1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#include "MipsISelLowering.h"
15#include "InstPrinter/MipsInstPrinter.h"
16#include "MCTargetDesc/MipsBaseInfo.h"
17#include "MipsMachineFunction.h"
18#include "MipsSubtarget.h"
19#include "MipsTargetMachine.h"
20#include "MipsTargetObjectFile.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/ADT/StringSwitch.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37#include <cctype>
38
39using namespace llvm;
40
41#define DEBUG_TYPE "mips-lower"
42
43STATISTIC(NumTailCalls, "Number of tail calls");
44
45static cl::opt<bool>
46LargeGOT("mxgot", cl::Hidden,
47         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
48
49static cl::opt<bool>
50NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
51               cl::desc("MIPS: Don't trap on integer division by zero."),
52               cl::init(false));
53
54cl::opt<bool>
55EnableMipsFastISel("mips-fast-isel", cl::Hidden,
56  cl::desc("Allow mips-fast-isel to be used"),
57  cl::init(false));
58
59static const MCPhysReg O32IntRegs[4] = {
60  Mips::A0, Mips::A1, Mips::A2, Mips::A3
61};
62
63static const MCPhysReg Mips64IntRegs[8] = {
64  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
65  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
66};
67
68static const MCPhysReg Mips64DPRegs[8] = {
69  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
70  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
71};
72
73// If I is a shifted mask, set the size (Size) and the first bit of the
74// mask (Pos), and return true.
75// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
76static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
77  if (!isShiftedMask_64(I))
78    return false;
79
80  Size = CountPopulation_64(I);
81  Pos = countTrailingZeros(I);
82  return true;
83}
84
85SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
86  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
87  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
88}
89
90SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
91                                          SelectionDAG &DAG,
92                                          unsigned Flag) const {
93  return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
94}
95
96SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
97                                          SelectionDAG &DAG,
98                                          unsigned Flag) const {
99  return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
100}
101
102SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
103                                          SelectionDAG &DAG,
104                                          unsigned Flag) const {
105  return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
106}
107
108SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
109                                          SelectionDAG &DAG,
110                                          unsigned Flag) const {
111  return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
112}
113
114SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
115                                          SelectionDAG &DAG,
116                                          unsigned Flag) const {
117  return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
118                                   N->getOffset(), Flag);
119}
120
121const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
122  switch (Opcode) {
123  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
124  case MipsISD::TailCall:          return "MipsISD::TailCall";
125  case MipsISD::Hi:                return "MipsISD::Hi";
126  case MipsISD::Lo:                return "MipsISD::Lo";
127  case MipsISD::GPRel:             return "MipsISD::GPRel";
128  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
129  case MipsISD::Ret:               return "MipsISD::Ret";
130  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
131  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
132  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
133  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
134  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
135  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
136  case MipsISD::MFHI:              return "MipsISD::MFHI";
137  case MipsISD::MFLO:              return "MipsISD::MFLO";
138  case MipsISD::MTLOHI:            return "MipsISD::MTLOHI";
139  case MipsISD::Mult:              return "MipsISD::Mult";
140  case MipsISD::Multu:             return "MipsISD::Multu";
141  case MipsISD::MAdd:              return "MipsISD::MAdd";
142  case MipsISD::MAddu:             return "MipsISD::MAddu";
143  case MipsISD::MSub:              return "MipsISD::MSub";
144  case MipsISD::MSubu:             return "MipsISD::MSubu";
145  case MipsISD::DivRem:            return "MipsISD::DivRem";
146  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
147  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
148  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
149  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
150  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
151  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
152  case MipsISD::Sync:              return "MipsISD::Sync";
153  case MipsISD::Ext:               return "MipsISD::Ext";
154  case MipsISD::Ins:               return "MipsISD::Ins";
155  case MipsISD::LWL:               return "MipsISD::LWL";
156  case MipsISD::LWR:               return "MipsISD::LWR";
157  case MipsISD::SWL:               return "MipsISD::SWL";
158  case MipsISD::SWR:               return "MipsISD::SWR";
159  case MipsISD::LDL:               return "MipsISD::LDL";
160  case MipsISD::LDR:               return "MipsISD::LDR";
161  case MipsISD::SDL:               return "MipsISD::SDL";
162  case MipsISD::SDR:               return "MipsISD::SDR";
163  case MipsISD::EXTP:              return "MipsISD::EXTP";
164  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
165  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
166  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
167  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
168  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
169  case MipsISD::SHILO:             return "MipsISD::SHILO";
170  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
171  case MipsISD::MULT:              return "MipsISD::MULT";
172  case MipsISD::MULTU:             return "MipsISD::MULTU";
173  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
174  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
175  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
176  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
177  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
178  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
179  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
180  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
181  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
182  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
183  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
184  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
185  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
186  case MipsISD::VCEQ:              return "MipsISD::VCEQ";
187  case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
188  case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
189  case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
190  case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
191  case MipsISD::VSMAX:             return "MipsISD::VSMAX";
192  case MipsISD::VSMIN:             return "MipsISD::VSMIN";
193  case MipsISD::VUMAX:             return "MipsISD::VUMAX";
194  case MipsISD::VUMIN:             return "MipsISD::VUMIN";
195  case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
196  case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
197  case MipsISD::VNOR:              return "MipsISD::VNOR";
198  case MipsISD::VSHF:              return "MipsISD::VSHF";
199  case MipsISD::SHF:               return "MipsISD::SHF";
200  case MipsISD::ILVEV:             return "MipsISD::ILVEV";
201  case MipsISD::ILVOD:             return "MipsISD::ILVOD";
202  case MipsISD::ILVL:              return "MipsISD::ILVL";
203  case MipsISD::ILVR:              return "MipsISD::ILVR";
204  case MipsISD::PCKEV:             return "MipsISD::PCKEV";
205  case MipsISD::PCKOD:             return "MipsISD::PCKOD";
206  case MipsISD::INSVE:             return "MipsISD::INSVE";
207  default:                         return nullptr;
208  }
209}
210
211MipsTargetLowering::MipsTargetLowering(MipsTargetMachine &TM)
212    : TargetLowering(TM, new MipsTargetObjectFile()),
213      Subtarget(&TM.getSubtarget<MipsSubtarget>()) {
214  // Mips does not have i1 type, so use i32 for
215  // setcc operations results (slt, sgt, ...).
216  setBooleanContents(ZeroOrOneBooleanContent);
217  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
218  // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
219  // does. Integer booleans still use 0 and 1.
220  if (Subtarget->hasMips32r6())
221    setBooleanContents(ZeroOrOneBooleanContent,
222                       ZeroOrNegativeOneBooleanContent);
223
224  // Load extented operations for i1 types must be promoted
225  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
226  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
227  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
228
229  // MIPS doesn't have extending float->double load/store
230  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
231  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
232
233  // Used by legalize types to correctly generate the setcc result.
234  // Without this, every float setcc comes with a AND/OR with the result,
235  // we don't want this, since the fpcmp result goes to a flag register,
236  // which is used implicitly by brcond and select operations.
237  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
238
239  // Mips Custom Operations
240  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
241  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
242  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
243  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
244  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
245  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
246  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
247  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
248  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
249  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
250  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
251  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
252  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
253  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
254  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
255  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
256  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
257  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
258
259  if (Subtarget->isGP64bit()) {
260    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
261    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
262    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
263    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
264    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
265    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
266    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
267    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
268    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
269  }
270
271  if (!Subtarget->isGP64bit()) {
272    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
273    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
274    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
275  }
276
277  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
278  if (Subtarget->isGP64bit())
279    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
280
281  setOperationAction(ISD::SDIV, MVT::i32, Expand);
282  setOperationAction(ISD::SREM, MVT::i32, Expand);
283  setOperationAction(ISD::UDIV, MVT::i32, Expand);
284  setOperationAction(ISD::UREM, MVT::i32, Expand);
285  setOperationAction(ISD::SDIV, MVT::i64, Expand);
286  setOperationAction(ISD::SREM, MVT::i64, Expand);
287  setOperationAction(ISD::UDIV, MVT::i64, Expand);
288  setOperationAction(ISD::UREM, MVT::i64, Expand);
289
290  // Operations not directly supported by Mips.
291  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
292  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
293  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
294  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
295  setOperationAction(ISD::SELECT_CC,         MVT::i32,   Expand);
296  setOperationAction(ISD::SELECT_CC,         MVT::i64,   Expand);
297  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
298  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
299  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
300  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
301  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
302  if (Subtarget->hasCnMips()) {
303    setOperationAction(ISD::CTPOP,           MVT::i32,   Legal);
304    setOperationAction(ISD::CTPOP,           MVT::i64,   Legal);
305  } else {
306    setOperationAction(ISD::CTPOP,           MVT::i32,   Expand);
307    setOperationAction(ISD::CTPOP,           MVT::i64,   Expand);
308  }
309  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
310  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
311  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
312  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
313  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
314  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
315  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
316  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
317  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
318  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
319
320  if (!Subtarget->hasMips32r2())
321    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
322
323  if (!Subtarget->hasMips64r2())
324    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
325
326  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
327  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
328  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
329  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
330  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
331  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
332  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
333  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
334  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
335  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
336  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
337  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
338  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
339  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
340  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
341  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
342  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
343
344  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
345
346  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
347  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
348  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
349
350  // Use the default for now
351  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
352  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
353
354  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
355  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
356  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
357  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
358
359  setInsertFencesForAtomic(true);
360
361  if (!Subtarget->hasMips32r2()) {
362    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
363    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
364  }
365
366  // MIPS16 lacks MIPS32's clz and clo instructions.
367  if (!Subtarget->hasMips32() || Subtarget->inMips16Mode())
368    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
369  if (!Subtarget->hasMips64())
370    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
371
372  if (!Subtarget->hasMips32r2())
373    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
374  if (!Subtarget->hasMips64r2())
375    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
376
377  if (Subtarget->isGP64bit()) {
378    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
379    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
380    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
381    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
382  }
383
384  setOperationAction(ISD::TRAP, MVT::Other, Legal);
385
386  setTargetDAGCombine(ISD::SDIVREM);
387  setTargetDAGCombine(ISD::UDIVREM);
388  setTargetDAGCombine(ISD::SELECT);
389  setTargetDAGCombine(ISD::AND);
390  setTargetDAGCombine(ISD::OR);
391  setTargetDAGCombine(ISD::ADD);
392
393  setMinFunctionAlignment(Subtarget->isGP64bit() ? 3 : 2);
394
395  setStackPointerRegisterToSaveRestore(Subtarget->isABI_N64() ? Mips::SP_64
396                                                              : Mips::SP);
397
398  setExceptionPointerRegister(Subtarget->isABI_N64() ? Mips::A0_64 : Mips::A0);
399  setExceptionSelectorRegister(Subtarget->isABI_N64() ? Mips::A1_64 : Mips::A1);
400
401  MaxStoresPerMemcpy = 16;
402
403  isMicroMips = Subtarget->inMicroMipsMode();
404}
405
406const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
407  if (TM.getSubtargetImpl()->inMips16Mode())
408    return llvm::createMips16TargetLowering(TM);
409
410  return llvm::createMipsSETargetLowering(TM);
411}
412
413// Create a fast isel object.
414FastISel *
415MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
416                                  const TargetLibraryInfo *libInfo) const {
417  if (!EnableMipsFastISel)
418    return TargetLowering::createFastISel(funcInfo, libInfo);
419  return Mips::createFastISel(funcInfo, libInfo);
420}
421
422EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
423  if (!VT.isVector())
424    return MVT::i32;
425  return VT.changeVectorElementTypeToInteger();
426}
427
428static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
429                                    TargetLowering::DAGCombinerInfo &DCI,
430                                    const MipsSubtarget *Subtarget) {
431  if (DCI.isBeforeLegalizeOps())
432    return SDValue();
433
434  EVT Ty = N->getValueType(0);
435  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
436  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
437  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
438                                                  MipsISD::DivRemU16;
439  SDLoc DL(N);
440
441  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
442                               N->getOperand(0), N->getOperand(1));
443  SDValue InChain = DAG.getEntryNode();
444  SDValue InGlue = DivRem;
445
446  // insert MFLO
447  if (N->hasAnyUseOfValue(0)) {
448    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
449                                            InGlue);
450    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
451    InChain = CopyFromLo.getValue(1);
452    InGlue = CopyFromLo.getValue(2);
453  }
454
455  // insert MFHI
456  if (N->hasAnyUseOfValue(1)) {
457    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
458                                            HI, Ty, InGlue);
459    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
460  }
461
462  return SDValue();
463}
464
465static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
466  switch (CC) {
467  default: llvm_unreachable("Unknown fp condition code!");
468  case ISD::SETEQ:
469  case ISD::SETOEQ: return Mips::FCOND_OEQ;
470  case ISD::SETUNE: return Mips::FCOND_UNE;
471  case ISD::SETLT:
472  case ISD::SETOLT: return Mips::FCOND_OLT;
473  case ISD::SETGT:
474  case ISD::SETOGT: return Mips::FCOND_OGT;
475  case ISD::SETLE:
476  case ISD::SETOLE: return Mips::FCOND_OLE;
477  case ISD::SETGE:
478  case ISD::SETOGE: return Mips::FCOND_OGE;
479  case ISD::SETULT: return Mips::FCOND_ULT;
480  case ISD::SETULE: return Mips::FCOND_ULE;
481  case ISD::SETUGT: return Mips::FCOND_UGT;
482  case ISD::SETUGE: return Mips::FCOND_UGE;
483  case ISD::SETUO:  return Mips::FCOND_UN;
484  case ISD::SETO:   return Mips::FCOND_OR;
485  case ISD::SETNE:
486  case ISD::SETONE: return Mips::FCOND_ONE;
487  case ISD::SETUEQ: return Mips::FCOND_UEQ;
488  }
489}
490
491
492/// This function returns true if the floating point conditional branches and
493/// conditional moves which use condition code CC should be inverted.
494static bool invertFPCondCodeUser(Mips::CondCode CC) {
495  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
496    return false;
497
498  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
499         "Illegal Condition Code");
500
501  return true;
502}
503
504// Creates and returns an FPCmp node from a setcc node.
505// Returns Op if setcc is not a floating point comparison.
