MipsISelLowering.cpp revision 50354a3f4a5c9e3689d502a935430f2a57a44af2
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include <set>
16#include "MipsISelLowering.h"
17#include "InstPrinter/MipsInstPrinter.h"
18#include "MCTargetDesc/MipsBaseInfo.h"
19#include "MipsMachineFunction.h"
20#include "MipsSubtarget.h"
21#include "MipsTargetMachine.h"
22#include "MipsTargetObjectFile.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/CodeGen/CallingConvLower.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/SelectionDAGISel.h"
30#include "llvm/CodeGen/ValueTypes.h"
31#include "llvm/IR/CallingConv.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/GlobalVariable.h"
35#include "llvm/IR/Intrinsics.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/raw_ostream.h"
40
41using namespace llvm;
42
43STATISTIC(NumTailCalls, "Number of tail calls");
44
45static cl::opt<bool>
46EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
47                    cl::desc("MIPS: Enable tail calls."), cl::init(false));
48
49static cl::opt<bool>
50LargeGOT("mxgot", cl::Hidden,
51         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
52
53static cl::opt<bool>
54Mips16HardFloat("mips16-hard-float", cl::NotHidden,
55                cl::desc("MIPS: mips16 hard float enable."),
56                cl::init(false));
57
58static cl::opt<bool> DontExpandCondPseudos16(
59  "mips16-dont-expand-cond-pseudo",
60  cl::init(false),
61  cl::desc("Dont expand conditional move related "
62           "pseudos for Mips 16"),
63  cl::Hidden);
64
65
66static const uint16_t O32IntRegs[4] = {
67  Mips::A0, Mips::A1, Mips::A2, Mips::A3
68};
69
70static const uint16_t Mips64IntRegs[8] = {
71  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
72  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
73};
74
75static const uint16_t Mips64DPRegs[8] = {
76  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
77  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
78};
79
80// If I is a shifted mask, set the size (Size) and the first bit of the
81// mask (Pos), and return true.
82// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
83static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
84  if (!isShiftedMask_64(I))
85     return false;
86
87  Size = CountPopulation_64(I);
88  Pos = CountTrailingZeros_64(I);
89  return true;
90}
91
92static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
93  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
94  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
95}
96
97static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
98  EVT Ty = Op.getValueType();
99
100  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
101    return DAG.getTargetGlobalAddress(N->getGlobal(), Op.getDebugLoc(), Ty, 0,
102                                      Flag);
103  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
104    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
105  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
106    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
107  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
108    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
109  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
110    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
111                                     N->getOffset(), Flag);
112
113  llvm_unreachable("Unexpected node type.");
114  return SDValue();
115}
116
117static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
118  DebugLoc DL = Op.getDebugLoc();
119  EVT Ty = Op.getValueType();
120  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
121  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
122  return DAG.getNode(ISD::ADD, DL, Ty,
123                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
124                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
125}
126
127static SDValue getAddrLocal(SDValue Op, SelectionDAG &DAG, bool HasMips64) {
128  DebugLoc DL = Op.getDebugLoc();
129  EVT Ty = Op.getValueType();
130  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
131  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, GetGlobalReg(DAG, Ty),
132                            getTargetNode(Op, DAG, GOTFlag));
133  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
134                             MachinePointerInfo::getGOT(), false, false, false,
135                             0);
136  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
137  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
138  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
139}
140
141static SDValue getAddrGlobal(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
142  DebugLoc DL = Op.getDebugLoc();
143  EVT Ty = Op.getValueType();
144  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, GetGlobalReg(DAG, Ty),
145                            getTargetNode(Op, DAG, Flag));
146  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
147                     MachinePointerInfo::getGOT(), false, false, false, 0);
148}
149
150static SDValue getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
151                                     unsigned HiFlag, unsigned LoFlag) {
152  DebugLoc DL = Op.getDebugLoc();
153  EVT Ty = Op.getValueType();
154  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
155  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, GetGlobalReg(DAG, Ty));
156  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
157                                getTargetNode(Op, DAG, LoFlag));
158  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
159                     MachinePointerInfo::getGOT(), false, false, false, 0);
160}
161
162const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
163  switch (Opcode) {
164  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
165  case MipsISD::TailCall:          return "MipsISD::TailCall";
166  case MipsISD::Hi:                return "MipsISD::Hi";
167  case MipsISD::Lo:                return "MipsISD::Lo";
168  case MipsISD::GPRel:             return "MipsISD::GPRel";
169  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
170  case MipsISD::Ret:               return "MipsISD::Ret";
171  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
172  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
173  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
174  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
175  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
176  case MipsISD::FPRound:           return "MipsISD::FPRound";
177  case MipsISD::MAdd:              return "MipsISD::MAdd";
178  case MipsISD::MAddu:             return "MipsISD::MAddu";
179  case MipsISD::MSub:              return "MipsISD::MSub";
180  case MipsISD::MSubu:             return "MipsISD::MSubu";
181  case MipsISD::DivRem:            return "MipsISD::DivRem";
182  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
183  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
184  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
185  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
186  case MipsISD::Sync:              return "MipsISD::Sync";
187  case MipsISD::Ext:               return "MipsISD::Ext";
188  case MipsISD::Ins:               return "MipsISD::Ins";
189  case MipsISD::LWL:               return "MipsISD::LWL";
190  case MipsISD::LWR:               return "MipsISD::LWR";
191  case MipsISD::SWL:               return "MipsISD::SWL";
192  case MipsISD::SWR:               return "MipsISD::SWR";
193  case MipsISD::LDL:               return "MipsISD::LDL";
194  case MipsISD::LDR:               return "MipsISD::LDR";
195  case MipsISD::SDL:               return "MipsISD::SDL";
196  case MipsISD::SDR:               return "MipsISD::SDR";
197  case MipsISD::EXTP:              return "MipsISD::EXTP";
198  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
199  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
200  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
201  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
202  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
203  case MipsISD::SHILO:             return "MipsISD::SHILO";
204  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
205  case MipsISD::MULT:              return "MipsISD::MULT";
206  case MipsISD::MULTU:             return "MipsISD::MULTU";
207  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSPDSP";
208  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
209  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
210  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
211  default:                         return NULL;
212  }
213}
214
215namespace {
216  struct ltstr {
217    bool operator()(const char *s1, const char *s2) const
218    {
219      return strcmp(s1, s2) < 0;
220    }
221  };
222
223  std::set<const char*, ltstr> noHelperNeeded;
224}
225
226void MipsTargetLowering::SetMips16LibcallName
227  (RTLIB::Libcall l, const char *Name) {
228  setLibcallName(l, Name);
229  noHelperNeeded.insert(Name);
230}
231
232void MipsTargetLowering::setMips16HardFloatLibCalls() {
233  SetMips16LibcallName(RTLIB::ADD_F32, "__mips16_addsf3");
234  SetMips16LibcallName(RTLIB::ADD_F64, "__mips16_adddf3");
235  SetMips16LibcallName(RTLIB::SUB_F32, "__mips16_subsf3");
236  SetMips16LibcallName(RTLIB::SUB_F64, "__mips16_subdf3");
237  SetMips16LibcallName(RTLIB::MUL_F32, "__mips16_mulsf3");
238  SetMips16LibcallName(RTLIB::MUL_F64, "__mips16_muldf3");
239  SetMips16LibcallName(RTLIB::DIV_F32, "__mips16_divsf3");
240  SetMips16LibcallName(RTLIB::DIV_F64, "__mips16_divdf3");
241  SetMips16LibcallName(RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2");
242  SetMips16LibcallName(RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2");
243  SetMips16LibcallName(RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi");
244  SetMips16LibcallName(RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi");
245  SetMips16LibcallName(RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf");
246  SetMips16LibcallName(RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf");
247  SetMips16LibcallName(RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf");
248  SetMips16LibcallName(RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf");
249  SetMips16LibcallName(RTLIB::OEQ_F32, "__mips16_eqsf2");
250  SetMips16LibcallName(RTLIB::OEQ_F64, "__mips16_eqdf2");
251  SetMips16LibcallName(RTLIB::UNE_F32, "__mips16_nesf2");
252  SetMips16LibcallName(RTLIB::UNE_F64, "__mips16_nedf2");
253  SetMips16LibcallName(RTLIB::OGE_F32, "__mips16_gesf2");
254  SetMips16LibcallName(RTLIB::OGE_F64, "__mips16_gedf2");
255  SetMips16LibcallName(RTLIB::OLT_F32, "__mips16_ltsf2");
256  SetMips16LibcallName(RTLIB::OLT_F64, "__mips16_ltdf2");
257  SetMips16LibcallName(RTLIB::OLE_F32, "__mips16_lesf2");
258  SetMips16LibcallName(RTLIB::OLE_F64, "__mips16_ledf2");
259  SetMips16LibcallName(RTLIB::OGT_F32, "__mips16_gtsf2");
260  SetMips16LibcallName(RTLIB::OGT_F64, "__mips16_gtdf2");
261  SetMips16LibcallName(RTLIB::UO_F32, "__mips16_unordsf2");
262  SetMips16LibcallName(RTLIB::UO_F64, "__mips16_unorddf2");
263  SetMips16LibcallName(RTLIB::O_F32, "__mips16_unordsf2");
264  SetMips16LibcallName(RTLIB::O_F64, "__mips16_unorddf2");
265}
266
267MipsTargetLowering::
268MipsTargetLowering(MipsTargetMachine &TM)
269  : TargetLowering(TM, new MipsTargetObjectFile()),
270    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
271    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
272    IsO32(Subtarget->isABI_O32()) {
273
274  // Mips does not have i1 type, so use i32 for
275  // setcc operations results (slt, sgt, ...).
276  setBooleanContents(ZeroOrOneBooleanContent);
277  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
278
279  // Set up the register classes
280  addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
281
282  if (HasMips64)
283    addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
284
285  if (Subtarget->inMips16Mode()) {
286    addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
287    if (Mips16HardFloat)
288      setMips16HardFloatLibCalls();
289  }
290
291  if (Subtarget->hasDSP()) {
292    MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
293
294    for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
295      addRegisterClass(VecTys[i], &Mips::DSPRegsRegClass);
296
297      // Expand all builtin opcodes.
298      for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
299        setOperationAction(Opc, VecTys[i], Expand);
300
301      setOperationAction(ISD::LOAD, VecTys[i], Legal);
302      setOperationAction(ISD::STORE, VecTys[i], Legal);
303      setOperationAction(ISD::BITCAST, VecTys[i], Legal);
304    }
305  }
306
307  if (!TM.Options.UseSoftFloat) {
308    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
309
310    // When dealing with single precision only, use libcalls
311    if (!Subtarget->isSingleFloat()) {
312      if (HasMips64)
313        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
314      else
315        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
316    }
317  }
318
319  // Load extented operations for i1 types must be promoted
320  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
321  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
322  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
323
324  // MIPS doesn't have extending float->double load/store
325  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
326  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
327
328  // Used by legalize types to correctly generate the setcc result.
329  // Without this, every float setcc comes with a AND/OR with the result,
330  // we don't want this, since the fpcmp result goes to a flag register,
331  // which is used implicitly by brcond and select operations.
332  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
333
334  // Mips Custom Operations
335  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
336  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
337  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
338  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
339  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
340  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
341  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
342  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
343  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
344  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
345  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
346  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
347  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
348  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
349  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
350  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
351  if (Subtarget->inMips16Mode()) {
352    setOperationAction(ISD::MEMBARRIER,         MVT::Other, Expand);
353    setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Expand);
354  }
355  else {
356    setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
357    setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
358  }
359  if (!Subtarget->inMips16Mode()) {
360    setOperationAction(ISD::LOAD,               MVT::i32, Custom);
361    setOperationAction(ISD::STORE,              MVT::i32, Custom);
362  }
363
364  if (!TM.Options.NoNaNsFPMath) {
365    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
366    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
367  }
368
369  if (HasMips64) {
370    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
371    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
372    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
373    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
374    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
375    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
376    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
377    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
378  }
379
380  if (!HasMips64) {
381    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
382    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
383    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
384  }
385
386  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
387  if (HasMips64)
388    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
389
390  setOperationAction(ISD::SDIV, MVT::i32, Expand);
391  setOperationAction(ISD::SREM, MVT::i32, Expand);
392  setOperationAction(ISD::UDIV, MVT::i32, Expand);
393  setOperationAction(ISD::UREM, MVT::i32, Expand);
394  setOperationAction(ISD::SDIV, MVT::i64, Expand);
395  setOperationAction(ISD::SREM, MVT::i64, Expand);
396  setOperationAction(ISD::UDIV, MVT::i64, Expand);
397  setOperationAction(ISD::UREM, MVT::i64, Expand);
398
399  // Operations not directly supported by Mips.
