shift_rotate_imm<"dsra32", shamt, GPR64Opnd>, SRA_FM<0x3f, 0>;
110
111// Rotate Instructions
112let Predicates = [HasMips64r2, HasStdEnc] in {
113  def DROTR  : shift_rotate_imm<"drotr", shamt, GPR64Opnd, rotr, immZExt6>,
114               SRA_FM<0x3a, 1>;
115  def DROTRV : shift_rotate_reg<"drotrv", GPR64Opnd, rotr>,
116               SRLV_FM<0x16, 1>;
117}
118
119/// Load and Store Instructions
120///  aligned
121let isCodeGenOnly = 1 in {
122def LB64  : Load<"lb", GPR64Opnd, sextloadi8, IILoad>, LW_FM<0x20>;
123def LBu64 : Load<"lbu", GPR64Opnd, zextloadi8, IILoad>, LW_FM<0x24>;
124def LH64  : Load<"lh", GPR64Opnd, sextloadi16, IILoad>, LW_FM<0x21>;
125def LHu64 : Load<"lhu", GPR64Opnd, zextloadi16, IILoad>, LW_FM<0x25>;
126def LW64  : Load<"lw", GPR64Opnd, sextloadi32, IILoad>, LW_FM<0x23>;
127def SB64  : Store<"sb", GPR64Opnd, truncstorei8, IIStore>, LW_FM<0x28>;
128def SH64  : Store<"sh", GPR64Opnd, truncstorei16, IIStore>, LW_FM<0x29>;
129def SW64  : Store<"sw", GPR64Opnd, truncstorei32, IIStore>, LW_FM<0x2b>;
130}
131
132def LWu   : Load<"lwu", GPR64Opnd, zextloadi32, IILoad>, LW_FM<0x27>;
133def LD    : Load<"ld", GPR64Opnd, load, IILoad>, LW_FM<0x37>;
134def SD    : Store<"sd", GPR64Opnd, store, IIStore>, LW_FM<0x3f>;
135
136/// load/store left/right
137let isCodeGenOnly = 1 in {
138def LWL64 : LoadLeftRight<"lwl", MipsLWL, GPR64Opnd, IILoad>, LW_FM<0x22>;
139def LWR64 : LoadLeftRight<"lwr", MipsLWR, GPR64Opnd, IILoad>, LW_FM<0x26>;
140def SWL64 : StoreLeftRight<"swl", MipsSWL, GPR64Opnd, IIStore>, LW_FM<0x2a>;
141def SWR64 : StoreLeftRight<"swr", MipsSWR, GPR64Opnd, IIStore>, LW_FM<0x2e>;
142}
143
144def LDL   : LoadLeftRight<"ldl", MipsLDL, GPR64Opnd, IILoad>, LW_FM<0x1a>;
145def LDR   : LoadLeftRight<"ldr", MipsLDR, GPR64Opnd, IILoad>, LW_FM<0x1b>;
146def SDL   : StoreLeftRight<"sdl", MipsSDL, GPR64Opnd, IIStore>, LW_FM<0x2c>;
147def SDR   : StoreLeftRight<"sdr", MipsSDR, GPR64Opnd, IIStore>, LW_FM<0x2d>;
148
149/// Load-linked, Store-conditional
150def LLD : LLBase<"lld", GPR64Opnd>, LW_FM<0x34>;
151def SCD : SCBase<"scd", GPR64Opnd>, LW_FM<0x3c>;
152
153/// Jump and Branch Instructions
154let isCodeGenOnly = 1 in {
155def JR64   : IndirectBranch<GPR64Opnd>, MTLO_FM<8>;
156def BEQ64  : CBranch<"beq", seteq, GPR64Opnd>, BEQ_FM<4>;
157def BNE64  : CBranch<"bne", setne, GPR64Opnd>, BEQ_FM<5>;
158def BGEZ64 : CBranchZero<"bgez", setge, GPR64Opnd>, BGEZ_FM<1, 1>;
159def BGTZ64 : CBranchZero<"bgtz", setgt, GPR64Opnd>, BGEZ_FM<7, 0>;
160def BLEZ64 : CBranchZero<"blez", setle, GPR64Opnd>, BGEZ_FM<6, 0>;
161def BLTZ64 : CBranchZero<"bltz", setlt, GPR64Opnd>, BGEZ_FM<1, 0>;
162def JALR64 : JumpLinkReg<"jalr", GPR64Opnd>, JALR_FM;
163def JALR64Pseudo : JumpLinkRegPseudo<GPR64Opnd, JALR, RA, GPR32Opnd>;
164def TAILCALL64_R : JumpFR<GPR64Opnd, MipsTailCall>, MTLO_FM<8>, IsTailCall;
165}
166
167/// Multiply and Divide Instructions.