506static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
507  // must be a SETCC node
508  if (Op.getOpcode() != ISD::SETCC)
509    return Op;
510
511  SDValue LHS = Op.getOperand(0);
512
513  if (!LHS.getValueType().isFloatingPoint())
514    return Op;
515
516  SDValue RHS = Op.getOperand(1);
517  SDLoc DL(Op);
518
519  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
520  // node if necessary.
521  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
522
523  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
524                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
525}
526
527// Creates and returns a CMovFPT/F node.
528static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
529                            SDValue False, SDLoc DL) {
530  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
531  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
532  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
533
534  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
535                     True.getValueType(), True, FCC0, False, Cond);
536}
537
538static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
539                                    TargetLowering::DAGCombinerInfo &DCI,
540                                    const MipsSubtarget *Subtarget) {
541  if (DCI.isBeforeLegalizeOps())
542    return SDValue();
543
544  SDValue SetCC = N->getOperand(0);
545
546  if ((SetCC.getOpcode() != ISD::SETCC) ||
547      !SetCC.getOperand(0).getValueType().isInteger())
548    return SDValue();
549
550  SDValue False = N->getOperand(2);
551  EVT FalseTy = False.getValueType();
552
553  if (!FalseTy.isInteger())
554    return SDValue();
555
556  ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
557
558  // If the RHS (False) is 0, we swap the order of the operands
559  // of ISD::SELECT (obviously also inverting the condition) so that we can
560  // take advantage of conditional moves using the $0 register.
561  // Example:
562  //   return (a != 0) ? x : 0;
563  //     load $reg, x
564  //     movz $reg, $0, a
565  if (!FalseC)
566    return SDValue();
567
568  const SDLoc DL(N);
569
570  if (!FalseC->getZExtValue()) {
571    ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
572    SDValue True = N->getOperand(1);
573
574    SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
575                         SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
576
577    return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
578  }
579
580  // If both operands are integer constants there's a possibility that we
581  // can do some interesting optimizations.
582  SDValue True = N->getOperand(1);
583  ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
584
585  if (!TrueC || !True.getValueType().isInteger())
586    return SDValue();
587
588  // We'll also ignore MVT::i64 operands as this optimizations proves
589  // to be ineffective because of the required sign extensions as the result
590  // of a SETCC operator is always MVT::i32 for non-vector types.
591  if (True.getValueType() == MVT::i64)
592    return SDValue();
593
594  int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
595
596  // 1)  (a < x) ? y : y-1
597  //  slti $reg1, a, x
598  //  addiu $reg2, $reg1, y-1
599  if (Diff == 1)
600    return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
601
602  // 2)  (a < x) ? y-1 : y
603  //  slti $reg1, a, x
604  //  xor $reg1, $reg1, 1
605  //  addiu $reg2, $reg1, y-1
606  if (Diff == -1) {
607    ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
608    SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
609                         SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
610    return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
611  }
612
613  // Couldn't optimize.
614  return SDValue();
615}
616
617static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
618                                 TargetLowering::DAGCombinerInfo &DCI,
619                                 const MipsSubtarget *Subtarget) {
620  // Pattern match EXT.
621  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
622  //  => ext $dst, $src, size, pos
623  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasExtractInsert())
624    return SDValue();
625
626  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
627  unsigned ShiftRightOpc = ShiftRight.getOpcode();
628
629  // Op's first operand must be a shift right.
630  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
631    return SDValue();
632
633  // The second operand of the shift must be an immediate.
634  ConstantSDNode *CN;
635  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
636    return SDValue();
637
638  uint64_t Pos = CN->getZExtValue();
639  uint64_t SMPos, SMSize;
640
641  // Op's second operand must be a shifted mask.
642  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
643      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
644    return SDValue();
645
646  // Return if the shifted mask does not start at bit 0 or the sum of its size
647  // and Pos exceeds the word's size.
648  EVT ValTy = N->getValueType(0);
649  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
650    return SDValue();
651
652  return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
653                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
654                     DAG.getConstant(SMSize, MVT::i32));
655}
656
657static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
658                                TargetLowering::DAGCombinerInfo &DCI,
659                                const MipsSubtarget *Subtarget) {
660  // Pattern match INS.
661  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
662  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
663  //  => ins $dst, $src, size, pos, $src1
664  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasExtractInsert())
665    return SDValue();
666
667  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
668  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
669  ConstantSDNode *CN;
670
671  // See if Op's first operand matches (and $src1 , mask0).
672  if (And0.getOpcode() != ISD::AND)
673    return SDValue();
674
675  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
676      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
677    return SDValue();
678
679  // See if Op's second operand matches (and (shl $src, pos), mask1).
680  if (And1.getOpcode() != ISD::AND)
681    return SDValue();
682
683  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
684      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
685    return SDValue();
686
687  // The shift masks must have the same position and size.
688  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
689    return SDValue();
690
691  SDValue Shl = And1.getOperand(0);
692  if (Shl.getOpcode() != ISD::SHL)
693    return SDValue();
694
695  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
696    return SDValue();
697
698  unsigned Shamt = CN->getZExtValue();
699
700  // Return if the shift amount and the first bit position of mask are not the
701  // same.
702  EVT ValTy = N->getValueType(0);
703  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
704    return SDValue();
705
706  return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
707                     DAG.getConstant(SMPos0, MVT::i32),
708                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
709}
710
711static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
712                                 TargetLowering::DAGCombinerInfo &DCI,
713                                 const MipsSubtarget *Subtarget) {
714  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
715
716  if (DCI.isBeforeLegalizeOps())
717    return SDValue();
718
719  SDValue Add = N->getOperand(1);
720
721  if (Add.getOpcode() != ISD::ADD)
722    return SDValue();
723
724  SDValue Lo = Add.getOperand(1);
725
726  if ((Lo.getOpcode() != MipsISD::Lo) ||
727      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
728    return SDValue();
729
730  EVT ValTy = N->getValueType(0);
731  SDLoc DL(N);
732
733  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
734                             Add.getOperand(0));
735  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
736}
737
738SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
739  const {
740  SelectionDAG &DAG = DCI.DAG;
741  unsigned Opc = N->getOpcode();
742
743  switch (Opc) {
744  default: break;
745  case ISD::SDIVREM:
746  case ISD::UDIVREM:
747    return performDivRemCombine(N, DAG, DCI, Subtarget);
748  case ISD::SELECT:
749    return performSELECTCombine(N, DAG, DCI, Subtarget);
750  case ISD::AND:
751    return performANDCombine(N, DAG, DCI, Subtarget);
752  case ISD::OR:
753    return performORCombine(N, DAG, DCI, Subtarget);
754  case ISD::ADD:
755    return performADDCombine(N, DAG, DCI, Subtarget);
756  }
757
758  return SDValue();
759}
760
761void
762MipsTargetLowering::LowerOperationWrapper(SDNode *N,
763                                          SmallVectorImpl<SDValue> &Results,
764                                          SelectionDAG &DAG) const {
765  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
766
767  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
768    Results.push_back(Res.getValue(I));
769}
770
771void
772MipsTargetLowering::ReplaceNodeResults(SDNode *N,
773                                       SmallVectorImpl<SDValue> &Results,
774                                       SelectionDAG &DAG) const {
775  return LowerOperationWrapper(N, Results, DAG);
776}
777
778SDValue MipsTargetLowering::
779LowerOperation(SDValue Op, SelectionDAG &DAG) const
780{
781  switch (Op.getOpcode())
782  {
783  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
784  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
785  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
786  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
787  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
788  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
789  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
790  case ISD::SELECT:             return lowerSELECT(Op, DAG);
791  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
792  case ISD::SETCC:              return lowerSETCC(Op, DAG);
793  case ISD::VASTART:            return lowerVASTART(Op, DAG);
794  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
795  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
796  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
797  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
798  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
799  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
800  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
801  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
802  case ISD::LOAD:               return lowerLOAD(Op, DAG);
803  case ISD::STORE:              return lowerSTORE(Op, DAG);
804  case ISD::ADD:                return lowerADD(Op, DAG);
805  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
806  }
807  return SDValue();
808}
809
810//===----------------------------------------------------------------------===//
811//  Lower helper functions
812//===----------------------------------------------------------------------===//
813
814// addLiveIn - This helper function adds the specified physical register to the
815// MachineFunction as a live in value.  It also creates a corresponding
816// virtual register for it.
817static unsigned
818addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
819{
820  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
821  MF.getRegInfo().addLiveIn(PReg, VReg);
822  return VReg;
823}
824
825static MachineBasicBlock *insertDivByZeroTrap(MachineInstr *MI,
826                                              MachineBasicBlock &MBB,
827                                              const TargetInstrInfo &TII,
828                                              bool Is64Bit) {
829  if (NoZeroDivCheck)
830    return &MBB;
831
832  // Insert instruction "teq $divisor_reg, $zero, 7".
833  MachineBasicBlock::iterator I(MI);
834  MachineInstrBuilder MIB;
835  MachineOperand &Divisor = MI->getOperand(2);
836  MIB = BuildMI(MBB, std::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
837    .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
838    .addReg(Mips::ZERO).addImm(7);
839
840  // Use the 32-bit sub-register if this is a 64-bit division.
841  if (Is64Bit)
842    MIB->getOperand(0).setSubReg(Mips::sub_32);
843
844  // Clear Divisor's kill flag.
845  Divisor.setIsKill(false);
846
847  // We would normally delete the original instruction here but in this case
848  // we only needed to inject an additional instruction rather than replace it.
849
850  return &MBB;
851}
852
853MachineBasicBlock *
854MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
855                                                MachineBasicBlock *BB) const {
856  switch (MI->getOpcode()) {
857  default:
858    llvm_unreachable("Unexpected instr type to insert");
859  case Mips::ATOMIC_LOAD_ADD_I8:
860    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
861  case Mips::ATOMIC_LOAD_ADD_I16:
862    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
863  case Mips::ATOMIC_LOAD_ADD_I32:
864    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
865  case Mips::ATOMIC_LOAD_ADD_I64:
866    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
867
868  case Mips::ATOMIC_LOAD_AND_I8:
869    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
870  case Mips::ATOMIC_LOAD_AND_I16:
871    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
872  case Mips::ATOMIC_LOAD_AND_I32:
873    return emitAtomicBinary(MI, BB, 4, Mips::AND);
874  case Mips::ATOMIC_LOAD_AND_I64:
875    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
876
877  case Mips::ATOMIC_LOAD_OR_I8:
878    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
879  case Mips::ATOMIC_LOAD_OR_I16:
880    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
881  case Mips::ATOMIC_LOAD_OR_I32:
882    return emitAtomicBinary(MI, BB, 4, Mips::OR);
883  case Mips::ATOMIC_LOAD_OR_I64:
884    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
885
886  case Mips::ATOMIC_LOAD_XOR_I8:
887    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
888  case Mips::ATOMIC_LOAD_XOR_I16:
889    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
890  case Mips::ATOMIC_LOAD_XOR_I32:
891    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
892  case Mips::ATOMIC_LOAD_XOR_I64:
893    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
894
895  case Mips::ATOMIC_LOAD_NAND_I8:
896    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
897  case Mips::ATOMIC_LOAD_NAND_I16:
898    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
899  case Mips::ATOMIC_LOAD_NAND_I32:
900    return emitAtomicBinary(MI, BB, 4, 0, true);
901  case Mips::ATOMIC_LOAD_NAND_I64:
902    return emitAtomicBinary(MI, BB, 8, 0, true);
903
904  case Mips::ATOMIC_LOAD_SUB_I8:
905    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
906  case Mips::ATOMIC_LOAD_SUB_I16:
907    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
908  case Mips::ATOMIC_LOAD_SUB_I32:
909    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
910  case Mips::ATOMIC_LOAD_SUB_I64:
911    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
912
913  case Mips::ATOMIC_SWAP_I8:
914    return emitAtomicBinaryPartword(MI, BB, 1, 0);
915  case Mips::ATOMIC_SWAP_I16:
916    return emitAtomicBinaryPartword(MI, BB, 2, 0);
917  case Mips::ATOMIC_SWAP_I32:
918    return emitAtomicBinary(MI, BB, 4, 0);
919  case Mips::ATOMIC_SWAP_I64:
920    return emitAtomicBinary(MI, BB, 8, 0);
921
922  case Mips::ATOMIC_CMP_SWAP_I8:
923    return emitAtomicCmpSwapPartword(MI, BB, 1);
924  case Mips::ATOMIC_CMP_SWAP_I16:
925    return emitAtomicCmpSwapPartword(MI, BB, 2);
926  case Mips::ATOMIC_CMP_SWAP_I32:
927    return emitAtomicCmpSwap(MI, BB, 4);
928  case Mips::ATOMIC_CMP_SWAP_I64:
929    return emitAtomicCmpSwap(MI, BB, 8);
930  case Mips::PseudoSDIV:
931  case Mips::PseudoUDIV:
932  case Mips::DIV:
933  case Mips::DIVU:
934  case Mips::MOD:
935  case Mips::MODU:
936    return insertDivByZeroTrap(MI, *BB, *getTargetMachine().getInstrInfo(),
937                               false);
938  case Mips::PseudoDSDIV:
939  case Mips::PseudoDUDIV:
940  case Mips::DDIV:
941  case Mips::DDIVU:
942  case Mips::DMOD:
943  case Mips::DMODU:
944    return insertDivByZeroTrap(MI, *BB, *getTargetMachine().getInstrInfo(),
945                               true);
946  case Mips::SEL_D:
947    return emitSEL_D(MI, BB);
948  }
949}
950
951// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
952// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
953MachineBasicBlock *
954MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
955                                     unsigned Size, unsigned BinOpcode,
956                                     bool Nand) const {
957  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
958
959  MachineFunction *MF = BB->getParent();
960  MachineRegisterInfo &RegInfo = MF->getRegInfo();
961  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
962  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
963  DebugLoc DL = MI->getDebugLoc();
964  unsigned LL, SC, AND, NOR, ZERO, BEQ;
965
966  if (Size == 4) {
967    if (isMicroMips) {
968      LL = Mips::LL_MM;
969      SC = Mips::SC_MM;
970    } else {
971      LL = Subtarget->hasMips32r6() ? Mips::LL : Mips::LL_R6;
972      SC = Subtarget->hasMips32r6() ? Mips::SC : Mips::SC_R6;
973    }
974    AND = Mips::AND;
975    NOR = Mips::NOR;
976    ZERO = Mips::ZERO;
977    BEQ = Mips::BEQ;
978  } else {
979    LL = Subtarget->hasMips64r6() ? Mips::LLD : Mips::LLD_R6;
980    SC = Subtarget->hasMips64r6() ? Mips::SCD : Mips::SCD_R6;
981    AND = Mips::AND64;
982    NOR = Mips::NOR64;
983    ZERO = Mips::ZERO_64;
984    BEQ = Mips::BEQ64;
985  }
986
987  unsigned OldVal = MI->getOperand(0).getReg();
988  unsigned Ptr = MI->getOperand(1).getReg();
989  unsigned Incr = MI->getOperand(2).getReg();
990
991  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
992  unsigned AndRes = RegInfo.createVirtualRegister(RC);
993  unsigned Success = RegInfo.createVirtualRegister(RC);
994
995  // insert new blocks after the current block
996  const BasicBlock *LLVM_BB = BB->getBasicBlock();
997  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
998  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
999  MachineFunction::iterator It = BB;
1000  ++It;
1001  MF->insert(It, loopMBB);
1002  MF->insert(It, exitMBB);
1003
1004  // Transfer the remainder of BB and its successor edges to exitMBB.
