Mips64InstrInfo.td revision ee973147ac0aad6471f5506c3278654baec4d1c0
1//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips64 instructions.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Mips Operand, Complex Patterns and Transformations Definitions.
16//===----------------------------------------------------------------------===//
17
18// Instruction operand types
19def shamt_64       : Operand<i64>;
20
21// Unsigned Operand
22def uimm16_64      : Operand<i64> {
23  let PrintMethod = "printUnsignedImm";
24}
25
26// Transformation Function - get Imm - 32.
27def Subtract32 : SDNodeXForm<imm, [{
28  return getImm(N, (unsigned)N->getZExtValue() - 32);
29}]>;
30
31// shamt must fit in 6 bits.
32def immZExt6 : ImmLeaf<i32, [{return Imm == (Imm & 0x3f);}]>;
33
34// Is a 32-bit int.
35def immSExt32 : ImmLeaf<i64, [{return isInt<32>(Imm);}]>;
36
37// Transformation Function - get the higher 16 bits.
38def HIGHER : SDNodeXForm<imm, [{
39  return getImm(N, (N->getZExtValue() >> 32) & 0xFFFF);
40}]>;
41
42// Transformation Function - get the highest 16 bits.
43def HIGHEST : SDNodeXForm<imm, [{
44  return getImm(N, (N->getZExtValue() >> 48) & 0xFFFF);
45}]>;
46
47//===----------------------------------------------------------------------===//
48// Instructions specific format
49//===----------------------------------------------------------------------===//
50// Shifts
51// 64-bit shift instructions.
52class shift_rotate_imm64<bits<6> func, bits<5> isRotate, string instr_asm,
53                         SDNode OpNode>:
54  shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt6, shamt,
55                   CPU64Regs>;
56
57// Jump and Link (Call)
58let isCall=1, hasDelaySlot=1,
59  // All calls clobber the non-callee saved registers...
60  Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9,
61          K0, K1, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9], Uses = [GP] in {
62  class JumpLink64<bits<6> op, string instr_asm>:
63    FJ<op, (outs), (ins calltarget64:$target, variable_ops),
64       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
65       IIBranch>;
66
67  class JumpLinkReg64<bits<6> op, bits<6> func, string instr_asm>:
68    FR<op, func, (outs), (ins CPU64Regs:$rs, variable_ops),
69       !strconcat(instr_asm, "\t$rs"),
70       [(MipsJmpLink CPU64Regs:$rs)], IIBranch> {
71    let rt = 0;
72    let rd = 31;
73    let shamt = 0;
74  }
75
76  class BranchLink64<string instr_asm>:
77    FI<0x1, (outs), (ins CPU64Regs:$rs, brtarget:$imm16, variable_ops),
78       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch>;
79}
80
81// Mul, Div
82class Mult64<bits<6> func, string instr_asm, InstrItinClass itin>:
83  Mult<func, instr_asm, itin, CPU64Regs, [HI64, LO64]>;
84class Div64<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
85  Div<op, func, instr_asm, itin, CPU64Regs, [HI64, LO64]>;
86
87multiclass Atomic2Ops64<PatFrag Op, string Opstr> {
88  def #NAME# : Atomic2Ops<Op, Opstr, CPU64Regs, CPURegs>, Requires<[NotN64]>;
89  def _P8    : Atomic2Ops<Op, Opstr, CPU64Regs, CPU64Regs>, Requires<[IsN64]>;
90}
91
92multiclass AtomicCmpSwap64<PatFrag Op, string Width>  {
93  def #NAME# : AtomicCmpSwap<Op, Width, CPU64Regs, CPURegs>, Requires<[NotN64]>;
94  def _P8    : AtomicCmpSwap<Op, Width, CPU64Regs, CPU64Regs>,