400  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
401  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
402  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
403  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
404  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
405  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
406  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
407  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
408  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
409  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
410  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
411  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
412  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
413  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
414  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
415  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
416  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
417  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
418  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
419  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
420
421  if (!Subtarget->hasMips32r2())
422    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
423
424  if (!Subtarget->hasMips64r2())
425    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
426
427  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
428  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
429  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
430  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
431  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
432  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
433  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
434  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
435  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
436  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
437  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
438  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
439  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
440  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
441  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
442  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
443  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
444
445  if (!TM.Options.NoNaNsFPMath) {
446    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
447    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
448  }
449
450  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
451  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
452  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
453  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
454
455  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
456
457  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
458  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
459  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
460
461  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
462  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
463
464  // Use the default for now
465  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
466  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
467
468  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
469  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
470  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
471  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
472
473  if (Subtarget->inMips16Mode()) {
474    setOperationAction(ISD::ATOMIC_CMP_SWAP,       MVT::i32,    Expand);
475    setOperationAction(ISD::ATOMIC_SWAP,           MVT::i32,    Expand);
476    setOperationAction(ISD::ATOMIC_LOAD_ADD,       MVT::i32,    Expand);
477    setOperationAction(ISD::ATOMIC_LOAD_SUB,       MVT::i32,    Expand);
478    setOperationAction(ISD::ATOMIC_LOAD_AND,       MVT::i32,    Expand);
479    setOperationAction(ISD::ATOMIC_LOAD_OR,        MVT::i32,    Expand);
480    setOperationAction(ISD::ATOMIC_LOAD_XOR,       MVT::i32,    Expand);
481    setOperationAction(ISD::ATOMIC_LOAD_NAND,      MVT::i32,    Expand);
482    setOperationAction(ISD::ATOMIC_LOAD_MIN,       MVT::i32,    Expand);
483    setOperationAction(ISD::ATOMIC_LOAD_MAX,       MVT::i32,    Expand);
484    setOperationAction(ISD::ATOMIC_LOAD_UMIN,      MVT::i32,    Expand);
485    setOperationAction(ISD::ATOMIC_LOAD_UMAX,      MVT::i32,    Expand);
486  }
487
488  setInsertFencesForAtomic(true);
489
490  if (!Subtarget->hasSEInReg()) {
491    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
492    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
493  }
494
495  if (!Subtarget->hasBitCount()) {
496    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
497    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
498  }
499
500  if (!Subtarget->hasSwap()) {
501    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
502    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
503  }
504
505  if (HasMips64) {
506    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
507    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
508    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
509    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
510  }
511
512  setTargetDAGCombine(ISD::ADDE);
513  setTargetDAGCombine(ISD::SUBE);
514  setTargetDAGCombine(ISD::SDIVREM);
515  setTargetDAGCombine(ISD::UDIVREM);
516  setTargetDAGCombine(ISD::SELECT);
517  setTargetDAGCombine(ISD::AND);
518  setTargetDAGCombine(ISD::OR);
519  setTargetDAGCombine(ISD::ADD);
520
521  setMinFunctionAlignment(HasMips64 ? 3 : 2);
522
523  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
524  computeRegisterProperties();
525
526  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
527  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
528
529  MaxStoresPerMemcpy = 16;
530}
531
532bool
533MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
534  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
535
536  if (Subtarget->inMips16Mode())
537    return false;
538
539  switch (SVT) {
540  case MVT::i64:
541  case MVT::i32:
542    if (Fast)
543      *Fast = true;
544    return true;
545  default:
546    return false;
547  }
548}
549
550EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
551  if (!VT.isVector())
552    return MVT::i32;
553  return VT.changeVectorElementTypeToInteger();
554}
555
556// SelectMadd -
557// Transforms a subgraph in CurDAG if the following pattern is found:
558//  (addc multLo, Lo0), (adde multHi, Hi0),
559// where,
560//  multHi/Lo: product of multiplication
561//  Lo0: initial value of Lo register
562//  Hi0: initial value of Hi register
563// Return true if pattern matching was successful.
564static bool SelectMadd(SDNode *ADDENode, SelectionDAG *CurDAG) {
565  // ADDENode's second operand must be a flag output of an ADDC node in order
566  // for the matching to be successful.
567  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
568
569  if (ADDCNode->getOpcode() != ISD::ADDC)
570    return false;
571
572  SDValue MultHi = ADDENode->getOperand(0);
573  SDValue MultLo = ADDCNode->getOperand(0);
574  SDNode *MultNode = MultHi.getNode();
575  unsigned MultOpc = MultHi.getOpcode();
576
577  // MultHi and MultLo must be generated by the same node,
578  if (MultLo.getNode() != MultNode)
579    return false;
580
581  // and it must be a multiplication.
582  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
583    return false;
584
585  // MultLo amd MultHi must be the first and second output of MultNode
586  // respectively.
587  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
588    return false;
589
590  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
591  // of the values of MultNode, in which case MultNode will be removed in later
592  // phases.
593  // If there exist users other than ADDENode or ADDCNode, this function returns
594  // here, which will result in MultNode being mapped to a single MULT
595  // instruction node rather than a pair of MULT and MADD instructions being
596  // produced.
597  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
598    return false;
599
600  SDValue Chain = CurDAG->getEntryNode();
601  DebugLoc dl = ADDENode->getDebugLoc();
602
603  // create MipsMAdd(u) node
604  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
605
606  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
607                                 MultNode->getOperand(0),// Factor 0
608                                 MultNode->getOperand(1),// Factor 1
609                                 ADDCNode->getOperand(1),// Lo0
610                                 ADDENode->getOperand(1));// Hi0
611
612  // create CopyFromReg nodes
613  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
614                                              MAdd);
615  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
616                                              Mips::HI, MVT::i32,
617                                              CopyFromLo.getValue(2));
618
619  // replace uses of adde and addc here
620  if (!SDValue(ADDCNode, 0).use_empty())
621    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
622
623  if (!SDValue(ADDENode, 0).use_empty())
624    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
625
626  return true;
627}
628
629// SelectMsub -
630// Transforms a subgraph in CurDAG if the following pattern is found:
631//  (addc Lo0, multLo), (sube Hi0, multHi),
632// where,
633//  multHi/Lo: product of multiplication
634//  Lo0: initial value of Lo register
635//  Hi0: initial value of Hi register
636// Return true if pattern matching was successful.
637static bool SelectMsub(SDNode *SUBENode, SelectionDAG *CurDAG) {
638  // SUBENode's second operand must be a flag output of an SUBC node in order
639  // for the matching to be successful.
640  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
641
642  if (SUBCNode->getOpcode() != ISD::SUBC)
643    return false;
644
645  SDValue MultHi = SUBENode->getOperand(1);
646  SDValue MultLo = SUBCNode->getOperand(1);
647  SDNode *MultNode = MultHi.getNode();
648  unsigned MultOpc = MultHi.getOpcode();
649
650  // MultHi and MultLo must be generated by the same node,
651  if (MultLo.getNode() != MultNode)
652    return false;
653
654  // and it must be a multiplication.
655  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
656    return false;
657
658  // MultLo amd MultHi must be the first and second output of MultNode
659  // respectively.
660  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
661    return false;
662
663  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
664  // of the values of MultNode, in which case MultNode will be removed in later
665  // phases.
666  // If there exist users other than SUBENode or SUBCNode, this function returns
667  // here, which will result in MultNode being mapped to a single MULT
668  // instruction node rather than a pair of MULT and MSUB instructions being
669  // produced.
670  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
671    return false;
672
673  SDValue Chain = CurDAG->getEntryNode();
674  DebugLoc dl = SUBENode->getDebugLoc();
675
676  // create MipsSub(u) node
677  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
678
679  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
680                                 MultNode->getOperand(0),// Factor 0
681                                 MultNode->getOperand(1),// Factor 1
682                                 SUBCNode->getOperand(0),// Lo0
683                                 SUBENode->getOperand(0));// Hi0
684
685  // create CopyFromReg nodes
686  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
687                                              MSub);
688  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
689                                              Mips::HI, MVT::i32,
690                                              CopyFromLo.getValue(2));
691
692  // replace uses of sube and subc here
693  if (!SDValue(SUBCNode, 0).use_empty())
694    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
695
696  if (!SDValue(SUBENode, 0).use_empty())
697    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
698
699  return true;
700}
701
702static SDValue PerformADDECombine(SDNode *N, SelectionDAG &DAG,
703                                  TargetLowering::DAGCombinerInfo &DCI,
704                                  const MipsSubtarget *Subtarget) {
705  if (DCI.isBeforeLegalize())
706    return SDValue();
707
708  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
709      SelectMadd(N, &DAG))
710    return SDValue(N, 0);
711
712  return SDValue();
713}
714
715static SDValue PerformSUBECombine(SDNode *N, SelectionDAG &DAG,
716                                  TargetLowering::DAGCombinerInfo &DCI,
717                                  const MipsSubtarget *Subtarget) {
718  if (DCI.isBeforeLegalize())
719    return SDValue();
720
721  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
722      SelectMsub(N, &DAG))
723    return SDValue(N, 0);
724
725  return SDValue();
726}
727
728static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG &DAG,
729                                    TargetLowering::DAGCombinerInfo &DCI,
730                                    const MipsSubtarget *Subtarget) {
731  if (DCI.isBeforeLegalizeOps())
732    return SDValue();
733
734  EVT Ty = N->getValueType(0);
735  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
736  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
737  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
738                                                  MipsISD::DivRemU;
739  DebugLoc dl = N->getDebugLoc();
740
741  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
742                               N->getOperand(0), N->getOperand(1));
743  SDValue InChain = DAG.getEntryNode();
744  SDValue InGlue = DivRem;
745
746  // insert MFLO
747  if (N->hasAnyUseOfValue(0)) {
748    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
749                                            InGlue);
750    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
751    InChain = CopyFromLo.getValue(1);
752    InGlue = CopyFromLo.getValue(2);
753  }
754
755  // insert MFHI
756  if (N->hasAnyUseOfValue(1)) {
757    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
758                                            HI, Ty, InGlue);
759    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
760  }
761
762  return SDValue();
763}
764
765static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
766  switch (CC) {
767  default: llvm_unreachable("Unknown fp condition code!");
768  case ISD::SETEQ:
769  case ISD::SETOEQ: return Mips::FCOND_OEQ;
770  case ISD::SETUNE: return Mips::FCOND_UNE;
771  case ISD::SETLT:
772  case ISD::SETOLT: return Mips::FCOND_OLT;
773  case ISD::SETGT:
774  case ISD::SETOGT: return Mips::FCOND_OGT;
775  case ISD::SETLE:
776  case ISD::SETOLE: return Mips::FCOND_OLE;
777  case ISD::SETGE:
778  case ISD::SETOGE: return Mips::FCOND_OGE;
779  case ISD::SETULT: return Mips::FCOND_ULT;
780  case ISD::SETULE: return Mips::FCOND_ULE;
781  case ISD::SETUGT: return Mips::FCOND_UGT;
782  case ISD::SETUGE: return Mips::FCOND_UGE;
783  case ISD::SETUO:  return Mips::FCOND_UN;
784  case ISD::SETO:   return Mips::FCOND_OR;
785  case ISD::SETNE:
786  case ISD::SETONE: return Mips::FCOND_ONE;
787  case ISD::SETUEQ: return Mips::FCOND_UEQ;
788  }
789}
790
791
792// Returns true if condition code has to be inverted.
793static bool InvertFPCondCode(Mips::CondCode CC) {
794  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
795    return false;
796
797  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
798         "Illegal Condition Code");
799
800  return true;
801}
802
803// Creates and returns an FPCmp node from a setcc node.
804// Returns Op if setcc is not a floating point comparison.
805static SDValue CreateFPCmp(SelectionDAG &DAG, const SDValue &Op) {
806  // must be a SETCC node
807  if (Op.getOpcode() != ISD::SETCC)
808    return Op;
809
810  SDValue LHS = Op.getOperand(0);
811
812  if (!LHS.getValueType().isFloatingPoint())
813    return Op;
814
815  SDValue RHS = Op.getOperand(1);
816  DebugLoc dl = Op.getDebugLoc();
817
818  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
819  // node if necessary.
820  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
821
822  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
823                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
824}
825
826// Creates and returns a CMovFPT/F node.
827static SDValue CreateCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
828                            SDValue False, DebugLoc DL) {
829  bool invert = InvertFPCondCode((Mips::CondCode)
830                                 cast<ConstantSDNode>(Cond.getOperand(2))
831                                 ->getSExtValue());
832
833  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
834                     True.getValueType(), True, False, Cond);
835}
836
837static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
838                                    TargetLowering::DAGCombinerInfo &DCI,
839                                    const MipsSubtarget *Subtarget) {
840  if (DCI.isBeforeLegalizeOps())
841    return SDValue();
842
843  SDValue SetCC = N->getOperand(0);
844
845  if ((SetCC.getOpcode() != ISD::SETCC) ||
846      !SetCC.getOperand(0).getValueType().isInteger())
847    return SDValue();
848
849  SDValue False = N->getOperand(2);
850  EVT FalseTy = False.getValueType();
851
852  if (!FalseTy.isInteger())
853    return SDValue();
854
855  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
856
857  if (!CN || CN->getZExtValue())
858    return SDValue();
859
860  const DebugLoc DL = N->getDebugLoc();
861  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
862  SDValue True = N->getOperand(1);
863
864  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
865                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
866
867  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
868}
869
870static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
871                                 TargetLowering::DAGCombinerInfo &DCI,
872                                 const MipsSubtarget *Subtarget) {
873  // Pattern match EXT.
874  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
875  //  => ext $dst, $src, size, pos
876  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
877    return SDValue();
878
879  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
880  unsigned ShiftRightOpc = ShiftRight.getOpcode();
881
882  // Op's first operand must be a shift right.
883  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
884    return SDValue();
885
886  // The second operand of the shift must be an immediate.
