MipsISelLowering.cpp revision 200a7434f6abc1e469fdf1ee547bc3fe4fbfcc02
15d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
25d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//
35d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
45d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//
55d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)// This file is distributed under the University of Illinois Open Source
65d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)// License. See LICENSE.TXT for details.
7cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)//
85d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//===----------------------------------------------------------------------===//
95f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)//
105d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)// This file defines the interfaces that Mips uses to lower LLVM code into a
115d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)// selection DAG.
12cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)//
13cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)//===----------------------------------------------------------------------===//
14effb81e5f8246d0db0270817048dc992db66e9fbBen Murdoch#define DEBUG_TYPE "mips-lower"
155f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)#include "MipsISelLowering.h"
16e5d81f57cb97b3b6b7fccc9c5610d21eb81db09dBen Murdoch#include "InstPrinter/MipsInstPrinter.h"
17cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)#include "MCTargetDesc/MipsBaseInfo.h"
18cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)#include "MipsMachineFunction.h"
195d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "MipsSubtarget.h"
20cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)#include "MipsTargetMachine.h"
21cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)#include "MipsTargetObjectFile.h"
225d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/ADT/Statistic.h"
235d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/CodeGen/CallingConvLower.h"
245d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/CodeGen/MachineFrameInfo.h"
255d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/CodeGen/MachineFunction.h"
265d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/CodeGen/MachineInstrBuilder.h"
275d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/CodeGen/MachineRegisterInfo.h"
28cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)#include "llvm/CodeGen/SelectionDAGISel.h"
29cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)#include "llvm/CodeGen/ValueTypes.h"
30cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)#include "llvm/IR/CallingConv.h"
31cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)#include "llvm/IR/DerivedTypes.h"
325d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/IR/GlobalVariable.h"
335d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/Support/CommandLine.h"
345d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/Support/Debug.h"
355d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/Support/ErrorHandling.h"
365d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/Support/raw_ostream.h"
375d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include <cctype>
385d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
395d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)using namespace llvm;
405d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
415d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)STATISTIC(NumTailCalls, "Number of tail calls");
425d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
435d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)static cl::opt<bool>
445d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)LargeGOT("mxgot", cl::Hidden,
455d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
46cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)
475d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)static cl::opt<bool>
485d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
495d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)               cl::desc("MIPS: Don't trap on integer division by zero."),
505d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)               cl::init(false));
515d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
525d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)static const uint16_t O32IntRegs[4] = {
535d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  Mips::A0, Mips::A1, Mips::A2, Mips::A3
545d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)};
555d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
56cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)static const uint16_t Mips64IntRegs[8] = {
57cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
58cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
595d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)};
605d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
615d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)static const uint16_t Mips64DPRegs[8] = {
625d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
635d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
645d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)};
655d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
665d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)// If I is a shifted mask, set the size (Size) and the first bit of the
675d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)// mask (Pos), and return true.
68cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
69cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
70cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  if (!isShiftedMask_64(I))
71cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)     return false;
72cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)
73cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  Size = CountPopulation_64(I);
74cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  Pos = countTrailingZeros(I);
75cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  return true;
76cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)}
77cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)
78cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
79cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
80cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
81cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)}
82cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)
83cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
84cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)                                          SelectionDAG &DAG,
85cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)                                          unsigned Flag) const {
865f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
875f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)}
885f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)
895f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
905f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)                                          SelectionDAG &DAG,
915f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)                                          unsigned Flag) const {
925d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
935d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)}
945d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
95SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
96                                          SelectionDAG &DAG,
97                                          unsigned Flag) const {
98  return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
99}
100
101SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
102                                          SelectionDAG &DAG,
103                                          unsigned Flag) const {
104  return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
105}
106
107SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
108                                          SelectionDAG &DAG,
109                                          unsigned Flag) const {
110  return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
111                                   N->getOffset(), Flag);
112}
113
114const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
115  switch (Opcode) {
116  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
117  case MipsISD::TailCall:          return "MipsISD::TailCall";
118  case MipsISD::Hi:                return "MipsISD::Hi";
119  case MipsISD::Lo:                return "MipsISD::Lo";
120  case MipsISD::GPRel:             return "MipsISD::GPRel";
121  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
122  case MipsISD::Ret:               return "MipsISD::Ret";
123  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
124  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
125  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
126  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
127  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
128  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
129  case MipsISD::ExtractLOHI:       return "MipsISD::ExtractLOHI";
130  case MipsISD::InsertLOHI:        return "MipsISD::InsertLOHI";
131  case MipsISD::Mult:              return "MipsISD::Mult";
132  case MipsISD::Multu:             return "MipsISD::Multu";
133  case MipsISD::MAdd:              return "MipsISD::MAdd";
134  case MipsISD::MAddu:             return "MipsISD::MAddu";
135  case MipsISD::MSub:              return "MipsISD::MSub";
136  case MipsISD::MSubu:             return "MipsISD::MSubu";
137  case MipsISD::DivRem:            return "MipsISD::DivRem";
138  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
139  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
140  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
141  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
142  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
143  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
144  case MipsISD::Sync:              return "MipsISD::Sync";
145  case MipsISD::Ext:               return "MipsISD::Ext";
146  case MipsISD::Ins:               return "MipsISD::Ins";
147  case MipsISD::LWL:               return "MipsISD::LWL";
148  case MipsISD::LWR:               return "MipsISD::LWR";
149  case MipsISD::SWL:               return "MipsISD::SWL";
150  case MipsISD::SWR:               return "MipsISD::SWR";
151  case MipsISD::LDL:               return "MipsISD::LDL";
152  case MipsISD::LDR:               return "MipsISD::LDR";
153  case MipsISD::SDL:               return "MipsISD::SDL";
154  case MipsISD::SDR:               return "MipsISD::SDR";
155  case MipsISD::EXTP:              return "MipsISD::EXTP";
156  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
157  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
158  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
159  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
160  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
161  case MipsISD::SHILO:             return "MipsISD::SHILO";
162  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
163  case MipsISD::MULT:              return "MipsISD::MULT";
164  case MipsISD::MULTU:             return "MipsISD::MULTU";
165  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
166  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
167  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
168  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
169  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
170  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
171  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
172  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
173  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
174  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
175  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
176  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
177  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
178  case MipsISD::VCEQ:              return "MipsISD::VCEQ";
179  case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
180  case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
181  case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
182  case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
183  case MipsISD::VSMAX:             return "MipsISD::VSMAX";
184  case MipsISD::VSMIN:             return "MipsISD::VSMIN";
185  case MipsISD::VUMAX:             return "MipsISD::VUMAX";
186  case MipsISD::VUMIN:             return "MipsISD::VUMIN";
187  case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
188  case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
189  case MipsISD::VNOR:              return "MipsISD::VNOR";
190  case MipsISD::VSHF:              return "MipsISD::VSHF";
191  case MipsISD::SHF:               return "MipsISD::SHF";
192  case MipsISD::ILVEV:             return "MipsISD::ILVEV";
193  case MipsISD::ILVOD:             return "MipsISD::ILVOD";
194  case MipsISD::ILVL:              return "MipsISD::ILVL";
195  case MipsISD::ILVR:              return "MipsISD::ILVR";
196  case MipsISD::PCKEV:             return "MipsISD::PCKEV";
197  case MipsISD::PCKOD:             return "MipsISD::PCKOD";
198  default:                         return NULL;
199  }
200}
201
202MipsTargetLowering::
203MipsTargetLowering(MipsTargetMachine &TM)
204  : TargetLowering(TM, new MipsTargetObjectFile()),
205    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
206    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
207    IsO32(Subtarget->isABI_O32()) {
208  // Mips does not have i1 type, so use i32 for
209  // setcc operations results (slt, sgt, ...).
210  setBooleanContents(ZeroOrOneBooleanContent);
211  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
212
213  // Load extented operations for i1 types must be promoted
214  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
215  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
216  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
217
218  // MIPS doesn't have extending float->double load/store
219  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
220  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
221
222  // Used by legalize types to correctly generate the setcc result.
223  // Without this, every float setcc comes with a AND/OR with the result,
224  // we don't want this, since the fpcmp result goes to a flag register,
225  // which is used implicitly by brcond and select operations.
226  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
227
228  // Mips Custom Operations
229  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
230  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
231  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
232  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
233  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
234  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
235  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
236  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
237  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
238  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
239  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
240  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
241  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
242  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
243  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
244  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
245  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
246  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
247
248  if (!TM.Options.NoNaNsFPMath) {
249    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
250    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
251  }
252
253  if (HasMips64) {
254    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
255    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
256    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
257    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
258    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
259    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
260    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
261    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
262    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
263  }
264
265  if (!HasMips64) {
266    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
267    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
268    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
269  }
270
271  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
272  if (HasMips64)
273    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
274
275  setOperationAction(ISD::SDIV, MVT::i32, Expand);
276  setOperationAction(ISD::SREM, MVT::i32, Expand);
277  setOperationAction(ISD::UDIV, MVT::i32, Expand);
278  setOperationAction(ISD::UREM, MVT::i32, Expand);
279  setOperationAction(ISD::SDIV, MVT::i64, Expand);
280  setOperationAction(ISD::SREM, MVT::i64, Expand);
281  setOperationAction(ISD::UDIV, MVT::i64, Expand);
282  setOperationAction(ISD::UREM, MVT::i64, Expand);
283
284  // Operations not directly supported by Mips.
285  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
286  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
287  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
288  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
289  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
290  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
291  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
292  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
293  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
294  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
295  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
296  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
297  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
298  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
299  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
300  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
301  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
302  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
303  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
304  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
305  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
306  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
307
308  if (!Subtarget->hasMips32r2())
309    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
310
311  if (!Subtarget->hasMips64r2())
312    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
313
314  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
315  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
316  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
317  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
318  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
319  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
320  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
321  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
322  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
323  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
324  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
325  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
326  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
327  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
328  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
329  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
330  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
331
332  if (!TM.Options.NoNaNsFPMath) {
333    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
334    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
335  }
336
337  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
338
339  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
340  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
341  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
342
343  // Use the default for now
344  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
345  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
346
347  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
348  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
349  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
350  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
351
352  setInsertFencesForAtomic(true);
353
354  if (!Subtarget->hasSEInReg()) {
355    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
356    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
357  }
358
359  if (!Subtarget->hasBitCount()) {
360    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
361    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
362  }
363
364  if (!Subtarget->hasSwap()) {
365    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
366    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
367  }
368
369  if (HasMips64) {
370    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
371    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
372    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
373    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
374  }
375
376  setOperationAction(ISD::TRAP, MVT::Other, Legal);
377
378  setTargetDAGCombine(ISD::SDIVREM);
379  setTargetDAGCombine(ISD::UDIVREM);
380  setTargetDAGCombine(ISD::SELECT);
381  setTargetDAGCombine(ISD::AND);
382  setTargetDAGCombine(ISD::OR);
383  setTargetDAGCombine(ISD::ADD);
384
385  setMinFunctionAlignment(HasMips64 ? 3 : 2);
386
387  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
388
389  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
390  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
391
392  MaxStoresPerMemcpy = 16;
393}
394
395const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
396  if (TM.getSubtargetImpl()->inMips16Mode())
397    return llvm::createMips16TargetLowering(TM);
398
399  return llvm::createMipsSETargetLowering(TM);
400}
401
402EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
403  if (!VT.isVector())
404    return MVT::i32;
405  return VT.changeVectorElementTypeToInteger();
406}
407
408static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
409                                    TargetLowering::DAGCombinerInfo &DCI,
410                                    const MipsSubtarget *Subtarget) {
411  if (DCI.isBeforeLegalizeOps())
412    return SDValue();
413
414  EVT Ty = N->getValueType(0);
415  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
416  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
417  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
418                                                  MipsISD::DivRemU16;
419  SDLoc DL(N);
420
421  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
422                               N->getOperand(0), N->getOperand(1));
423  SDValue InChain = DAG.getEntryNode();
424  SDValue InGlue = DivRem;
425
426  // insert MFLO
427  if (N->hasAnyUseOfValue(0)) {
428    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
429                                            InGlue);
430    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
431    InChain = CopyFromLo.getValue(1);
432    InGlue = CopyFromLo.getValue(2);
433  }
434
435  // insert MFHI
436  if (N->hasAnyUseOfValue(1)) {
437    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
438                                            HI, Ty, InGlue);
439    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
440  }
441
442  return SDValue();
443}
444
445static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
446  switch (CC) {
447  default: llvm_unreachable("Unknown fp condition code!");
448  case ISD::SETEQ:
449  case ISD::SETOEQ: return Mips::FCOND_OEQ;
450  case ISD::SETUNE: return Mips::FCOND_UNE;
451  case ISD::SETLT:
452  case ISD::SETOLT: return Mips::FCOND_OLT;
453  case ISD::SETGT:
454  case ISD::SETOGT: return Mips::FCOND_OGT;
455  case ISD::SETLE:
456  case ISD::SETOLE: return Mips::FCOND_OLE;
457  case ISD::SETGE:
458  case ISD::SETOGE: return Mips::FCOND_OGE;
459  case ISD::SETULT: return Mips::FCOND_ULT;
460  case ISD::SETULE: return Mips::FCOND_ULE;
461  case ISD::SETUGT: return Mips::FCOND_UGT;
462  case ISD::SETUGE: return Mips::FCOND_UGE;
463  case ISD::SETUO:  return Mips::FCOND_UN;
464  case ISD::SETO:   return Mips::FCOND_OR;
465  case ISD::SETNE:
466  case ISD::SETONE: return Mips::FCOND_ONE;
467  case ISD::SETUEQ: return Mips::FCOND_UEQ;
468  }
469}
470
471
472/// This function returns true if the floating point conditional branches and
473/// conditional moves which use condition code CC should be inverted.