95               Requires<[IsN64]>;
96}
97
98let usesCustomInserter = 1, Predicates = [HasMips64] in {
99  defm ATOMIC_LOAD_ADD_I64  : Atomic2Ops64<atomic_load_add_64, "load_add_64">;
100  defm ATOMIC_LOAD_SUB_I64  : Atomic2Ops64<atomic_load_sub_64, "load_sub_64">;
101  defm ATOMIC_LOAD_AND_I64  : Atomic2Ops64<atomic_load_and_64, "load_and_64">;
102  defm ATOMIC_LOAD_OR_I64   : Atomic2Ops64<atomic_load_or_64, "load_or_64">;
103  defm ATOMIC_LOAD_XOR_I64  : Atomic2Ops64<atomic_load_xor_64, "load_xor_64">;
104  defm ATOMIC_LOAD_NAND_I64 : Atomic2Ops64<atomic_load_nand_64, "load_nand_64">;
105  defm ATOMIC_SWAP_I64      : Atomic2Ops64<atomic_swap_64, "swap_64">;
106  defm ATOMIC_CMP_SWAP_I64  : AtomicCmpSwap64<atomic_cmp_swap_64, "64">;
107}
108
109//===----------------------------------------------------------------------===//
110// Instruction definition
111//===----------------------------------------------------------------------===//
112
113/// Arithmetic Instructions (ALU Immediate)
114def DADDiu   : ArithLogicI<0x19, "daddiu", add, simm16_64, immSExt16,
115                           CPU64Regs>;
116def DANDi    : ArithLogicI<0x0c, "andi", and, uimm16_64, immZExt16, CPU64Regs>;
117def SLTi64   : SetCC_I<0x0a, "slti", setlt, simm16_64, immSExt16, CPU64Regs>;
118def SLTiu64  : SetCC_I<0x0b, "sltiu", setult, simm16_64, immSExt16, CPU64Regs>;
119def ORi64    : ArithLogicI<0x0d, "ori", or, uimm16_64, immZExt16, CPU64Regs>;
120def XORi64   : ArithLogicI<0x0e, "xori", xor, uimm16_64, immZExt16, CPU64Regs>;
121def LUi64    : LoadUpper<0x0f, "lui", CPU64Regs, uimm16_64>;
122
123/// Arithmetic Instructions (3-Operand, R-Type)
124def DADDu    : ArithLogicR<0x00, 0x2d, "daddu", add, IIAlu, CPU64Regs, 1>;
125def DSUBu    : ArithLogicR<0x00, 0x2f, "dsubu", sub, IIAlu, CPU64Regs>;
126def SLT64    : SetCC_R<0x00, 0x2a, "slt", setlt, CPU64Regs>;
127def SLTu64   : SetCC_R<0x00, 0x2b, "sltu", setult, CPU64Regs>;
128def AND64    : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPU64Regs, 1>;
129def OR64     : ArithLogicR<0x00, 0x25, "or", or, IIAlu, CPU64Regs, 1>;
130def XOR64    : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPU64Regs, 1>;
131def NOR64    : LogicNOR<0x00, 0x27, "nor", CPU64Regs>;
132
133/// Shift Instructions
134def DSLL     : shift_rotate_imm64<0x38, 0x00, "dsll", shl>;
135def DSRL     : shift_rotate_imm64<0x3a, 0x00, "dsrl", srl>;
136def DSRA     : shift_rotate_imm64<0x3b, 0x00, "dsra", sra>;
137def DSLLV    : shift_rotate_reg<0x24, 0x00, "dsllv", shl, CPU64Regs>;
138def DSRLV    : shift_rotate_reg<0x26, 0x00, "dsrlv", srl, CPU64Regs>;
139def DSRAV    : shift_rotate_reg<0x27, 0x00, "dsrav", sra, CPU64Regs>;
140
141// Rotate Instructions
142let Predicates = [HasMips64r2] in {
143  def DROTR    : shift_rotate_imm64<0x3a, 0x01, "drotr", rotr>;
144  def DROTRV   : shift_rotate_reg<0x16, 0x01, "drotrv", rotr, CPU64Regs>;
145}
146
147/// Load and Store Instructions
148///  aligned 
149defm LB64    : LoadM64<0x20, "lb",  sextloadi8>;
150defm LBu64   : LoadM64<0x24, "lbu", zextloadi8>;
151defm LH64    : LoadM64<0x21, "lh",  sextloadi16_a>;
152defm LHu64   : LoadM64<0x25, "lhu", zextloadi16_a>;
153defm LW64    : LoadM64<0x23, "lw",  sextloadi32_a>;
154defm LWu64   : LoadM64<0x27, "lwu", zextloadi32_a>;