168def DMULT  : Mult<"dmult", IIImult, GPR64Opnd, [HI0_64, LO0_64]>,
169             MULT_FM<0, 0x1c>;
170def DMULTu : Mult<"dmultu", IIImult, GPR64Opnd, [HI0_64, LO0_64]>,
171             MULT_FM<0, 0x1d>;
172def PseudoDMULT  : MultDivPseudo<DMULT, ACC128, GPR64Opnd, MipsMult,
173                                 IIImult>;
174def PseudoDMULTu : MultDivPseudo<DMULTu, ACC128, GPR64Opnd, MipsMultu,
175                                 IIImult>;
176def DSDIV : Div<"ddiv", IIIdiv, GPR64Opnd, [HI0_64, LO0_64]>, MULT_FM<0, 0x1e>;
177def DUDIV : Div<"ddivu", IIIdiv, GPR64Opnd, [HI0_64, LO0_64]>, MULT_FM<0, 0x1f>;
178def PseudoDSDIV : MultDivPseudo<DSDIV, ACC128, GPR64Opnd, MipsDivRem,
179                                IIIdiv, 0, 1, 1>;
180def PseudoDUDIV : MultDivPseudo<DUDIV, ACC128, GPR64Opnd, MipsDivRemU,
181                                IIIdiv, 0, 1, 1>;
182
183let isCodeGenOnly = 1 in {
184def MTHI64 : MoveToLOHI<"mthi", GPR64Opnd, [HI0_64]>, MTLO_FM<0x11>;
185def MTLO64 : MoveToLOHI<"mtlo", GPR64Opnd, [LO0_64]>, MTLO_FM<0x13>;
186def MFHI64 : MoveFromLOHI<"mfhi", GPR64Opnd, [HI0_64]>, MFLO_FM<0x10>;
187def MFLO64 : MoveFromLOHI<"mflo", GPR64Opnd, [LO0_64]>, MFLO_FM<0x12>;
188
189/// Sign Ext In Register Instructions.
190def SEB64 : SignExtInReg<"seb", i8, GPR64Opnd>, SEB_FM<0x10, 0x20>;
191def SEH64 : SignExtInReg<"seh", i16, GPR64Opnd>, SEB_FM<0x18, 0x20>;
192}
193
194/// Count Leading
195def DCLZ : CountLeading0<"dclz", GPR64Opnd>, CLO_FM<0x24>;
196def DCLO : CountLeading1<"dclo", GPR64Opnd>, CLO_FM<0x25>;
197
198/// Double Word Swap Bytes/HalfWords
199def DSBH : SubwordSwap<"dsbh", GPR64Opnd>, SEB_FM<2, 0x24>;
200def DSHD : SubwordSwap<"dshd", GPR64Opnd>, SEB_FM<5, 0x24>;
201
202def LEA_ADDiu64 : EffectiveAddress<"daddiu", GPR64Opnd>, LW_FM<0x19>;
203
204let isCodeGenOnly = 1 in
205def RDHWR64 : ReadHardware<GPR64Opnd, HWRegsOpnd>, RDHWR_FM;
206
207def DEXT : ExtBase<"dext", GPR64Opnd>, EXT_FM<3>;
208let Pattern = []<dag> in {
209  def DEXTU : ExtBase<"dextu", GPR64Opnd>, EXT_FM<2>;
210  def DEXTM : ExtBase<"dextm", GPR64Opnd>, EXT_FM<1>;
211}
212def DINS : InsBase<"dins", GPR64Opnd>, EXT_FM<7>;
213let Pattern = []<dag> in {
214  def DINSU : InsBase<"dinsu", GPR64Opnd>, EXT_FM<6>;
215  def DINSM : InsBase<"dinsm", GPR64Opnd>, EXT_FM<5>;
216}
217
218let isCodeGenOnly = 1, rs = 0, shamt = 0 in {
219  def DSLL64_32 : FR<0x00, 0x3c, (outs GPR64:$rd), (ins GPR32:$rt),
220                     "dsll\t$rd, $rt, 32", [], IIArith>;
221  def SLL64_32 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR32:$rt),
222                    "sll\t$rd, $rt, 0", [], IIArith>;
223  def SLL64_64 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR64:$rt),