474static bool invertFPCondCodeUser(Mips::CondCode CC) {
475  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
476    return false;
477
478  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
479         "Illegal Condition Code");
480
481  return true;
482}
483
484// Creates and returns an FPCmp node from a setcc node.
485// Returns Op if setcc is not a floating point comparison.
486static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
487  // must be a SETCC node
488  if (Op.getOpcode() != ISD::SETCC)
489    return Op;
490
491  SDValue LHS = Op.getOperand(0);
492
493  if (!LHS.getValueType().isFloatingPoint())
494    return Op;
495
496  SDValue RHS = Op.getOperand(1);
497  SDLoc DL(Op);
498
499  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
500  // node if necessary.
501  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
502
503  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
504                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
505}
506
507// Creates and returns a CMovFPT/F node.
508static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
509                            SDValue False, SDLoc DL) {
510  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
511  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
512  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
513
514  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
515                     True.getValueType(), True, FCC0, False, Cond);
516}
517
518static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
519                                    TargetLowering::DAGCombinerInfo &DCI,
520                                    const MipsSubtarget *Subtarget) {
521  if (DCI.isBeforeLegalizeOps())
522    return SDValue();
523
524  SDValue SetCC = N->getOperand(0);
525
526  if ((SetCC.getOpcode() != ISD::SETCC) ||
527      !SetCC.getOperand(0).getValueType().isInteger())
528    return SDValue();
529
530  SDValue False = N->getOperand(2);
531  EVT FalseTy = False.getValueType();
532
533  if (!FalseTy.isInteger())
534    return SDValue();
535
536  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
537
538  if (!CN || CN->getZExtValue())
539    return SDValue();
540
541  const SDLoc DL(N);
542  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
543  SDValue True = N->getOperand(1);
544
545  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
546                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
547
548  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
549}
550
551static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
552                                 TargetLowering::DAGCombinerInfo &DCI,
553                                 const MipsSubtarget *Subtarget) {
554  // Pattern match EXT.
555  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
556  //  => ext $dst, $src, size, pos
557  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
558    return SDValue();
559
560  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
561  unsigned ShiftRightOpc = ShiftRight.getOpcode();
562
563  // Op's first operand must be a shift right.
564  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
565    return SDValue();
566
567  // The second operand of the shift must be an immediate.
568  ConstantSDNode *CN;
569  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
570    return SDValue();
571
572  uint64_t Pos = CN->getZExtValue();
573  uint64_t SMPos, SMSize;
574
575  // Op's second operand must be a shifted mask.
576  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
577      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
578    return SDValue();
579
580  // Return if the shifted mask does not start at bit 0 or the sum of its size
581  // and Pos exceeds the word's size.
582  EVT ValTy = N->getValueType(0);
583  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
584    return SDValue();
585
586  return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
587                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
588                     DAG.getConstant(SMSize, MVT::i32));
589}
590
591static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
592                                TargetLowering::DAGCombinerInfo &DCI,
593                                const MipsSubtarget *Subtarget) {
594  // Pattern match INS.
595  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
596  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
597  //  => ins $dst, $src, size, pos, $src1
598  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
599    return SDValue();
600
601  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
602  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
603  ConstantSDNode *CN;
604
605  // See if Op's first operand matches (and $src1 , mask0).
606  if (And0.getOpcode() != ISD::AND)
607    return SDValue();
608
609  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
610      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
611    return SDValue();
612
613  // See if Op's second operand matches (and (shl $src, pos), mask1).
614  if (And1.getOpcode() != ISD::AND)
615    return SDValue();
616
617  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
618      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
619    return SDValue();
620
621  // The shift masks must have the same position and size.
622  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
623    return SDValue();
624
625  SDValue Shl = And1.getOperand(0);
626  if (Shl.getOpcode() != ISD::SHL)
627    return SDValue();
628
629  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
630    return SDValue();
631
632  unsigned Shamt = CN->getZExtValue();
633
634  // Return if the shift amount and the first bit position of mask are not the
635  // same.
636  EVT ValTy = N->getValueType(0);
637  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
638    return SDValue();
639
640  return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
641                     DAG.getConstant(SMPos0, MVT::i32),
642                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
643}
644
645static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
646                                 TargetLowering::DAGCombinerInfo &DCI,
647                                 const MipsSubtarget *Subtarget) {
648  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
649
650  if (DCI.isBeforeLegalizeOps())
651    return SDValue();
652
653  SDValue Add = N->getOperand(1);
654
655  if (Add.getOpcode() != ISD::ADD)
656    return SDValue();
657
658  SDValue Lo = Add.getOperand(1);
659
660  if ((Lo.getOpcode() != MipsISD::Lo) ||
661      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
662    return SDValue();
663
664  EVT ValTy = N->getValueType(0);
665  SDLoc DL(N);
666
667  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
668                             Add.getOperand(0));
669  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
670}
671
672SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
673  const {
674  SelectionDAG &DAG = DCI.DAG;
675  unsigned Opc = N->getOpcode();
676
677  switch (Opc) {
678  default: break;
679  case ISD::SDIVREM:
680  case ISD::UDIVREM:
681    return performDivRemCombine(N, DAG, DCI, Subtarget);
682  case ISD::SELECT:
683    return performSELECTCombine(N, DAG, DCI, Subtarget);
684  case ISD::AND:
685    return performANDCombine(N, DAG, DCI, Subtarget);
686  case ISD::OR:
687    return performORCombine(N, DAG, DCI, Subtarget);
688  case ISD::ADD:
689    return performADDCombine(N, DAG, DCI, Subtarget);
690  }
691
692  return SDValue();
693}
694
695void
696MipsTargetLowering::LowerOperationWrapper(SDNode *N,
697                                          SmallVectorImpl<SDValue> &Results,
698                                          SelectionDAG &DAG) const {
699  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
700
701  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
702    Results.push_back(Res.getValue(I));
703}
704
705void
706MipsTargetLowering::ReplaceNodeResults(SDNode *N,
707                                       SmallVectorImpl<SDValue> &Results,
708                                       SelectionDAG &DAG) const {
709  return LowerOperationWrapper(N, Results, DAG);
710}
711
712SDValue MipsTargetLowering::
713LowerOperation(SDValue Op, SelectionDAG &DAG) const
714{
715  switch (Op.getOpcode())
716  {
717  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
718  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
719  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
720  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
721  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
722  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
723  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
724  case ISD::SELECT:             return lowerSELECT(Op, DAG);
725  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
726  case ISD::SETCC:              return lowerSETCC(Op, DAG);
727  case ISD::VASTART:            return lowerVASTART(Op, DAG);
728  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
729  case ISD::FABS:               return lowerFABS(Op, DAG);
730  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
731  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
732  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
733  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
734  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
735  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
736  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
737  case ISD::LOAD:               return lowerLOAD(Op, DAG);
738  case ISD::STORE:              return lowerSTORE(Op, DAG);
739  case ISD::ADD:                return lowerADD(Op, DAG);
740  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
741  }
742  return SDValue();
743}
744
745//===----------------------------------------------------------------------===//
746//  Lower helper functions
747//===----------------------------------------------------------------------===//
748
749// addLiveIn - This helper function adds the specified physical register to the
750// MachineFunction as a live in value.  It also creates a corresponding
751// virtual register for it.
752static unsigned
753addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
754{
755  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
756  MF.getRegInfo().addLiveIn(PReg, VReg);
757  return VReg;
758}
759
760static MachineBasicBlock *expandPseudoDIV(MachineInstr *MI,
761                                          MachineBasicBlock &MBB,
762                                          const TargetInstrInfo &TII,
763                                          bool Is64Bit) {
764  if (NoZeroDivCheck)
765    return &MBB;
766
767  // Insert instruction "teq $divisor_reg, $zero, 7".
768  MachineBasicBlock::iterator I(MI);
769  MachineInstrBuilder MIB;
770  MIB = BuildMI(MBB, llvm::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
771    .addOperand(MI->getOperand(2)).addReg(Mips::ZERO).addImm(7);
772
773  // Use the 32-bit sub-register if this is a 64-bit division.
774  if (Is64Bit)
775    MIB->getOperand(0).setSubReg(Mips::sub_32);
776
777  return &MBB;
778}
779
780MachineBasicBlock *
781MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
782                                                MachineBasicBlock *BB) const {
783  switch (MI->getOpcode()) {
784  default:
785    llvm_unreachable("Unexpected instr type to insert");
786  case Mips::ATOMIC_LOAD_ADD_I8:
787    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
788  case Mips::ATOMIC_LOAD_ADD_I16:
789    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
790  case Mips::ATOMIC_LOAD_ADD_I32:
791    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
792  case Mips::ATOMIC_LOAD_ADD_I64:
793    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
794
795  case Mips::ATOMIC_LOAD_AND_I8:
796    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
797  case Mips::ATOMIC_LOAD_AND_I16:
798    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
799  case Mips::ATOMIC_LOAD_AND_I32:
800    return emitAtomicBinary(MI, BB, 4, Mips::AND);
801  case Mips::ATOMIC_LOAD_AND_I64:
802    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
803
804  case Mips::ATOMIC_LOAD_OR_I8:
805    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
806  case Mips::ATOMIC_LOAD_OR_I16:
807    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
808  case Mips::ATOMIC_LOAD_OR_I32:
809    return emitAtomicBinary(MI, BB, 4, Mips::OR);
810  case Mips::ATOMIC_LOAD_OR_I64:
811    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
812
813  case Mips::ATOMIC_LOAD_XOR_I8:
814    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
815  case Mips::ATOMIC_LOAD_XOR_I16:
816    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
817  case Mips::ATOMIC_LOAD_XOR_I32:
818    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
819  case Mips::ATOMIC_LOAD_XOR_I64:
820    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
821
822  case Mips::ATOMIC_LOAD_NAND_I8:
823    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
824  case Mips::ATOMIC_LOAD_NAND_I16:
825    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
826  case Mips::ATOMIC_LOAD_NAND_I32:
827    return emitAtomicBinary(MI, BB, 4, 0, true);
828  case Mips::ATOMIC_LOAD_NAND_I64:
829    return emitAtomicBinary(MI, BB, 8, 0, true);
830
831  case Mips::ATOMIC_LOAD_SUB_I8:
832    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
833  case Mips::ATOMIC_LOAD_SUB_I16:
834    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
835  case Mips::ATOMIC_LOAD_SUB_I32:
836    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
837  case Mips::ATOMIC_LOAD_SUB_I64:
838    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
839
840  case Mips::ATOMIC_SWAP_I8:
841    return emitAtomicBinaryPartword(MI, BB, 1, 0);
842  case Mips::ATOMIC_SWAP_I16:
843    return emitAtomicBinaryPartword(MI, BB, 2, 0);
844  case Mips::ATOMIC_SWAP_I32:
845    return emitAtomicBinary(MI, BB, 4, 0);
846  case Mips::ATOMIC_SWAP_I64:
847    return emitAtomicBinary(MI, BB, 8, 0);
848
849  case Mips::ATOMIC_CMP_SWAP_I8:
850    return emitAtomicCmpSwapPartword(MI, BB, 1);
851  case Mips::ATOMIC_CMP_SWAP_I16:
852    return emitAtomicCmpSwapPartword(MI, BB, 2);
853  case Mips::ATOMIC_CMP_SWAP_I32:
854    return emitAtomicCmpSwap(MI, BB, 4);
855  case Mips::ATOMIC_CMP_SWAP_I64:
856    return emitAtomicCmpSwap(MI, BB, 8);
857  case Mips::PseudoSDIV:
858  case Mips::PseudoUDIV:
859    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), false);
860  case Mips::PseudoDSDIV:
861  case Mips::PseudoDUDIV:
862    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), true);
863  }
864}
865
866// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
867// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
868MachineBasicBlock *
869MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
870                                     unsigned Size, unsigned BinOpcode,
871                                     bool Nand) const {
872  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
873
874  MachineFunction *MF = BB->getParent();
875  MachineRegisterInfo &RegInfo = MF->getRegInfo();
876  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
877  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
878  DebugLoc DL = MI->getDebugLoc();
879  unsigned LL, SC, AND, NOR, ZERO, BEQ;
880
881  if (Size == 4) {
882    LL = Mips::LL;
883    SC = Mips::SC;
884    AND = Mips::AND;
885    NOR = Mips::NOR;
886    ZERO = Mips::ZERO;
887    BEQ = Mips::BEQ;
888  }
889  else {
890    LL = Mips::LLD;
891    SC = Mips::SCD;
892    AND = Mips::AND64;
893    NOR = Mips::NOR64;
894    ZERO = Mips::ZERO_64;
895    BEQ = Mips::BEQ64;
896  }
897
898  unsigned OldVal = MI->getOperand(0).getReg();
899  unsigned Ptr = MI->getOperand(1).getReg();
900  unsigned Incr = MI->getOperand(2).getReg();
901
902  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
903  unsigned AndRes = RegInfo.createVirtualRegister(RC);
904  unsigned Success = RegInfo.createVirtualRegister(RC);
905
906  // insert new blocks after the current block
907  const BasicBlock *LLVM_BB = BB->getBasicBlock();
908  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
909  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
910  MachineFunction::iterator It = BB;
911  ++It;
912  MF->insert(It, loopMBB);
913  MF->insert(It, exitMBB);
914
915  // Transfer the remainder of BB and its successor edges to exitMBB.