155defm SB64    : StoreM64<0x28, "sb", truncstorei8>;
156defm SH64    : StoreM64<0x29, "sh", truncstorei16_a>;
157defm SW64    : StoreM64<0x2b, "sw", truncstorei32_a>;
158defm LD      : LoadM64<0x37, "ld",  load_a>;
159defm SD      : StoreM64<0x3f, "sd", store_a>;
160
161///  unaligned
162defm ULH64     : LoadM64<0x21, "ulh",  sextloadi16_u, 1>;
163defm ULHu64    : LoadM64<0x25, "ulhu", zextloadi16_u, 1>;
164defm ULW64     : LoadM64<0x23, "ulw",  sextloadi32_u, 1>;
165defm USH64     : StoreM64<0x29, "ush", truncstorei16_u, 1>;
166defm USW64     : StoreM64<0x2b, "usw", truncstorei32_u, 1>;
167defm ULD       : LoadM64<0x37, "uld",  load_u, 1>;
168defm USD       : StoreM64<0x3f, "usd", store_u, 1>;
169
170/// Load-linked, Store-conditional
171def LLD    : LLBase<0x34, "lld", CPU64Regs, mem>, Requires<[NotN64]>;
172def LLD_P8 : LLBase<0x34, "lld", CPU64Regs, mem64>, Requires<[IsN64]>;
173def SCD    : SCBase<0x3c, "scd", CPU64Regs, mem>, Requires<[NotN64]>;
174def SCD_P8 : SCBase<0x3c, "scd", CPU64Regs, mem64>, Requires<[IsN64]>;
175
176/// Jump and Branch Instructions
177def JR64   : JumpFR<0x00, 0x08, "jr", CPU64Regs>;
178def JAL64  : JumpLink64<0x03, "jal">;
179def JALR64 : JumpLinkReg64<0x00, 0x09, "jalr">;
180def BEQ64  : CBranch<0x04, "beq", seteq, CPU64Regs>;
181def BNE64  : CBranch<0x05, "bne", setne, CPU64Regs>;
182def BGEZ64 : CBranchZero<0x01, 1, "bgez", setge, CPU64Regs>;
183def BGTZ64 : CBranchZero<0x07, 0, "bgtz", setgt, CPU64Regs>;
184def BLEZ64 : CBranchZero<0x07, 0, "blez", setle, CPU64Regs>;
185def BLTZ64 : CBranchZero<0x01, 0, "bltz", setlt, CPU64Regs>;
186
187/// Multiply and Divide Instructions.
188def DMULT    : Mult64<0x1c, "dmult", IIImul>;
189def DMULTu   : Mult64<0x1d, "dmultu", IIImul>;
190def DSDIV    : Div64<MipsDivRem, 0x1e, "ddiv", IIIdiv>;
191def DUDIV    : Div64<MipsDivRemU, 0x1f, "ddivu", IIIdiv>;
192
193def MTHI64 : MoveToLOHI<0x11, "mthi", CPU64Regs, [HI64]>;
194def MTLO64 : MoveToLOHI<0x13, "mtlo", CPU64Regs, [LO64]>;
195def MFHI64 : MoveFromLOHI<0x10, "mfhi", CPU64Regs, [HI64]>;
196def MFLO64 : MoveFromLOHI<0x12, "mflo", CPU64Regs, [LO64]>;
197
198/// Count Leading
199def DCLZ : CountLeading0<0x24, "dclz", CPU64Regs>;
200def DCLO : CountLeading1<0x25, "dclo", CPU64Regs>;
201
202def LEA_ADDiu64 : EffectiveAddress<"addiu\t$rt, $addr", CPU64Regs, mem_ea_64>;
203
204let Uses = [SP_64] in
205def DynAlloc64 : EffectiveAddress<"daddiu\t$rt, $addr", CPU64Regs, mem_ea_64>,
206                 Requires<[IsN64]>;
207
208def RDHWR64 : ReadHardware<CPU64Regs, HWRegs64>;
209
210def DEXT : ExtBase<3, "dext", CPU64Regs>;
211def DINS : InsBase<7, "dins", CPU64Regs>;
212
213def DSLL64_32 : FR<0x3c, 0x00, (outs CPU64Regs:$rd), (ins CPURegs:$rt),
214                   "dsll\t$rd, $rt, 32", [], IIAlu>;
215
216def SLL64_32 : FR<0x0, 0x00, (outs CPU64Regs:$rd), (ins CPURegs:$rt),
217                  "sll\t$rd, $rt, 0", [], IIAlu>;
218
219//===----------------------------------------------------------------------===//
220//  Arbitrary patterns that map to one or more instructions
221//===----------------------------------------------------------------------===//
222
223// Small immediates
224def : Pat<(i64 immSExt16:$in),
225          (DADDiu ZERO_64, imm:$in)>;
226def : Pat<(i64 immZExt16:$in),