1005  exitMBB->splice(exitMBB->begin(), BB,
1006                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1007  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1008
1009  //  thisMBB:
1010  //    ...
1011  //    fallthrough --> loopMBB
1012  BB->addSuccessor(loopMBB);
1013  loopMBB->addSuccessor(loopMBB);
1014  loopMBB->addSuccessor(exitMBB);
1015
1016  //  loopMBB:
1017  //    ll oldval, 0(ptr)
1018  //    <binop> storeval, oldval, incr
1019  //    sc success, storeval, 0(ptr)
1020  //    beq success, $0, loopMBB
1021  BB = loopMBB;
1022  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1023  if (Nand) {
1024    //  and andres, oldval, incr
1025    //  nor storeval, $0, andres
1026    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1027    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1028  } else if (BinOpcode) {
1029    //  <binop> storeval, oldval, incr
1030    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1031  } else {
1032    StoreVal = Incr;
1033  }
1034  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1035  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1036
1037  MI->eraseFromParent(); // The instruction is gone now.
1038
1039  return exitMBB;
1040}
1041
1042MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
1043    MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
1044    unsigned SrcReg) const {
1045  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1046  DebugLoc DL = MI->getDebugLoc();
1047
1048  if (Subtarget->hasMips32r2() && Size == 1) {
1049    BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
1050    return BB;
1051  }
1052
1053  if (Subtarget->hasMips32r2() && Size == 2) {
1054    BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
1055    return BB;
1056  }
1057
1058  MachineFunction *MF = BB->getParent();
1059  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1060  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1061  unsigned ScrReg = RegInfo.createVirtualRegister(RC);
1062
1063  assert(Size < 32);
1064  int64_t ShiftImm = 32 - (Size * 8);
1065
1066  BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
1067  BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
1068
1069  return BB;
1070}
1071
1072MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
1073    MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode,
1074    bool Nand) const {
1075  assert((Size == 1 || Size == 2) &&
1076         "Unsupported size for EmitAtomicBinaryPartial.");
1077
1078  MachineFunction *MF = BB->getParent();
1079  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1080  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1081  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1082  DebugLoc DL = MI->getDebugLoc();
1083
1084  unsigned Dest = MI->getOperand(0).getReg();
1085  unsigned Ptr = MI->getOperand(1).getReg();
1086  unsigned Incr = MI->getOperand(2).getReg();
1087
1088  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1089  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1090  unsigned Mask = RegInfo.createVirtualRegister(RC);
1091  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1092  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1093  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1094  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1095  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1096  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1097  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1098  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1099  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1100  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1101  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1102  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1103  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1104  unsigned Success = RegInfo.createVirtualRegister(RC);
1105
1106  // insert new blocks after the current block
1107  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1108  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1109  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1110  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1111  MachineFunction::iterator It = BB;
1112  ++It;
1113  MF->insert(It, loopMBB);
1114  MF->insert(It, sinkMBB);
1115  MF->insert(It, exitMBB);
1116
1117  // Transfer the remainder of BB and its successor edges to exitMBB.
1118  exitMBB->splice(exitMBB->begin(), BB,
1119                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1120  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1121
1122  BB->addSuccessor(loopMBB);
1123  loopMBB->addSuccessor(loopMBB);
1124  loopMBB->addSuccessor(sinkMBB);
1125  sinkMBB->addSuccessor(exitMBB);
1126
1127  //  thisMBB:
1128  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1129  //    and     alignedaddr,ptr,masklsb2
1130  //    andi    ptrlsb2,ptr,3
1131  //    sll     shiftamt,ptrlsb2,3
1132  //    ori     maskupper,$0,255               # 0xff
1133  //    sll     mask,maskupper,shiftamt
1134  //    nor     mask2,$0,mask
1135  //    sll     incr2,incr,shiftamt
1136
1137  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1138  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1139    .addReg(Mips::ZERO).addImm(-4);
1140  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1141    .addReg(Ptr).addReg(MaskLSB2);
1142  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1143  if (Subtarget->isLittle()) {
1144    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1145  } else {
1146    unsigned Off = RegInfo.createVirtualRegister(RC);
1147    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1148      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1149    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1150  }
1151  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1152    .addReg(Mips::ZERO).addImm(MaskImm);
1153  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1154    .addReg(MaskUpper).addReg(ShiftAmt);
1155  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1156  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1157
1158  // atomic.load.binop
1159  // loopMBB:
1160  //   ll      oldval,0(alignedaddr)
1161  //   binop   binopres,oldval,incr2
1162  //   and     newval,binopres,mask
1163  //   and     maskedoldval0,oldval,mask2
1164  //   or      storeval,maskedoldval0,newval
1165  //   sc      success,storeval,0(alignedaddr)
1166  //   beq     success,$0,loopMBB
1167
1168  // atomic.swap
1169  // loopMBB:
1170  //   ll      oldval,0(alignedaddr)
1171  //   and     newval,incr2,mask
1172  //   and     maskedoldval0,oldval,mask2
1173  //   or      storeval,maskedoldval0,newval
1174  //   sc      success,storeval,0(alignedaddr)
1175  //   beq     success,$0,loopMBB
1176
1177  BB = loopMBB;
1178  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1179  if (Nand) {
1180    //  and andres, oldval, incr2
1181    //  nor binopres, $0, andres
1182    //  and newval, binopres, mask
1183    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1184    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1185      .addReg(Mips::ZERO).addReg(AndRes);
1186    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1187  } else if (BinOpcode) {
1188    //  <binop> binopres, oldval, incr2
1189    //  and newval, binopres, mask
1190    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1191    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1192  } else { // atomic.swap
1193    //  and newval, incr2, mask
1194    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1195  }
1196
1197  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1198    .addReg(OldVal).addReg(Mask2);
1199  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1200    .addReg(MaskedOldVal0).addReg(NewVal);
1201  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1202    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1203  BuildMI(BB, DL, TII->get(Mips::BEQ))
1204    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1205
1206  //  sinkMBB:
1207  //    and     maskedoldval1,oldval,mask
1208  //    srl     srlres,maskedoldval1,shiftamt
1209  //    sign_extend dest,srlres
1210  BB = sinkMBB;
1211
1212  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1213    .addReg(OldVal).addReg(Mask);
1214  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1215      .addReg(MaskedOldVal1).addReg(ShiftAmt);
1216  BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes);
1217
1218  MI->eraseFromParent(); // The instruction is gone now.
1219
1220  return exitMBB;
1221}
1222
1223MachineBasicBlock * MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1224                                                          MachineBasicBlock *BB,
1225                                                          unsigned Size) const {
1226  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1227
1228  MachineFunction *MF = BB->getParent();
1229  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1230  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1231  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1232  DebugLoc DL = MI->getDebugLoc();
1233  unsigned LL, SC, ZERO, BNE, BEQ;
1234
1235  if (Size == 4) {
1236    LL = isMicroMips ? Mips::LL_MM : Mips::LL;
1237    SC = isMicroMips ? Mips::SC_MM : Mips::SC;
1238    ZERO = Mips::ZERO;
1239    BNE = Mips::BNE;
1240    BEQ = Mips::BEQ;
1241  } else {
1242    LL = Mips::LLD;
1243    SC = Mips::SCD;
1244    ZERO = Mips::ZERO_64;
1245    BNE = Mips::BNE64;
1246    BEQ = Mips::BEQ64;
1247  }
1248
1249  unsigned Dest    = MI->getOperand(0).getReg();
1250  unsigned Ptr     = MI->getOperand(1).getReg();
1251  unsigned OldVal  = MI->getOperand(2).getReg();
1252  unsigned NewVal  = MI->getOperand(3).getReg();
1253
1254  unsigned Success = RegInfo.createVirtualRegister(RC);
1255
1256  // insert new blocks after the current block
1257  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1258  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1259  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1260  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1261  MachineFunction::iterator It = BB;
1262  ++It;
1263  MF->insert(It, loop1MBB);
1264  MF->insert(It, loop2MBB);
1265  MF->insert(It, exitMBB);
1266
1267  // Transfer the remainder of BB and its successor edges to exitMBB.
1268  exitMBB->splice(exitMBB->begin(), BB,
1269                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1270  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1271
1272  //  thisMBB:
1273  //    ...
1274  //    fallthrough --> loop1MBB
1275  BB->addSuccessor(loop1MBB);
1276  loop1MBB->addSuccessor(exitMBB);
1277  loop1MBB->addSuccessor(loop2MBB);
1278  loop2MBB->addSuccessor(loop1MBB);
1279  loop2MBB->addSuccessor(exitMBB);
1280
1281  // loop1MBB:
1282  //   ll dest, 0(ptr)
1283  //   bne dest, oldval, exitMBB
1284  BB = loop1MBB;
1285  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1286  BuildMI(BB, DL, TII->get(BNE))
1287    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1288
1289  // loop2MBB:
1290  //   sc success, newval, 0(ptr)
1291  //   beq success, $0, loop1MBB
1292  BB = loop2MBB;
1293  BuildMI(BB, DL, TII->get(SC), Success)
1294    .addReg(NewVal).addReg(Ptr).addImm(0);
1295  BuildMI(BB, DL, TII->get(BEQ))
1296    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1297
1298  MI->eraseFromParent(); // The instruction is gone now.
1299
1300  return exitMBB;
1301}
1302
1303MachineBasicBlock *
1304MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1305                                              MachineBasicBlock *BB,
1306                                              unsigned Size) const {
1307  assert((Size == 1 || Size == 2) &&
1308      "Unsupported size for EmitAtomicCmpSwapPartial.");
1309
1310  MachineFunction *MF = BB->getParent();
1311  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1312  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1313  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1314  DebugLoc DL = MI->getDebugLoc();
1315
1316  unsigned Dest    = MI->getOperand(0).getReg();
1317  unsigned Ptr     = MI->getOperand(1).getReg();
1318  unsigned CmpVal  = MI->getOperand(2).getReg();
1319  unsigned NewVal  = MI->getOperand(3).getReg();
1320
1321  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1322  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1323  unsigned Mask = RegInfo.createVirtualRegister(RC);
1324  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1325  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1326  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1327  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1328  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1329  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1330  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1331  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1332  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1333  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1334  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1335  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1336  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1337  unsigned Success = RegInfo.createVirtualRegister(RC);
1338
1339  // insert new blocks after the current block
1340  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1341  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1342  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1343  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1344  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1345  MachineFunction::iterator It = BB;
1346  ++It;
1347  MF->insert(It, loop1MBB);
1348  MF->insert(It, loop2MBB);
1349  MF->insert(It, sinkMBB);
1350  MF->insert(It, exitMBB);
1351
1352  // Transfer the remainder of BB and its successor edges to exitMBB.
1353  exitMBB->splice(exitMBB->begin(), BB,
1354                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1355  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1356
1357  BB->addSuccessor(loop1MBB);
1358  loop1MBB->addSuccessor(sinkMBB);
1359  loop1MBB->addSuccessor(loop2MBB);
1360  loop2MBB->addSuccessor(loop1MBB);
1361  loop2MBB->addSuccessor(sinkMBB);
1362  sinkMBB->addSuccessor(exitMBB);
1363
1364  // FIXME: computation of newval2 can be moved to loop2MBB.
1365  //  thisMBB:
1366  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1367  //    and     alignedaddr,ptr,masklsb2
1368  //    andi    ptrlsb2,ptr,3
1369  //    sll     shiftamt,ptrlsb2,3
1370  //    ori     maskupper,$0,255               # 0xff
1371  //    sll     mask,maskupper,shiftamt
1372  //    nor     mask2,$0,mask
1373  //    andi    maskedcmpval,cmpval,255
1374  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1375  //    andi    maskednewval,newval,255
1376  //    sll     shiftednewval,maskednewval,shiftamt
1377  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1378  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1379    .addReg(Mips::ZERO).addImm(-4);
1380  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1381    .addReg(Ptr).addReg(MaskLSB2);
1382  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1383  if (Subtarget->isLittle()) {
1384    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1385  } else {
1386    unsigned Off = RegInfo.createVirtualRegister(RC);
1387    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1388      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1389    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1390  }
1391  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1392    .addReg(Mips::ZERO).addImm(MaskImm);
1393  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1394    .addReg(MaskUpper).addReg(ShiftAmt);
1395  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1396  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1397    .addReg(CmpVal).addImm(MaskImm);
1398  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1399    .addReg(MaskedCmpVal).addReg(ShiftAmt);
1400  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1401    .addReg(NewVal).addImm(MaskImm);
1402  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1403    .addReg(MaskedNewVal).addReg(ShiftAmt);
1404
1405  //  loop1MBB:
1406  //    ll      oldval,0(alginedaddr)
1407  //    and     maskedoldval0,oldval,mask
1408  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1409  BB = loop1MBB;
1410  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1411  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1412    .addReg(OldVal).addReg(Mask);
1413  BuildMI(BB, DL, TII->get(Mips::BNE))
1414    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1415
1416  //  loop2MBB:
1417  //    and     maskedoldval1,oldval,mask2
1418  //    or      storeval,maskedoldval1,shiftednewval
1419  //    sc      success,storeval,0(alignedaddr)
1420  //    beq     success,$0,loop1MBB
1421  BB = loop2MBB;
1422  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1423    .addReg(OldVal).addReg(Mask2);
1424  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1425    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1426  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1427      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1428  BuildMI(BB, DL, TII->get(Mips::BEQ))
1429      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1430
1431  //  sinkMBB:
1432  //    srl     srlres,maskedoldval0,shiftamt
1433  //    sign_extend dest,srlres
1434  BB = sinkMBB;
1435
1436  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1437      .addReg(MaskedOldVal0).addReg(ShiftAmt);
1438  BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes);
1439
1440  MI->eraseFromParent();   // The instruction is gone now.
1441
1442  return exitMBB;
1443}
1444
1445MachineBasicBlock *MipsTargetLowering::emitSEL_D(MachineInstr *MI,
1446                                                 MachineBasicBlock *BB) const {
1447  MachineFunction *MF = BB->getParent();
1448  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1449  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1450  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1451  DebugLoc DL = MI->getDebugLoc();
1452  MachineBasicBlock::iterator II(MI);
1453
1454  unsigned Fc = MI->getOperand(1).getReg();
1455  const auto &FGR64RegClass = TRI->getRegClass(Mips::FGR64RegClassID);
1456
1457  unsigned Fc2 = RegInfo.createVirtualRegister(FGR64RegClass);
1458
1459  BuildMI(*BB, II, DL, TII->get(Mips::SUBREG_TO_REG), Fc2)
1460      .addImm(0)
1461      .addReg(Fc)
1462      .addImm(Mips::sub_lo);
1463
1464  // We don't erase the original instruction, we just replace the condition
1465  // register with the 64-bit super-register.