916  exitMBB->splice(exitMBB->begin(), BB,
917                  llvm::next(MachineBasicBlock::iterator(MI)),
918                  BB->end());
919  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
920
921  //  thisMBB:
922  //    ...
923  //    fallthrough --> loopMBB
924  BB->addSuccessor(loopMBB);
925  loopMBB->addSuccessor(loopMBB);
926  loopMBB->addSuccessor(exitMBB);
927
928  //  loopMBB:
929  //    ll oldval, 0(ptr)
930  //    <binop> storeval, oldval, incr
931  //    sc success, storeval, 0(ptr)
932  //    beq success, $0, loopMBB
933  BB = loopMBB;
934  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
935  if (Nand) {
936    //  and andres, oldval, incr
937    //  nor storeval, $0, andres
938    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
939    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
940  } else if (BinOpcode) {
941    //  <binop> storeval, oldval, incr
942    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
943  } else {
944    StoreVal = Incr;
945  }
946  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
947  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
948
949  MI->eraseFromParent();   // The instruction is gone now.
950
951  return exitMBB;
952}
953
954MachineBasicBlock *
955MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
956                                             MachineBasicBlock *BB,
957                                             unsigned Size, unsigned BinOpcode,
958                                             bool Nand) const {
959  assert((Size == 1 || Size == 2) &&
960      "Unsupported size for EmitAtomicBinaryPartial.");
961
962  MachineFunction *MF = BB->getParent();
963  MachineRegisterInfo &RegInfo = MF->getRegInfo();
964  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
965  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
966  DebugLoc DL = MI->getDebugLoc();
967
968  unsigned Dest = MI->getOperand(0).getReg();
969  unsigned Ptr = MI->getOperand(1).getReg();
970  unsigned Incr = MI->getOperand(2).getReg();
971
972  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
973  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
974  unsigned Mask = RegInfo.createVirtualRegister(RC);
975  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
976  unsigned NewVal = RegInfo.createVirtualRegister(RC);
977  unsigned OldVal = RegInfo.createVirtualRegister(RC);
978  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
979  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
980  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
981  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
982  unsigned AndRes = RegInfo.createVirtualRegister(RC);
983  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
984  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
985  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
986  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
987  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
988  unsigned SllRes = RegInfo.createVirtualRegister(RC);
989  unsigned Success = RegInfo.createVirtualRegister(RC);
990
991  // insert new blocks after the current block
992  const BasicBlock *LLVM_BB = BB->getBasicBlock();
993  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
994  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
995  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
996  MachineFunction::iterator It = BB;
997  ++It;
998  MF->insert(It, loopMBB);
999  MF->insert(It, sinkMBB);
1000  MF->insert(It, exitMBB);
1001
1002  // Transfer the remainder of BB and its successor edges to exitMBB.
1003  exitMBB->splice(exitMBB->begin(), BB,
1004                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1005  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1006
1007  BB->addSuccessor(loopMBB);
1008  loopMBB->addSuccessor(loopMBB);
1009  loopMBB->addSuccessor(sinkMBB);
1010  sinkMBB->addSuccessor(exitMBB);
1011
1012  //  thisMBB:
1013  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1014  //    and     alignedaddr,ptr,masklsb2
1015  //    andi    ptrlsb2,ptr,3
1016  //    sll     shiftamt,ptrlsb2,3
1017  //    ori     maskupper,$0,255               # 0xff
1018  //    sll     mask,maskupper,shiftamt
1019  //    nor     mask2,$0,mask
1020  //    sll     incr2,incr,shiftamt
1021
1022  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1023  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1024    .addReg(Mips::ZERO).addImm(-4);
1025  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1026    .addReg(Ptr).addReg(MaskLSB2);
1027  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1028  if (Subtarget->isLittle()) {
1029    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1030  } else {
1031    unsigned Off = RegInfo.createVirtualRegister(RC);
1032    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1033      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1034    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1035  }
1036  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1037    .addReg(Mips::ZERO).addImm(MaskImm);
1038  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1039    .addReg(MaskUpper).addReg(ShiftAmt);
1040  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1041  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1042
1043  // atomic.load.binop
1044  // loopMBB:
1045  //   ll      oldval,0(alignedaddr)
1046  //   binop   binopres,oldval,incr2
1047  //   and     newval,binopres,mask
1048  //   and     maskedoldval0,oldval,mask2
1049  //   or      storeval,maskedoldval0,newval
1050  //   sc      success,storeval,0(alignedaddr)
1051  //   beq     success,$0,loopMBB
1052
1053  // atomic.swap
1054  // loopMBB:
1055  //   ll      oldval,0(alignedaddr)
1056  //   and     newval,incr2,mask
1057  //   and     maskedoldval0,oldval,mask2
1058  //   or      storeval,maskedoldval0,newval
1059  //   sc      success,storeval,0(alignedaddr)
1060  //   beq     success,$0,loopMBB
1061
1062  BB = loopMBB;
1063  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1064  if (Nand) {
1065    //  and andres, oldval, incr2
1066    //  nor binopres, $0, andres
1067    //  and newval, binopres, mask
1068    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1069    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1070      .addReg(Mips::ZERO).addReg(AndRes);
1071    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1072  } else if (BinOpcode) {
1073    //  <binop> binopres, oldval, incr2
1074    //  and newval, binopres, mask
1075    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1076    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1077  } else {// atomic.swap
1078    //  and newval, incr2, mask
1079    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1080  }
1081
1082  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1083    .addReg(OldVal).addReg(Mask2);
1084  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1085    .addReg(MaskedOldVal0).addReg(NewVal);
1086  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1087    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1088  BuildMI(BB, DL, TII->get(Mips::BEQ))
1089    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1090
1091  //  sinkMBB:
1092  //    and     maskedoldval1,oldval,mask
1093  //    srl     srlres,maskedoldval1,shiftamt
1094  //    sll     sllres,srlres,24
1095  //    sra     dest,sllres,24
1096  BB = sinkMBB;
1097  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1098
1099  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1100    .addReg(OldVal).addReg(Mask);
1101  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1102      .addReg(MaskedOldVal1).addReg(ShiftAmt);
1103  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1104      .addReg(SrlRes).addImm(ShiftImm);
1105  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1106      .addReg(SllRes).addImm(ShiftImm);
1107
1108  MI->eraseFromParent();   // The instruction is gone now.
1109
1110  return exitMBB;
1111}
1112
1113MachineBasicBlock *
1114MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1115                                      MachineBasicBlock *BB,
1116                                      unsigned Size) const {
1117  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1118
1119  MachineFunction *MF = BB->getParent();
1120  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1121  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1122  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1123  DebugLoc DL = MI->getDebugLoc();
1124  unsigned LL, SC, ZERO, BNE, BEQ;
1125
1126  if (Size == 4) {
1127    LL = Mips::LL;
1128    SC = Mips::SC;
1129    ZERO = Mips::ZERO;
1130    BNE = Mips::BNE;
1131    BEQ = Mips::BEQ;
1132  }
1133  else {
1134    LL = Mips::LLD;
1135    SC = Mips::SCD;
1136    ZERO = Mips::ZERO_64;
1137    BNE = Mips::BNE64;
1138    BEQ = Mips::BEQ64;
1139  }
1140
1141  unsigned Dest    = MI->getOperand(0).getReg();
1142  unsigned Ptr     = MI->getOperand(1).getReg();
1143  unsigned OldVal  = MI->getOperand(2).getReg();
1144  unsigned NewVal  = MI->getOperand(3).getReg();
1145
1146  unsigned Success = RegInfo.createVirtualRegister(RC);
1147
1148  // insert new blocks after the current block
1149  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1150  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1151  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1152  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1153  MachineFunction::iterator It = BB;
1154  ++It;
1155  MF->insert(It, loop1MBB);
1156  MF->insert(It, loop2MBB);
1157  MF->insert(It, exitMBB);
1158
1159  // Transfer the remainder of BB and its successor edges to exitMBB.
1160  exitMBB->splice(exitMBB->begin(), BB,
1161                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1162  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1163
1164  //  thisMBB:
1165  //    ...
1166  //    fallthrough --> loop1MBB
1167  BB->addSuccessor(loop1MBB);
1168  loop1MBB->addSuccessor(exitMBB);
1169  loop1MBB->addSuccessor(loop2MBB);
1170  loop2MBB->addSuccessor(loop1MBB);
1171  loop2MBB->addSuccessor(exitMBB);
1172
1173  // loop1MBB:
1174  //   ll dest, 0(ptr)
1175  //   bne dest, oldval, exitMBB
1176  BB = loop1MBB;
1177  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1178  BuildMI(BB, DL, TII->get(BNE))
1179    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1180
1181  // loop2MBB:
1182  //   sc success, newval, 0(ptr)
1183  //   beq success, $0, loop1MBB
1184  BB = loop2MBB;
1185  BuildMI(BB, DL, TII->get(SC), Success)
1186    .addReg(NewVal).addReg(Ptr).addImm(0);
1187  BuildMI(BB, DL, TII->get(BEQ))
1188    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1189
1190  MI->eraseFromParent();   // The instruction is gone now.
1191
1192  return exitMBB;
1193}
1194
1195MachineBasicBlock *
1196MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1197                                              MachineBasicBlock *BB,
1198                                              unsigned Size) const {
1199  assert((Size == 1 || Size == 2) &&
1200      "Unsupported size for EmitAtomicCmpSwapPartial.");
1201
1202  MachineFunction *MF = BB->getParent();
1203  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1204  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1205  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1206  DebugLoc DL = MI->getDebugLoc();
1207
1208  unsigned Dest    = MI->getOperand(0).getReg();
1209  unsigned Ptr     = MI->getOperand(1).getReg();
1210  unsigned CmpVal  = MI->getOperand(2).getReg();
1211  unsigned NewVal  = MI->getOperand(3).getReg();
1212
1213  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1214  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1215  unsigned Mask = RegInfo.createVirtualRegister(RC);
1216  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1217  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1218  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1219  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1220  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1221  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1222  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1223  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1224  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1225  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1226  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1227  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1228  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1229  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1230  unsigned Success = RegInfo.createVirtualRegister(RC);
1231
1232  // insert new blocks after the current block
1233  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1234  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1235  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1236  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1237  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1238  MachineFunction::iterator It = BB;
1239  ++It;
1240  MF->insert(It, loop1MBB);
1241  MF->insert(It, loop2MBB);
1242  MF->insert(It, sinkMBB);
1243  MF->insert(It, exitMBB);
1244
1245  // Transfer the remainder of BB and its successor edges to exitMBB.
1246  exitMBB->splice(exitMBB->begin(), BB,
1247                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1248  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1249
1250  BB->addSuccessor(loop1MBB);
1251  loop1MBB->addSuccessor(sinkMBB);
1252  loop1MBB->addSuccessor(loop2MBB);
1253  loop2MBB->addSuccessor(loop1MBB);
1254  loop2MBB->addSuccessor(sinkMBB);
1255  sinkMBB->addSuccessor(exitMBB);
1256
1257  // FIXME: computation of newval2 can be moved to loop2MBB.