887  ConstantSDNode *CN;
888  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
889    return SDValue();
890
891  uint64_t Pos = CN->getZExtValue();
892  uint64_t SMPos, SMSize;
893
894  // Op's second operand must be a shifted mask.
895  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
896      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
897    return SDValue();
898
899  // Return if the shifted mask does not start at bit 0 or the sum of its size
900  // and Pos exceeds the word's size.
901  EVT ValTy = N->getValueType(0);
902  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
903    return SDValue();
904
905  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
906                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
907                     DAG.getConstant(SMSize, MVT::i32));
908}
909
910static SDValue PerformORCombine(SDNode *N, SelectionDAG &DAG,
911                                TargetLowering::DAGCombinerInfo &DCI,
912                                const MipsSubtarget *Subtarget) {
913  // Pattern match INS.
914  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
915  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
916  //  => ins $dst, $src, size, pos, $src1
917  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
918    return SDValue();
919
920  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
921  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
922  ConstantSDNode *CN;
923
924  // See if Op's first operand matches (and $src1 , mask0).
925  if (And0.getOpcode() != ISD::AND)
926    return SDValue();
927
928  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
929      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
930    return SDValue();
931
932  // See if Op's second operand matches (and (shl $src, pos), mask1).
933  if (And1.getOpcode() != ISD::AND)
934    return SDValue();
935
936  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
937      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
938    return SDValue();
939
940  // The shift masks must have the same position and size.
941  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
942    return SDValue();
943
944  SDValue Shl = And1.getOperand(0);
945  if (Shl.getOpcode() != ISD::SHL)
946    return SDValue();
947
948  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
949    return SDValue();
950
951  unsigned Shamt = CN->getZExtValue();
952
953  // Return if the shift amount and the first bit position of mask are not the
954  // same.
955  EVT ValTy = N->getValueType(0);
956  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
957    return SDValue();
958
959  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
960                     DAG.getConstant(SMPos0, MVT::i32),
961                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
962}
963
964static SDValue PerformADDCombine(SDNode *N, SelectionDAG &DAG,
965                                 TargetLowering::DAGCombinerInfo &DCI,
966                                 const MipsSubtarget *Subtarget) {
967  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
968
969  if (DCI.isBeforeLegalizeOps())
970    return SDValue();
971
972  SDValue Add = N->getOperand(1);
973
974  if (Add.getOpcode() != ISD::ADD)
975    return SDValue();
976
977  SDValue Lo = Add.getOperand(1);
978
979  if ((Lo.getOpcode() != MipsISD::Lo) ||
980      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
981    return SDValue();
982
983  EVT ValTy = N->getValueType(0);
984  DebugLoc DL = N->getDebugLoc();
985
986  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
987                             Add.getOperand(0));
988  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
989}
990
991SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
992  const {
993  SelectionDAG &DAG = DCI.DAG;
994  unsigned opc = N->getOpcode();
995
996  switch (opc) {
997  default: break;
998  case ISD::ADDE:
999    return PerformADDECombine(N, DAG, DCI, Subtarget);
1000  case ISD::SUBE:
1001    return PerformSUBECombine(N, DAG, DCI, Subtarget);
1002  case ISD::SDIVREM:
1003  case ISD::UDIVREM:
1004    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
1005  case ISD::SELECT:
1006    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
1007  case ISD::AND:
1008    return PerformANDCombine(N, DAG, DCI, Subtarget);
1009  case ISD::OR:
1010    return PerformORCombine(N, DAG, DCI, Subtarget);
1011  case ISD::ADD:
1012    return PerformADDCombine(N, DAG, DCI, Subtarget);
1013  }
1014
1015  return SDValue();
1016}
1017
1018void
1019MipsTargetLowering::LowerOperationWrapper(SDNode *N,
1020                                          SmallVectorImpl<SDValue> &Results,
1021                                          SelectionDAG &DAG) const {
1022  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1023
1024  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1025    Results.push_back(Res.getValue(I));
1026}
1027
1028void
1029MipsTargetLowering::ReplaceNodeResults(SDNode *N,
1030                                       SmallVectorImpl<SDValue> &Results,
1031                                       SelectionDAG &DAG) const {
1032  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1033
1034  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1035    Results.push_back(Res.getValue(I));
1036}
1037
1038SDValue MipsTargetLowering::
1039LowerOperation(SDValue Op, SelectionDAG &DAG) const
1040{
1041  switch (Op.getOpcode())
1042  {
1043    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
1044    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
1045    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
1046    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
1047    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
1048    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
1049    case ISD::SELECT:             return LowerSELECT(Op, DAG);
1050    case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
1051    case ISD::SETCC:              return LowerSETCC(Op, DAG);
1052    case ISD::VASTART:            return LowerVASTART(Op, DAG);
1053    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
1054    case ISD::FABS:               return LowerFABS(Op, DAG);
1055    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
1056    case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
1057    case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
1058    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
1059    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
1060    case ISD::SHL_PARTS:          return LowerShiftLeftParts(Op, DAG);
1061    case ISD::SRA_PARTS:          return LowerShiftRightParts(Op, DAG, true);
1062    case ISD::SRL_PARTS:          return LowerShiftRightParts(Op, DAG, false);
1063    case ISD::LOAD:               return LowerLOAD(Op, DAG);
1064    case ISD::STORE:              return LowerSTORE(Op, DAG);
1065    case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1066    case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
1067    case ISD::ADD:                return LowerADD(Op, DAG);
1068  }
1069  return SDValue();
1070}
1071
1072//===----------------------------------------------------------------------===//
1073//  Lower helper functions
1074//===----------------------------------------------------------------------===//
1075
1076// AddLiveIn - This helper function adds the specified physical register to the
1077// MachineFunction as a live in value.  It also creates a corresponding
1078// virtual register for it.
1079static unsigned
1080AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
1081{
1082  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1083  MF.getRegInfo().addLiveIn(PReg, VReg);
1084  return VReg;
1085}
1086
1087// Get fp branch code (not opcode) from condition code.
1088static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
1089  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
1090    return Mips::BRANCH_T;
1091
1092  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
1093         "Invalid CondCode.");
1094
1095  return Mips::BRANCH_F;
1096}
1097
1098/*
1099static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
1100                                        DebugLoc dl,
1101                                        const MipsSubtarget *Subtarget,
1102                                        const TargetInstrInfo *TII,
1103                                        bool isFPCmp, unsigned Opc) {
1104  // There is no need to expand CMov instructions if target has
1105  // conditional moves.
1106  if (Subtarget->hasCondMov())
1107    return BB;
1108
1109  // To "insert" a SELECT_CC instruction, we actually have to insert the
1110  // diamond control-flow pattern.  The incoming instruction knows the
1111  // destination vreg to set, the condition code register to branch on, the
1112  // true/false values to select between, and a branch opcode to use.
1113  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1114  MachineFunction::iterator It = BB;
1115  ++It;
1116
1117  //  thisMBB:
1118  //  ...
1119  //   TrueVal = ...
1120  //   setcc r1, r2, r3
1121  //   bNE   r1, r0, copy1MBB
1122  //   fallthrough --> copy0MBB
1123  MachineBasicBlock *thisMBB  = BB;
1124  MachineFunction *F = BB->getParent();
1125  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1126  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
1127  F->insert(It, copy0MBB);
1128  F->insert(It, sinkMBB);
1129
1130  // Transfer the remainder of BB and its successor edges to sinkMBB.
1131  sinkMBB->splice(sinkMBB->begin(), BB,
1132                  llvm::next(MachineBasicBlock::iterator(MI)),
1133                  BB->end());
1134  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1135
1136  // Next, add the true and fallthrough blocks as its successors.
1137  BB->addSuccessor(copy0MBB);
1138  BB->addSuccessor(sinkMBB);
1139
1140  // Emit the right instruction according to the type of the operands compared
1141  if (isFPCmp)
1142    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
1143  else
1144    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
1145      .addReg(Mips::ZERO).addMBB(sinkMBB);
1146
1147  //  copy0MBB:
1148  //   %FalseValue = ...
1149  //   # fallthrough to sinkMBB
1150  BB = copy0MBB;
1151
1152  // Update machine-CFG edges
1153  BB->addSuccessor(sinkMBB);
1154
1155  //  sinkMBB:
1156  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
1157  //  ...
1158  BB = sinkMBB;
1159
1160  if (isFPCmp)
1161    BuildMI(*BB, BB->begin(), dl,
1162            TII->get(Mips::PHI), MI->getOperand(0).getReg())
1163      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
1164      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
1165  else
1166    BuildMI(*BB, BB->begin(), dl,
1167            TII->get(Mips::PHI), MI->getOperand(0).getReg())
1168      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
1169      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
1170
1171  MI->eraseFromParent();   // The pseudo instruction is gone now.
1172  return BB;
1173}
1174*/
1175
1176MachineBasicBlock *
1177MipsTargetLowering::EmitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
1178  // $bb:
1179  //  bposge32_pseudo $vr0
1180  //  =>
1181  // $bb:
1182  //  bposge32 $tbb
1183  // $fbb:
1184  //  li $vr2, 0
1185  //  b $sink
1186  // $tbb:
1187  //  li $vr1, 1
1188  // $sink:
1189  //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
1190
1191  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
1192  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1193  const TargetRegisterClass *RC = &Mips::CPURegsRegClass;
1194  DebugLoc DL = MI->getDebugLoc();
1195  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1196  MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB));
1197  MachineFunction *F = BB->getParent();
1198  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
1199  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
1200  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
1201  F->insert(It, FBB);
1202  F->insert(It, TBB);
1203  F->insert(It, Sink);
1204
1205  // Transfer the remainder of BB and its successor edges to Sink.
1206  Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)),
1207               BB->end());
1208  Sink->transferSuccessorsAndUpdatePHIs(BB);
1209
1210  // Add successors.
1211  BB->addSuccessor(FBB);
1212  BB->addSuccessor(TBB);
1213  FBB->addSuccessor(Sink);
1214  TBB->addSuccessor(Sink);
1215
1216  // Insert the real bposge32 instruction to $BB.
1217  BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
1218
1219  // Fill $FBB.
1220  unsigned VR2 = RegInfo.createVirtualRegister(RC);
1221  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
1222    .addReg(Mips::ZERO).addImm(0);
1223  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
1224
1225  // Fill $TBB.
1226  unsigned VR1 = RegInfo.createVirtualRegister(RC);
1227  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
1228    .addReg(Mips::ZERO).addImm(1);
1229
1230  // Insert phi function to $Sink.
1231  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
1232          MI->getOperand(0).getReg())
1233    .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
1234
1235  MI->eraseFromParent();   // The pseudo instruction is gone now.
1236  return Sink;
1237}
1238
1239MachineBasicBlock *MipsTargetLowering::EmitSel16(unsigned Opc, MachineInstr *MI,
1240                             MachineBasicBlock *BB) const {
1241  if (DontExpandCondPseudos16)
1242    return BB;
1243  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1244  DebugLoc dl = MI->getDebugLoc();
1245  // To "insert" a SELECT_CC instruction, we actually have to insert the
1246  // diamond control-flow pattern.  The incoming instruction knows the
1247  // destination vreg to set, the condition code register to branch on, the
1248  // true/false values to select between, and a branch opcode to use.
1249  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1250  MachineFunction::iterator It = BB;
1251  ++It;
1252
1253  //  thisMBB:
1254  //  ...
1255  //   TrueVal = ...
1256  //   setcc r1, r2, r3
1257  //   bNE   r1, r0, copy1MBB
1258  //   fallthrough --> copy0MBB
1259  MachineBasicBlock *thisMBB  = BB;
1260  MachineFunction *F = BB->getParent();
1261  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1262  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
1263  F->insert(It, copy0MBB);
1264  F->insert(It, sinkMBB);
1265
1266  // Transfer the remainder of BB and its successor edges to sinkMBB.
1267  sinkMBB->splice(sinkMBB->begin(), BB,
1268                  llvm::next(MachineBasicBlock::iterator(MI)),
1269                  BB->end());
1270  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1271
1272  // Next, add the true and fallthrough blocks as its successors.
1273  BB->addSuccessor(copy0MBB);
1274  BB->addSuccessor(sinkMBB);
1275
1276  BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(3).getReg())
1277    .addMBB(sinkMBB);
1278
1279  //  copy0MBB:
1280  //   %FalseValue = ...
1281  //   # fallthrough to sinkMBB
1282  BB = copy0MBB;
1283
1284  // Update machine-CFG edges
1285  BB->addSuccessor(sinkMBB);
1286
1287  //  sinkMBB:
1288  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
1289  //  ...
1290  BB = sinkMBB;
1291
1292  BuildMI(*BB, BB->begin(), dl,
1293          TII->get(Mips::PHI), MI->getOperand(0).getReg())
1294    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
1295    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
1296
1297  MI->eraseFromParent();   // The pseudo instruction is gone now.
1298  return BB;
1299}
1300
1301MachineBasicBlock *MipsTargetLowering::EmitSelT16
1302  (unsigned Opc1, unsigned Opc2,
1303   MachineInstr *MI, MachineBasicBlock *BB) const {
1304  if (DontExpandCondPseudos16)
1305    return BB;
1306  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1307  DebugLoc dl = MI->getDebugLoc();
1308  // To "insert" a SELECT_CC instruction, we actually have to insert the
1309  // diamond control-flow pattern.  The incoming instruction knows the
1310  // destination vreg to set, the condition code register to branch on, the
1311  // true/false values to select between, and a branch opcode to use.