224                    "sll\t$rd, $rt, 0", [], IIArith>;
225}
226}
227//===----------------------------------------------------------------------===//
228//  Arbitrary patterns that map to one or more instructions
229//===----------------------------------------------------------------------===//
230
231// extended loads
232let Predicates = [HasStdEnc] in {
233  def : MipsPat<(i64 (extloadi1  addr:$src)), (LB64 addr:$src)>;
234  def : MipsPat<(i64 (extloadi8  addr:$src)), (LB64 addr:$src)>;
235  def : MipsPat<(i64 (extloadi16 addr:$src)), (LH64 addr:$src)>;
236  def : MipsPat<(i64 (extloadi32 addr:$src)), (LW64 addr:$src)>;
237}
238
239// hi/lo relocs
240def : MipsPat<(MipsHi tglobaladdr:$in), (LUi64 tglobaladdr:$in)>;
241def : MipsPat<(MipsHi tblockaddress:$in), (LUi64 tblockaddress:$in)>;
242def : MipsPat<(MipsHi tjumptable:$in), (LUi64 tjumptable:$in)>;
243def : MipsPat<(MipsHi tconstpool:$in), (LUi64 tconstpool:$in)>;
244def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi64 tglobaltlsaddr:$in)>;
245def : MipsPat<(MipsHi texternalsym:$in), (LUi64 texternalsym:$in)>;
246
247def : MipsPat<(MipsLo tglobaladdr:$in), (DADDiu ZERO_64, tglobaladdr:$in)>;
248def : MipsPat<(MipsLo tblockaddress:$in), (DADDiu ZERO_64, tblockaddress:$in)>;
249def : MipsPat<(MipsLo tjumptable:$in), (DADDiu ZERO_64, tjumptable:$in)>;
250def : MipsPat<(MipsLo tconstpool:$in), (DADDiu ZERO_64, tconstpool:$in)>;
251def : MipsPat<(MipsLo tglobaltlsaddr:$in),
252              (DADDiu ZERO_64, tglobaltlsaddr:$in)>;
253def : MipsPat<(MipsLo texternalsym:$in), (DADDiu ZERO_64, texternalsym:$in)>;
254
255def : MipsPat<(add GPR64:$hi, (MipsLo tglobaladdr:$lo)),
256              (DADDiu GPR64:$hi, tglobaladdr:$lo)>;
257def : MipsPat<(add GPR64:$hi, (MipsLo tblockaddress:$lo)),
258              (DADDiu GPR64:$hi, tblockaddress:$lo)>;
259def : MipsPat<(add GPR64:$hi, (MipsLo tjumptable:$lo)),
260              (DADDiu GPR64:$hi, tjumptable:$lo)>;
261def : MipsPat<(add GPR64:$hi, (MipsLo tconstpool:$lo)),
262              (DADDiu GPR64:$hi, tconstpool:$lo)>;
263def : MipsPat<(add GPR64:$hi, (MipsLo tglobaltlsaddr:$lo)),
264              (DADDiu GPR64:$hi, tglobaltlsaddr:$lo)>;
265
266def : WrapperPat<tglobaladdr, DADDiu, GPR64>;
267def : WrapperPat<tconstpool, DADDiu, GPR64>;
268def : WrapperPat<texternalsym, DADDiu, GPR64>;
269def : WrapperPat<tblockaddress, DADDiu, GPR64>;
270def : WrapperPat<tjumptable, DADDiu, GPR64>;
271def : WrapperPat<tglobaltlsaddr, DADDiu, GPR64>;
272
273defm : BrcondPats<GPR64, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64,
274                  ZERO_64>;
275
276def : MipsPat<(brcond (i32 (setlt i64:$lhs, 1)), bb:$dst),