1258  //  thisMBB:
1259  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1260  //    and     alignedaddr,ptr,masklsb2
1261  //    andi    ptrlsb2,ptr,3
1262  //    sll     shiftamt,ptrlsb2,3
1263  //    ori     maskupper,$0,255               # 0xff
1264  //    sll     mask,maskupper,shiftamt
1265  //    nor     mask2,$0,mask
1266  //    andi    maskedcmpval,cmpval,255
1267  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1268  //    andi    maskednewval,newval,255
1269  //    sll     shiftednewval,maskednewval,shiftamt
1270  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1271  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1272    .addReg(Mips::ZERO).addImm(-4);
1273  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1274    .addReg(Ptr).addReg(MaskLSB2);
1275  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1276  if (Subtarget->isLittle()) {
1277    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1278  } else {
1279    unsigned Off = RegInfo.createVirtualRegister(RC);
1280    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1281      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1282    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1283  }
1284  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1285    .addReg(Mips::ZERO).addImm(MaskImm);
1286  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1287    .addReg(MaskUpper).addReg(ShiftAmt);
1288  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1289  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1290    .addReg(CmpVal).addImm(MaskImm);
1291  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1292    .addReg(MaskedCmpVal).addReg(ShiftAmt);
1293  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1294    .addReg(NewVal).addImm(MaskImm);
1295  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1296    .addReg(MaskedNewVal).addReg(ShiftAmt);
1297
1298  //  loop1MBB:
1299  //    ll      oldval,0(alginedaddr)
1300  //    and     maskedoldval0,oldval,mask
1301  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1302  BB = loop1MBB;
1303  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1304  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1305    .addReg(OldVal).addReg(Mask);
1306  BuildMI(BB, DL, TII->get(Mips::BNE))
1307    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1308
1309  //  loop2MBB:
1310  //    and     maskedoldval1,oldval,mask2
1311  //    or      storeval,maskedoldval1,shiftednewval
1312  //    sc      success,storeval,0(alignedaddr)
1313  //    beq     success,$0,loop1MBB
1314  BB = loop2MBB;
1315  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1316    .addReg(OldVal).addReg(Mask2);
1317  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1318    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1319  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1320      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1321  BuildMI(BB, DL, TII->get(Mips::BEQ))
1322      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1323
1324  //  sinkMBB:
1325  //    srl     srlres,maskedoldval0,shiftamt
1326  //    sll     sllres,srlres,24
1327  //    sra     dest,sllres,24
1328  BB = sinkMBB;
1329  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1330
1331  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1332      .addReg(MaskedOldVal0).addReg(ShiftAmt);
1333  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1334      .addReg(SrlRes).addImm(ShiftImm);
1335  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1336      .addReg(SllRes).addImm(ShiftImm);
1337
1338  MI->eraseFromParent();   // The instruction is gone now.
1339
1340  return exitMBB;
1341}
1342
1343//===----------------------------------------------------------------------===//
1344//  Misc Lower Operation implementation
1345//===----------------------------------------------------------------------===//
1346SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1347  SDValue Chain = Op.getOperand(0);
1348  SDValue Table = Op.getOperand(1);
1349  SDValue Index = Op.getOperand(2);
1350  SDLoc DL(Op);
1351  EVT PTy = getPointerTy();
1352  unsigned EntrySize =
1353    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1354
1355  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1356                      DAG.getConstant(EntrySize, PTy));
1357  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1358
1359  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1360  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1361                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1362                        0);
1363  Chain = Addr.getValue(1);
1364
1365  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
1366    // For PIC, the sequence is:
1367    // BRIND(load(Jumptable + index) + RelocBase)
1368    // RelocBase can be JumpTable, GOT or some sort of global base.
1369    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1370                       getPICJumpTableRelocBase(Table, DAG));
1371  }
1372
1373  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1374}
1375
1376SDValue MipsTargetLowering::
1377lowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1378{
1379  // The first operand is the chain, the second is the condition, the third is
1380  // the block to branch to if the condition is true.
1381  SDValue Chain = Op.getOperand(0);
1382  SDValue Dest = Op.getOperand(2);
1383  SDLoc DL(Op);
1384
1385  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1386
1387  // Return if flag is not set by a floating point comparison.
1388  if (CondRes.getOpcode() != MipsISD::FPCmp)
1389    return Op;
1390
1391  SDValue CCNode  = CondRes.getOperand(2);
1392  Mips::CondCode CC =
1393    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1394  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1395  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1396  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1397  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1398                     FCC0, Dest, CondRes);
1399}
1400
1401SDValue MipsTargetLowering::
1402lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1403{
1404  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1405
1406  // Return if flag is not set by a floating point comparison.
1407  if (Cond.getOpcode() != MipsISD::FPCmp)
1408    return Op;
1409
1410  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1411                      SDLoc(Op));
1412}
1413
1414SDValue MipsTargetLowering::
1415lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1416{
1417  SDLoc DL(Op);
1418  EVT Ty = Op.getOperand(0).getValueType();
1419  SDValue Cond = DAG.getNode(ISD::SETCC, DL,
1420                             getSetCCResultType(*DAG.getContext(), Ty),
1421                             Op.getOperand(0), Op.getOperand(1),
1422                             Op.getOperand(4));
1423
1424  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1425                     Op.getOperand(3));
1426}
1427
1428SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1429  SDValue Cond = createFPCmp(DAG, Op);
1430
1431  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1432         "Floating point operand expected.");
1433
1434  SDValue True  = DAG.getConstant(1, MVT::i32);
1435  SDValue False = DAG.getConstant(0, MVT::i32);
1436
1437  return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
1438}
1439
1440SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1441                                               SelectionDAG &DAG) const {
1442  // FIXME there isn't actually debug info here
1443  SDLoc DL(Op);
1444  EVT Ty = Op.getValueType();
1445  GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1446  const GlobalValue *GV = N->getGlobal();
1447
1448  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1449    const MipsTargetObjectFile &TLOF =
1450      (const MipsTargetObjectFile&)getObjFileLowering();
1451
1452    // %gp_rel relocation
1453    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1454      SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1455                                              MipsII::MO_GPREL);
1456      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1457                                      DAG.getVTList(MVT::i32), &GA, 1);
1458      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1459      return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1460    }
1461
1462    // %hi/%lo relocation
1463    return getAddrNonPIC(N, Ty, DAG);
1464  }
1465
1466  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1467    return getAddrLocal(N, Ty, DAG, HasMips64);
1468
1469  if (LargeGOT)
1470    return getAddrGlobalLargeGOT(N, Ty, DAG, MipsII::MO_GOT_HI16,
1471                                 MipsII::MO_GOT_LO16);
1472
1473  return getAddrGlobal(N, Ty, DAG,
1474                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1475}
1476
1477SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1478                                              SelectionDAG &DAG) const {
1479  BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
1480  EVT Ty = Op.getValueType();
1481
1482  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1483    return getAddrNonPIC(N, Ty, DAG);
1484
1485  return getAddrLocal(N, Ty, DAG, HasMips64);
1486}
1487
1488SDValue MipsTargetLowering::
1489lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1490{
1491  // If the relocation model is PIC, use the General Dynamic TLS Model or
1492  // Local Dynamic TLS model, otherwise use the Initial Exec or
1493  // Local Exec TLS Model.
1494
1495  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1496  SDLoc DL(GA);
1497  const GlobalValue *GV = GA->getGlobal();
1498  EVT PtrVT = getPointerTy();
1499
1500  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1501
1502  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1503    // General Dynamic and Local Dynamic TLS Model.
1504    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1505                                                      : MipsII::MO_TLSGD;
1506
1507    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1508    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1509                                   getGlobalReg(DAG, PtrVT), TGA);
1510    unsigned PtrSize = PtrVT.getSizeInBits();
1511    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1512
1513    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1514
1515    ArgListTy Args;
1516    ArgListEntry Entry;
1517    Entry.Node = Argument;
1518    Entry.Ty = PtrTy;
1519    Args.push_back(Entry);
1520
1521    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1522                  false, false, false, false, 0, CallingConv::C,
1523                  /*IsTailCall=*/false, /*doesNotRet=*/false,
1524                  /*isReturnValueUsed=*/true,
1525                  TlsGetAddr, Args, DAG, DL);
1526    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1527
1528    SDValue Ret = CallResult.first;
1529
1530    if (model != TLSModel::LocalDynamic)
1531      return Ret;
1532
1533    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1534                                               MipsII::MO_DTPREL_HI);
1535    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1536    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1537                                               MipsII::MO_DTPREL_LO);
1538    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1539    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1540    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1541  }
1542
1543  SDValue Offset;
1544  if (model == TLSModel::InitialExec) {
1545    // Initial Exec TLS Model
1546    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1547                                             MipsII::MO_GOTTPREL);
1548    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1549                      TGA);
1550    Offset = DAG.getLoad(PtrVT, DL,
1551                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1552                         false, false, false, 0);
1553  } else {
1554    // Local Exec TLS Model
1555    assert(model == TLSModel::LocalExec);
1556    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1557                                               MipsII::MO_TPREL_HI);
1558    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1559                                               MipsII::MO_TPREL_LO);
1560    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1561    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1562    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1563  }
1564
1565  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1566  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1567}
1568
1569SDValue MipsTargetLowering::
1570lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1571{
1572  JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
1573  EVT Ty = Op.getValueType();
1574
1575  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1576    return getAddrNonPIC(N, Ty, DAG);
1577
1578  return getAddrLocal(N, Ty, DAG, HasMips64);
1579}
1580
1581SDValue MipsTargetLowering::
1582lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1583{
1584  // gp_rel relocation
1585  // FIXME: we should reference the constant pool using small data sections,
1586  // but the asm printer currently doesn't support this feature without
1587  // hacking it. This feature should come soon so we can uncomment the
1588  // stuff below.
1589  //if (IsInSmallSection(C->getType())) {
1590  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1591  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1592  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1593  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1594  EVT Ty = Op.getValueType();
1595
1596  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1597    return getAddrNonPIC(N, Ty, DAG);
1598
1599  return getAddrLocal(N, Ty, DAG, HasMips64);
1600}
1601
1602SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1603  MachineFunction &MF = DAG.getMachineFunction();
1604  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1605
1606  SDLoc DL(Op);
1607  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1608                                 getPointerTy());
1609
1610  // vastart just stores the address of the VarArgsFrameIndex slot into the
1611  // memory location argument.
1612  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1613  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1614                      MachinePointerInfo(SV), false, false, 0);
1615}
1616
1617static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1618  EVT TyX = Op.getOperand(0).getValueType();
1619  EVT TyY = Op.getOperand(1).getValueType();
1620  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1621  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1622  SDLoc DL(Op);
1623  SDValue Res;
1624
1625  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1626  // to i32.
1627  SDValue X = (TyX == MVT::f32) ?
1628    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1629    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1630                Const1);
1631  SDValue Y = (TyY == MVT::f32) ?
1632    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1633    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1634                Const1);
1635
1636  if (HasR2) {
1637    // ext  E, Y, 31, 1  ; extract bit31 of Y
1638    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1639    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1640    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1641  } else {
1642    // sll SllX, X, 1
1643    // srl SrlX, SllX, 1
1644    // srl SrlY, Y, 31
1645    // sll SllY, SrlX, 31
1646    // or  Or, SrlX, SllY
1647    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1648    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1649    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1650    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1651    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1652  }
1653
1654  if (TyX == MVT::f32)
1655    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1656
1657  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1658                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1659  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1660}
1661
1662static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1663  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1664  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1665  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1666  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1667  SDLoc DL(Op);
1668
1669  // Bitcast to integer nodes.
1670  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1671  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1672
1673  if (HasR2) {
1674    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1675    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1676    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1677                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1678
1679    if (WidthX > WidthY)
1680      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1681    else if (WidthY > WidthX)
1682      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1683
1684    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1685                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1686    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1687  }
1688
1689  // (d)sll SllX, X, 1
1690  // (d)srl SrlX, SllX, 1
1691  // (d)srl SrlY, Y, width(Y)-1
1692  // (d)sll SllY, SrlX, width(Y)-1
1693  // or     Or, SrlX, SllY
1694  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1695  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1696  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1697                             DAG.getConstant(WidthY - 1, MVT::i32));
1698
1699  if (WidthX > WidthY)
1700    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1701  else if (WidthY > WidthX)
1702    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1703
1704  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1705                             DAG.getConstant(WidthX - 1, MVT::i32));
1706  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1707  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1708}
1709
1710SDValue
1711MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1712  if (Subtarget->hasMips64())
1713    return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1714
1715  return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1716}
1717
1718static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1719  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1720  SDLoc DL(Op);
1721
1722  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1723  // to i32.
1724  SDValue X = (Op.getValueType() == MVT::f32) ?
1725    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1726    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1727                Const1);
1728
1729  // Clear MSB.
1730  if (HasR2)
1731    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1732                      DAG.getRegister(Mips::ZERO, MVT::i32),
1733                      DAG.getConstant(31, MVT::i32), Const1, X);
1734  else {
1735    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1736    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1737  }
1738
1739  if (Op.getValueType() == MVT::f32)
1740    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1741
1742  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1743                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1744  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1745}
1746
1747static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1748  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1749  SDLoc DL(Op);
1750
1751  // Bitcast to integer node.
1752  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1753
1754  // Clear MSB.
1755  if (HasR2)
1756    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1757                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1758                      DAG.getConstant(63, MVT::i32), Const1, X);
1759  else {
1760    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1761    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1762  }
1763
1764  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1765}
1766
1767SDValue
1768MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
1769  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1770    return lowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1771
1772  return lowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1773}
1774
1775SDValue MipsTargetLowering::
1776lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1777  // check the depth
1778  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1779         "Frame address can only be determined for current frame.");
1780
1781  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1782  MFI->setFrameAddressIsTaken(true);
1783  EVT VT = Op.getValueType();
1784  SDLoc DL(Op);
1785  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1786                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1787  return FrameAddr;
1788}
1789
1790SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1791                                            SelectionDAG &DAG) const {
1792  // check the depth
1793  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1794         "Return address can be determined only for current frame.");
1795
1796  MachineFunction &MF = DAG.getMachineFunction();
1797  MachineFrameInfo *MFI = MF.getFrameInfo();
1798  MVT VT = Op.getSimpleValueType();
1799  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1800  MFI->setReturnAddressIsTaken(true);
1801
1802  // Return RA, which contains the return address. Mark it an implicit live-in.
1803  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1804  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
1805}
1806
1807// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1808// generated from __builtin_eh_return (offset, handler)
1809// The effect of this is to adjust the stack pointer by "offset"
1810// and then branch to "handler".