1312  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1313  MachineFunction::iterator It = BB;
1314  ++It;
1315
1316  //  thisMBB:
1317  //  ...
1318  //   TrueVal = ...
1319  //   setcc r1, r2, r3
1320  //   bNE   r1, r0, copy1MBB
1321  //   fallthrough --> copy0MBB
1322  MachineBasicBlock *thisMBB  = BB;
1323  MachineFunction *F = BB->getParent();
1324  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1325  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
1326  F->insert(It, copy0MBB);
1327  F->insert(It, sinkMBB);
1328
1329  // Transfer the remainder of BB and its successor edges to sinkMBB.
1330  sinkMBB->splice(sinkMBB->begin(), BB,
1331                  llvm::next(MachineBasicBlock::iterator(MI)),
1332                  BB->end());
1333  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1334
1335  // Next, add the true and fallthrough blocks as its successors.
1336  BB->addSuccessor(copy0MBB);
1337  BB->addSuccessor(sinkMBB);
1338
1339  BuildMI(BB, dl, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
1340    .addReg(MI->getOperand(4).getReg());
1341  BuildMI(BB, dl, TII->get(Opc1)).addMBB(sinkMBB);
1342
1343  //  copy0MBB:
1344  //   %FalseValue = ...
1345  //   # fallthrough to sinkMBB
1346  BB = copy0MBB;
1347
1348  // Update machine-CFG edges
1349  BB->addSuccessor(sinkMBB);
1350
1351  //  sinkMBB:
1352  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
1353  //  ...
1354  BB = sinkMBB;
1355
1356  BuildMI(*BB, BB->begin(), dl,
1357          TII->get(Mips::PHI), MI->getOperand(0).getReg())
1358    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
1359    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
1360
1361  MI->eraseFromParent();   // The pseudo instruction is gone now.
1362  return BB;
1363
1364}
1365
1366
1367MachineBasicBlock *MipsTargetLowering::EmitSeliT16
1368  (unsigned Opc1, unsigned Opc2,
1369   MachineInstr *MI, MachineBasicBlock *BB) const {
1370  if (DontExpandCondPseudos16)
1371    return BB;
1372  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1373  DebugLoc dl = MI->getDebugLoc();
1374  // To "insert" a SELECT_CC instruction, we actually have to insert the
1375  // diamond control-flow pattern.  The incoming instruction knows the
1376  // destination vreg to set, the condition code register to branch on, the
1377  // true/false values to select between, and a branch opcode to use.
1378  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1379  MachineFunction::iterator It = BB;
1380  ++It;
1381
1382  //  thisMBB:
1383  //  ...
1384  //   TrueVal = ...
1385  //   setcc r1, r2, r3
1386  //   bNE   r1, r0, copy1MBB
1387  //   fallthrough --> copy0MBB
1388  MachineBasicBlock *thisMBB  = BB;
1389  MachineFunction *F = BB->getParent();
1390  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1391  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
1392  F->insert(It, copy0MBB);
1393  F->insert(It, sinkMBB);
1394
1395  // Transfer the remainder of BB and its successor edges to sinkMBB.
1396  sinkMBB->splice(sinkMBB->begin(), BB,
1397                  llvm::next(MachineBasicBlock::iterator(MI)),
1398                  BB->end());
1399  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1400
1401  // Next, add the true and fallthrough blocks as its successors.
1402  BB->addSuccessor(copy0MBB);
1403  BB->addSuccessor(sinkMBB);
1404
1405  BuildMI(BB, dl, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
1406    .addImm(MI->getOperand(4).getImm());
1407  BuildMI(BB, dl, TII->get(Opc1)).addMBB(sinkMBB);
1408
1409  //  copy0MBB:
1410  //   %FalseValue = ...
1411  //   # fallthrough to sinkMBB
1412  BB = copy0MBB;
1413
1414  // Update machine-CFG edges
1415  BB->addSuccessor(sinkMBB);
1416
1417  //  sinkMBB:
1418  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
1419  //  ...
1420  BB = sinkMBB;
1421
1422  BuildMI(*BB, BB->begin(), dl,
1423          TII->get(Mips::PHI), MI->getOperand(0).getReg())
1424    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
1425    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
1426
1427  MI->eraseFromParent();   // The pseudo instruction is gone now.
1428  return BB;
1429
1430}
1431
1432MachineBasicBlock *
1433MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1434                                                MachineBasicBlock *BB) const {
1435  switch (MI->getOpcode()) {
1436  default:
1437    llvm_unreachable("Unexpected instr type to insert");
1438  case Mips::ATOMIC_LOAD_ADD_I8:
1439  case Mips::ATOMIC_LOAD_ADD_I8_P8:
1440    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
1441  case Mips::ATOMIC_LOAD_ADD_I16:
1442  case Mips::ATOMIC_LOAD_ADD_I16_P8:
1443    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
1444  case Mips::ATOMIC_LOAD_ADD_I32:
1445  case Mips::ATOMIC_LOAD_ADD_I32_P8:
1446    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
1447  case Mips::ATOMIC_LOAD_ADD_I64:
1448  case Mips::ATOMIC_LOAD_ADD_I64_P8:
1449    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
1450
1451  case Mips::ATOMIC_LOAD_AND_I8:
1452  case Mips::ATOMIC_LOAD_AND_I8_P8:
1453    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
1454  case Mips::ATOMIC_LOAD_AND_I16:
1455  case Mips::ATOMIC_LOAD_AND_I16_P8:
1456    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
1457  case Mips::ATOMIC_LOAD_AND_I32:
1458  case Mips::ATOMIC_LOAD_AND_I32_P8:
1459    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
1460  case Mips::ATOMIC_LOAD_AND_I64:
1461  case Mips::ATOMIC_LOAD_AND_I64_P8:
1462    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
1463
1464  case Mips::ATOMIC_LOAD_OR_I8:
1465  case Mips::ATOMIC_LOAD_OR_I8_P8:
1466    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
1467  case Mips::ATOMIC_LOAD_OR_I16:
1468  case Mips::ATOMIC_LOAD_OR_I16_P8:
1469    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
1470  case Mips::ATOMIC_LOAD_OR_I32:
1471  case Mips::ATOMIC_LOAD_OR_I32_P8:
1472    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
1473  case Mips::ATOMIC_LOAD_OR_I64:
1474  case Mips::ATOMIC_LOAD_OR_I64_P8:
1475    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
1476
1477  case Mips::ATOMIC_LOAD_XOR_I8:
1478  case Mips::ATOMIC_LOAD_XOR_I8_P8:
1479    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
1480  case Mips::ATOMIC_LOAD_XOR_I16:
1481  case Mips::ATOMIC_LOAD_XOR_I16_P8:
1482    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
1483  case Mips::ATOMIC_LOAD_XOR_I32:
1484  case Mips::ATOMIC_LOAD_XOR_I32_P8:
1485    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
1486  case Mips::ATOMIC_LOAD_XOR_I64:
1487  case Mips::ATOMIC_LOAD_XOR_I64_P8:
1488    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
1489
1490  case Mips::ATOMIC_LOAD_NAND_I8:
1491  case Mips::ATOMIC_LOAD_NAND_I8_P8:
1492    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
1493  case Mips::ATOMIC_LOAD_NAND_I16:
1494  case Mips::ATOMIC_LOAD_NAND_I16_P8:
1495    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
1496  case Mips::ATOMIC_LOAD_NAND_I32:
1497  case Mips::ATOMIC_LOAD_NAND_I32_P8:
1498    return EmitAtomicBinary(MI, BB, 4, 0, true);
1499  case Mips::ATOMIC_LOAD_NAND_I64:
1500  case Mips::ATOMIC_LOAD_NAND_I64_P8:
1501    return EmitAtomicBinary(MI, BB, 8, 0, true);
1502
1503  case Mips::ATOMIC_LOAD_SUB_I8:
1504  case Mips::ATOMIC_LOAD_SUB_I8_P8:
1505    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
1506  case Mips::ATOMIC_LOAD_SUB_I16:
1507  case Mips::ATOMIC_LOAD_SUB_I16_P8:
1508    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
1509  case Mips::ATOMIC_LOAD_SUB_I32:
1510  case Mips::ATOMIC_LOAD_SUB_I32_P8:
1511    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
1512  case Mips::ATOMIC_LOAD_SUB_I64:
1513  case Mips::ATOMIC_LOAD_SUB_I64_P8:
1514    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
1515
1516  case Mips::ATOMIC_SWAP_I8:
1517  case Mips::ATOMIC_SWAP_I8_P8:
1518    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
1519  case Mips::ATOMIC_SWAP_I16:
1520  case Mips::ATOMIC_SWAP_I16_P8:
1521    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
1522  case Mips::ATOMIC_SWAP_I32:
1523  case Mips::ATOMIC_SWAP_I32_P8:
1524    return EmitAtomicBinary(MI, BB, 4, 0);
1525  case Mips::ATOMIC_SWAP_I64:
1526  case Mips::ATOMIC_SWAP_I64_P8:
1527    return EmitAtomicBinary(MI, BB, 8, 0);
1528
1529  case Mips::ATOMIC_CMP_SWAP_I8:
1530  case Mips::ATOMIC_CMP_SWAP_I8_P8:
1531    return EmitAtomicCmpSwapPartword(MI, BB, 1);
1532  case Mips::ATOMIC_CMP_SWAP_I16:
1533  case Mips::ATOMIC_CMP_SWAP_I16_P8:
1534    return EmitAtomicCmpSwapPartword(MI, BB, 2);
1535  case Mips::ATOMIC_CMP_SWAP_I32:
1536  case Mips::ATOMIC_CMP_SWAP_I32_P8:
1537    return EmitAtomicCmpSwap(MI, BB, 4);
1538  case Mips::ATOMIC_CMP_SWAP_I64:
1539  case Mips::ATOMIC_CMP_SWAP_I64_P8:
1540    return EmitAtomicCmpSwap(MI, BB, 8);
1541  case Mips::BPOSGE32_PSEUDO:
1542    return EmitBPOSGE32(MI, BB);
1543  case Mips::SelBeqZ:
1544    return EmitSel16(Mips::BeqzRxImm16, MI, BB);
1545  case Mips::SelBneZ:
1546    return EmitSel16(Mips::BnezRxImm16, MI, BB);
1547  case Mips::SelTBteqZCmpi:
1548    return EmitSeliT16(Mips::BteqzX16, Mips::CmpiRxImmX16, MI, BB);
1549  case Mips::SelTBteqZSlti:
1550    return EmitSeliT16(Mips::BteqzX16, Mips::SltiRxImmX16, MI, BB);
1551  case Mips::SelTBteqZSltiu:
1552    return EmitSeliT16(Mips::BteqzX16, Mips::SltiuRxImmX16, MI, BB);
1553  case Mips::SelTBtneZCmpi:
1554    return EmitSeliT16(Mips::BtnezX16, Mips::CmpiRxImmX16, MI, BB);
1555  case Mips::SelTBtneZSlti:
1556    return EmitSeliT16(Mips::BtnezX16, Mips::SltiRxImmX16, MI, BB);
1557  case Mips::SelTBtneZSltiu:
1558    return EmitSeliT16(Mips::BtnezX16, Mips::SltiuRxImmX16, MI, BB);
1559  case Mips::SelTBteqZCmp:
1560    return EmitSelT16(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB);
1561  case Mips::SelTBteqZSlt:
1562    return EmitSelT16(Mips::BteqzX16, Mips::SltRxRy16, MI, BB);
1563  case Mips::SelTBteqZSltu:
1564    return EmitSelT16(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB);
1565  case Mips::SelTBtneZCmp:
1566    return EmitSelT16(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB);
1567  case Mips::SelTBtneZSlt:
1568    return EmitSelT16(Mips::BtnezX16, Mips::SltRxRy16, MI, BB);
1569  case Mips::SelTBtneZSltu:
1570    return EmitSelT16(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB);
1571  }
1572}
1573
1574// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1575// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1576MachineBasicBlock *
1577MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1578                                     unsigned Size, unsigned BinOpcode,
1579                                     bool Nand) const {
1580  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1581
1582  MachineFunction *MF = BB->getParent();
1583  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1584  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1585  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1586  DebugLoc dl = MI->getDebugLoc();
1587  unsigned LL, SC, AND, NOR, ZERO, BEQ;
1588
1589  if (Size == 4) {
1590    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1591    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1592    AND = Mips::AND;
1593    NOR = Mips::NOR;
1594    ZERO = Mips::ZERO;
1595    BEQ = Mips::BEQ;
1596  }
1597  else {
1598    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1599    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1600    AND = Mips::AND64;
1601    NOR = Mips::NOR64;
1602    ZERO = Mips::ZERO_64;
1603    BEQ = Mips::BEQ64;
1604  }
1605
1606  unsigned OldVal = MI->getOperand(0).getReg();
1607  unsigned Ptr = MI->getOperand(1).getReg();
1608  unsigned Incr = MI->getOperand(2).getReg();
1609
1610  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1611  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1612  unsigned Success = RegInfo.createVirtualRegister(RC);
1613
1614  // insert new blocks after the current block
1615  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1616  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1617  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1618  MachineFunction::iterator It = BB;
1619  ++It;
1620  MF->insert(It, loopMBB);
1621  MF->insert(It, exitMBB);
1622
1623  // Transfer the remainder of BB and its successor edges to exitMBB.