1466  MI->getOperand(1).setReg(Fc2);
1467
1468  return BB;
1469}
1470
1471//===----------------------------------------------------------------------===//
1472//  Misc Lower Operation implementation
1473//===----------------------------------------------------------------------===//
1474SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1475  SDValue Chain = Op.getOperand(0);
1476  SDValue Table = Op.getOperand(1);
1477  SDValue Index = Op.getOperand(2);
1478  SDLoc DL(Op);
1479  EVT PTy = getPointerTy();
1480  unsigned EntrySize =
1481    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1482
1483  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1484                      DAG.getConstant(EntrySize, PTy));
1485  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1486
1487  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1488  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1489                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1490                        0);
1491  Chain = Addr.getValue(1);
1492
1493  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) ||
1494      Subtarget->isABI_N64()) {
1495    // For PIC, the sequence is:
1496    // BRIND(load(Jumptable + index) + RelocBase)
1497    // RelocBase can be JumpTable, GOT or some sort of global base.
1498    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1499                       getPICJumpTableRelocBase(Table, DAG));
1500  }
1501
1502  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1503}
1504
1505SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1506  // The first operand is the chain, the second is the condition, the third is
1507  // the block to branch to if the condition is true.
1508  SDValue Chain = Op.getOperand(0);
1509  SDValue Dest = Op.getOperand(2);
1510  SDLoc DL(Op);
1511
1512  assert(!Subtarget->hasMips32r6() && !Subtarget->hasMips64r6());
1513  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1514
1515  // Return if flag is not set by a floating point comparison.
1516  if (CondRes.getOpcode() != MipsISD::FPCmp)
1517    return Op;
1518
1519  SDValue CCNode  = CondRes.getOperand(2);
1520  Mips::CondCode CC =
1521    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1522  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1523  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1524  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1525  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1526                     FCC0, Dest, CondRes);
1527}
1528
1529SDValue MipsTargetLowering::
1530lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1531{
1532  assert(!Subtarget->hasMips32r6() && !Subtarget->hasMips64r6());
1533  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1534
1535  // Return if flag is not set by a floating point comparison.
1536  if (Cond.getOpcode() != MipsISD::FPCmp)
1537    return Op;
1538
1539  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1540                      SDLoc(Op));
1541}
1542
1543SDValue MipsTargetLowering::
1544lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1545{
1546  SDLoc DL(Op);
1547  EVT Ty = Op.getOperand(0).getValueType();
1548  SDValue Cond = DAG.getNode(ISD::SETCC, DL,
1549                             getSetCCResultType(*DAG.getContext(), Ty),
1550                             Op.getOperand(0), Op.getOperand(1),
1551                             Op.getOperand(4));
1552
1553  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1554                     Op.getOperand(3));
1555}
1556
1557SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1558  assert(!Subtarget->hasMips32r6() && !Subtarget->hasMips64r6());
1559  SDValue Cond = createFPCmp(DAG, Op);
1560
1561  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1562         "Floating point operand expected.");
1563
1564  SDValue True  = DAG.getConstant(1, MVT::i32);
1565  SDValue False = DAG.getConstant(0, MVT::i32);
1566
1567  return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
1568}
1569
1570SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1571                                               SelectionDAG &DAG) const {
1572  // FIXME there isn't actually debug info here
1573  SDLoc DL(Op);
1574  EVT Ty = Op.getValueType();
1575  GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1576  const GlobalValue *GV = N->getGlobal();
1577
1578  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
1579      !Subtarget->isABI_N64()) {
1580    const MipsTargetObjectFile &TLOF =
1581      (const MipsTargetObjectFile&)getObjFileLowering();
1582
1583    // %gp_rel relocation
1584    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1585      SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1586                                              MipsII::MO_GPREL);
1587      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1588                                      DAG.getVTList(MVT::i32), GA);
1589      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1590      return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1591    }
1592
1593    // %hi/%lo relocation
1594    return getAddrNonPIC(N, Ty, DAG);
1595  }
1596
1597  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1598    return getAddrLocal(N, Ty, DAG,
1599                        Subtarget->isABI_N32() || Subtarget->isABI_N64());
1600
1601  if (LargeGOT)
1602    return getAddrGlobalLargeGOT(N, Ty, DAG, MipsII::MO_GOT_HI16,
1603                                 MipsII::MO_GOT_LO16, DAG.getEntryNode(),
1604                                 MachinePointerInfo::getGOT());
1605
1606  return getAddrGlobal(N, Ty, DAG,
1607                       (Subtarget->isABI_N32() || Subtarget->isABI_N64())
1608                           ? MipsII::MO_GOT_DISP
1609                           : MipsII::MO_GOT16,
1610                       DAG.getEntryNode(), MachinePointerInfo::getGOT());
1611}
1612
1613SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1614                                              SelectionDAG &DAG) const {
1615  BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
1616  EVT Ty = Op.getValueType();
1617
1618  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
1619      !Subtarget->isABI_N64())
1620    return getAddrNonPIC(N, Ty, DAG);
1621
1622  return getAddrLocal(N, Ty, DAG,
1623                      Subtarget->isABI_N32() || Subtarget->isABI_N64());
1624}
1625
1626SDValue MipsTargetLowering::
1627lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1628{
1629  // If the relocation model is PIC, use the General Dynamic TLS Model or
1630  // Local Dynamic TLS model, otherwise use the Initial Exec or
1631  // Local Exec TLS Model.
1632
1633  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1634  SDLoc DL(GA);
1635  const GlobalValue *GV = GA->getGlobal();
1636  EVT PtrVT = getPointerTy();
1637
1638  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1639
1640  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1641    // General Dynamic and Local Dynamic TLS Model.
1642    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1643                                                      : MipsII::MO_TLSGD;
1644
1645    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1646    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1647                                   getGlobalReg(DAG, PtrVT), TGA);
1648    unsigned PtrSize = PtrVT.getSizeInBits();
1649    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1650
1651    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1652
1653    ArgListTy Args;
1654    ArgListEntry Entry;
1655    Entry.Node = Argument;
1656    Entry.Ty = PtrTy;
1657    Args.push_back(Entry);
1658
1659    TargetLowering::CallLoweringInfo CLI(DAG);
1660    CLI.setDebugLoc(DL).setChain(DAG.getEntryNode())
1661      .setCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args), 0);
1662    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1663
1664    SDValue Ret = CallResult.first;
1665
1666    if (model != TLSModel::LocalDynamic)
1667      return Ret;
1668
1669    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1670                                               MipsII::MO_DTPREL_HI);
1671    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1672    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1673                                               MipsII::MO_DTPREL_LO);
1674    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1675    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1676    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1677  }
1678
1679  SDValue Offset;
1680  if (model == TLSModel::InitialExec) {
1681    // Initial Exec TLS Model
1682    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1683                                             MipsII::MO_GOTTPREL);
1684    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1685                      TGA);
1686    Offset = DAG.getLoad(PtrVT, DL,
1687                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1688                         false, false, false, 0);
1689  } else {
1690    // Local Exec TLS Model
1691    assert(model == TLSModel::LocalExec);
1692    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1693                                               MipsII::MO_TPREL_HI);
1694    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1695                                               MipsII::MO_TPREL_LO);
1696    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1697    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1698    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1699  }
1700
1701  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1702  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1703}
1704
1705SDValue MipsTargetLowering::
1706lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1707{
1708  JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
1709  EVT Ty = Op.getValueType();
1710
1711  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
1712      !Subtarget->isABI_N64())
1713    return getAddrNonPIC(N, Ty, DAG);
1714
1715  return getAddrLocal(N, Ty, DAG,
1716                      Subtarget->isABI_N32() || Subtarget->isABI_N64());
1717}
1718
1719SDValue MipsTargetLowering::
1720lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1721{
1722  // gp_rel relocation
1723  // FIXME: we should reference the constant pool using small data sections,
1724  // but the asm printer currently doesn't support this feature without
1725  // hacking it. This feature should come soon so we can uncomment the
1726  // stuff below.
1727  //if (IsInSmallSection(C->getType())) {
1728  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1729  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1730  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1731  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1732  EVT Ty = Op.getValueType();
1733
1734  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
1735      !Subtarget->isABI_N64())
1736    return getAddrNonPIC(N, Ty, DAG);
1737
1738  return getAddrLocal(N, Ty, DAG,
1739                      Subtarget->isABI_N32() || Subtarget->isABI_N64());
1740}
1741
1742SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1743  MachineFunction &MF = DAG.getMachineFunction();
1744  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1745
1746  SDLoc DL(Op);
1747  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1748                                 getPointerTy());
1749
1750  // vastart just stores the address of the VarArgsFrameIndex slot into the
1751  // memory location argument.
1752  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1753  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1754                      MachinePointerInfo(SV), false, false, 0);
1755}
1756
1757static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
1758                                bool HasExtractInsert) {
1759  EVT TyX = Op.getOperand(0).getValueType();
1760  EVT TyY = Op.getOperand(1).getValueType();
1761  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1762  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1763  SDLoc DL(Op);
1764  SDValue Res;
1765
1766  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1767  // to i32.
1768  SDValue X = (TyX == MVT::f32) ?
1769    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1770    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1771                Const1);
1772  SDValue Y = (TyY == MVT::f32) ?
1773    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1774    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1775                Const1);
1776
1777  if (HasExtractInsert) {
1778    // ext  E, Y, 31, 1  ; extract bit31 of Y
1779    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1780    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1781    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1782  } else {
1783    // sll SllX, X, 1
1784    // srl SrlX, SllX, 1
1785    // srl SrlY, Y, 31
1786    // sll SllY, SrlX, 31
1787    // or  Or, SrlX, SllY
1788    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1789    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1790    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1791    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1792    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1793  }
1794
1795  if (TyX == MVT::f32)
1796    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1797
1798  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1799                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1800  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1801}
1802
1803static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
1804                                bool HasExtractInsert) {
1805  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1806  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1807  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1808  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1809  SDLoc DL(Op);
1810
1811  // Bitcast to integer nodes.
1812  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1813  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1814
1815  if (HasExtractInsert) {
1816    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1817    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1818    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1819                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1820
1821    if (WidthX > WidthY)
1822      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1823    else if (WidthY > WidthX)
1824      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1825
1826    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1827                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1828    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1829  }
1830
1831  // (d)sll SllX, X, 1
1832  // (d)srl SrlX, SllX, 1
1833  // (d)srl SrlY, Y, width(Y)-1
1834  // (d)sll SllY, SrlX, width(Y)-1
1835  // or     Or, SrlX, SllY
1836  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1837  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1838  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1839                             DAG.getConstant(WidthY - 1, MVT::i32));
1840
1841  if (WidthX > WidthY)
1842    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1843  else if (WidthY > WidthX)
1844    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1845
1846  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1847                             DAG.getConstant(WidthX - 1, MVT::i32));
1848  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1849  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1850}
1851
1852SDValue
1853MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1854  if (Subtarget->isGP64bit())
1855    return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasExtractInsert());
1856
1857  return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasExtractInsert());
1858}
1859
1860SDValue MipsTargetLowering::
1861lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1862  // check the depth
1863  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1864         "Frame address can only be determined for current frame.");
1865
1866  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1867  MFI->setFrameAddressIsTaken(true);
1868  EVT VT = Op.getValueType();
1869  SDLoc DL(Op);
1870  SDValue FrameAddr =
1871      DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1872                         Subtarget->isABI_N64() ? Mips::FP_64 : Mips::FP, VT);
1873  return FrameAddr;
1874}
1875
1876SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1877                                            SelectionDAG &DAG) const {
1878  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1879    return SDValue();
1880
1881  // check the depth
1882  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1883         "Return address can be determined only for current frame.");
1884
1885  MachineFunction &MF = DAG.getMachineFunction();
1886  MachineFrameInfo *MFI = MF.getFrameInfo();
1887  MVT VT = Op.getSimpleValueType();
1888  unsigned RA = Subtarget->isABI_N64() ? Mips::RA_64 : Mips::RA;
1889  MFI->setReturnAddressIsTaken(true);
1890
1891  // Return RA, which contains the return address. Mark it an implicit live-in.
1892  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1893  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
1894}
1895
1896// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1897// generated from __builtin_eh_return (offset, handler)
1898// The effect of this is to adjust the stack pointer by "offset"
1899// and then branch to "handler".