1811SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1812                                                                     const {
1813  MachineFunction &MF = DAG.getMachineFunction();
1814  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1815
1816  MipsFI->setCallsEhReturn();
1817  SDValue Chain     = Op.getOperand(0);
1818  SDValue Offset    = Op.getOperand(1);
1819  SDValue Handler   = Op.getOperand(2);
1820  SDLoc DL(Op);
1821  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
1822
1823  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1824  // EH_RETURN nodes, so that instructions are emitted back-to-back.
1825  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
1826  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
1827  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1828  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1829  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1830                     DAG.getRegister(OffsetReg, Ty),
1831                     DAG.getRegister(AddrReg, getPointerTy()),
1832                     Chain.getValue(1));
1833}
1834
1835SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1836                                              SelectionDAG &DAG) const {
1837  // FIXME: Need pseudo-fence for 'singlethread' fences
1838  // FIXME: Set SType for weaker fences where supported/appropriate.
1839  unsigned SType = 0;
1840  SDLoc DL(Op);
1841  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1842                     DAG.getConstant(SType, MVT::i32));
1843}
1844
1845SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1846                                                SelectionDAG &DAG) const {
1847  SDLoc DL(Op);
1848  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1849  SDValue Shamt = Op.getOperand(2);
1850
1851  // if shamt < 32:
1852  //  lo = (shl lo, shamt)
1853  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1854  // else:
1855  //  lo = 0
1856  //  hi = (shl lo, shamt[4:0])
1857  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1858                            DAG.getConstant(-1, MVT::i32));
1859  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1860                                      DAG.getConstant(1, MVT::i32));
1861  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1862                                     Not);
1863  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1864  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1865  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1866  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1867                             DAG.getConstant(0x20, MVT::i32));
1868  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1869                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1870  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1871
1872  SDValue Ops[2] = {Lo, Hi};
1873  return DAG.getMergeValues(Ops, 2, DL);
1874}
1875
1876SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1877                                                 bool IsSRA) const {
1878  SDLoc DL(Op);
1879  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1880  SDValue Shamt = Op.getOperand(2);
1881
1882  // if shamt < 32:
1883  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1884  //  if isSRA:
1885  //    hi = (sra hi, shamt)
1886  //  else:
1887  //    hi = (srl hi, shamt)
1888  // else:
1889  //  if isSRA:
1890  //   lo = (sra hi, shamt[4:0])
1891  //   hi = (sra hi, 31)
1892  //  else:
1893  //   lo = (srl hi, shamt[4:0])
1894  //   hi = 0
1895  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1896                            DAG.getConstant(-1, MVT::i32));
1897  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1898                                     DAG.getConstant(1, MVT::i32));
1899  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1900  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1901  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1902  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1903                                     Hi, Shamt);
1904  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1905                             DAG.getConstant(0x20, MVT::i32));
1906  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1907                                DAG.getConstant(31, MVT::i32));
1908  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1909  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1910                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
1911                   ShiftRightHi);
1912
1913  SDValue Ops[2] = {Lo, Hi};
1914  return DAG.getMergeValues(Ops, 2, DL);
1915}
1916
1917static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
1918                            SDValue Chain, SDValue Src, unsigned Offset) {
1919  SDValue Ptr = LD->getBasePtr();
1920  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
1921  EVT BasePtrVT = Ptr.getValueType();
1922  SDLoc DL(LD);
1923  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1924
1925  if (Offset)
1926    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1927                      DAG.getConstant(Offset, BasePtrVT));
1928
1929  SDValue Ops[] = { Chain, Ptr, Src };
1930  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
1931                                 LD->getMemOperand());
1932}
1933
1934// Expand an unaligned 32 or 64-bit integer load node.
1935SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1936  LoadSDNode *LD = cast<LoadSDNode>(Op);
1937  EVT MemVT = LD->getMemoryVT();
1938
1939  // Return if load is aligned or if MemVT is neither i32 nor i64.
1940  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
1941      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
1942    return SDValue();
1943
1944  bool IsLittle = Subtarget->isLittle();
1945  EVT VT = Op.getValueType();
1946  ISD::LoadExtType ExtType = LD->getExtensionType();
1947  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
1948
1949  assert((VT == MVT::i32) || (VT == MVT::i64));
1950
1951  // Expand
1952  //  (set dst, (i64 (load baseptr)))
1953  // to
1954  //  (set tmp, (ldl (add baseptr, 7), undef))
1955  //  (set dst, (ldr baseptr, tmp))
1956  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
1957    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
1958                               IsLittle ? 7 : 0);
1959    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
1960                        IsLittle ? 0 : 7);
1961  }
1962
1963  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
1964                             IsLittle ? 3 : 0);
1965  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
1966                             IsLittle ? 0 : 3);
1967
1968  // Expand
1969  //  (set dst, (i32 (load baseptr))) or
1970  //  (set dst, (i64 (sextload baseptr))) or
1971  //  (set dst, (i64 (extload baseptr)))
1972  // to
1973  //  (set tmp, (lwl (add baseptr, 3), undef))
1974  //  (set dst, (lwr baseptr, tmp))
1975  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
1976      (ExtType == ISD::EXTLOAD))
1977    return LWR;
1978
1979  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
1980
1981  // Expand
1982  //  (set dst, (i64 (zextload baseptr)))
1983  // to
1984  //  (set tmp0, (lwl (add baseptr, 3), undef))
1985  //  (set tmp1, (lwr baseptr, tmp0))
1986  //  (set tmp2, (shl tmp1, 32))
1987  //  (set dst, (srl tmp2, 32))
1988  SDLoc DL(LD);
1989  SDValue Const32 = DAG.getConstant(32, MVT::i32);
1990  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
1991  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
1992  SDValue Ops[] = { SRL, LWR.getValue(1) };
1993  return DAG.getMergeValues(Ops, 2, DL);
1994}
1995
1996static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
1997                             SDValue Chain, unsigned Offset) {
1998  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
1999  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2000  SDLoc DL(SD);
2001  SDVTList VTList = DAG.getVTList(MVT::Other);
2002
2003  if (Offset)
2004    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2005                      DAG.getConstant(Offset, BasePtrVT));
2006
2007  SDValue Ops[] = { Chain, Value, Ptr };
2008  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2009                                 SD->getMemOperand());
2010}
2011
2012// Expand an unaligned 32 or 64-bit integer store node.
2013static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2014                                      bool IsLittle) {
2015  SDValue Value = SD->getValue(), Chain = SD->getChain();
2016  EVT VT = Value.getValueType();
2017
2018  // Expand
2019  //  (store val, baseptr) or
2020  //  (truncstore val, baseptr)
2021  // to
2022  //  (swl val, (add baseptr, 3))
2023  //  (swr val, baseptr)
2024  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2025    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2026                                IsLittle ? 3 : 0);
2027    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2028  }
2029
2030  assert(VT == MVT::i64);
2031
2032  // Expand
2033  //  (store val, baseptr)
2034  // to
2035  //  (sdl val, (add baseptr, 7))
2036  //  (sdr val, baseptr)
2037  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2038  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2039}
2040
2041// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2042static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2043  SDValue Val = SD->getValue();
2044
2045  if (Val.getOpcode() != ISD::FP_TO_SINT)
2046    return SDValue();
2047
2048  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2049  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2050                           Val.getOperand(0));
2051
2052  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2053                      SD->getPointerInfo(), SD->isVolatile(),
2054                      SD->isNonTemporal(), SD->getAlignment());
2055}
2056
2057SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2058  StoreSDNode *SD = cast<StoreSDNode>(Op);
2059  EVT MemVT = SD->getMemoryVT();
2060
2061  // Lower unaligned integer stores.
2062  if ((SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2063      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2064    return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
2065
2066  return lowerFP_TO_SINT_STORE(SD, DAG);
2067}
2068
2069SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2070  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2071      || cast<ConstantSDNode>
2072        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2073      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2074    return SDValue();
2075
2076  // The pattern
2077  //   (add (frameaddr 0), (frame_to_args_offset))
2078  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2079  //   (add FrameObject, 0)
2080  // where FrameObject is a fixed StackObject with offset 0 which points to
2081  // the old stack pointer.
2082  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2083  EVT ValTy = Op->getValueType(0);
2084  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2085  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2086  return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
2087                     DAG.getConstant(0, ValTy));
2088}
2089
2090SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2091                                            SelectionDAG &DAG) const {
2092  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2093  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2094                              Op.getOperand(0));
2095  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2096}
2097
2098//===----------------------------------------------------------------------===//
2099//                      Calling Convention Implementation
2100//===----------------------------------------------------------------------===//
2101
2102//===----------------------------------------------------------------------===//
2103// TODO: Implement a generic logic using tblgen that can support this.
2104// Mips O32 ABI rules:
2105// ---
2106// i32 - Passed in A0, A1, A2, A3 and stack
2107// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2108//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2109// f64 - Only passed in two aliased f32 registers if no int reg has been used
2110//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2111//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2112//       go to stack.
2113//
2114//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2115//===----------------------------------------------------------------------===//
2116
2117static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2118                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2119                       ISD::ArgFlagsTy ArgFlags, CCState &State,
2120                       const uint16_t *F64Regs) {
2121
2122  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2123
2124  static const uint16_t IntRegs[] = {
2125      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2126  };
2127  static const uint16_t F32Regs[] = {
2128      Mips::F12, Mips::F14
2129  };
2130
2131  // Do not process byval args here.
2132  if (ArgFlags.isByVal())
2133    return true;
2134
2135  // Promote i8 and i16
2136  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2137    LocVT = MVT::i32;
2138    if (ArgFlags.isSExt())
2139      LocInfo = CCValAssign::SExt;
2140    else if (ArgFlags.isZExt())
2141      LocInfo = CCValAssign::ZExt;
2142    else
2143      LocInfo = CCValAssign::AExt;
2144  }
2145
2146  unsigned Reg;
2147
2148  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2149  // is true: function is vararg, argument is 3rd or higher, there is previous
2150  // argument which is not f32 or f64.
2151  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2152      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2153  unsigned OrigAlign = ArgFlags.getOrigAlign();
2154  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2155
2156  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2157    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2158    // If this is the first part of an i64 arg,
2159    // the allocated register must be either A0 or A2.
2160    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2161      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2162    LocVT = MVT::i32;
2163  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2164    // Allocate int register and shadow next int register. If first
2165    // available register is Mips::A1 or Mips::A3, shadow it too.
2166    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2167    if (Reg == Mips::A1 || Reg == Mips::A3)
2168      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2169    State.AllocateReg(IntRegs, IntRegsSize);
2170    LocVT = MVT::i32;
2171  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2172    // we are guaranteed to find an available float register
2173    if (ValVT == MVT::f32) {
2174      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2175      // Shadow int register
2176      State.AllocateReg(IntRegs, IntRegsSize);
2177    } else {
2178      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2179      // Shadow int registers
2180      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2181      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2182        State.AllocateReg(IntRegs, IntRegsSize);
2183      State.AllocateReg(IntRegs, IntRegsSize);
2184    }
2185  } else
2186    llvm_unreachable("Cannot handle this ValVT.");
2187
2188  if (!Reg) {
2189    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2190                                          OrigAlign);
2191    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2192  } else
2193    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2194
2195  return false;
2196}
2197
2198static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2199                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2200                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2201  static const uint16_t F64Regs[] = { Mips::D6, Mips::D7 };
2202
2203  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2204}
2205
2206static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2207                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2208                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2209  static const uint16_t F64Regs[] = { Mips::D12_64, Mips::D12_64 };
2210
2211  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2212}
2213
2214#include "MipsGenCallingConv.inc"
2215
2216//===----------------------------------------------------------------------===//
2217//                  Call Calling Convention Implementation
2218//===----------------------------------------------------------------------===//
2219
2220// Return next O32 integer argument register.
2221static unsigned getNextIntArgReg(unsigned Reg) {
2222  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2223  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2224}
2225
2226SDValue
2227MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2228                                   SDValue Chain, SDValue Arg, SDLoc DL,
2229                                   bool IsTailCall, SelectionDAG &DAG) const {
2230  if (!IsTailCall) {
2231    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2232                                 DAG.getIntPtrConstant(Offset));
2233    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2234                        false, 0);
2235  }
2236
2237  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2238  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2239  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2240  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2241                      /*isVolatile=*/ true, false, 0);
2242}
2243
2244void MipsTargetLowering::
2245getOpndList(SmallVectorImpl<SDValue> &Ops,
2246            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2247            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2248            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2249  // Insert node "GP copy globalreg" before call to function.
2250  //
2251  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2252  // in PIC mode) allow symbols to be resolved via lazy binding.
2253  // The lazy binding stub requires GP to point to the GOT.
2254  if (IsPICCall && !InternalLinkage) {
2255    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2256    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2257    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2258  }
2259
2260  // Build a sequence of copy-to-reg nodes chained together with token
2261  // chain and flag operands which copy the outgoing args into registers.
2262  // The InFlag in necessary since all emitted instructions must be
2263  // stuck together.
2264  SDValue InFlag;
2265
2266  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2267    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2268                                 RegsToPass[i].second, InFlag);
2269    InFlag = Chain.getValue(1);
2270  }
2271
2272  // Add argument registers to the end of the list so that they are
2273  // known live into the call.
2274  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2275    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2276                                      RegsToPass[i].second.getValueType()));
2277
2278  // Add a register mask operand representing the call-preserved registers.