227          (ORi64 ZERO_64, imm:$in)>;
228
229// 32-bit immediates
230def : Pat<(i64 immSExt32:$imm),
231          (ORi64 (LUi64 (HI16 imm:$imm)), (LO16 imm:$imm))>;
232
233// Arbitrary immediates
234def : Pat<(i64 imm:$imm),
235          (ORi64 (DSLL (ORi64 (DSLL (ORi64 (LUi64 (HIGHEST imm:$imm)),
236           (HIGHER imm:$imm)), 16), (HI16 imm:$imm)), 16),
237           (LO16 imm:$imm))>;
238
239// extended loads
240let Predicates = [NotN64] in {
241  def : Pat<(extloadi32_a addr:$a), (DSRL (DSLL (LW64 addr:$a), 32), 32)>;
242  def : Pat<(zextloadi32_u addr:$a), (DSRL (DSLL (ULW64 addr:$a), 32), 32)>;
243}
244let Predicates = [IsN64] in {
245  def : Pat<(extloadi32_a addr:$a), (DSRL (DSLL (LW64_P8 addr:$a), 32), 32)>;
246  def : Pat<(zextloadi32_u addr:$a), (DSRL (DSLL (ULW64_P8 addr:$a), 32), 32)>;
247}
248
249// hi/lo relocs
250def : Pat<(MipsHi tglobaladdr:$in), (LUi64 tglobaladdr:$in)>;
251def : Pat<(MipsHi tblockaddress:$in), (LUi64 tblockaddress:$in)>;
252def : Pat<(MipsHi tjumptable:$in), (LUi64 tjumptable:$in)>;
253def : Pat<(MipsHi tconstpool:$in), (LUi64 tconstpool:$in)>;
254def : Pat<(MipsHi tglobaltlsaddr:$in), (LUi64 tglobaltlsaddr:$in)>;
255
256def : Pat<(MipsLo tglobaladdr:$in), (DADDiu ZERO_64, tglobaladdr:$in)>;
257def : Pat<(MipsLo tblockaddress:$in), (DADDiu ZERO_64, tblockaddress:$in)>;
258def : Pat<(MipsLo tjumptable:$in), (DADDiu ZERO_64, tjumptable:$in)>;
259def : Pat<(MipsLo tconstpool:$in), (DADDiu ZERO_64, tconstpool:$in)>;
260def : Pat<(MipsLo tglobaltlsaddr:$in), (DADDiu ZERO_64, tglobaltlsaddr:$in)>;
261
262def : Pat<(add CPU64Regs:$hi, (MipsLo tglobaladdr:$lo)),
263          (DADDiu CPU64Regs:$hi, tglobaladdr:$lo)>;
264def : Pat<(add CPU64Regs:$hi, (MipsLo tblockaddress:$lo)),
265          (DADDiu CPU64Regs:$hi, tblockaddress:$lo)>;
266def : Pat<(add CPU64Regs:$hi, (MipsLo tjumptable:$lo)),
267          (DADDiu CPU64Regs:$hi, tjumptable:$lo)>;
268def : Pat<(add CPU64Regs:$hi, (MipsLo tconstpool:$lo)),
269          (DADDiu CPU64Regs:$hi, tconstpool:$lo)>;
270def : Pat<(add CPU64Regs:$hi, (MipsLo tglobaltlsaddr:$lo)),
271          (DADDiu CPU64Regs:$hi, tglobaltlsaddr:$lo)>;
272
273def : WrapperPat<tglobaladdr, DADDiu, GP_64>;
274def : WrapperPat<tconstpool, DADDiu, GP_64>;
275def : WrapperPat<texternalsym, DADDiu, GP_64>;
276def : WrapperPat<tblockaddress, DADDiu, GP_64>;
277def : WrapperPat<tjumptable, DADDiu, GP_64>;
278def : WrapperPat<tglobaltlsaddr, DADDiu, GP_64>;
279
280defm : BrcondPats<CPU64Regs, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64,
281                  ZERO_64>;
282
283// setcc patterns
284defm : SeteqPats<CPU64Regs, SLTiu64, XOR64, SLTu64, ZERO_64>;
285defm : SetlePats<CPU64Regs, SLT64, SLTu64>;
286defm : SetgtPats<CPU64Regs, SLT64, SLTu64>;
287defm : SetgePats<CPU64Regs, SLT64, SLTu64>;
288defm : SetgeImmPats<CPU64Regs, SLTi64, SLTiu64>;
289
290// select MipsDynAlloc
291def : Pat<(MipsDynAlloc addr:$f), (DynAlloc64 addr:$f)>, Requires<[IsN64]>;
292
293// truncate
294def : Pat<(i32 (trunc CPU64Regs:$src)),
295          (SLL (EXTRACT_SUBREG CPU64Regs:$src, sub_32), 0)>, Requires<[IsN64]>;
296 
297// 32-to-64-bit extension
298def : Pat<(i64 (anyext CPURegs:$src)), (SLL64_32 CPURegs:$src)>;
299def : Pat<(i64 (zext CPURegs:$src)), (DSRL (DSLL64_32 CPURegs:$src), 32)>;
300