1900SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1901                                                                     const {
1902  MachineFunction &MF = DAG.getMachineFunction();
1903  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1904
1905  MipsFI->setCallsEhReturn();
1906  SDValue Chain     = Op.getOperand(0);
1907  SDValue Offset    = Op.getOperand(1);
1908  SDValue Handler   = Op.getOperand(2);
1909  SDLoc DL(Op);
1910  EVT Ty = Subtarget->isABI_N64() ? MVT::i64 : MVT::i32;
1911
1912  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1913  // EH_RETURN nodes, so that instructions are emitted back-to-back.
1914  unsigned OffsetReg = Subtarget->isABI_N64() ? Mips::V1_64 : Mips::V1;
1915  unsigned AddrReg = Subtarget->isABI_N64() ? Mips::V0_64 : Mips::V0;
1916  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1917  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1918  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1919                     DAG.getRegister(OffsetReg, Ty),
1920                     DAG.getRegister(AddrReg, getPointerTy()),
1921                     Chain.getValue(1));
1922}
1923
1924SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1925                                              SelectionDAG &DAG) const {
1926  // FIXME: Need pseudo-fence for 'singlethread' fences
1927  // FIXME: Set SType for weaker fences where supported/appropriate.
1928  unsigned SType = 0;
1929  SDLoc DL(Op);
1930  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1931                     DAG.getConstant(SType, MVT::i32));
1932}
1933
1934SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1935                                                SelectionDAG &DAG) const {
1936  SDLoc DL(Op);
1937  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1938  SDValue Shamt = Op.getOperand(2);
1939
1940  // if shamt < 32:
1941  //  lo = (shl lo, shamt)
1942  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1943  // else:
1944  //  lo = 0
1945  //  hi = (shl lo, shamt[4:0])
1946  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1947                            DAG.getConstant(-1, MVT::i32));
1948  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1949                                      DAG.getConstant(1, MVT::i32));
1950  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1951                                     Not);
1952  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1953  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1954  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1955  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1956                             DAG.getConstant(0x20, MVT::i32));
1957  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1958                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1959  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1960
1961  SDValue Ops[2] = {Lo, Hi};
1962  return DAG.getMergeValues(Ops, DL);
1963}
1964
1965SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1966                                                 bool IsSRA) const {
1967  SDLoc DL(Op);
1968  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1969  SDValue Shamt = Op.getOperand(2);
1970
1971  // if shamt < 32:
1972  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1973  //  if isSRA:
1974  //    hi = (sra hi, shamt)
1975  //  else:
1976  //    hi = (srl hi, shamt)
1977  // else:
1978  //  if isSRA:
1979  //   lo = (sra hi, shamt[4:0])
1980  //   hi = (sra hi, 31)
1981  //  else:
1982  //   lo = (srl hi, shamt[4:0])
1983  //   hi = 0
1984  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1985                            DAG.getConstant(-1, MVT::i32));
1986  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1987                                     DAG.getConstant(1, MVT::i32));
1988  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1989  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1990  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1991  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1992                                     Hi, Shamt);
1993  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1994                             DAG.getConstant(0x20, MVT::i32));
1995  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1996                                DAG.getConstant(31, MVT::i32));
1997  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1998  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1999                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2000                   ShiftRightHi);
2001
2002  SDValue Ops[2] = {Lo, Hi};
2003  return DAG.getMergeValues(Ops, DL);
2004}
2005
2006static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2007                            SDValue Chain, SDValue Src, unsigned Offset) {
2008  SDValue Ptr = LD->getBasePtr();
2009  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2010  EVT BasePtrVT = Ptr.getValueType();
2011  SDLoc DL(LD);
2012  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2013
2014  if (Offset)
2015    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2016                      DAG.getConstant(Offset, BasePtrVT));
2017
2018  SDValue Ops[] = { Chain, Ptr, Src };
2019  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2020                                 LD->getMemOperand());
2021}
2022
2023// Expand an unaligned 32 or 64-bit integer load node.
2024SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2025  LoadSDNode *LD = cast<LoadSDNode>(Op);
2026  EVT MemVT = LD->getMemoryVT();
2027
2028  if (Subtarget->systemSupportsUnalignedAccess())
2029    return Op;
2030
2031  // Return if load is aligned or if MemVT is neither i32 nor i64.
2032  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2033      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2034    return SDValue();
2035
2036  bool IsLittle = Subtarget->isLittle();
2037  EVT VT = Op.getValueType();
2038  ISD::LoadExtType ExtType = LD->getExtensionType();
2039  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2040
2041  assert((VT == MVT::i32) || (VT == MVT::i64));
2042
2043  // Expand
2044  //  (set dst, (i64 (load baseptr)))
2045  // to
2046  //  (set tmp, (ldl (add baseptr, 7), undef))
2047  //  (set dst, (ldr baseptr, tmp))
2048  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2049    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2050                               IsLittle ? 7 : 0);
2051    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2052                        IsLittle ? 0 : 7);
2053  }
2054
2055  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2056                             IsLittle ? 3 : 0);
2057  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2058                             IsLittle ? 0 : 3);
2059
2060  // Expand
2061  //  (set dst, (i32 (load baseptr))) or
2062  //  (set dst, (i64 (sextload baseptr))) or
2063  //  (set dst, (i64 (extload baseptr)))
2064  // to
2065  //  (set tmp, (lwl (add baseptr, 3), undef))
2066  //  (set dst, (lwr baseptr, tmp))
2067  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2068      (ExtType == ISD::EXTLOAD))
2069    return LWR;
2070
2071  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2072
2073  // Expand
2074  //  (set dst, (i64 (zextload baseptr)))
2075  // to
2076  //  (set tmp0, (lwl (add baseptr, 3), undef))
2077  //  (set tmp1, (lwr baseptr, tmp0))
2078  //  (set tmp2, (shl tmp1, 32))
2079  //  (set dst, (srl tmp2, 32))
2080  SDLoc DL(LD);
2081  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2082  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2083  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2084  SDValue Ops[] = { SRL, LWR.getValue(1) };
2085  return DAG.getMergeValues(Ops, DL);
2086}
2087
2088static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2089                             SDValue Chain, unsigned Offset) {
2090  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2091  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2092  SDLoc DL(SD);
2093  SDVTList VTList = DAG.getVTList(MVT::Other);
2094
2095  if (Offset)
2096    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2097                      DAG.getConstant(Offset, BasePtrVT));
2098
2099  SDValue Ops[] = { Chain, Value, Ptr };
2100  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2101                                 SD->getMemOperand());
2102}
2103
2104// Expand an unaligned 32 or 64-bit integer store node.
2105static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2106                                      bool IsLittle) {
2107  SDValue Value = SD->getValue(), Chain = SD->getChain();
2108  EVT VT = Value.getValueType();
2109
2110  // Expand
2111  //  (store val, baseptr) or
2112  //  (truncstore val, baseptr)
2113  // to
2114  //  (swl val, (add baseptr, 3))
2115  //  (swr val, baseptr)
2116  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2117    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2118                                IsLittle ? 3 : 0);
2119    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2120  }
2121
2122  assert(VT == MVT::i64);
2123
2124  // Expand
2125  //  (store val, baseptr)
2126  // to
2127  //  (sdl val, (add baseptr, 7))
2128  //  (sdr val, baseptr)
2129  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2130  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2131}
2132
2133// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2134static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2135  SDValue Val = SD->getValue();
2136
2137  if (Val.getOpcode() != ISD::FP_TO_SINT)
2138    return SDValue();
2139
2140  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2141  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2142                           Val.getOperand(0));
2143
2144  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2145                      SD->getPointerInfo(), SD->isVolatile(),
2146                      SD->isNonTemporal(), SD->getAlignment());
2147}
2148
2149SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2150  StoreSDNode *SD = cast<StoreSDNode>(Op);
2151  EVT MemVT = SD->getMemoryVT();
2152
2153  // Lower unaligned integer stores.
2154  if (!Subtarget->systemSupportsUnalignedAccess() &&
2155      (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2156      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2157    return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
2158
2159  return lowerFP_TO_SINT_STORE(SD, DAG);
2160}
2161
2162SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2163  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2164      || cast<ConstantSDNode>
2165        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2166      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2167    return SDValue();
2168
2169  // The pattern
2170  //   (add (frameaddr 0), (frame_to_args_offset))
2171  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2172  //   (add FrameObject, 0)
2173  // where FrameObject is a fixed StackObject with offset 0 which points to
2174  // the old stack pointer.
2175  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2176  EVT ValTy = Op->getValueType(0);
2177  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2178  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2179  return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
2180                     DAG.getConstant(0, ValTy));
2181}
2182
2183SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2184                                            SelectionDAG &DAG) const {
2185  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2186  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2187                              Op.getOperand(0));
2188  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2189}
2190
2191//===----------------------------------------------------------------------===//
2192//                      Calling Convention Implementation
2193//===----------------------------------------------------------------------===//
2194
2195//===----------------------------------------------------------------------===//
2196// TODO: Implement a generic logic using tblgen that can support this.
2197// Mips O32 ABI rules:
2198// ---
2199// i32 - Passed in A0, A1, A2, A3 and stack
2200// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2201//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2202// f64 - Only passed in two aliased f32 registers if no int reg has been used
2203//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2204//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2205//       go to stack.
2206//
2207//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2208//===----------------------------------------------------------------------===//
2209
2210static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2211                       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2212                       CCState &State, const MCPhysReg *F64Regs) {
2213
2214  static const unsigned IntRegsSize = 4, FloatRegsSize = 2;
2215
2216  static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
2217  static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
2218
2219  // Do not process byval args here.
2220  if (ArgFlags.isByVal())
2221    return true;
2222
2223  // Promote i8 and i16
2224  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2225    LocVT = MVT::i32;
2226    if (ArgFlags.isSExt())
2227      LocInfo = CCValAssign::SExt;
2228    else if (ArgFlags.isZExt())
2229      LocInfo = CCValAssign::ZExt;
2230    else
2231      LocInfo = CCValAssign::AExt;
2232  }
2233
2234  unsigned Reg;
2235
2236  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2237  // is true: function is vararg, argument is 3rd or higher, there is previous
2238  // argument which is not f32 or f64.
2239  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2240      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2241  unsigned OrigAlign = ArgFlags.getOrigAlign();
2242  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2243
2244  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2245    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2246    // If this is the first part of an i64 arg,
2247    // the allocated register must be either A0 or A2.
2248    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2249      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2250    LocVT = MVT::i32;
2251  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2252    // Allocate int register and shadow next int register. If first
2253    // available register is Mips::A1 or Mips::A3, shadow it too.
2254    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2255    if (Reg == Mips::A1 || Reg == Mips::A3)
2256      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2257    State.AllocateReg(IntRegs, IntRegsSize);
2258    LocVT = MVT::i32;
2259  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2260    // we are guaranteed to find an available float register
2261    if (ValVT == MVT::f32) {
2262      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2263      // Shadow int register
2264      State.AllocateReg(IntRegs, IntRegsSize);
2265    } else {
2266      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2267      // Shadow int registers
2268      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2269      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2270        State.AllocateReg(IntRegs, IntRegsSize);
2271      State.AllocateReg(IntRegs, IntRegsSize);
2272    }
2273  } else
2274    llvm_unreachable("Cannot handle this ValVT.");
2275
2276  if (!Reg) {
2277    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2278                                          OrigAlign);
2279    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2280  } else
2281    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2282
2283  return false;
2284}
2285
2286static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2287                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2288                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2289  static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
2290
2291  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2292}
2293
2294static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2295                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2296                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2297  static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
2298
2299  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2300}
2301
2302#include "MipsGenCallingConv.inc"
2303
2304//===----------------------------------------------------------------------===//
2305//                  Call Calling Convention Implementation
2306//===----------------------------------------------------------------------===//
2307
2308// Return next O32 integer argument register.
2309static unsigned getNextIntArgReg(unsigned Reg) {
2310  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2311  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2312}
2313
2314SDValue
2315MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2316                                   SDValue Chain, SDValue Arg, SDLoc DL,
2317                                   bool IsTailCall, SelectionDAG &DAG) const {
2318  if (!IsTailCall) {
2319    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2320                                 DAG.getIntPtrConstant(Offset));
2321    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2322                        false, 0);
2323  }
2324
2325  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2326  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2327  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2328  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2329                      /*isVolatile=*/ true, false, 0);
2330}
2331
2332void MipsTargetLowering::
2333getOpndList(SmallVectorImpl<SDValue> &Ops,
2334            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2335            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2336            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2337  // Insert node "GP copy globalreg" before call to function.
2338  //
2339  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2340  // in PIC mode) allow symbols to be resolved via lazy binding.
2341  // The lazy binding stub requires GP to point to the GOT.
2342  if (IsPICCall && !InternalLinkage) {
2343    unsigned GPReg = Subtarget->isABI_N64() ? Mips::GP_64 : Mips::GP;
2344    EVT Ty = Subtarget->isABI_N64() ? MVT::i64 : MVT::i32;
2345    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2346  }
2347
2348  // Build a sequence of copy-to-reg nodes chained together with token
2349  // chain and flag operands which copy the outgoing args into registers.
2350  // The InFlag in necessary since all emitted instructions must be
2351  // stuck together.
2352  SDValue InFlag;
2353
2354  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2355    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2356                                 RegsToPass[i].second, InFlag);
2357    InFlag = Chain.getValue(1);
2358  }
2359
2360  // Add argument registers to the end of the list so that they are
2361  // known live into the call.
2362  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2363    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2364                                      RegsToPass[i].second.getValueType()));
2365
2366  // Add a register mask operand representing the call-preserved registers.
2367  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2368  const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2369  assert(Mask && "Missing call preserved mask for calling convention");
2370  if (Subtarget->inMips16HardFloat()) {
2371    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2372      llvm::StringRef Sym = G->getGlobal()->getName();
2373      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2374      if (F && F->hasFnAttribute("__Mips16RetHelper")) {
2375        Mask = MipsRegisterInfo::getMips16RetHelperMask();
2376      }
2377    }
2378  }
2379  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2380
2381  if (InFlag.getNode())
2382    Ops.push_back(InFlag);
2383}
2384
2385/// LowerCall - functions arguments are copied from virtual regs to
2386/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2387SDValue
2388MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2389                              SmallVectorImpl<SDValue> &InVals) const {
2390  SelectionDAG &DAG                     = CLI.DAG;
2391  SDLoc DL                              = CLI.DL;
2392  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2393  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2394  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2395  SDValue Chain                         = CLI.Chain;
2396  SDValue Callee                        = CLI.Callee;
2397  bool &IsTailCall                      = CLI.IsTailCall;
2398  CallingConv::ID CallConv              = CLI.CallConv;
2399  bool IsVarArg                         = CLI.IsVarArg;
2400
2401  MachineFunction &MF = DAG.getMachineFunction();
2402  MachineFrameInfo *MFI = MF.getFrameInfo();
2403  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2404  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2405  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2406
2407  // Analyze operands of the call, assigning locations to each operand.