2279  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2280  const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2281  assert(Mask && "Missing call preserved mask for calling convention");
2282  if (Subtarget->inMips16HardFloat()) {
2283    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2284      llvm::StringRef Sym = G->getGlobal()->getName();
2285      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2286      if (F->hasFnAttribute("__Mips16RetHelper")) {
2287        Mask = MipsRegisterInfo::getMips16RetHelperMask();
2288      }
2289    }
2290  }
2291  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2292
2293  if (InFlag.getNode())
2294    Ops.push_back(InFlag);
2295}
2296
2297/// LowerCall - functions arguments are copied from virtual regs to
2298/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2299SDValue
2300MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2301                              SmallVectorImpl<SDValue> &InVals) const {
2302  SelectionDAG &DAG                     = CLI.DAG;
2303  SDLoc DL                              = CLI.DL;
2304  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2305  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2306  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2307  SDValue Chain                         = CLI.Chain;
2308  SDValue Callee                        = CLI.Callee;
2309  bool &IsTailCall                      = CLI.IsTailCall;
2310  CallingConv::ID CallConv              = CLI.CallConv;
2311  bool IsVarArg                         = CLI.IsVarArg;
2312
2313  MachineFunction &MF = DAG.getMachineFunction();
2314  MachineFrameInfo *MFI = MF.getFrameInfo();
2315  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2316  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2317
2318  // Analyze operands of the call, assigning locations to each operand.
2319  SmallVector<CCValAssign, 16> ArgLocs;
2320  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2321                 getTargetMachine(), ArgLocs, *DAG.getContext());
2322  MipsCC::SpecialCallingConvType SpecialCallingConv =
2323    getSpecialCallingConv(Callee);
2324  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo,
2325                    SpecialCallingConv);
2326
2327  MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2328                                 Subtarget->mipsSEUsesSoftFloat(),
2329                                 Callee.getNode(), CLI.Args);
2330
2331  // Get a count of how many bytes are to be pushed on the stack.
2332  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2333
2334  // Check if it's really possible to do a tail call.
2335  if (IsTailCall)
2336    IsTailCall =
2337      isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2338                                        *MF.getInfo<MipsFunctionInfo>());
2339
2340  if (IsTailCall)
2341    ++NumTailCalls;
2342
2343  // Chain is the output chain of the last Load/Store or CopyToReg node.
2344  // ByValChain is the output chain of the last Memcpy node created for copying
2345  // byval arguments to the stack.
2346  unsigned StackAlignment = TFL->getStackAlignment();
2347  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2348  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2349
2350  if (!IsTailCall)
2351    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2352
2353  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
2354                                        IsN64 ? Mips::SP_64 : Mips::SP,
2355                                        getPointerTy());
2356
2357  // With EABI is it possible to have 16 args on registers.
2358  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2359  SmallVector<SDValue, 8> MemOpChains;
2360  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2361
2362  // Walk the register/memloc assignments, inserting copies/loads.
2363  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2364    SDValue Arg = OutVals[i];
2365    CCValAssign &VA = ArgLocs[i];
2366    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2367    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2368
2369    // ByVal Arg.
2370    if (Flags.isByVal()) {
2371      assert(Flags.getByValSize() &&
2372             "ByVal args of size 0 should have been ignored by front-end.");
2373      assert(ByValArg != MipsCCInfo.byval_end());
2374      assert(!IsTailCall &&
2375             "Do not tail-call optimize if there is a byval argument.");
2376      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2377                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2378      ++ByValArg;
2379      continue;
2380    }
2381
2382    // Promote the value if needed.
2383    switch (VA.getLocInfo()) {
2384    default: llvm_unreachable("Unknown loc info!");
2385    case CCValAssign::Full:
2386      if (VA.isRegLoc()) {
2387        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2388            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2389            (ValVT == MVT::i64 && LocVT == MVT::f64))
2390          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2391        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2392          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2393                                   Arg, DAG.getConstant(0, MVT::i32));
2394          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2395                                   Arg, DAG.getConstant(1, MVT::i32));
2396          if (!Subtarget->isLittle())
2397            std::swap(Lo, Hi);
2398          unsigned LocRegLo = VA.getLocReg();
2399          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2400          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2401          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2402          continue;
2403        }
2404      }
2405      break;
2406    case CCValAssign::SExt:
2407      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2408      break;
2409    case CCValAssign::ZExt:
2410      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2411      break;
2412    case CCValAssign::AExt:
2413      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2414      break;
2415    }
2416
2417    // Arguments that can be passed on register must be kept at
2418    // RegsToPass vector
2419    if (VA.isRegLoc()) {
2420      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2421      continue;
2422    }
2423
2424    // Register can't get to this point...
2425    assert(VA.isMemLoc());
2426
2427    // emit ISD::STORE whichs stores the
2428    // parameter value to a stack Location
2429    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2430                                         Chain, Arg, DL, IsTailCall, DAG));
2431  }
2432
2433  // Transform all store nodes into one single node because all store
2434  // nodes are independent of each other.
2435  if (!MemOpChains.empty())
2436    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2437                        &MemOpChains[0], MemOpChains.size());
2438
2439  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2440  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2441  // node so that legalize doesn't hack it.
2442  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2443  bool GlobalOrExternal = false, InternalLinkage = false;
2444  SDValue CalleeLo;
2445  EVT Ty = Callee.getValueType();
2446
2447  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2448    if (IsPICCall) {
2449      InternalLinkage = G->getGlobal()->hasInternalLinkage();
2450
2451      if (InternalLinkage)
2452        Callee = getAddrLocal(G, Ty, DAG, HasMips64);
2453      else if (LargeGOT)
2454        Callee = getAddrGlobalLargeGOT(G, Ty, DAG, MipsII::MO_CALL_HI16,
2455                                       MipsII::MO_CALL_LO16);
2456      else
2457        Callee = getAddrGlobal(G, Ty, DAG, MipsII::MO_GOT_CALL);
2458    } else
2459      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2460                                          MipsII::MO_NO_FLAG);
2461    GlobalOrExternal = true;
2462  }
2463  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2464    if (!IsN64 && !IsPIC) // !N64 && static
2465      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2466                                            MipsII::MO_NO_FLAG);
2467    else if (LargeGOT)
2468      Callee = getAddrGlobalLargeGOT(S, Ty, DAG, MipsII::MO_CALL_HI16,
2469                                     MipsII::MO_CALL_LO16);
2470    else // N64 || PIC
2471      Callee = getAddrGlobal(S, Ty, DAG, MipsII::MO_GOT_CALL);
2472
2473    GlobalOrExternal = true;
2474  }
2475
2476  SmallVector<SDValue, 8> Ops(1, Chain);
2477  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2478
2479  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2480              CLI, Callee, Chain);
2481
2482  if (IsTailCall)
2483    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
2484
2485  Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
2486  SDValue InFlag = Chain.getValue(1);
2487
2488  // Create the CALLSEQ_END node.
2489  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2490                             DAG.getIntPtrConstant(0, true), InFlag, DL);
2491  InFlag = Chain.getValue(1);
2492
2493  // Handle result values, copying them out of physregs into vregs that we
2494  // return.
2495  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2496                         Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2497}
2498
2499/// LowerCallResult - Lower the result values of a call into the
2500/// appropriate copies out of appropriate physical registers.
2501SDValue
2502MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2503                                    CallingConv::ID CallConv, bool IsVarArg,
2504                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2505                                    SDLoc DL, SelectionDAG &DAG,
2506                                    SmallVectorImpl<SDValue> &InVals,
2507                                    const SDNode *CallNode,
2508                                    const Type *RetTy) const {
2509  // Assign locations to each value returned by this call.
2510  SmallVector<CCValAssign, 16> RVLocs;
2511  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2512                 getTargetMachine(), RVLocs, *DAG.getContext());
2513  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2514
2515  MipsCCInfo.analyzeCallResult(Ins, Subtarget->mipsSEUsesSoftFloat(),
2516                               CallNode, RetTy);
2517
2518  // Copy all of the result registers out of their specified physreg.
2519  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2520    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2521                                     RVLocs[i].getLocVT(), InFlag);
2522    Chain = Val.getValue(1);
2523    InFlag = Val.getValue(2);
2524
2525    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2526      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2527
2528    InVals.push_back(Val);
2529  }
2530
2531  return Chain;
2532}
2533
2534//===----------------------------------------------------------------------===//
2535//             Formal Arguments Calling Convention Implementation
2536//===----------------------------------------------------------------------===//
2537/// LowerFormalArguments - transform physical registers into virtual registers
2538/// and generate load operations for arguments places on the stack.
2539SDValue
2540MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2541                                         CallingConv::ID CallConv,
2542                                         bool IsVarArg,
2543                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2544                                         SDLoc DL, SelectionDAG &DAG,
2545                                         SmallVectorImpl<SDValue> &InVals)
2546                                          const {
2547  MachineFunction &MF = DAG.getMachineFunction();
2548  MachineFrameInfo *MFI = MF.getFrameInfo();
2549  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2550
2551  MipsFI->setVarArgsFrameIndex(0);
2552
2553  // Used with vargs to acumulate store chains.
2554  std::vector<SDValue> OutChains;
2555
2556  // Assign locations to all of the incoming arguments.
2557  SmallVector<CCValAssign, 16> ArgLocs;
2558  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2559                 getTargetMachine(), ArgLocs, *DAG.getContext());
2560  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2561  Function::const_arg_iterator FuncArg =
2562    DAG.getMachineFunction().getFunction()->arg_begin();
2563  bool UseSoftFloat = Subtarget->mipsSEUsesSoftFloat();
2564
2565  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2566  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2567                           MipsCCInfo.hasByValArg());
2568
2569  unsigned CurArgIdx = 0;
2570  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2571
2572  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2573    CCValAssign &VA = ArgLocs[i];
2574    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2575    CurArgIdx = Ins[i].OrigArgIndex;
2576    EVT ValVT = VA.getValVT();
2577    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2578    bool IsRegLoc = VA.isRegLoc();
2579
2580    if (Flags.isByVal()) {
2581      assert(Flags.getByValSize() &&
2582             "ByVal args of size 0 should have been ignored by front-end.");
2583      assert(ByValArg != MipsCCInfo.byval_end());
2584      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2585                    MipsCCInfo, *ByValArg);
2586      ++ByValArg;
2587      continue;
2588    }
2589
2590    // Arguments stored on registers
2591    if (IsRegLoc) {
2592      EVT RegVT = VA.getLocVT();
2593      unsigned ArgReg = VA.getLocReg();
2594      const TargetRegisterClass *RC;
2595
2596      if (RegVT == MVT::i32)
2597        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
2598                                        &Mips::GPR32RegClass;
2599      else if (RegVT == MVT::i64)
2600        RC = &Mips::GPR64RegClass;
2601      else if (RegVT == MVT::f32)
2602        RC = &Mips::FGR32RegClass;
2603      else if (RegVT == MVT::f64)
2604        RC = Subtarget->isFP64bit() ? &Mips::FGR64RegClass :
2605                                      &Mips::AFGR64RegClass;
2606      else
2607        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2608
2609      // Transform the arguments stored on
2610      // physical registers into virtual ones
2611      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2612      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2613
2614      // If this is an 8 or 16-bit value, it has been passed promoted
2615      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2616      // truncate to the right size.
2617      if (VA.getLocInfo() != CCValAssign::Full) {
2618        unsigned Opcode = 0;
2619        if (VA.getLocInfo() == CCValAssign::SExt)
2620          Opcode = ISD::AssertSext;
2621        else if (VA.getLocInfo() == CCValAssign::ZExt)
2622          Opcode = ISD::AssertZext;
2623        if (Opcode)
2624          ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2625                                 DAG.getValueType(ValVT));
2626        ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2627      }
2628
2629      // Handle floating point arguments passed in integer registers and
2630      // long double arguments passed in floating point registers.
2631      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2632          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2633          (RegVT == MVT::f64 && ValVT == MVT::i64))
2634        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2635      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2636        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2637                                  getNextIntArgReg(ArgReg), RC);
2638        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2639        if (!Subtarget->isLittle())
2640          std::swap(ArgValue, ArgValue2);
2641        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2642                               ArgValue, ArgValue2);
2643      }
2644
2645      InVals.push_back(ArgValue);
2646    } else { // VA.isRegLoc()
2647
2648      // sanity check
2649      assert(VA.isMemLoc());
2650
2651      // The stack pointer offset is relative to the caller stack frame.
2652      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2653                                      VA.getLocMemOffset(), true);
2654
2655      // Create load nodes to retrieve arguments from the stack
2656      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2657      InVals.push_back(DAG.getLoad(ValVT, DL, Chain, FIN,
2658                                   MachinePointerInfo::getFixedStack(FI),
2659                                   false, false, false, 0));
2660    }
2661  }
2662
2663  // The mips ABIs for returning structs by value requires that we copy
2664  // the sret argument into $v0 for the return. Save the argument into
2665  // a virtual register so that we can access it from the return points.