1624  exitMBB->splice(exitMBB->begin(), BB,
1625                  llvm::next(MachineBasicBlock::iterator(MI)),
1626                  BB->end());
1627  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1628
1629  //  thisMBB:
1630  //    ...
1631  //    fallthrough --> loopMBB
1632  BB->addSuccessor(loopMBB);
1633  loopMBB->addSuccessor(loopMBB);
1634  loopMBB->addSuccessor(exitMBB);
1635
1636  //  loopMBB:
1637  //    ll oldval, 0(ptr)
1638  //    <binop> storeval, oldval, incr
1639  //    sc success, storeval, 0(ptr)
1640  //    beq success, $0, loopMBB
1641  BB = loopMBB;
1642  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1643  if (Nand) {
1644    //  and andres, oldval, incr
1645    //  nor storeval, $0, andres
1646    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1647    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1648  } else if (BinOpcode) {
1649    //  <binop> storeval, oldval, incr
1650    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1651  } else {
1652    StoreVal = Incr;
1653  }
1654  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1655  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1656
1657  MI->eraseFromParent();   // The instruction is gone now.
1658
1659  return exitMBB;
1660}
1661
1662MachineBasicBlock *
1663MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1664                                             MachineBasicBlock *BB,
1665                                             unsigned Size, unsigned BinOpcode,
1666                                             bool Nand) const {
1667  assert((Size == 1 || Size == 2) &&
1668      "Unsupported size for EmitAtomicBinaryPartial.");
1669
1670  MachineFunction *MF = BB->getParent();
1671  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1672  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1673  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1674  DebugLoc dl = MI->getDebugLoc();
1675  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1676  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1677
1678  unsigned Dest = MI->getOperand(0).getReg();
1679  unsigned Ptr = MI->getOperand(1).getReg();
1680  unsigned Incr = MI->getOperand(2).getReg();
1681
1682  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1683  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1684  unsigned Mask = RegInfo.createVirtualRegister(RC);
1685  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1686  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1687  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1688  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1689  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1690  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1691  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1692  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1693  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1694  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1695  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1696  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1697  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1698  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1699  unsigned Success = RegInfo.createVirtualRegister(RC);
1700
1701  // insert new blocks after the current block
1702  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1703  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1704  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1705  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1706  MachineFunction::iterator It = BB;
1707  ++It;
1708  MF->insert(It, loopMBB);
1709  MF->insert(It, sinkMBB);
1710  MF->insert(It, exitMBB);
1711
1712  // Transfer the remainder of BB and its successor edges to exitMBB.
1713  exitMBB->splice(exitMBB->begin(), BB,
1714                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1715  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1716
1717  BB->addSuccessor(loopMBB);
1718  loopMBB->addSuccessor(loopMBB);
1719  loopMBB->addSuccessor(sinkMBB);
1720  sinkMBB->addSuccessor(exitMBB);
1721
1722  //  thisMBB:
1723  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1724  //    and     alignedaddr,ptr,masklsb2
1725  //    andi    ptrlsb2,ptr,3
1726  //    sll     shiftamt,ptrlsb2,3
1727  //    ori     maskupper,$0,255               # 0xff
1728  //    sll     mask,maskupper,shiftamt
1729  //    nor     mask2,$0,mask
1730  //    sll     incr2,incr,shiftamt
1731
1732  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1733  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1734    .addReg(Mips::ZERO).addImm(-4);
1735  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1736    .addReg(Ptr).addReg(MaskLSB2);
1737  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1738  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1739  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1740    .addReg(Mips::ZERO).addImm(MaskImm);
1741  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1742    .addReg(ShiftAmt).addReg(MaskUpper);
1743  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1744  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1745
1746  // atomic.load.binop
1747  // loopMBB:
1748  //   ll      oldval,0(alignedaddr)
1749  //   binop   binopres,oldval,incr2
1750  //   and     newval,binopres,mask
1751  //   and     maskedoldval0,oldval,mask2
1752  //   or      storeval,maskedoldval0,newval
1753  //   sc      success,storeval,0(alignedaddr)
1754  //   beq     success,$0,loopMBB
1755
1756  // atomic.swap
1757  // loopMBB:
1758  //   ll      oldval,0(alignedaddr)
1759  //   and     newval,incr2,mask
1760  //   and     maskedoldval0,oldval,mask2
1761  //   or      storeval,maskedoldval0,newval
1762  //   sc      success,storeval,0(alignedaddr)
1763  //   beq     success,$0,loopMBB
1764
1765  BB = loopMBB;
1766  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1767  if (Nand) {
1768    //  and andres, oldval, incr2
1769    //  nor binopres, $0, andres
1770    //  and newval, binopres, mask
1771    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1772    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1773      .addReg(Mips::ZERO).addReg(AndRes);
1774    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1775  } else if (BinOpcode) {
1776    //  <binop> binopres, oldval, incr2
1777    //  and newval, binopres, mask
1778    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1779    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1780  } else {// atomic.swap
1781    //  and newval, incr2, mask
1782    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1783  }
1784
1785  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1786    .addReg(OldVal).addReg(Mask2);
1787  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1788    .addReg(MaskedOldVal0).addReg(NewVal);
1789  BuildMI(BB, dl, TII->get(SC), Success)
1790    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1791  BuildMI(BB, dl, TII->get(Mips::BEQ))
1792    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1793
1794  //  sinkMBB:
1795  //    and     maskedoldval1,oldval,mask
1796  //    srl     srlres,maskedoldval1,shiftamt
1797  //    sll     sllres,srlres,24
1798  //    sra     dest,sllres,24
1799  BB = sinkMBB;
1800  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1801
1802  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1803    .addReg(OldVal).addReg(Mask);
1804  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1805      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1806  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1807      .addReg(SrlRes).addImm(ShiftImm);
1808  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1809      .addReg(SllRes).addImm(ShiftImm);
1810
1811  MI->eraseFromParent();   // The instruction is gone now.
1812
1813  return exitMBB;
1814}
1815
1816MachineBasicBlock *
1817MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1818                                      MachineBasicBlock *BB,
1819                                      unsigned Size) const {
1820  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1821
1822  MachineFunction *MF = BB->getParent();
1823  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1824  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1825  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1826  DebugLoc dl = MI->getDebugLoc();
1827  unsigned LL, SC, ZERO, BNE, BEQ;
1828
1829  if (Size == 4) {
1830    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1831    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1832    ZERO = Mips::ZERO;
1833    BNE = Mips::BNE;
1834    BEQ = Mips::BEQ;
1835  }
1836  else {
1837    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1838    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1839    ZERO = Mips::ZERO_64;
1840    BNE = Mips::BNE64;
1841    BEQ = Mips::BEQ64;
1842  }
1843
1844  unsigned Dest    = MI->getOperand(0).getReg();
1845  unsigned Ptr     = MI->getOperand(1).getReg();
1846  unsigned OldVal  = MI->getOperand(2).getReg();
1847  unsigned NewVal  = MI->getOperand(3).getReg();
1848
1849  unsigned Success = RegInfo.createVirtualRegister(RC);
1850
1851  // insert new blocks after the current block
1852  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1853  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1854  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1855  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1856  MachineFunction::iterator It = BB;
1857  ++It;
1858  MF->insert(It, loop1MBB);
1859  MF->insert(It, loop2MBB);
1860  MF->insert(It, exitMBB);
1861
1862  // Transfer the remainder of BB and its successor edges to exitMBB.
1863  exitMBB->splice(exitMBB->begin(), BB,
1864                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1865  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1866
1867  //  thisMBB:
1868  //    ...
1869  //    fallthrough --> loop1MBB
1870  BB->addSuccessor(loop1MBB);
1871  loop1MBB->addSuccessor(exitMBB);
1872  loop1MBB->addSuccessor(loop2MBB);
1873  loop2MBB->addSuccessor(loop1MBB);
1874  loop2MBB->addSuccessor(exitMBB);
1875
1876  // loop1MBB:
1877  //   ll dest, 0(ptr)
1878  //   bne dest, oldval, exitMBB
1879  BB = loop1MBB;
1880  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1881  BuildMI(BB, dl, TII->get(BNE))
1882    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1883
1884  // loop2MBB:
1885  //   sc success, newval, 0(ptr)
1886  //   beq success, $0, loop1MBB
1887  BB = loop2MBB;
1888  BuildMI(BB, dl, TII->get(SC), Success)
1889    .addReg(NewVal).addReg(Ptr).addImm(0);
1890  BuildMI(BB, dl, TII->get(BEQ))
1891    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1892
1893  MI->eraseFromParent();   // The instruction is gone now.
1894
1895  return exitMBB;
1896}
1897
1898MachineBasicBlock *
1899MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1900                                              MachineBasicBlock *BB,
1901                                              unsigned Size) const {
1902  assert((Size == 1 || Size == 2) &&
1903      "Unsupported size for EmitAtomicCmpSwapPartial.");
1904
1905  MachineFunction *MF = BB->getParent();
1906  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1907  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1908  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1909  DebugLoc dl = MI->getDebugLoc();
1910  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1911  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1912
1913  unsigned Dest    = MI->getOperand(0).getReg();
1914  unsigned Ptr     = MI->getOperand(1).getReg();
1915  unsigned CmpVal  = MI->getOperand(2).getReg();
1916  unsigned NewVal  = MI->getOperand(3).getReg();
1917
1918  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1919  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1920  unsigned Mask = RegInfo.createVirtualRegister(RC);
1921  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1922  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1923  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1924  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1925  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1926  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1927  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1928  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1929  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1930  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1931  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1932  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1933  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1934  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1935  unsigned Success = RegInfo.createVirtualRegister(RC);
1936
1937  // insert new blocks after the current block
1938  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1939  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1940  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1941  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1942  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1943  MachineFunction::iterator It = BB;
1944  ++It;
1945  MF->insert(It, loop1MBB);
1946  MF->insert(It, loop2MBB);
1947  MF->insert(It, sinkMBB);
1948  MF->insert(It, exitMBB);
1949
1950  // Transfer the remainder of BB and its successor edges to exitMBB.
1951  exitMBB->splice(exitMBB->begin(), BB,
1952                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1953  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1954
1955  BB->addSuccessor(loop1MBB);
1956  loop1MBB->addSuccessor(sinkMBB);
1957  loop1MBB->addSuccessor(loop2MBB);
1958  loop2MBB->addSuccessor(loop1MBB);
1959  loop2MBB->addSuccessor(sinkMBB);
1960  sinkMBB->addSuccessor(exitMBB);
1961
1962  // FIXME: computation of newval2 can be moved to loop2MBB.
1963  //  thisMBB:
1964  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1965  //    and     alignedaddr,ptr,masklsb2
1966  //    andi    ptrlsb2,ptr,3
1967  //    sll     shiftamt,ptrlsb2,3
1968  //    ori     maskupper,$0,255               # 0xff
1969  //    sll     mask,maskupper,shiftamt
1970  //    nor     mask2,$0,mask
1971  //    andi    maskedcmpval,cmpval,255
1972  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1973  //    andi    maskednewval,newval,255
1974  //    sll     shiftednewval,maskednewval,shiftamt
1975  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1976  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1977    .addReg(Mips::ZERO).addImm(-4);
1978  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1979    .addReg(Ptr).addReg(MaskLSB2);
1980  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1981  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1982  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1983    .addReg(Mips::ZERO).addImm(MaskImm);
1984  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1985    .addReg(ShiftAmt).addReg(MaskUpper);
1986  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1987  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1988    .addReg(CmpVal).addImm(MaskImm);
1989  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1990    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1991  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1992    .addReg(NewVal).addImm(MaskImm);
1993  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1994    .addReg(ShiftAmt).addReg(MaskedNewVal);
1995
1996  //  loop1MBB:
1997  //    ll      oldval,0(alginedaddr)
1998  //    and     maskedoldval0,oldval,mask
1999  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
2000  BB = loop1MBB;
2001  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
2002  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
2003    .addReg(OldVal).addReg(Mask);
2004  BuildMI(BB, dl, TII->get(Mips::BNE))
2005    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
2006
2007  //  loop2MBB:
2008  //    and     maskedoldval1,oldval,mask2
2009  //    or      storeval,maskedoldval1,shiftednewval
2010  //    sc      success,storeval,0(alignedaddr)
2011  //    beq     success,$0,loop1MBB
2012  BB = loop2MBB;
2013  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
2014    .addReg(OldVal).addReg(Mask2);
2015  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
2016    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
2017  BuildMI(BB, dl, TII->get(SC), Success)
2018      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
2019  BuildMI(BB, dl, TII->get(Mips::BEQ))
2020      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
2021
2022  //  sinkMBB:
2023  //    srl     srlres,maskedoldval0,shiftamt
2024  //    sll     sllres,srlres,24
2025  //    sra     dest,sllres,24
2026  BB = sinkMBB;
2027  int64_t ShiftImm = (Size == 1) ? 24 : 16;
2028
2029  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
2030      .addReg(ShiftAmt).addReg(MaskedOldVal0);
2031  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
2032      .addReg(SrlRes).addImm(ShiftImm);
2033  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
2034      .addReg(SllRes).addImm(ShiftImm);
2035
2036  MI->eraseFromParent();   // The instruction is gone now.
2037
2038  return exitMBB;
2039}
2040
2041//===----------------------------------------------------------------------===//
2042//  Misc Lower Operation implementation
2043//===----------------------------------------------------------------------===//
2044SDValue MipsTargetLowering::
2045LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
2046{
2047  // The first operand is the chain, the second is the condition, the third is
2048  // the block to branch to if the condition is true.