2408  SmallVector<CCValAssign, 16> ArgLocs;
2409  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2410                 getTargetMachine(), ArgLocs, *DAG.getContext());
2411  MipsCC::SpecialCallingConvType SpecialCallingConv =
2412    getSpecialCallingConv(Callee);
2413  MipsCC MipsCCInfo(CallConv, Subtarget->isABI_O32(), Subtarget->isFP64bit(),
2414                    CCInfo, SpecialCallingConv);
2415
2416  MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2417                                 Subtarget->mipsSEUsesSoftFloat(),
2418                                 Callee.getNode(), CLI.getArgs());
2419
2420  // Get a count of how many bytes are to be pushed on the stack.
2421  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2422
2423  // Check if it's really possible to do a tail call.
2424  if (IsTailCall)
2425    IsTailCall =
2426      isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2427                                        *MF.getInfo<MipsFunctionInfo>());
2428
2429  if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2430    report_fatal_error("failed to perform tail call elimination on a call "
2431                       "site marked musttail");
2432
2433  if (IsTailCall)
2434    ++NumTailCalls;
2435
2436  // Chain is the output chain of the last Load/Store or CopyToReg node.
2437  // ByValChain is the output chain of the last Memcpy node created for copying
2438  // byval arguments to the stack.
2439  unsigned StackAlignment = TFL->getStackAlignment();
2440  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2441  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2442
2443  if (!IsTailCall)
2444    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2445
2446  SDValue StackPtr = DAG.getCopyFromReg(
2447      Chain, DL, Subtarget->isABI_N64() ? Mips::SP_64 : Mips::SP,
2448      getPointerTy());
2449
2450  // With EABI is it possible to have 16 args on registers.
2451  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2452  SmallVector<SDValue, 8> MemOpChains;
2453  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2454
2455  // Walk the register/memloc assignments, inserting copies/loads.
2456  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2457    SDValue Arg = OutVals[i];
2458    CCValAssign &VA = ArgLocs[i];
2459    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2460    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2461
2462    // ByVal Arg.
2463    if (Flags.isByVal()) {
2464      assert(Flags.getByValSize() &&
2465             "ByVal args of size 0 should have been ignored by front-end.");
2466      assert(ByValArg != MipsCCInfo.byval_end());
2467      assert(!IsTailCall &&
2468             "Do not tail-call optimize if there is a byval argument.");
2469      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2470                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2471      ++ByValArg;
2472      continue;
2473    }
2474
2475    // Promote the value if needed.
2476    switch (VA.getLocInfo()) {
2477    default: llvm_unreachable("Unknown loc info!");
2478    case CCValAssign::Full:
2479      if (VA.isRegLoc()) {
2480        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2481            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2482            (ValVT == MVT::i64 && LocVT == MVT::f64))
2483          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2484        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2485          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2486                                   Arg, DAG.getConstant(0, MVT::i32));
2487          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2488                                   Arg, DAG.getConstant(1, MVT::i32));
2489          if (!Subtarget->isLittle())
2490            std::swap(Lo, Hi);
2491          unsigned LocRegLo = VA.getLocReg();
2492          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2493          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2494          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2495          continue;
2496        }
2497      }
2498      break;
2499    case CCValAssign::SExt:
2500      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2501      break;
2502    case CCValAssign::ZExt:
2503      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2504      break;
2505    case CCValAssign::AExt:
2506      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2507      break;
2508    }
2509
2510    // Arguments that can be passed on register must be kept at
2511    // RegsToPass vector
2512    if (VA.isRegLoc()) {
2513      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2514      continue;
2515    }
2516
2517    // Register can't get to this point...
2518    assert(VA.isMemLoc());
2519
2520    // emit ISD::STORE whichs stores the
2521    // parameter value to a stack Location
2522    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2523                                         Chain, Arg, DL, IsTailCall, DAG));
2524  }
2525
2526  // Transform all store nodes into one single node because all store
2527  // nodes are independent of each other.
2528  if (!MemOpChains.empty())
2529    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2530
2531  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2532  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2533  // node so that legalize doesn't hack it.
2534  bool IsPICCall =
2535      (Subtarget->isABI_N64() || IsPIC); // true if calls are translated to
2536                                         // jalr $25
2537  bool GlobalOrExternal = false, InternalLinkage = false;
2538  SDValue CalleeLo;
2539  EVT Ty = Callee.getValueType();
2540
2541  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2542    if (IsPICCall) {
2543      const GlobalValue *Val = G->getGlobal();
2544      InternalLinkage = Val->hasInternalLinkage();
2545
2546      if (InternalLinkage)
2547        Callee = getAddrLocal(G, Ty, DAG,
2548                              Subtarget->isABI_N32() || Subtarget->isABI_N64());
2549      else if (LargeGOT)
2550        Callee = getAddrGlobalLargeGOT(G, Ty, DAG, MipsII::MO_CALL_HI16,
2551                                       MipsII::MO_CALL_LO16, Chain,
2552                                       FuncInfo->callPtrInfo(Val));
2553      else
2554        Callee = getAddrGlobal(G, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
2555                               FuncInfo->callPtrInfo(Val));
2556    } else
2557      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2558                                          MipsII::MO_NO_FLAG);
2559    GlobalOrExternal = true;
2560  }
2561  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2562    const char *Sym = S->getSymbol();
2563
2564    if (!Subtarget->isABI_N64() && !IsPIC) // !N64 && static
2565      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(),
2566                                            MipsII::MO_NO_FLAG);
2567    else if (LargeGOT)
2568      Callee = getAddrGlobalLargeGOT(S, Ty, DAG, MipsII::MO_CALL_HI16,
2569                                     MipsII::MO_CALL_LO16, Chain,
2570                                     FuncInfo->callPtrInfo(Sym));
2571    else // N64 || PIC
2572      Callee = getAddrGlobal(S, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
2573                             FuncInfo->callPtrInfo(Sym));
2574
2575    GlobalOrExternal = true;
2576  }
2577
2578  SmallVector<SDValue, 8> Ops(1, Chain);
2579  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2580
2581  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2582              CLI, Callee, Chain);
2583
2584  if (IsTailCall)
2585    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
2586
2587  Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
2588  SDValue InFlag = Chain.getValue(1);
2589
2590  // Create the CALLSEQ_END node.
2591  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2592                             DAG.getIntPtrConstant(0, true), InFlag, DL);
2593  InFlag = Chain.getValue(1);
2594
2595  // Handle result values, copying them out of physregs into vregs that we
2596  // return.
2597  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2598                         Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2599}
2600
2601/// LowerCallResult - Lower the result values of a call into the
2602/// appropriate copies out of appropriate physical registers.
2603SDValue
2604MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2605                                    CallingConv::ID CallConv, bool IsVarArg,
2606                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2607                                    SDLoc DL, SelectionDAG &DAG,
2608                                    SmallVectorImpl<SDValue> &InVals,
2609                                    const SDNode *CallNode,
2610                                    const Type *RetTy) const {
2611  // Assign locations to each value returned by this call.
2612  SmallVector<CCValAssign, 16> RVLocs;
2613  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2614                 getTargetMachine(), RVLocs, *DAG.getContext());
2615  MipsCC MipsCCInfo(CallConv, Subtarget->isABI_O32(), Subtarget->isFP64bit(),
2616                    CCInfo);
2617
2618  MipsCCInfo.analyzeCallResult(Ins, Subtarget->mipsSEUsesSoftFloat(),
2619                               CallNode, RetTy);
2620
2621  // Copy all of the result registers out of their specified physreg.
2622  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2623    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2624                                     RVLocs[i].getLocVT(), InFlag);
2625    Chain = Val.getValue(1);
2626    InFlag = Val.getValue(2);
2627
2628    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2629      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2630
2631    InVals.push_back(Val);
2632  }
2633
2634  return Chain;
2635}
2636
2637//===----------------------------------------------------------------------===//
2638//             Formal Arguments Calling Convention Implementation
2639//===----------------------------------------------------------------------===//
2640/// LowerFormalArguments - transform physical registers into virtual registers
2641/// and generate load operations for arguments places on the stack.
2642SDValue
2643MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2644                                         CallingConv::ID CallConv,
2645                                         bool IsVarArg,
2646                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2647                                         SDLoc DL, SelectionDAG &DAG,
2648                                         SmallVectorImpl<SDValue> &InVals)
2649                                          const {
2650  MachineFunction &MF = DAG.getMachineFunction();
2651  MachineFrameInfo *MFI = MF.getFrameInfo();
2652  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2653
2654  MipsFI->setVarArgsFrameIndex(0);
2655
2656  // Used with vargs to acumulate store chains.
2657  std::vector<SDValue> OutChains;
2658
2659  // Assign locations to all of the incoming arguments.
2660  SmallVector<CCValAssign, 16> ArgLocs;
2661  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2662                 getTargetMachine(), ArgLocs, *DAG.getContext());
2663  MipsCC MipsCCInfo(CallConv, Subtarget->isABI_O32(), Subtarget->isFP64bit(),
2664                    CCInfo);
2665  Function::const_arg_iterator FuncArg =
2666    DAG.getMachineFunction().getFunction()->arg_begin();
2667  bool UseSoftFloat = Subtarget->mipsSEUsesSoftFloat();
2668
2669  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2670  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2671                           MipsCCInfo.hasByValArg());
2672
2673  unsigned CurArgIdx = 0;
2674  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2675
2676  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2677    CCValAssign &VA = ArgLocs[i];
2678    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2679    CurArgIdx = Ins[i].OrigArgIndex;
2680    EVT ValVT = VA.getValVT();
2681    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2682    bool IsRegLoc = VA.isRegLoc();
2683
2684    if (Flags.isByVal()) {
2685      assert(Flags.getByValSize() &&
2686             "ByVal args of size 0 should have been ignored by front-end.");
2687      assert(ByValArg != MipsCCInfo.byval_end());
2688      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2689                    MipsCCInfo, *ByValArg);
2690      ++ByValArg;
2691      continue;
2692    }
2693
2694    // Arguments stored on registers
2695    if (IsRegLoc) {
2696      MVT RegVT = VA.getLocVT();
2697      unsigned ArgReg = VA.getLocReg();
2698      const TargetRegisterClass *RC = getRegClassFor(RegVT);
2699
2700      // Transform the arguments stored on
2701      // physical registers into virtual ones
2702      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2703      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2704
2705      // If this is an 8 or 16-bit value, it has been passed promoted
2706      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2707      // truncate to the right size.
2708      if (VA.getLocInfo() != CCValAssign::Full) {
2709        unsigned Opcode = 0;
2710        if (VA.getLocInfo() == CCValAssign::SExt)
2711          Opcode = ISD::AssertSext;
2712        else if (VA.getLocInfo() == CCValAssign::ZExt)
2713          Opcode = ISD::AssertZext;
2714        if (Opcode)
2715          ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2716                                 DAG.getValueType(ValVT));
2717        ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2718      }
2719
2720      // Handle floating point arguments passed in integer registers and
2721      // long double arguments passed in floating point registers.
2722      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2723          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2724          (RegVT == MVT::f64 && ValVT == MVT::i64))
2725        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2726      else if (Subtarget->isABI_O32() && RegVT == MVT::i32 &&
2727               ValVT == MVT::f64) {
2728        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2729                                  getNextIntArgReg(ArgReg), RC);
2730        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2731        if (!Subtarget->isLittle())
2732          std::swap(ArgValue, ArgValue2);
2733        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2734                               ArgValue, ArgValue2);
2735      }
2736
2737      InVals.push_back(ArgValue);
2738    } else { // VA.isRegLoc()
2739
2740      // sanity check
2741      assert(VA.isMemLoc());
2742
2743      // The stack pointer offset is relative to the caller stack frame.
2744      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2745                                      VA.getLocMemOffset(), true);
2746
2747      // Create load nodes to retrieve arguments from the stack
2748      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2749      SDValue Load = DAG.getLoad(ValVT, DL, Chain, FIN,
2750                                 MachinePointerInfo::getFixedStack(FI),
2751                                 false, false, false, 0);
2752      InVals.push_back(Load);
2753      OutChains.push_back(Load.getValue(1));
2754    }
2755  }
2756
2757  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2758    // The mips ABIs for returning structs by value requires that we copy
2759    // the sret argument into $v0 for the return. Save the argument into
2760    // a virtual register so that we can access it from the return points.
2761    if (Ins[i].Flags.isSRet()) {
2762      unsigned Reg = MipsFI->getSRetReturnReg();
2763      if (!Reg) {
2764        Reg = MF.getRegInfo().createVirtualRegister(
2765            getRegClassFor(Subtarget->isABI_N64() ? MVT::i64 : MVT::i32));
2766        MipsFI->setSRetReturnReg(Reg);
2767      }
2768      SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
2769      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2770      break;
2771    }
2772  }
2773
2774  if (IsVarArg)
2775    writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2776
2777  // All stores are grouped in one node to allow the matching between
2778  // the size of Ins and InVals. This only happens when on varg functions
2779  if (!OutChains.empty()) {
2780    OutChains.push_back(Chain);
2781    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
2782  }
2783
2784  return Chain;
2785}
2786
2787//===----------------------------------------------------------------------===//
2788//               Return Value Calling Convention Implementation
2789//===----------------------------------------------------------------------===//
2790
2791bool
2792MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2793                                   MachineFunction &MF, bool IsVarArg,
2794                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2795                                   LLVMContext &Context) const {
2796  SmallVector<CCValAssign, 16> RVLocs;
2797  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2798                 RVLocs, Context);
2799  return CCInfo.CheckReturn(Outs, RetCC_Mips);
2800}
2801
2802SDValue
2803MipsTargetLowering::LowerReturn(SDValue Chain,
2804                                CallingConv::ID CallConv, bool IsVarArg,
2805                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2806                                const SmallVectorImpl<SDValue> &OutVals,
2807                                SDLoc DL, SelectionDAG &DAG) const {
2808  // CCValAssign - represent the assignment of
2809  // the return value to a location
2810  SmallVector<CCValAssign, 16> RVLocs;
2811  MachineFunction &MF = DAG.getMachineFunction();
2812
2813  // CCState - Info about the registers and stack slot.