2666  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2667    unsigned Reg = MipsFI->getSRetReturnReg();
2668    if (!Reg) {
2669      Reg = MF.getRegInfo().
2670        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
2671      MipsFI->setSRetReturnReg(Reg);
2672    }
2673    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
2674    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2675  }
2676
2677  if (IsVarArg)
2678    writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2679
2680  // All stores are grouped in one node to allow the matching between
2681  // the size of Ins and InVals. This only happens when on varg functions
2682  if (!OutChains.empty()) {
2683    OutChains.push_back(Chain);
2684    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2685                        &OutChains[0], OutChains.size());
2686  }
2687
2688  return Chain;
2689}
2690
2691//===----------------------------------------------------------------------===//
2692//               Return Value Calling Convention Implementation
2693//===----------------------------------------------------------------------===//
2694
2695bool
2696MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2697                                   MachineFunction &MF, bool IsVarArg,
2698                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2699                                   LLVMContext &Context) const {
2700  SmallVector<CCValAssign, 16> RVLocs;
2701  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2702                 RVLocs, Context);
2703  return CCInfo.CheckReturn(Outs, RetCC_Mips);
2704}
2705
2706SDValue
2707MipsTargetLowering::LowerReturn(SDValue Chain,
2708                                CallingConv::ID CallConv, bool IsVarArg,
2709                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2710                                const SmallVectorImpl<SDValue> &OutVals,
2711                                SDLoc DL, SelectionDAG &DAG) const {
2712  // CCValAssign - represent the assignment of
2713  // the return value to a location
2714  SmallVector<CCValAssign, 16> RVLocs;
2715  MachineFunction &MF = DAG.getMachineFunction();
2716
2717  // CCState - Info about the registers and stack slot.
2718  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2719                 *DAG.getContext());
2720  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2721
2722  // Analyze return values.
2723  MipsCCInfo.analyzeReturn(Outs, Subtarget->mipsSEUsesSoftFloat(),
2724                           MF.getFunction()->getReturnType());
2725
2726  SDValue Flag;
2727  SmallVector<SDValue, 4> RetOps(1, Chain);
2728
2729  // Copy the result values into the output registers.
2730  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2731    SDValue Val = OutVals[i];
2732    CCValAssign &VA = RVLocs[i];
2733    assert(VA.isRegLoc() && "Can only return in registers!");
2734
2735    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2736      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2737
2738    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2739
2740    // Guarantee that all emitted copies are stuck together with flags.
2741    Flag = Chain.getValue(1);
2742    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2743  }
2744
2745  // The mips ABIs for returning structs by value requires that we copy
2746  // the sret argument into $v0 for the return. We saved the argument into
2747  // a virtual register in the entry block, so now we copy the value out
2748  // and into $v0.
2749  if (MF.getFunction()->hasStructRetAttr()) {
2750    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2751    unsigned Reg = MipsFI->getSRetReturnReg();
2752
2753    if (!Reg)
2754      llvm_unreachable("sret virtual register not created in the entry block");
2755    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2756    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
2757
2758    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2759    Flag = Chain.getValue(1);
2760    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2761  }
2762
2763  RetOps[0] = Chain;  // Update chain.
2764
2765  // Add the flag if we have it.
2766  if (Flag.getNode())
2767    RetOps.push_back(Flag);
2768
2769  // Return on Mips is always a "jr $ra"
2770  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
2771}
2772
2773//===----------------------------------------------------------------------===//
2774//                           Mips Inline Assembly Support
2775//===----------------------------------------------------------------------===//
2776
2777/// getConstraintType - Given a constraint letter, return the type of
2778/// constraint it is for this target.
2779MipsTargetLowering::ConstraintType MipsTargetLowering::
2780getConstraintType(const std::string &Constraint) const
2781{
2782  // Mips specific constrainy
2783  // GCC config/mips/constraints.md
2784  //
2785  // 'd' : An address register. Equivalent to r
2786  //       unless generating MIPS16 code.
2787  // 'y' : Equivalent to r; retained for
2788  //       backwards compatibility.
2789  // 'c' : A register suitable for use in an indirect
2790  //       jump. This will always be $25 for -mabicalls.
2791  // 'l' : The lo register. 1 word storage.
2792  // 'x' : The hilo register pair. Double word storage.
2793  if (Constraint.size() == 1) {
2794    switch (Constraint[0]) {
2795      default : break;
2796      case 'd':
2797      case 'y':
2798      case 'f':
2799      case 'c':
2800      case 'l':
2801      case 'x':
2802        return C_RegisterClass;
2803      case 'R':
2804        return C_Memory;
2805    }
2806  }
2807  return TargetLowering::getConstraintType(Constraint);
2808}
2809
2810/// Examine constraint type and operand type and determine a weight value.
2811/// This object must already have been set up with the operand type
2812/// and the current alternative constraint selected.
2813TargetLowering::ConstraintWeight
2814MipsTargetLowering::getSingleConstraintMatchWeight(
2815    AsmOperandInfo &info, const char *constraint) const {
2816  ConstraintWeight weight = CW_Invalid;
2817  Value *CallOperandVal = info.CallOperandVal;
2818    // If we don't have a value, we can't do a match,
2819    // but allow it at the lowest weight.
2820  if (CallOperandVal == NULL)
2821    return CW_Default;
2822  Type *type = CallOperandVal->getType();
2823  // Look at the constraint type.
2824  switch (*constraint) {
2825  default:
2826    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2827    break;
2828  case 'd':
2829  case 'y':
2830    if (type->isIntegerTy())
2831      weight = CW_Register;
2832    break;
2833  case 'f':
2834    if (type->isFloatTy())
2835      weight = CW_Register;
2836    break;
2837  case 'c': // $25 for indirect jumps
2838  case 'l': // lo register
2839  case 'x': // hilo register pair
2840      if (type->isIntegerTy())
2841      weight = CW_SpecificReg;
2842      break;
2843  case 'I': // signed 16 bit immediate
2844  case 'J': // integer zero
2845  case 'K': // unsigned 16 bit immediate
2846  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2847  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2848  case 'O': // signed 15 bit immediate (+- 16383)
2849  case 'P': // immediate in the range of 65535 to 1 (inclusive)
2850    if (isa<ConstantInt>(CallOperandVal))
2851      weight = CW_Constant;
2852    break;
2853  case 'R':
2854    weight = CW_Memory;
2855    break;
2856  }
2857  return weight;
2858}
2859
2860/// This is a helper function to parse a physical register string and split it
2861/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
2862/// that is returned indicates whether parsing was successful. The second flag
2863/// is true if the numeric part exists.
2864static std::pair<bool, bool>
2865parsePhysicalReg(const StringRef &C, std::string &Prefix,
2866                 unsigned long long &Reg) {
2867  if (C.front() != '{' || C.back() != '}')
2868    return std::make_pair(false, false);
2869
2870  // Search for the first numeric character.
2871  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
2872  I = std::find_if(B, E, std::ptr_fun(isdigit));
2873
2874  Prefix.assign(B, I - B);
2875
2876  // The second flag is set to false if no numeric characters were found.
2877  if (I == E)
2878    return std::make_pair(true, false);
2879
2880  // Parse the numeric characters.
2881  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
2882                        true);
2883}
2884
2885std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
2886parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const {
2887  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2888  const TargetRegisterClass *RC;
2889  std::string Prefix;
2890  unsigned long long Reg;
2891
2892  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
2893
2894  if (!R.first)
2895    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2896
2897  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
2898    // No numeric characters follow "hi" or "lo".
2899    if (R.second)
2900      return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2901
2902    RC = TRI->getRegClass(Prefix == "hi" ?
2903                          Mips::HI32RegClassID : Mips::LO32RegClassID);
2904    return std::make_pair(*(RC->begin()), RC);
2905  }
2906
2907  if (!R.second)
2908    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2909
2910  if (Prefix == "$f") { // Parse $f0-$f31.
2911    // If the size of FP registers is 64-bit or Reg is an even number, select
2912    // the 64-bit register class. Otherwise, select the 32-bit register class.
2913    if (VT == MVT::Other)
2914      VT = (Subtarget->isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
2915
2916    RC= getRegClassFor(VT);
2917
2918    if (RC == &Mips::AFGR64RegClass) {
2919      assert(Reg % 2 == 0);
2920      Reg >>= 1;
2921    }
2922  } else if (Prefix == "$fcc") { // Parse $fcc0-$fcc7.
2923    RC = TRI->getRegClass(Mips::FCCRegClassID);
2924  } else { // Parse $0-$31.
2925    assert(Prefix == "$");
2926    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
2927  }
2928
2929  assert(Reg < RC->getNumRegs());
2930  return std::make_pair(*(RC->begin() + Reg), RC);
2931}
2932
2933/// Given a register class constraint, like 'r', if this corresponds directly
2934/// to an LLVM register class, return a register of 0 and the register class
2935/// pointer.
2936std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2937getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
2938{
2939  if (Constraint.size() == 1) {
2940    switch (Constraint[0]) {
2941    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2942    case 'y': // Same as 'r'. Exists for compatibility.
2943    case 'r':
2944      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
2945        if (Subtarget->inMips16Mode())
2946          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
2947        return std::make_pair(0U, &Mips::GPR32RegClass);
2948      }
2949      if (VT == MVT::i64 && !HasMips64)
2950        return std::make_pair(0U, &Mips::GPR32RegClass);
2951      if (VT == MVT::i64 && HasMips64)
2952        return std::make_pair(0U, &Mips::GPR64RegClass);
2953      // This will generate an error message
2954      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2955    case 'f':
2956      if (VT == MVT::f32)
2957        return std::make_pair(0U, &Mips::FGR32RegClass);
2958      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2959        if (Subtarget->isFP64bit())
2960          return std::make_pair(0U, &Mips::FGR64RegClass);
2961        return std::make_pair(0U, &Mips::AFGR64RegClass);
2962      }
2963      break;
2964    case 'c': // register suitable for indirect jump
2965      if (VT == MVT::i32)
2966        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
2967      assert(VT == MVT::i64 && "Unexpected type.");
2968      return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
2969    case 'l': // register suitable for indirect jump
2970      if (VT == MVT::i32)
2971        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
2972      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
2973    case 'x': // register suitable for indirect jump
2974      // Fixme: Not triggering the use of both hi and low
2975      // This will generate an error message
2976      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2977    }
2978  }
2979
2980  std::pair<unsigned, const TargetRegisterClass *> R;
2981  R = parseRegForInlineAsmConstraint(Constraint, VT);
2982
2983  if (R.second)
2984    return R;
2985
2986  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2987}
2988
2989/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2990/// vector.  If it is invalid, don't add anything to Ops.
2991void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2992                                                     std::string &Constraint,
2993                                                     std::vector<SDValue>&Ops,
2994                                                     SelectionDAG &DAG) const {
2995  SDValue Result(0, 0);
2996
2997  // Only support length 1 constraints for now.
2998  if (Constraint.length() > 1) return;
2999
3000  char ConstraintLetter = Constraint[0];
3001  switch (ConstraintLetter) {
3002  default: break; // This will fall through to the generic implementation
3003  case 'I': // Signed 16 bit constant
3004    // If this fails, the parent routine will give an error
3005    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3006      EVT Type = Op.getValueType();
3007      int64_t Val = C->getSExtValue();
3008      if (isInt<16>(Val)) {
3009        Result = DAG.getTargetConstant(Val, Type);
3010        break;
3011      }
3012    }
3013    return;
3014  case 'J': // integer zero
3015    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3016      EVT Type = Op.getValueType();
3017      int64_t Val = C->getZExtValue();
3018      if (Val == 0) {
3019        Result = DAG.getTargetConstant(0, Type);
3020        break;
3021      }
3022    }
3023    return;
3024  case 'K': // unsigned 16 bit immediate
3025    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3026      EVT Type = Op.getValueType();
3027      uint64_t Val = (uint64_t)C->getZExtValue();
3028      if (isUInt<16>(Val)) {
3029        Result = DAG.getTargetConstant(Val, Type);
3030        break;
3031      }
3032    }
3033    return;
3034  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3035    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3036      EVT Type = Op.getValueType();
3037      int64_t Val = C->getSExtValue();
3038      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3039        Result = DAG.getTargetConstant(Val, Type);
3040        break;
3041      }
3042    }
3043    return;
3044  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3045    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3046      EVT Type = Op.getValueType();
3047      int64_t Val = C->getSExtValue();
3048      if ((Val >= -65535) && (Val <= -1)) {
3049        Result = DAG.getTargetConstant(Val, Type);
3050        break;
3051      }
3052    }
3053    return;
3054  case 'O': // signed 15 bit immediate
3055    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3056      EVT Type = Op.getValueType();
3057      int64_t Val = C->getSExtValue();
3058      if ((isInt<15>(Val))) {
3059        Result = DAG.getTargetConstant(Val, Type);
3060        break;
3061      }
3062    }
3063    return;
3064  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3065    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3066      EVT Type = Op.getValueType();
3067      int64_t Val = C->getSExtValue();
3068      if ((Val <= 65535) && (Val >= 1)) {
3069        Result = DAG.getTargetConstant(Val, Type);
3070        break;
3071      }
3072    }
3073    return;
3074  }
3075
3076  if (Result.getNode()) {
3077    Ops.push_back(Result);
3078    return;
3079  }
3080
3081  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3082}
3083
3084bool
3085MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
3086  // No global is ever allowed as a base.
3087  if (AM.BaseGV)
3088    return false;
3089
3090  switch (AM.Scale) {
3091  case 0: // "r+i" or just "i", depending on HasBaseReg.
3092    break;
3093  case 1:
3094    if (!AM.HasBaseReg) // allow "r+i".