2049  SDValue Chain = Op.getOperand(0);
2050  SDValue Dest = Op.getOperand(2);
2051  DebugLoc dl = Op.getDebugLoc();
2052
2053  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
2054
2055  // Return if flag is not set by a floating point comparison.
2056  if (CondRes.getOpcode() != MipsISD::FPCmp)
2057    return Op;
2058
2059  SDValue CCNode  = CondRes.getOperand(2);
2060  Mips::CondCode CC =
2061    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
2062  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
2063
2064  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
2065                     Dest, CondRes);
2066}
2067
2068SDValue MipsTargetLowering::
2069LowerSELECT(SDValue Op, SelectionDAG &DAG) const
2070{
2071  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
2072
2073  // Return if flag is not set by a floating point comparison.
2074  if (Cond.getOpcode() != MipsISD::FPCmp)
2075    return Op;
2076
2077  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
2078                      Op.getDebugLoc());
2079}
2080
2081SDValue MipsTargetLowering::
2082LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
2083{
2084  DebugLoc DL = Op.getDebugLoc();
2085  EVT Ty = Op.getOperand(0).getValueType();
2086  SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
2087                             Op.getOperand(0), Op.getOperand(1),
2088                             Op.getOperand(4));
2089
2090  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
2091                     Op.getOperand(3));
2092}
2093
2094SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2095  SDValue Cond = CreateFPCmp(DAG, Op);
2096
2097  assert(Cond.getOpcode() == MipsISD::FPCmp &&
2098         "Floating point operand expected.");
2099
2100  SDValue True  = DAG.getConstant(1, MVT::i32);
2101  SDValue False = DAG.getConstant(0, MVT::i32);
2102
2103  return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
2104}
2105
2106SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
2107                                               SelectionDAG &DAG) const {
2108  // FIXME there isn't actually debug info here
2109  DebugLoc dl = Op.getDebugLoc();
2110  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2111
2112  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
2113    const MipsTargetObjectFile &TLOF =
2114      (const MipsTargetObjectFile&)getObjFileLowering();
2115
2116    // %gp_rel relocation
2117    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
2118      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
2119                                              MipsII::MO_GPREL);
2120      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl,
2121                                      DAG.getVTList(MVT::i32), &GA, 1);
2122      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
2123      return DAG.getNode(ISD::ADD, dl, MVT::i32, GPReg, GPRelNode);
2124    }
2125
2126    // %hi/%lo relocation
2127    return getAddrNonPIC(Op, DAG);
2128  }
2129
2130  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
2131    return getAddrLocal(Op, DAG, HasMips64);
2132
2133  if (LargeGOT)
2134    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
2135                                 MipsII::MO_GOT_LO16);
2136
2137  return getAddrGlobal(Op, DAG,
2138                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
2139}
2140
2141SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
2142                                              SelectionDAG &DAG) const {
2143  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
2144    return getAddrNonPIC(Op, DAG);
2145
2146  return getAddrLocal(Op, DAG, HasMips64);
2147}
2148
2149SDValue MipsTargetLowering::
2150LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
2151{
2152  // If the relocation model is PIC, use the General Dynamic TLS Model or
2153  // Local Dynamic TLS model, otherwise use the Initial Exec or
2154  // Local Exec TLS Model.
2155
2156  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2157  DebugLoc dl = GA->getDebugLoc();
2158  const GlobalValue *GV = GA->getGlobal();
2159  EVT PtrVT = getPointerTy();
2160
2161  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2162
2163  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2164    // General Dynamic and Local Dynamic TLS Model.
2165    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
2166                                                      : MipsII::MO_TLSGD;
2167
2168    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
2169    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
2170                                   GetGlobalReg(DAG, PtrVT), TGA);
2171    unsigned PtrSize = PtrVT.getSizeInBits();
2172    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
2173
2174    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
2175
2176    ArgListTy Args;
2177    ArgListEntry Entry;
2178    Entry.Node = Argument;
2179    Entry.Ty = PtrTy;
2180    Args.push_back(Entry);
2181
2182    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
2183                  false, false, false, false, 0, CallingConv::C,
2184                  /*isTailCall=*/false, /*doesNotRet=*/false,
2185                  /*isReturnValueUsed=*/true,
2186                  TlsGetAddr, Args, DAG, dl);
2187    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2188
2189    SDValue Ret = CallResult.first;
2190
2191    if (model != TLSModel::LocalDynamic)
2192      return Ret;
2193
2194    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2195                                               MipsII::MO_DTPREL_HI);
2196    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
2197    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2198                                               MipsII::MO_DTPREL_LO);
2199    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
2200    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
2201    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
2202  }
2203
2204  SDValue Offset;
2205  if (model == TLSModel::InitialExec) {
2206    // Initial Exec TLS Model
2207    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2208                                             MipsII::MO_GOTTPREL);
2209    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
2210                      TGA);
2211    Offset = DAG.getLoad(PtrVT, dl,
2212                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
2213                         false, false, false, 0);
2214  } else {
2215    // Local Exec TLS Model
2216    assert(model == TLSModel::LocalExec);
2217    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2218                                               MipsII::MO_TPREL_HI);
2219    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2220                                               MipsII::MO_TPREL_LO);
2221    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
2222    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
2223    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
2224  }
2225
2226  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
2227  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2228}
2229
2230SDValue MipsTargetLowering::
2231LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
2232{
2233  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
2234    return getAddrNonPIC(Op, DAG);
2235
2236  return getAddrLocal(Op, DAG, HasMips64);
2237}
2238
2239SDValue MipsTargetLowering::
2240LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
2241{
2242  // gp_rel relocation
2243  // FIXME: we should reference the constant pool using small data sections,
2244  // but the asm printer currently doesn't support this feature without
2245  // hacking it. This feature should come soon so we can uncomment the
2246  // stuff below.
2247  //if (IsInSmallSection(C->getType())) {
2248  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
2249  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
2250  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
2251
2252  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
2253    return getAddrNonPIC(Op, DAG);
2254
2255  return getAddrLocal(Op, DAG, HasMips64);
2256}
2257
2258SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2259  MachineFunction &MF = DAG.getMachineFunction();
2260  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2261
2262  DebugLoc dl = Op.getDebugLoc();
2263  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2264                                 getPointerTy());
2265
2266  // vastart just stores the address of the VarArgsFrameIndex slot into the
2267  // memory location argument.
2268  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2269  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
2270                      MachinePointerInfo(SV), false, false, 0);
2271}
2272
2273static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2274  EVT TyX = Op.getOperand(0).getValueType();
2275  EVT TyY = Op.getOperand(1).getValueType();
2276  SDValue Const1 = DAG.getConstant(1, MVT::i32);
2277  SDValue Const31 = DAG.getConstant(31, MVT::i32);
2278  DebugLoc DL = Op.getDebugLoc();
2279  SDValue Res;
2280
2281  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2282  // to i32.
2283  SDValue X = (TyX == MVT::f32) ?
2284    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2285    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2286                Const1);
2287  SDValue Y = (TyY == MVT::f32) ?
2288    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
2289    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
2290                Const1);
2291
2292  if (HasR2) {
2293    // ext  E, Y, 31, 1  ; extract bit31 of Y
2294    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
2295    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
2296    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
2297  } else {
2298    // sll SllX, X, 1
2299    // srl SrlX, SllX, 1
2300    // srl SrlY, Y, 31
2301    // sll SllY, SrlX, 31
2302    // or  Or, SrlX, SllY
2303    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2304    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2305    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
2306    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
2307    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
2308  }
2309
2310  if (TyX == MVT::f32)
2311    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
2312
2313  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2314                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
2315  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2316}
2317
2318static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2319  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
2320  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
2321  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2322  SDValue Const1 = DAG.getConstant(1, MVT::i32);
2323  DebugLoc DL = Op.getDebugLoc();
2324
2325  // Bitcast to integer nodes.
2326  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2327  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2328
2329  if (HasR2) {
2330    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
2331    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
2332    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2333                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
2334
2335    if (WidthX > WidthY)
2336      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2337    else if (WidthY > WidthX)
2338      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2339
2340    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2341                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
2342    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2343  }
2344
2345  // (d)sll SllX, X, 1
2346  // (d)srl SrlX, SllX, 1
2347  // (d)srl SrlY, Y, width(Y)-1
2348  // (d)sll SllY, SrlX, width(Y)-1
2349  // or     Or, SrlX, SllY
2350  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2351  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2352  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2353                             DAG.getConstant(WidthY - 1, MVT::i32));
2354
2355  if (WidthX > WidthY)
2356    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2357  else if (WidthY > WidthX)
2358    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2359
2360  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2361                             DAG.getConstant(WidthX - 1, MVT::i32));
2362  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2363  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2364}
2365
2366SDValue
2367MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2368  if (Subtarget->hasMips64())
2369    return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
2370
2371  return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
2372}
2373
2374static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2375  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2376  DebugLoc DL = Op.getDebugLoc();
2377
2378  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2379  // to i32.
2380  SDValue X = (Op.getValueType() == MVT::f32) ?
2381    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2382    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2383                Const1);
2384
2385  // Clear MSB.
2386  if (HasR2)
2387    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
2388                      DAG.getRegister(Mips::ZERO, MVT::i32),
2389                      DAG.getConstant(31, MVT::i32), Const1, X);
2390  else {
2391    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2392    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2393  }
2394
2395  if (Op.getValueType() == MVT::f32)
2396    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
2397
2398  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2399                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
2400  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2401}
2402
2403static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2404  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2405  DebugLoc DL = Op.getDebugLoc();
2406
2407  // Bitcast to integer node.
2408  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2409
2410  // Clear MSB.
2411  if (HasR2)
2412    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2413                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
2414                      DAG.getConstant(63, MVT::i32), Const1, X);
2415  else {
2416    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2417    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2418  }
2419
2420  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2421}
2422
2423SDValue
2424MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
2425  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
2426    return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
2427
2428  return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
2429}
2430
2431SDValue MipsTargetLowering::
2432LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2433  // check the depth
2434  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2435         "Frame address can only be determined for current frame.");
2436
2437  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2438  MFI->setFrameAddressIsTaken(true);
2439  EVT VT = Op.getValueType();
2440  DebugLoc dl = Op.getDebugLoc();
2441  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2442                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
2443  return FrameAddr;
2444}
2445
2446SDValue MipsTargetLowering::LowerRETURNADDR(SDValue Op,
2447                                            SelectionDAG &DAG) const {
2448  // check the depth
2449  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2450         "Return address can be determined only for current frame.");
2451
2452  MachineFunction &MF = DAG.getMachineFunction();
2453  MachineFrameInfo *MFI = MF.getFrameInfo();
2454  MVT VT = Op.getSimpleValueType();
2455  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
2456  MFI->setReturnAddressIsTaken(true);
2457
2458  // Return RA, which contains the return address. Mark it an implicit live-in.
2459  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2460  return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
2461}
2462
2463// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2464// generated from __builtin_eh_return (offset, handler)
2465// The effect of this is to adjust the stack pointer by "offset"
2466// and then branch to "handler".
2467SDValue MipsTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
2468                                                                     const {
2469  MachineFunction &MF = DAG.getMachineFunction();
2470  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2471
2472  MipsFI->setCallsEhReturn();
2473  SDValue Chain     = Op.getOperand(0);
2474  SDValue Offset    = Op.getOperand(1);
2475  SDValue Handler   = Op.getOperand(2);
2476  DebugLoc DL       = Op.getDebugLoc();
2477  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2478
2479  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2480  // EH_RETURN nodes, so that instructions are emitted back-to-back.
2481  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
2482  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
2483  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
2484  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
2485  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
2486                     DAG.getRegister(OffsetReg, Ty),
2487                     DAG.getRegister(AddrReg, getPointerTy()),
2488                     Chain.getValue(1));
2489}
2490
2491// TODO: set SType according to the desired memory barrier behavior.
2492SDValue
2493MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
2494  unsigned SType = 0;
2495  DebugLoc dl = Op.getDebugLoc();
2496  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2497                     DAG.getConstant(SType, MVT::i32));
2498}
2499
2500SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
2501                                              SelectionDAG &DAG) const {
2502  // FIXME: Need pseudo-fence for 'singlethread' fences
2503  // FIXME: Set SType for weaker fences where supported/appropriate.