2814  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2815                 *DAG.getContext());
2816  MipsCC MipsCCInfo(CallConv, Subtarget->isABI_O32(), Subtarget->isFP64bit(),
2817                    CCInfo);
2818
2819  // Analyze return values.
2820  MipsCCInfo.analyzeReturn(Outs, Subtarget->mipsSEUsesSoftFloat(),
2821                           MF.getFunction()->getReturnType());
2822
2823  SDValue Flag;
2824  SmallVector<SDValue, 4> RetOps(1, Chain);
2825
2826  // Copy the result values into the output registers.
2827  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2828    SDValue Val = OutVals[i];
2829    CCValAssign &VA = RVLocs[i];
2830    assert(VA.isRegLoc() && "Can only return in registers!");
2831
2832    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2833      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2834
2835    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2836
2837    // Guarantee that all emitted copies are stuck together with flags.
2838    Flag = Chain.getValue(1);
2839    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2840  }
2841
2842  // The mips ABIs for returning structs by value requires that we copy
2843  // the sret argument into $v0 for the return. We saved the argument into
2844  // a virtual register in the entry block, so now we copy the value out
2845  // and into $v0.
2846  if (MF.getFunction()->hasStructRetAttr()) {
2847    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2848    unsigned Reg = MipsFI->getSRetReturnReg();
2849
2850    if (!Reg)
2851      llvm_unreachable("sret virtual register not created in the entry block");
2852    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2853    unsigned V0 = Subtarget->isABI_N64() ? Mips::V0_64 : Mips::V0;
2854
2855    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2856    Flag = Chain.getValue(1);
2857    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2858  }
2859
2860  RetOps[0] = Chain;  // Update chain.
2861
2862  // Add the flag if we have it.
2863  if (Flag.getNode())
2864    RetOps.push_back(Flag);
2865
2866  // Return on Mips is always a "jr $ra"
2867  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
2868}
2869
2870//===----------------------------------------------------------------------===//
2871//                           Mips Inline Assembly Support
2872//===----------------------------------------------------------------------===//
2873
2874/// getConstraintType - Given a constraint letter, return the type of
2875/// constraint it is for this target.
2876MipsTargetLowering::ConstraintType MipsTargetLowering::
2877getConstraintType(const std::string &Constraint) const
2878{
2879  // Mips specific constraints
2880  // GCC config/mips/constraints.md
2881  //
2882  // 'd' : An address register. Equivalent to r
2883  //       unless generating MIPS16 code.
2884  // 'y' : Equivalent to r; retained for
2885  //       backwards compatibility.
2886  // 'c' : A register suitable for use in an indirect
2887  //       jump. This will always be $25 for -mabicalls.
2888  // 'l' : The lo register. 1 word storage.
2889  // 'x' : The hilo register pair. Double word storage.
2890  if (Constraint.size() == 1) {
2891    switch (Constraint[0]) {
2892      default : break;
2893      case 'd':
2894      case 'y':
2895      case 'f':
2896      case 'c':
2897      case 'l':
2898      case 'x':
2899        return C_RegisterClass;
2900      case 'R':
2901        return C_Memory;
2902    }
2903  }
2904  return TargetLowering::getConstraintType(Constraint);
2905}
2906
2907/// Examine constraint type and operand type and determine a weight value.
2908/// This object must already have been set up with the operand type
2909/// and the current alternative constraint selected.
2910TargetLowering::ConstraintWeight
2911MipsTargetLowering::getSingleConstraintMatchWeight(
2912    AsmOperandInfo &info, const char *constraint) const {
2913  ConstraintWeight weight = CW_Invalid;
2914  Value *CallOperandVal = info.CallOperandVal;
2915    // If we don't have a value, we can't do a match,
2916    // but allow it at the lowest weight.
2917  if (!CallOperandVal)
2918    return CW_Default;
2919  Type *type = CallOperandVal->getType();
2920  // Look at the constraint type.
2921  switch (*constraint) {
2922  default:
2923    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2924    break;
2925  case 'd':
2926  case 'y':
2927    if (type->isIntegerTy())
2928      weight = CW_Register;
2929    break;
2930  case 'f': // FPU or MSA register
2931    if (Subtarget->hasMSA() && type->isVectorTy() &&
2932        cast<VectorType>(type)->getBitWidth() == 128)
2933      weight = CW_Register;
2934    else if (type->isFloatTy())
2935      weight = CW_Register;
2936    break;
2937  case 'c': // $25 for indirect jumps
2938  case 'l': // lo register
2939  case 'x': // hilo register pair
2940    if (type->isIntegerTy())
2941      weight = CW_SpecificReg;
2942    break;
2943  case 'I': // signed 16 bit immediate
2944  case 'J': // integer zero
2945  case 'K': // unsigned 16 bit immediate
2946  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2947  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2948  case 'O': // signed 15 bit immediate (+- 16383)
2949  case 'P': // immediate in the range of 65535 to 1 (inclusive)
2950    if (isa<ConstantInt>(CallOperandVal))
2951      weight = CW_Constant;
2952    break;
2953  case 'R':
2954    weight = CW_Memory;
2955    break;
2956  }
2957  return weight;
2958}
2959
2960/// This is a helper function to parse a physical register string and split it
2961/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
2962/// that is returned indicates whether parsing was successful. The second flag
2963/// is true if the numeric part exists.
2964static std::pair<bool, bool>
2965parsePhysicalReg(const StringRef &C, std::string &Prefix,
2966                 unsigned long long &Reg) {
2967  if (C.front() != '{' || C.back() != '}')
2968    return std::make_pair(false, false);
2969
2970  // Search for the first numeric character.
2971  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
2972  I = std::find_if(B, E, std::ptr_fun(isdigit));
2973
2974  Prefix.assign(B, I - B);
2975
2976  // The second flag is set to false if no numeric characters were found.
2977  if (I == E)
2978    return std::make_pair(true, false);
2979
2980  // Parse the numeric characters.
2981  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
2982                        true);
2983}
2984
2985std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
2986parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const {
2987  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2988  const TargetRegisterClass *RC;
2989  std::string Prefix;
2990  unsigned long long Reg;
2991
2992  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
2993
2994  if (!R.first)
2995    return std::make_pair(0U, nullptr);
2996
2997  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
2998    // No numeric characters follow "hi" or "lo".
2999    if (R.second)
3000      return std::make_pair(0U, nullptr);
3001
3002    RC = TRI->getRegClass(Prefix == "hi" ?
3003                          Mips::HI32RegClassID : Mips::LO32RegClassID);
3004    return std::make_pair(*(RC->begin()), RC);
3005  } else if (Prefix.compare(0, 4, "$msa") == 0) {
3006    // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
3007
3008    // No numeric characters follow the name.
3009    if (R.second)
3010      return std::make_pair(0U, nullptr);
3011
3012    Reg = StringSwitch<unsigned long long>(Prefix)
3013              .Case("$msair", Mips::MSAIR)
3014              .Case("$msacsr", Mips::MSACSR)
3015              .Case("$msaaccess", Mips::MSAAccess)
3016              .Case("$msasave", Mips::MSASave)
3017              .Case("$msamodify", Mips::MSAModify)
3018              .Case("$msarequest", Mips::MSARequest)
3019              .Case("$msamap", Mips::MSAMap)
3020              .Case("$msaunmap", Mips::MSAUnmap)
3021              .Default(0);
3022
3023    if (!Reg)
3024      return std::make_pair(0U, nullptr);
3025
3026    RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
3027    return std::make_pair(Reg, RC);
3028  }
3029
3030  if (!R.second)
3031    return std::make_pair(0U, nullptr);
3032
3033  if (Prefix == "$f") { // Parse $f0-$f31.
3034    // If the size of FP registers is 64-bit or Reg is an even number, select
3035    // the 64-bit register class. Otherwise, select the 32-bit register class.
3036    if (VT == MVT::Other)
3037      VT = (Subtarget->isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
3038
3039    RC = getRegClassFor(VT);
3040
3041    if (RC == &Mips::AFGR64RegClass) {
3042      assert(Reg % 2 == 0);
3043      Reg >>= 1;
3044    }
3045  } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
3046    RC = TRI->getRegClass(Mips::FCCRegClassID);
3047  else if (Prefix == "$w") { // Parse $w0-$w31.
3048    RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
3049  } else { // Parse $0-$31.
3050    assert(Prefix == "$");
3051    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
3052  }
3053
3054  assert(Reg < RC->getNumRegs());
3055  return std::make_pair(*(RC->begin() + Reg), RC);
3056}
3057
3058/// Given a register class constraint, like 'r', if this corresponds directly
3059/// to an LLVM register class, return a register of 0 and the register class
3060/// pointer.
3061std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3062getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
3063{
3064  if (Constraint.size() == 1) {
3065    switch (Constraint[0]) {
3066    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3067    case 'y': // Same as 'r'. Exists for compatibility.
3068    case 'r':
3069      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3070        if (Subtarget->inMips16Mode())
3071          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3072        return std::make_pair(0U, &Mips::GPR32RegClass);
3073      }
3074      if (VT == MVT::i64 && !Subtarget->isGP64bit())
3075        return std::make_pair(0U, &Mips::GPR32RegClass);
3076      if (VT == MVT::i64 && Subtarget->isGP64bit())
3077        return std::make_pair(0U, &Mips::GPR64RegClass);
3078      // This will generate an error message
3079      return std::make_pair(0U, nullptr);
3080    case 'f': // FPU or MSA register
3081      if (VT == MVT::v16i8)
3082        return std::make_pair(0U, &Mips::MSA128BRegClass);
3083      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3084        return std::make_pair(0U, &Mips::MSA128HRegClass);
3085      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3086        return std::make_pair(0U, &Mips::MSA128WRegClass);
3087      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3088        return std::make_pair(0U, &Mips::MSA128DRegClass);
3089      else if (VT == MVT::f32)
3090        return std::make_pair(0U, &Mips::FGR32RegClass);
3091      else if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3092        if (Subtarget->isFP64bit())
3093          return std::make_pair(0U, &Mips::FGR64RegClass);
3094        return std::make_pair(0U, &Mips::AFGR64RegClass);
3095      }
3096      break;
3097    case 'c': // register suitable for indirect jump
3098      if (VT == MVT::i32)
3099        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
3100      assert(VT == MVT::i64 && "Unexpected type.");
3101      return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
3102    case 'l': // register suitable for indirect jump
3103      if (VT == MVT::i32)
3104        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
3105      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
3106    case 'x': // register suitable for indirect jump
3107      // Fixme: Not triggering the use of both hi and low
3108      // This will generate an error message
3109      return std::make_pair(0U, nullptr);
3110    }
3111  }
3112
3113  std::pair<unsigned, const TargetRegisterClass *> R;
3114  R = parseRegForInlineAsmConstraint(Constraint, VT);
3115
3116  if (R.second)
3117    return R;
3118
3119  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3120}
3121
3122/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3123/// vector.  If it is invalid, don't add anything to Ops.
3124void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3125                                                     std::string &Constraint,
3126                                                     std::vector<SDValue>&Ops,
3127                                                     SelectionDAG &DAG) const {
3128  SDValue Result;
3129
3130  // Only support length 1 constraints for now.
3131  if (Constraint.length() > 1) return;
3132
3133  char ConstraintLetter = Constraint[0];
3134  switch (ConstraintLetter) {
3135  default: break; // This will fall through to the generic implementation
3136  case 'I': // Signed 16 bit constant
3137    // If this fails, the parent routine will give an error
3138    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3139      EVT Type = Op.getValueType();
3140      int64_t Val = C->getSExtValue();
3141      if (isInt<16>(Val)) {
3142        Result = DAG.getTargetConstant(Val, Type);
3143        break;
3144      }
3145    }
3146    return;
3147  case 'J': // integer zero
3148    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3149      EVT Type = Op.getValueType();
3150      int64_t Val = C->getZExtValue();
3151      if (Val == 0) {
3152        Result = DAG.getTargetConstant(0, Type);
3153        break;
3154      }
3155    }
3156    return;
3157  case 'K': // unsigned 16 bit immediate
3158    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3159      EVT Type = Op.getValueType();
3160      uint64_t Val = (uint64_t)C->getZExtValue();
3161      if (isUInt<16>(Val)) {
3162        Result = DAG.getTargetConstant(Val, Type);
3163        break;
3164      }
3165    }
3166    return;
3167  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3168    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3169      EVT Type = Op.getValueType();
3170      int64_t Val = C->getSExtValue();
3171      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3172        Result = DAG.getTargetConstant(Val, Type);
3173        break;
3174      }
3175    }
3176    return;
3177  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3178    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3179      EVT Type = Op.getValueType();
3180      int64_t Val = C->getSExtValue();
3181      if ((Val >= -65535) && (Val <= -1)) {
3182        Result = DAG.getTargetConstant(Val, Type);
3183        break;
3184      }
3185    }
3186    return;
3187  case 'O': // signed 15 bit immediate
3188    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3189      EVT Type = Op.getValueType();
3190      int64_t Val = C->getSExtValue();
3191      if ((isInt<15>(Val))) {
3192        Result = DAG.getTargetConstant(Val, Type);
3193        break;
3194      }
3195    }
3196    return;
3197  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3198    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3199      EVT Type = Op.getValueType();
3200      int64_t Val = C->getSExtValue();
3201      if ((Val <= 65535) && (Val >= 1)) {
3202        Result = DAG.getTargetConstant(Val, Type);
3203        break;
3204      }
3205    }
3206    return;
3207  }
3208
3209  if (Result.getNode()) {
3210    Ops.push_back(Result);
3211    return;
3212  }
3213
3214  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3215}
3216
3217bool MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3218                                               Type *Ty) const {
3219  // No global is ever allowed as a base.
3220  if (AM.BaseGV)
3221    return false;
3222
3223  switch (AM.Scale) {
3224  case 0: // "r+i" or just "i", depending on HasBaseReg.