277              (BLEZ64 i64:$lhs, bb:$dst)>;
278def : MipsPat<(brcond (i32 (setgt i64:$lhs, -1)), bb:$dst),
279              (BGEZ64 i64:$lhs, bb:$dst)>;
280
281// setcc patterns
282defm : SeteqPats<GPR64, SLTiu64, XOR64, SLTu64, ZERO_64>;
283defm : SetlePats<GPR64, SLT64, SLTu64>;
284defm : SetgtPats<GPR64, SLT64, SLTu64>;
285defm : SetgePats<GPR64, SLT64, SLTu64>;
286defm : SetgeImmPats<GPR64, SLTi64, SLTiu64>;
287
288// truncate
289def : MipsPat<(i32 (trunc GPR64:$src)),
290              (SLL (EXTRACT_SUBREG GPR64:$src, sub_32), 0)>,
291      Requires<[HasStdEnc]>;
292
293// 32-to-64-bit extension
294def : MipsPat<(i64 (anyext GPR32:$src)), (SLL64_32 GPR32:$src)>;
295def : MipsPat<(i64 (zext GPR32:$src)), (DSRL (DSLL64_32 GPR32:$src), 32)>;
296def : MipsPat<(i64 (sext GPR32:$src)), (SLL64_32 GPR32:$src)>;
297
298// Sign extend in register
299def : MipsPat<(i64 (sext_inreg GPR64:$src, i32)),
300              (SLL64_64 GPR64:$src)>;
301
302// bswap MipsPattern
303def : MipsPat<(bswap GPR64:$rt), (DSHD (DSBH GPR64:$rt))>;
304
305// mflo/hi patterns.
306def : MipsPat<(i64 (ExtractLOHI ACC128:$ac, imm:$lohi_idx)),
307              (EXTRACT_SUBREG ACC128:$ac, imm:$lohi_idx)>;
308
309//===----------------------------------------------------------------------===//
310// Instruction aliases
311//===----------------------------------------------------------------------===//
312def : InstAlias<"move $dst, $src",
313                (DADDu GPR64Opnd:$dst,  GPR64Opnd:$src, ZERO_64), 1>,
314      Requires<[HasMips64]>;
315def : InstAlias<"daddu $rs, $rt, $imm",
316                (DADDiu GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm),
317                0>;
318def : InstAlias<"dadd $rs, $rt, $imm",
319                (DADDi GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm),
320                0>;
321
322/// Move between CPU and coprocessor registers
323let DecoderNamespace = "Mips64", Predicates = [HasMips64] in {
324def DMFC0 : MFC3OP<"dmfc0", GPR64Opnd>, MFC3OP_FM<0x10, 1>;
325def DMTC0 : MFC3OP<"dmtc0", GPR64Opnd>, MFC3OP_FM<0x10, 5>;
326def DMFC2 : MFC3OP<"dmfc2", GPR64Opnd>, MFC3OP_FM<0x12, 1>;
327def DMTC2 : MFC3OP<"dmtc2", GPR64Opnd>, MFC3OP_FM<0x12, 5>;
328}
329
330// Two operand (implicit 0 selector) versions:
331def : InstAlias<"dmfc0 $rt, $rd", (DMFC0 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
332def : InstAlias<"dmtc0 $rt, $rd", (DMTC0 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
333def : InstAlias<"dmfc2 $rt, $rd", (DMFC2 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
334def : InstAlias<"dmtc2 $rt, $rd", (DMTC2 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
335
336