2504  unsigned SType = 0;
2505  DebugLoc dl = Op.getDebugLoc();
2506  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2507                     DAG.getConstant(SType, MVT::i32));
2508}
2509
2510SDValue MipsTargetLowering::LowerShiftLeftParts(SDValue Op,
2511                                                SelectionDAG &DAG) const {
2512  DebugLoc DL = Op.getDebugLoc();
2513  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2514  SDValue Shamt = Op.getOperand(2);
2515
2516  // if shamt < 32:
2517  //  lo = (shl lo, shamt)
2518  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2519  // else:
2520  //  lo = 0
2521  //  hi = (shl lo, shamt[4:0])
2522  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2523                            DAG.getConstant(-1, MVT::i32));
2524  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
2525                                      DAG.getConstant(1, MVT::i32));
2526  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
2527                                     Not);
2528  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
2529  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2530  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
2531  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2532                             DAG.getConstant(0x20, MVT::i32));
2533  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2534                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
2535  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
2536
2537  SDValue Ops[2] = {Lo, Hi};
2538  return DAG.getMergeValues(Ops, 2, DL);
2539}
2540
2541SDValue MipsTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2542                                                 bool IsSRA) const {
2543  DebugLoc DL = Op.getDebugLoc();
2544  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2545  SDValue Shamt = Op.getOperand(2);
2546
2547  // if shamt < 32:
2548  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2549  //  if isSRA:
2550  //    hi = (sra hi, shamt)
2551  //  else:
2552  //    hi = (srl hi, shamt)
2553  // else:
2554  //  if isSRA:
2555  //   lo = (sra hi, shamt[4:0])
2556  //   hi = (sra hi, 31)
2557  //  else:
2558  //   lo = (srl hi, shamt[4:0])
2559  //   hi = 0
2560  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2561                            DAG.getConstant(-1, MVT::i32));
2562  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
2563                                     DAG.getConstant(1, MVT::i32));
2564  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
2565  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
2566  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2567  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2568                                     Hi, Shamt);
2569  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2570                             DAG.getConstant(0x20, MVT::i32));
2571  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
2572                                DAG.getConstant(31, MVT::i32));
2573  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
2574  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2575                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2576                   ShiftRightHi);
2577
2578  SDValue Ops[2] = {Lo, Hi};
2579  return DAG.getMergeValues(Ops, 2, DL);
2580}
2581
2582static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2583                            SDValue Chain, SDValue Src, unsigned Offset) {
2584  SDValue Ptr = LD->getBasePtr();
2585  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2586  EVT BasePtrVT = Ptr.getValueType();
2587  DebugLoc DL = LD->getDebugLoc();
2588  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2589
2590  if (Offset)
2591    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2592                      DAG.getConstant(Offset, BasePtrVT));
2593
2594  SDValue Ops[] = { Chain, Ptr, Src };
2595  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2596                                 LD->getMemOperand());
2597}
2598
2599// Expand an unaligned 32 or 64-bit integer load node.
2600SDValue MipsTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2601  LoadSDNode *LD = cast<LoadSDNode>(Op);
2602  EVT MemVT = LD->getMemoryVT();
2603
2604  // Return if load is aligned or if MemVT is neither i32 nor i64.
2605  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2606      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2607    return SDValue();
2608
2609  bool IsLittle = Subtarget->isLittle();
2610  EVT VT = Op.getValueType();
2611  ISD::LoadExtType ExtType = LD->getExtensionType();
2612  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2613
2614  assert((VT == MVT::i32) || (VT == MVT::i64));
2615
2616  // Expand
2617  //  (set dst, (i64 (load baseptr)))
2618  // to
2619  //  (set tmp, (ldl (add baseptr, 7), undef))
2620  //  (set dst, (ldr baseptr, tmp))
2621  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2622    SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2623                               IsLittle ? 7 : 0);
2624    return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2625                        IsLittle ? 0 : 7);
2626  }
2627
2628  SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2629                             IsLittle ? 3 : 0);
2630  SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2631                             IsLittle ? 0 : 3);
2632
2633  // Expand
2634  //  (set dst, (i32 (load baseptr))) or
2635  //  (set dst, (i64 (sextload baseptr))) or
2636  //  (set dst, (i64 (extload baseptr)))
2637  // to
2638  //  (set tmp, (lwl (add baseptr, 3), undef))
2639  //  (set dst, (lwr baseptr, tmp))
2640  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2641      (ExtType == ISD::EXTLOAD))
2642    return LWR;
2643
2644  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2645
2646  // Expand
2647  //  (set dst, (i64 (zextload baseptr)))
2648  // to
2649  //  (set tmp0, (lwl (add baseptr, 3), undef))
2650  //  (set tmp1, (lwr baseptr, tmp0))
2651  //  (set tmp2, (shl tmp1, 32))
2652  //  (set dst, (srl tmp2, 32))
2653  DebugLoc DL = LD->getDebugLoc();
2654  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2655  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2656  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2657  SDValue Ops[] = { SRL, LWR.getValue(1) };
2658  return DAG.getMergeValues(Ops, 2, DL);
2659}
2660
2661static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2662                             SDValue Chain, unsigned Offset) {
2663  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2664  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2665  DebugLoc DL = SD->getDebugLoc();
2666  SDVTList VTList = DAG.getVTList(MVT::Other);
2667
2668  if (Offset)
2669    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2670                      DAG.getConstant(Offset, BasePtrVT));
2671
2672  SDValue Ops[] = { Chain, Value, Ptr };
2673  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2674                                 SD->getMemOperand());
2675}
2676
2677// Expand an unaligned 32 or 64-bit integer store node.
2678SDValue MipsTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2679  StoreSDNode *SD = cast<StoreSDNode>(Op);
2680  EVT MemVT = SD->getMemoryVT();
2681
2682  // Return if store is aligned or if MemVT is neither i32 nor i64.
2683  if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2684      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2685    return SDValue();
2686
2687  bool IsLittle = Subtarget->isLittle();
2688  SDValue Value = SD->getValue(), Chain = SD->getChain();
2689  EVT VT = Value.getValueType();
2690
2691  // Expand
2692  //  (store val, baseptr) or
2693  //  (truncstore val, baseptr)
2694  // to
2695  //  (swl val, (add baseptr, 3))
2696  //  (swr val, baseptr)
2697  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2698    SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
2699                                IsLittle ? 3 : 0);
2700    return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2701  }
2702
2703  assert(VT == MVT::i64);
2704
2705  // Expand
2706  //  (store val, baseptr)
2707  // to
2708  //  (sdl val, (add baseptr, 7))
2709  //  (sdr val, baseptr)
2710  SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2711  return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2712}
2713
2714// This function expands mips intrinsic nodes which have 64-bit input operands
2715// or output values.
2716//
2717// out64 = intrinsic-node in64
2718// =>
2719// lo = copy (extract-element (in64, 0))
2720// hi = copy (extract-element (in64, 1))
2721// mips-specific-node
2722// v0 = copy lo
2723// v1 = copy hi
2724// out64 = merge-values (v0, v1)
2725//
2726static SDValue LowerDSPIntr(SDValue Op, SelectionDAG &DAG,
2727                            unsigned Opc, bool HasI64In, bool HasI64Out) {
2728  DebugLoc DL = Op.getDebugLoc();
2729  bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
2730  SDValue Chain = HasChainIn ? Op->getOperand(0) : DAG.getEntryNode();
2731  SmallVector<SDValue, 3> Ops;
2732
2733  if (HasI64In) {
2734    SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2735                               Op->getOperand(1 + HasChainIn),
2736                               DAG.getConstant(0, MVT::i32));
2737    SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2738                               Op->getOperand(1 + HasChainIn),
2739                               DAG.getConstant(1, MVT::i32));
2740
2741    Chain = DAG.getCopyToReg(Chain, DL, Mips::LO, InLo, SDValue());
2742    Chain = DAG.getCopyToReg(Chain, DL, Mips::HI, InHi, Chain.getValue(1));
2743
2744    Ops.push_back(Chain);
2745    Ops.append(Op->op_begin() + HasChainIn + 2, Op->op_end());
2746    Ops.push_back(Chain.getValue(1));
2747  } else {
2748    Ops.push_back(Chain);
2749    Ops.append(Op->op_begin() + HasChainIn + 1, Op->op_end());
2750  }
2751
2752  if (!HasI64Out)
2753    return DAG.getNode(Opc, DL, Op->value_begin(), Op->getNumValues(),
2754                       Ops.begin(), Ops.size());
2755
2756  SDValue Intr = DAG.getNode(Opc, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2757                             Ops.begin(), Ops.size());
2758  SDValue OutLo = DAG.getCopyFromReg(Intr.getValue(0), DL, Mips::LO, MVT::i32,
2759                                     Intr.getValue(1));
2760  SDValue OutHi = DAG.getCopyFromReg(OutLo.getValue(1), DL, Mips::HI, MVT::i32,
2761                                     OutLo.getValue(2));
2762  SDValue Out = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, OutLo, OutHi);
2763
2764  if (!HasChainIn)
2765    return Out;
2766
2767  SDValue Vals[] = { Out, OutHi.getValue(1) };
2768  return DAG.getMergeValues(Vals, 2, DL);
2769}
2770
2771SDValue MipsTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2772                                                    SelectionDAG &DAG) const {
2773  switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
2774  default:
2775    return SDValue();
2776  case Intrinsic::mips_shilo:
2777    return LowerDSPIntr(Op, DAG, MipsISD::SHILO, true, true);
2778  case Intrinsic::mips_dpau_h_qbl:
2779    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL, true, true);
2780  case Intrinsic::mips_dpau_h_qbr:
2781    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR, true, true);
2782  case Intrinsic::mips_dpsu_h_qbl:
2783    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL, true, true);
2784  case Intrinsic::mips_dpsu_h_qbr:
2785    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR, true, true);
2786  case Intrinsic::mips_dpa_w_ph:
2787    return LowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH, true, true);
2788  case Intrinsic::mips_dps_w_ph:
2789    return LowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH, true, true);
2790  case Intrinsic::mips_dpax_w_ph:
2791    return LowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH, true, true);
2792  case Intrinsic::mips_dpsx_w_ph:
2793    return LowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH, true, true);
2794  case Intrinsic::mips_mulsa_w_ph:
2795    return LowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH, true, true);
2796  case Intrinsic::mips_mult:
2797    return LowerDSPIntr(Op, DAG, MipsISD::MULT, false, true);
2798  case Intrinsic::mips_multu:
2799    return LowerDSPIntr(Op, DAG, MipsISD::MULTU, false, true);
2800  case Intrinsic::mips_madd:
2801    return LowerDSPIntr(Op, DAG, MipsISD::MADD_DSP, true, true);
2802  case Intrinsic::mips_maddu:
2803    return LowerDSPIntr(Op, DAG, MipsISD::MADDU_DSP, true, true);
2804  case Intrinsic::mips_msub:
2805    return LowerDSPIntr(Op, DAG, MipsISD::MSUB_DSP, true, true);
2806  case Intrinsic::mips_msubu:
2807    return LowerDSPIntr(Op, DAG, MipsISD::MSUBU_DSP, true, true);
2808  }
2809}
2810
2811SDValue MipsTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
2812                                                   SelectionDAG &DAG) const {
2813  switch (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue()) {
2814  default:
2815    return SDValue();
2816  case Intrinsic::mips_extp:
2817    return LowerDSPIntr(Op, DAG, MipsISD::EXTP, true, false);
2818  case Intrinsic::mips_extpdp:
2819    return LowerDSPIntr(Op, DAG, MipsISD::EXTPDP, true, false);
2820  case Intrinsic::mips_extr_w:
2821    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_W, true, false);
2822  case Intrinsic::mips_extr_r_w:
2823    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W, true, false);
2824  case Intrinsic::mips_extr_rs_w:
2825    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W, true, false);
2826  case Intrinsic::mips_extr_s_h:
2827    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H, true, false);
2828  case Intrinsic::mips_mthlip:
2829    return LowerDSPIntr(Op, DAG, MipsISD::MTHLIP, true, true);
2830  case Intrinsic::mips_mulsaq_s_w_ph:
2831    return LowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH, true, true);
2832  case Intrinsic::mips_maq_s_w_phl:
2833    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL, true, true);
2834  case Intrinsic::mips_maq_s_w_phr:
2835    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR, true, true);
2836  case Intrinsic::mips_maq_sa_w_phl:
2837    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL, true, true);
2838  case Intrinsic::mips_maq_sa_w_phr:
2839    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR, true, true);
2840  case Intrinsic::mips_dpaq_s_w_ph:
2841    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH, true, true);
2842  case Intrinsic::mips_dpsq_s_w_ph:
2843    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH, true, true);
2844  case Intrinsic::mips_dpaq_sa_l_w:
2845    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W, true, true);
2846  case Intrinsic::mips_dpsq_sa_l_w:
2847    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W, true, true);
2848  case Intrinsic::mips_dpaqx_s_w_ph:
2849    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH, true, true);
2850  case Intrinsic::mips_dpaqx_sa_w_ph:
2851    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH, true, true);
2852  case Intrinsic::mips_dpsqx_s_w_ph:
2853    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH, true, true);
2854  case Intrinsic::mips_dpsqx_sa_w_ph:
2855    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH, true, true);
2856  }
2857}
2858
2859SDValue MipsTargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
2860  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2861      || cast<ConstantSDNode>
2862        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2863      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2864    return SDValue();
2865
2866  // The pattern
2867  //   (add (frameaddr 0), (frame_to_args_offset))
2868  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2869  //   (add FrameObject, 0)
2870  // where FrameObject is a fixed StackObject with offset 0 which points to
2871  // the old stack pointer.