3225    break;
3226  case 1:
3227    if (!AM.HasBaseReg) // allow "r+i".
3228      break;
3229    return false; // disallow "r+r" or "r+r+i".
3230  default:
3231    return false;
3232  }
3233
3234  return true;
3235}
3236
3237bool
3238MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3239  // The Mips target isn't yet aware of offsets.
3240  return false;
3241}
3242
3243EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3244                                            unsigned SrcAlign,
3245                                            bool IsMemset, bool ZeroMemset,
3246                                            bool MemcpyStrSrc,
3247                                            MachineFunction &MF) const {
3248  if (Subtarget->hasMips64())
3249    return MVT::i64;
3250
3251  return MVT::i32;
3252}
3253
3254bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3255  if (VT != MVT::f32 && VT != MVT::f64)
3256    return false;
3257  if (Imm.isNegZero())
3258    return false;
3259  return Imm.isZero();
3260}
3261
3262unsigned MipsTargetLowering::getJumpTableEncoding() const {
3263  if (Subtarget->isABI_N64())
3264    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3265
3266  return TargetLowering::getJumpTableEncoding();
3267}
3268
3269/// This function returns true if CallSym is a long double emulation routine.
3270static bool isF128SoftLibCall(const char *CallSym) {
3271  const char *const LibCalls[] =
3272    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3273     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3274     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3275     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3276     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3277     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3278     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3279     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3280     "truncl"};
3281
3282  const char *const *End = LibCalls + array_lengthof(LibCalls);
3283
3284  // Check that LibCalls is sorted alphabetically.
3285  MipsTargetLowering::LTStr Comp;
3286
3287#ifndef NDEBUG
3288  for (const char *const *I = LibCalls; I < End - 1; ++I)
3289    assert(Comp(*I, *(I + 1)));
3290#endif
3291
3292  return std::binary_search(LibCalls, End, CallSym, Comp);
3293}
3294
3295/// This function returns true if Ty is fp128 or i128 which was originally a
3296/// fp128.
3297static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3298  if (Ty->isFP128Ty())
3299    return true;
3300
3301  const ExternalSymbolSDNode *ES =
3302    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3303
3304  // If the Ty is i128 and the function being called is a long double emulation
3305  // routine, then the original type is f128.
3306  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3307}
3308
3309MipsTargetLowering::MipsCC::SpecialCallingConvType
3310  MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
3311  MipsCC::SpecialCallingConvType SpecialCallingConv =
3312    MipsCC::NoSpecialCallingConv;
3313  if (Subtarget->inMips16HardFloat()) {
3314    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3315      llvm::StringRef Sym = G->getGlobal()->getName();
3316      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3317      if (F && F->hasFnAttribute("__Mips16RetHelper")) {
3318        SpecialCallingConv = MipsCC::Mips16RetHelperConv;
3319      }
3320    }
3321  }
3322  return SpecialCallingConv;
3323}
3324
3325MipsTargetLowering::MipsCC::MipsCC(
3326  CallingConv::ID CC, bool IsO32_, bool IsFP64_, CCState &Info,
3327  MipsCC::SpecialCallingConvType SpecialCallingConv_)
3328  : CCInfo(Info), CallConv(CC), IsO32(IsO32_), IsFP64(IsFP64_),
3329    SpecialCallingConv(SpecialCallingConv_){
3330  // Pre-allocate reserved argument area.
3331  CCInfo.AllocateStack(reservedArgArea(), 1);
3332}
3333
3334
3335void MipsTargetLowering::MipsCC::
3336analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3337                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3338                    std::vector<ArgListEntry> &FuncArgs) {
3339  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3340         "CallingConv::Fast shouldn't be used for vararg functions.");
3341
3342  unsigned NumOpnds = Args.size();
3343  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3344
3345  for (unsigned I = 0; I != NumOpnds; ++I) {
3346    MVT ArgVT = Args[I].VT;
3347    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3348    bool R;
3349
3350    if (ArgFlags.isByVal()) {
3351      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3352      continue;
3353    }
3354
3355    if (IsVarArg && !Args[I].IsFixed)
3356      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3357    else {
3358      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3359                           IsSoftFloat);
3360      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3361    }
3362
3363    if (R) {
3364#ifndef NDEBUG
3365      dbgs() << "Call operand #" << I << " has unhandled type "
3366             << EVT(ArgVT).getEVTString();
3367#endif
3368      llvm_unreachable(nullptr);
3369    }
3370  }
3371}
3372
3373void MipsTargetLowering::MipsCC::
3374analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3375                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3376  unsigned NumArgs = Args.size();
3377  llvm::CCAssignFn *FixedFn = fixedArgFn();
3378  unsigned CurArgIdx = 0;
3379
3380  for (unsigned I = 0; I != NumArgs; ++I) {
3381    MVT ArgVT = Args[I].VT;
3382    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3383    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3384    CurArgIdx = Args[I].OrigArgIndex;
3385
3386    if (ArgFlags.isByVal()) {
3387      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3388      continue;
3389    }
3390
3391    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), nullptr, IsSoftFloat);
3392
3393    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3394      continue;
3395
3396#ifndef NDEBUG
3397    dbgs() << "Formal Arg #" << I << " has unhandled type "
3398           << EVT(ArgVT).getEVTString();
3399#endif
3400    llvm_unreachable(nullptr);
3401  }
3402}
3403
3404template<typename Ty>
3405void MipsTargetLowering::MipsCC::
3406analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3407              const SDNode *CallNode, const Type *RetTy) const {
3408  CCAssignFn *Fn;
3409
3410  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3411    Fn = RetCC_F128Soft;
3412  else
3413    Fn = RetCC_Mips;
3414
3415  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3416    MVT VT = RetVals[I].VT;
3417    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3418    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3419
3420    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3421#ifndef NDEBUG
3422      dbgs() << "Call result #" << I << " has unhandled type "
3423             << EVT(VT).getEVTString() << '\n';
3424#endif
3425      llvm_unreachable(nullptr);
3426    }
3427  }
3428}
3429
3430void MipsTargetLowering::MipsCC::
3431analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3432                  const SDNode *CallNode, const Type *RetTy) const {
3433  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3434}
3435
3436void MipsTargetLowering::MipsCC::
3437analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3438              const Type *RetTy) const {
3439  analyzeReturn(Outs, IsSoftFloat, nullptr, RetTy);
3440}
3441
3442void MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3443                                                MVT LocVT,
3444                                                CCValAssign::LocInfo LocInfo,
3445                                                ISD::ArgFlagsTy ArgFlags) {
3446  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3447
3448  struct ByValArgInfo ByVal;
3449  unsigned RegSize = regSize();
3450  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3451  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3452                            RegSize * 2);
3453
3454  if (useRegsForByval())
3455    allocateRegs(ByVal, ByValSize, Align);
3456
3457  // Allocate space on caller's stack.
3458  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3459                                       Align);
3460  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3461                                    LocInfo));
3462  ByValArgs.push_back(ByVal);
3463}
3464
3465unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3466  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3467}
3468
3469unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3470  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3471}
3472
3473const MCPhysReg *MipsTargetLowering::MipsCC::intArgRegs() const {
3474  return IsO32 ? O32IntRegs : Mips64IntRegs;
3475}
3476
3477llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3478  if (CallConv == CallingConv::Fast)
3479    return CC_Mips_FastCC;
3480
3481  if (SpecialCallingConv == Mips16RetHelperConv)
3482    return CC_Mips16RetHelper;
3483  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN;
3484}
3485
3486llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3487  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN_VarArg;
3488}
3489
3490const MCPhysReg *MipsTargetLowering::MipsCC::shadowRegs() const {
3491  return IsO32 ? O32IntRegs : Mips64DPRegs;
3492}
3493
3494void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3495                                              unsigned ByValSize,
3496                                              unsigned Align) {
3497  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3498  const MCPhysReg *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3499  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3500         "Byval argument's size and alignment should be a multiple of"
3501         "RegSize.");
3502
3503  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3504
3505  // If Align > RegSize, the first arg register must be even.
3506  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3507    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3508    ++ByVal.FirstIdx;
3509  }
3510
3511  // Mark the registers allocated.
3512  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3513       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3514    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3515}
3516
3517MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3518                                         const SDNode *CallNode,
3519                                         bool IsSoftFloat) const {
3520  if (IsSoftFloat || IsO32)
3521    return VT;
3522
3523  // Check if the original type was fp128.
3524  if (originalTypeIsF128(OrigTy, CallNode)) {
3525    assert(VT == MVT::i64);
3526    return MVT::f64;
3527  }
3528
3529  return VT;
3530}
3531
3532void MipsTargetLowering::
3533copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
3534              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3535              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3536              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3537  MachineFunction &MF = DAG.getMachineFunction();
3538  MachineFrameInfo *MFI = MF.getFrameInfo();
3539  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3540  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3541  int FrameObjOffset;
3542
3543  if (RegAreaSize)
3544    FrameObjOffset = (int)CC.reservedArgArea() -
3545      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3546  else
3547    FrameObjOffset = ByVal.Address;
3548
3549  // Create frame object.
3550  EVT PtrTy = getPointerTy();
3551  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3552  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3553  InVals.push_back(FIN);
3554
3555  if (!ByVal.NumRegs)
3556    return;
3557
3558  // Copy arg registers.
3559  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3560  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3561
3562  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3563    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3564    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3565    unsigned Offset = I * CC.regSize();
3566    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3567                                   DAG.getConstant(Offset, PtrTy));
3568    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3569                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3570                                 false, false, 0);
3571    OutChains.push_back(Store);
3572  }
3573}
3574
3575// Copy byVal arg to registers and stack.
3576void MipsTargetLowering::
3577passByValArg(SDValue Chain, SDLoc DL,
3578             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3579             SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
3580             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3581             const MipsCC &CC, const ByValArgInfo &ByVal,
3582             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3583  unsigned ByValSizeInBytes = Flags.getByValSize();
3584  unsigned OffsetInBytes = 0; // From beginning of struct
3585  unsigned RegSizeInBytes = CC.regSize();
3586  unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
3587  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
3588
3589  if (ByVal.NumRegs) {
3590    const MCPhysReg *ArgRegs = CC.intArgRegs();
3591    bool LeftoverBytes = (ByVal.NumRegs * RegSizeInBytes > ByValSizeInBytes);
3592    unsigned I = 0;
3593
3594    // Copy words to registers.
3595    for (; I < ByVal.NumRegs - LeftoverBytes;
3596         ++I, OffsetInBytes += RegSizeInBytes) {
3597      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3598                                    DAG.getConstant(OffsetInBytes, PtrTy));
3599      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3600                                    MachinePointerInfo(), false, false, false,
3601                                    Alignment);
3602      MemOpChains.push_back(LoadVal.getValue(1));
3603      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3604      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3605    }
3606
3607    // Return if the struct has been fully copied.
3608    if (ByValSizeInBytes == OffsetInBytes)
3609      return;
3610
3611    // Copy the remainder of the byval argument with sub-word loads and shifts.
3612    if (LeftoverBytes) {
3613      assert((ByValSizeInBytes > OffsetInBytes) &&
3614             (ByValSizeInBytes < OffsetInBytes + RegSizeInBytes) &&
3615             "Size of the remainder should be smaller than RegSizeInBytes.");
3616      SDValue Val;
3617
3618      for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
3619           OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
3620        unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
3621
3622        if (RemainingSizeInBytes < LoadSizeInBytes)
3623          continue;
3624
3625        // Load subword.
3626        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3627                                      DAG.getConstant(OffsetInBytes, PtrTy));
3628        SDValue LoadVal = DAG.getExtLoad(
3629            ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
3630            MVT::getIntegerVT(LoadSizeInBytes * 8), false, false, Alignment);
3631        MemOpChains.push_back(LoadVal.getValue(1));
3632
3633        // Shift the loaded value.
3634        unsigned Shamt;
3635
3636        if (isLittle)
3637          Shamt = TotalBytesLoaded * 8;
3638        else
3639          Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
3640
3641        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3642                                    DAG.getConstant(Shamt, MVT::i32));
3643
3644        if (Val.getNode())
3645          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3646        else
3647          Val = Shift;
3648
3649        OffsetInBytes += LoadSizeInBytes;
3650        TotalBytesLoaded += LoadSizeInBytes;
3651        Alignment = std::min(Alignment, LoadSizeInBytes);
3652      }
3653
3654      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3655      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3656      return;
3657    }
3658  }
3659
3660  // Copy remainder of byval arg to it with memcpy.
3661  unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
3662  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3663                            DAG.getConstant(OffsetInBytes, PtrTy));
3664  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3665                            DAG.getIntPtrConstant(ByVal.Address));
3666  Chain = DAG.getMemcpy(Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, PtrTy),
3667                        Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
3668                        MachinePointerInfo(), MachinePointerInfo());
3669  MemOpChains.push_back(Chain);
3670}
3671
3672void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3673                                         const MipsCC &CC, SDValue Chain,
3674                                         SDLoc DL, SelectionDAG &DAG) const {
3675  unsigned NumRegs = CC.numIntArgRegs();
3676  const MCPhysReg *ArgRegs = CC.intArgRegs();
3677  const CCState &CCInfo = CC.getCCInfo();
3678  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3679  unsigned RegSize = CC.regSize();
3680  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3681  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3682  MachineFunction &MF = DAG.getMachineFunction();
3683  MachineFrameInfo *MFI = MF.getFrameInfo();
3684  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3685
3686  // Offset of the first variable argument from stack pointer.
3687  int VaArgOffset;
3688
3689  if (NumRegs == Idx)
3690    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3691  else
3692    VaArgOffset = (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3693
3694  // Record the frame index of the first variable argument
3695  // which is a value necessary to VASTART.
3696  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3697  MipsFI->setVarArgsFrameIndex(FI);
3698
3699  // Copy the integer registers that have not been used for argument passing
3700  // to the argument register save area. For O32, the save area is allocated
3701  // in the caller's stack frame, while for N32/64, it is allocated in the
3702  // callee's stack frame.
3703  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3704    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3705    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3706    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3707    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3708    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3709                                 MachinePointerInfo(), false, false, 0);
3710    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue((Value*)nullptr);
3711    OutChains.push_back(Store);
3712  }
3713}
3714