3095      break;
3096    return false; // disallow "r+r" or "r+r+i".
3097  default:
3098    return false;
3099  }
3100
3101  return true;
3102}
3103
3104bool
3105MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3106  // The Mips target isn't yet aware of offsets.
3107  return false;
3108}
3109
3110EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3111                                            unsigned SrcAlign,
3112                                            bool IsMemset, bool ZeroMemset,
3113                                            bool MemcpyStrSrc,
3114                                            MachineFunction &MF) const {
3115  if (Subtarget->hasMips64())
3116    return MVT::i64;
3117
3118  return MVT::i32;
3119}
3120
3121bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3122  if (VT != MVT::f32 && VT != MVT::f64)
3123    return false;
3124  if (Imm.isNegZero())
3125    return false;
3126  return Imm.isZero();
3127}
3128
3129unsigned MipsTargetLowering::getJumpTableEncoding() const {
3130  if (IsN64)
3131    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3132
3133  return TargetLowering::getJumpTableEncoding();
3134}
3135
3136/// This function returns true if CallSym is a long double emulation routine.
3137static bool isF128SoftLibCall(const char *CallSym) {
3138  const char *const LibCalls[] =
3139    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3140     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3141     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3142     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3143     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3144     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3145     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3146     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3147     "truncl"};
3148
3149  const char * const *End = LibCalls + array_lengthof(LibCalls);
3150
3151  // Check that LibCalls is sorted alphabetically.
3152  MipsTargetLowering::LTStr Comp;
3153
3154#ifndef NDEBUG
3155  for (const char * const *I = LibCalls; I < End - 1; ++I)
3156    assert(Comp(*I, *(I + 1)));
3157#endif
3158
3159  return std::binary_search(LibCalls, End, CallSym, Comp);
3160}
3161
3162/// This function returns true if Ty is fp128 or i128 which was originally a
3163/// fp128.
3164static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3165  if (Ty->isFP128Ty())
3166    return true;
3167
3168  const ExternalSymbolSDNode *ES =
3169    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3170
3171  // If the Ty is i128 and the function being called is a long double emulation
3172  // routine, then the original type is f128.
3173  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3174}
3175
3176MipsTargetLowering::MipsCC::SpecialCallingConvType
3177  MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
3178  MipsCC::SpecialCallingConvType SpecialCallingConv =
3179    MipsCC::NoSpecialCallingConv;;
3180  if (Subtarget->inMips16HardFloat()) {
3181    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3182      llvm::StringRef Sym = G->getGlobal()->getName();
3183      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3184      if (F->hasFnAttribute("__Mips16RetHelper")) {
3185        SpecialCallingConv = MipsCC::Mips16RetHelperConv;
3186      }
3187    }
3188  }
3189  return SpecialCallingConv;
3190}
3191
3192MipsTargetLowering::MipsCC::MipsCC(
3193  CallingConv::ID CC, bool IsO32_, bool IsFP64_, CCState &Info,
3194    MipsCC::SpecialCallingConvType SpecialCallingConv_)
3195  : CCInfo(Info), CallConv(CC), IsO32(IsO32_), IsFP64(IsFP64_),
3196    SpecialCallingConv(SpecialCallingConv_){
3197  // Pre-allocate reserved argument area.
3198  CCInfo.AllocateStack(reservedArgArea(), 1);
3199}
3200
3201
3202void MipsTargetLowering::MipsCC::
3203analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3204                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3205                    std::vector<ArgListEntry> &FuncArgs) {
3206  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3207         "CallingConv::Fast shouldn't be used for vararg functions.");
3208
3209  unsigned NumOpnds = Args.size();
3210  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3211
3212  for (unsigned I = 0; I != NumOpnds; ++I) {
3213    MVT ArgVT = Args[I].VT;
3214    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3215    bool R;
3216
3217    if (ArgFlags.isByVal()) {
3218      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3219      continue;
3220    }
3221
3222    if (IsVarArg && !Args[I].IsFixed)
3223      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3224    else {
3225      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3226                           IsSoftFloat);
3227      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3228    }
3229
3230    if (R) {
3231#ifndef NDEBUG
3232      dbgs() << "Call operand #" << I << " has unhandled type "
3233             << EVT(ArgVT).getEVTString();
3234#endif
3235      llvm_unreachable(0);
3236    }
3237  }
3238}
3239
3240void MipsTargetLowering::MipsCC::
3241analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3242                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3243  unsigned NumArgs = Args.size();
3244  llvm::CCAssignFn *FixedFn = fixedArgFn();
3245  unsigned CurArgIdx = 0;
3246
3247  for (unsigned I = 0; I != NumArgs; ++I) {
3248    MVT ArgVT = Args[I].VT;
3249    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3250    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3251    CurArgIdx = Args[I].OrigArgIndex;
3252
3253    if (ArgFlags.isByVal()) {
3254      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3255      continue;
3256    }
3257
3258    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
3259
3260    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3261      continue;
3262
3263#ifndef NDEBUG
3264    dbgs() << "Formal Arg #" << I << " has unhandled type "
3265           << EVT(ArgVT).getEVTString();
3266#endif
3267    llvm_unreachable(0);
3268  }
3269}
3270
3271template<typename Ty>
3272void MipsTargetLowering::MipsCC::
3273analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3274              const SDNode *CallNode, const Type *RetTy) const {
3275  CCAssignFn *Fn;
3276
3277  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3278    Fn = RetCC_F128Soft;
3279  else
3280    Fn = RetCC_Mips;
3281
3282  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3283    MVT VT = RetVals[I].VT;
3284    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3285    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3286
3287    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3288#ifndef NDEBUG
3289      dbgs() << "Call result #" << I << " has unhandled type "
3290             << EVT(VT).getEVTString() << '\n';
3291#endif
3292      llvm_unreachable(0);
3293    }
3294  }
3295}
3296
3297void MipsTargetLowering::MipsCC::
3298analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3299                  const SDNode *CallNode, const Type *RetTy) const {
3300  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3301}
3302
3303void MipsTargetLowering::MipsCC::
3304analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3305              const Type *RetTy) const {
3306  analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
3307}
3308
3309void
3310MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3311                                           MVT LocVT,
3312                                           CCValAssign::LocInfo LocInfo,
3313                                           ISD::ArgFlagsTy ArgFlags) {
3314  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3315
3316  struct ByValArgInfo ByVal;
3317  unsigned RegSize = regSize();
3318  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3319  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3320                            RegSize * 2);
3321
3322  if (useRegsForByval())
3323    allocateRegs(ByVal, ByValSize, Align);
3324
3325  // Allocate space on caller's stack.
3326  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3327                                       Align);
3328  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3329                                    LocInfo));
3330  ByValArgs.push_back(ByVal);
3331}
3332
3333unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3334  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3335}
3336
3337unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3338  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3339}
3340
3341const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
3342  return IsO32 ? O32IntRegs : Mips64IntRegs;
3343}
3344
3345llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3346  if (CallConv == CallingConv::Fast)
3347    return CC_Mips_FastCC;
3348
3349  if (SpecialCallingConv == Mips16RetHelperConv)
3350    return CC_Mips16RetHelper;
3351  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN;
3352}
3353
3354llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3355  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN_VarArg;
3356}
3357
3358const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
3359  return IsO32 ? O32IntRegs : Mips64DPRegs;
3360}
3361
3362void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3363                                              unsigned ByValSize,
3364                                              unsigned Align) {
3365  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3366  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3367  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3368         "Byval argument's size and alignment should be a multiple of"
3369         "RegSize.");
3370
3371  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3372
3373  // If Align > RegSize, the first arg register must be even.
3374  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3375    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3376    ++ByVal.FirstIdx;
3377  }
3378
3379  // Mark the registers allocated.
3380  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3381       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3382    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3383}
3384
3385MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3386                                         const SDNode *CallNode,
3387                                         bool IsSoftFloat) const {
3388  if (IsSoftFloat || IsO32)
3389    return VT;
3390
3391  // Check if the original type was fp128.
3392  if (originalTypeIsF128(OrigTy, CallNode)) {
3393    assert(VT == MVT::i64);
3394    return MVT::f64;
3395  }
3396
3397  return VT;
3398}
3399
3400void MipsTargetLowering::
3401copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
3402              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3403              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3404              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3405  MachineFunction &MF = DAG.getMachineFunction();
3406  MachineFrameInfo *MFI = MF.getFrameInfo();
3407  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3408  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3409  int FrameObjOffset;
3410
3411  if (RegAreaSize)
3412    FrameObjOffset = (int)CC.reservedArgArea() -
3413      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3414  else
3415    FrameObjOffset = ByVal.Address;
3416
3417  // Create frame object.
3418  EVT PtrTy = getPointerTy();
3419  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3420  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3421  InVals.push_back(FIN);
3422
3423  if (!ByVal.NumRegs)
3424    return;
3425
3426  // Copy arg registers.
3427  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3428  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3429
3430  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3431    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3432    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3433    unsigned Offset = I * CC.regSize();
3434    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3435                                   DAG.getConstant(Offset, PtrTy));
3436    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3437                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3438                                 false, false, 0);
3439    OutChains.push_back(Store);
3440  }
3441}
3442
3443// Copy byVal arg to registers and stack.
3444void MipsTargetLowering::
3445passByValArg(SDValue Chain, SDLoc DL,
3446             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3447             SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
3448             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3449             const MipsCC &CC, const ByValArgInfo &ByVal,
3450             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3451  unsigned ByValSize = Flags.getByValSize();
3452  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3453  unsigned RegSize = CC.regSize();
3454  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3455  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3456
3457  if (ByVal.NumRegs) {
3458    const uint16_t *ArgRegs = CC.intArgRegs();
3459    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3460    unsigned I = 0;
3461
3462    // Copy words to registers.
3463    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3464      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3465                                    DAG.getConstant(Offset, PtrTy));
3466      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3467                                    MachinePointerInfo(), false, false, false,
3468                                    Alignment);
3469      MemOpChains.push_back(LoadVal.getValue(1));
3470      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3471      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3472    }
3473
3474    // Return if the struct has been fully copied.
3475    if (ByValSize == Offset)
3476      return;
3477
3478    // Copy the remainder of the byval argument with sub-word loads and shifts.
3479    if (LeftoverBytes) {
3480      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3481             "Size of the remainder should be smaller than RegSize.");
3482      SDValue Val;
3483
3484      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3485           Offset < ByValSize; LoadSize /= 2) {
3486        unsigned RemSize = ByValSize - Offset;
3487
3488        if (RemSize < LoadSize)
3489          continue;
3490
3491        // Load subword.
3492        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3493                                      DAG.getConstant(Offset, PtrTy));
3494        SDValue LoadVal =
3495          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3496                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3497                         false, false, Alignment);
3498        MemOpChains.push_back(LoadVal.getValue(1));
3499
3500        // Shift the loaded value.
3501        unsigned Shamt;
3502
3503        if (isLittle)
3504          Shamt = TotalSizeLoaded;
3505        else
3506          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3507
3508        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3509                                    DAG.getConstant(Shamt, MVT::i32));
3510
3511        if (Val.getNode())
3512          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3513        else
3514          Val = Shift;
3515
3516        Offset += LoadSize;
3517        TotalSizeLoaded += LoadSize;
3518        Alignment = std::min(Alignment, LoadSize);
3519      }
3520
3521      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3522      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3523      return;
3524    }
3525  }
3526
3527  // Copy remainder of byval arg to it with memcpy.
3528  unsigned MemCpySize = ByValSize - Offset;
3529  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3530                            DAG.getConstant(Offset, PtrTy));
3531  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3532                            DAG.getIntPtrConstant(ByVal.Address));
3533  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
3534                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
3535                        /*isVolatile=*/false, /*AlwaysInline=*/false,
3536                        MachinePointerInfo(0), MachinePointerInfo(0));
3537  MemOpChains.push_back(Chain);
3538}
3539
3540void
3541MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3542                                    const MipsCC &CC, SDValue Chain,
3543                                    SDLoc DL, SelectionDAG &DAG) const {
3544  unsigned NumRegs = CC.numIntArgRegs();
3545  const uint16_t *ArgRegs = CC.intArgRegs();
3546  const CCState &CCInfo = CC.getCCInfo();
3547  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3548  unsigned RegSize = CC.regSize();
3549  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3550  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3551  MachineFunction &MF = DAG.getMachineFunction();
3552  MachineFrameInfo *MFI = MF.getFrameInfo();
3553  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3554
3555  // Offset of the first variable argument from stack pointer.
3556  int VaArgOffset;
3557
3558  if (NumRegs == Idx)
3559    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3560  else
3561    VaArgOffset =
3562      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3563
3564  // Record the frame index of the first variable argument
3565  // which is a value necessary to VASTART.
3566  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3567  MipsFI->setVarArgsFrameIndex(FI);
3568
3569  // Copy the integer registers that have not been used for argument passing
3570  // to the argument register save area. For O32, the save area is allocated
3571  // in the caller's stack frame, while for N32/64, it is allocated in the
3572  // callee's stack frame.
3573  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3574    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3575    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3576    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3577    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3578    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3579                                 MachinePointerInfo(), false, false, 0);
3580    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3581    OutChains.push_back(Store);
3582  }
3583}
3584