2872  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2873  EVT ValTy = Op->getValueType(0);
2874  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2875  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2876  return DAG.getNode(ISD::ADD, Op->getDebugLoc(), ValTy, InArgsAddr,
2877                     DAG.getConstant(0, ValTy));
2878}
2879
2880//===----------------------------------------------------------------------===//
2881//                      Calling Convention Implementation
2882//===----------------------------------------------------------------------===//
2883
2884//===----------------------------------------------------------------------===//
2885// TODO: Implement a generic logic using tblgen that can support this.
2886// Mips O32 ABI rules:
2887// ---
2888// i32 - Passed in A0, A1, A2, A3 and stack
2889// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2890//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2891// f64 - Only passed in two aliased f32 registers if no int reg has been used
2892//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2893//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2894//       go to stack.
2895//
2896//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2897//===----------------------------------------------------------------------===//
2898
2899static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2900                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2901                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2902
2903  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2904
2905  static const uint16_t IntRegs[] = {
2906      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2907  };
2908  static const uint16_t F32Regs[] = {
2909      Mips::F12, Mips::F14
2910  };
2911  static const uint16_t F64Regs[] = {
2912      Mips::D6, Mips::D7
2913  };
2914
2915  // Do not process byval args here.
2916  if (ArgFlags.isByVal())
2917    return true;
2918
2919  // Promote i8 and i16
2920  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2921    LocVT = MVT::i32;
2922    if (ArgFlags.isSExt())
2923      LocInfo = CCValAssign::SExt;
2924    else if (ArgFlags.isZExt())
2925      LocInfo = CCValAssign::ZExt;
2926    else
2927      LocInfo = CCValAssign::AExt;
2928  }
2929
2930  unsigned Reg;
2931
2932  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2933  // is true: function is vararg, argument is 3rd or higher, there is previous
2934  // argument which is not f32 or f64.
2935  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2936      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2937  unsigned OrigAlign = ArgFlags.getOrigAlign();
2938  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2939
2940  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2941    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2942    // If this is the first part of an i64 arg,
2943    // the allocated register must be either A0 or A2.
2944    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2945      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2946    LocVT = MVT::i32;
2947  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2948    // Allocate int register and shadow next int register. If first
2949    // available register is Mips::A1 or Mips::A3, shadow it too.
2950    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2951    if (Reg == Mips::A1 || Reg == Mips::A3)
2952      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2953    State.AllocateReg(IntRegs, IntRegsSize);
2954    LocVT = MVT::i32;
2955  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2956    // we are guaranteed to find an available float register
2957    if (ValVT == MVT::f32) {
2958      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2959      // Shadow int register
2960      State.AllocateReg(IntRegs, IntRegsSize);
2961    } else {
2962      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2963      // Shadow int registers
2964      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2965      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2966        State.AllocateReg(IntRegs, IntRegsSize);
2967      State.AllocateReg(IntRegs, IntRegsSize);
2968    }
2969  } else
2970    llvm_unreachable("Cannot handle this ValVT.");
2971
2972  if (!Reg) {
2973    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2974                                          OrigAlign);
2975    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2976  } else
2977    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2978
2979  return false;
2980}
2981
2982#include "MipsGenCallingConv.inc"
2983
2984//===----------------------------------------------------------------------===//
2985//                  Call Calling Convention Implementation
2986//===----------------------------------------------------------------------===//
2987
2988static const unsigned O32IntRegsSize = 4;
2989
2990// Return next O32 integer argument register.
2991static unsigned getNextIntArgReg(unsigned Reg) {
2992  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2993  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2994}
2995
2996/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2997/// for tail call optimization.
2998bool MipsTargetLowering::
2999IsEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
3000                                  unsigned NextStackOffset,
3001                                  const MipsFunctionInfo& FI) const {
3002  if (!EnableMipsTailCalls)
3003    return false;
3004
3005  // No tail call optimization for mips16.
3006  if (Subtarget->inMips16Mode())
3007    return false;
3008
3009  // Return false if either the callee or caller has a byval argument.
3010  if (MipsCCInfo.hasByValArg() || FI.hasByvalArg())
3011    return false;
3012
3013  // Return true if the callee's argument area is no larger than the
3014  // caller's.
3015  return NextStackOffset <= FI.getIncomingArgSize();
3016}
3017
3018SDValue
3019MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
3020                                   SDValue Chain, SDValue Arg, DebugLoc DL,
3021                                   bool IsTailCall, SelectionDAG &DAG) const {
3022  if (!IsTailCall) {
3023    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
3024                                 DAG.getIntPtrConstant(Offset));
3025    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
3026                        false, 0);
3027  }
3028
3029  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3030  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
3031  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3032  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
3033                      /*isVolatile=*/ true, false, 0);
3034}
3035
3036//
3037// The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
3038// cleaner way to do all of this but it will have to wait until the traditional
3039// gcc mechanism is completed.
3040//
3041// For Pic, in order for Mips16 code to call Mips32 code which according the abi
3042// have either arguments or returned values placed in floating point registers,
3043// we use a set of helper functions. (This includes functions which return type
3044//  complex which on Mips are returned in a pair of floating point registers).
3045//
3046// This is an encoding that we inherited from gcc.
3047// In Mips traditional O32, N32 ABI, floating point numbers are passed in
3048// floating point argument registers 1,2 only when the first and optionally
3049// the second arguments are float (sf) or double (df).
3050// For Mips16 we are only concerned with the situations where floating point
3051// arguments are being passed in floating point registers by the ABI, because
3052// Mips16 mode code cannot execute floating point instructions to load those
3053// values and hence helper functions are needed.
3054// The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
3055// the helper function suffixs for these are:
3056//                        0,  1,    5,        9,         2,   6,        10
3057// this suffix can then be calculated as follows:
3058// for a given argument Arg:
3059//     Arg1x, Arg2x = 1 :  Arg is sf
3060//                    2 :  Arg is df
3061//                    0:   Arg is neither sf or df
3062// So this stub is the string for number Arg1x + Arg2x*4.
3063// However not all numbers between 0 and 10 are possible, we check anyway and
3064// assert if the impossible exists.
3065//
3066
3067unsigned int MipsTargetLowering::getMips16HelperFunctionStubNumber
3068  (ArgListTy &Args) const {
3069  unsigned int resultNum = 0;
3070  if (Args.size() >= 1) {
3071    Type *t = Args[0].Ty;
3072    if (t->isFloatTy()) {
3073      resultNum = 1;
3074    }
3075    else if (t->isDoubleTy()) {
3076      resultNum = 2;
3077    }
3078  }
3079  if (resultNum) {
3080    if (Args.size() >=2) {
3081      Type *t = Args[1].Ty;
3082      if (t->isFloatTy()) {
3083        resultNum += 4;
3084      }
3085      else if (t->isDoubleTy()) {
3086        resultNum += 8;
3087      }
3088    }
3089  }
3090  return resultNum;
3091}
3092
3093//
3094// prefixs are attached to stub numbers depending on the return type .
3095// return type: float  sf_
3096//              double df_
3097//              single complex sc_
3098//              double complext dc_
3099//              others  NO PREFIX
3100//
3101//
3102// The full name of a helper function is__mips16_call_stub +
3103//    return type dependent prefix + stub number
3104//
3105//
3106// This is something that probably should be in a different source file and
3107// perhaps done differently but my main purpose is to not waste runtime
3108// on something that we can enumerate in the source. Another possibility is
3109// to have a python script to generate these mapping tables. This will do
3110// for now. There are a whole series of helper function mapping arrays, one
3111// for each return type class as outlined above. There there are 11 possible
3112//  entries. Ones with 0 are ones which should never be selected
3113//
3114// All the arrays are similar except for ones which return neither
3115// sf, df, sc, dc, in which only care about ones which have sf or df as a
3116// first parameter.
3117//
3118#define P_ "__mips16_call_stub_"
3119#define MAX_STUB_NUMBER 10
3120#define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
3121#define T P "0" , T1
3122#define P P_
3123static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
3124  {0, T1 };
3125#undef P
3126#define P P_ "sf_"
3127static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
3128  { T };
3129#undef P
3130#define P P_ "df_"
3131static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
3132  { T };
3133#undef P
3134#define P P_ "sc_"
3135static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
3136  { T };
3137#undef P
3138#define P P_ "dc_"
3139static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
3140  { T };
3141#undef P
3142#undef P_
3143
3144
3145const char* MipsTargetLowering::
3146  getMips16HelperFunction
3147    (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
3148  const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
3149#ifndef NDEBUG
3150  const unsigned int maxStubNum = 10;
3151  assert(stubNum <= maxStubNum);
3152  const bool validStubNum[maxStubNum+1] =
3153    {true, true, true, false, false, true, true, false, false, true, true};
3154  assert(validStubNum[stubNum]);
3155#endif
3156  const char *result;
3157  if (RetTy->isFloatTy()) {
3158    result = sfMips16Helper[stubNum];
3159  }
3160  else if (RetTy ->isDoubleTy()) {
3161    result = dfMips16Helper[stubNum];
3162  }
3163  else if (RetTy->isStructTy()) {
3164    // check if it's complex
3165    if (RetTy->getNumContainedTypes() == 2) {
3166      if ((RetTy->getContainedType(0)->isFloatTy()) &&
3167          (RetTy->getContainedType(1)->isFloatTy())) {
3168        result = scMips16Helper[stubNum];
3169      }
3170      else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
3171               (RetTy->getContainedType(1)->isDoubleTy())) {
3172        result = dcMips16Helper[stubNum];
3173      }
3174      else {
3175        llvm_unreachable("Uncovered condition");
3176      }
3177    }
3178    else {
3179      llvm_unreachable("Uncovered condition");
3180    }
3181  }
3182  else {
3183    if (stubNum == 0) {
3184      needHelper = false;
3185      return "";
3186    }
3187    result = vMips16Helper[stubNum];
3188  }
3189  needHelper = true;
3190  return result;
3191}
3192
3193/// LowerCall - functions arguments are copied from virtual regs to
3194/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3195SDValue
3196MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3197                              SmallVectorImpl<SDValue> &InVals) const {
3198  SelectionDAG &DAG                     = CLI.DAG;
3199  DebugLoc &dl                          = CLI.DL;
3200  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3201  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
3202  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
3203  SDValue Chain                         = CLI.Chain;
3204  SDValue Callee                        = CLI.Callee;
3205  bool &isTailCall                      = CLI.IsTailCall;
3206  CallingConv::ID CallConv              = CLI.CallConv;
3207  bool isVarArg                         = CLI.IsVarArg;
3208
3209  const char* mips16HelperFunction = 0;
3210  bool needMips16Helper = false;
3211
3212  if (Subtarget->inMips16Mode() && getTargetMachine().Options.UseSoftFloat &&
3213      Mips16HardFloat) {
3214    //
3215    // currently we don't have symbols tagged with the mips16 or mips32
3216    // qualifier so we will assume that we don't know what kind it is.
3217    // and generate the helper
3218    //
3219    bool lookupHelper = true;
3220    if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3221      if (noHelperNeeded.find(S->getSymbol()) != noHelperNeeded.end()) {
3222        lookupHelper = false;
3223      }
3224    }
3225    if (lookupHelper) mips16HelperFunction =
3226      getMips16HelperFunction(CLI.RetTy, CLI.Args, needMips16Helper);
3227
3228  }
3229  MachineFunction &MF = DAG.getMachineFunction();
3230  MachineFrameInfo *MFI = MF.getFrameInfo();
3231  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
3232  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
3233
3234  // Analyze operands of the call, assigning locations to each operand.
3235  SmallVector<CCValAssign, 16> ArgLocs;
3236  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3237                 getTargetMachine(), ArgLocs, *DAG.getContext());
3238  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
3239
3240  MipsCCInfo.analyzeCallOperands(Outs, isVarArg);
3241
3242  // Get a count of how many bytes are to be pushed on the stack.
3243  unsigned NextStackOffset = CCInfo.getNextStackOffset();
3244
3245  // Check if it's really possible to do a tail call.
3246  if (isTailCall)
3247    isTailCall =
3248      IsEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
3249                                        *MF.getInfo<MipsFunctionInfo>());
3250
3251  if (isTailCall)
3252    ++NumTailCalls;
3253
3254  // Chain is the output chain of the last Load/Store or CopyToReg node.
3255  // ByValChain is the output chain of the last Memcpy node created for copying
3256  // byval arguments to the stack.
3257  unsigned StackAlignment = TFL->getStackAlignment();
3258  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
3259  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
3260
3261  if (!isTailCall)
3262    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
3263
3264  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl,
3265                                        IsN64 ? Mips::SP_64 : Mips::SP,
3266                                        getPointerTy());
3267
3268  // With EABI is it possible to have 16 args on registers.
3269  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
3270  SmallVector<SDValue, 8> MemOpChains;
3271  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
3272
3273  // Walk the register/memloc assignments, inserting copies/loads.
3274  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3275    SDValue Arg = OutVals[i];
3276    CCValAssign &VA = ArgLocs[i];
3277    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
3278    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3279
3280    // ByVal Arg.
3281    if (Flags.isByVal()) {
3282      assert(Flags.getByValSize() &&
3283             "ByVal args of size 0 should have been ignored by front-end.");
3284      assert(ByValArg != MipsCCInfo.byval_end());
3285      assert(!isTailCall &&
3286             "Do not tail-call optimize if there is a byval argument.");
3287      passByValArg(Chain, dl, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
3288                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
3289      ++ByValArg;
3290      continue;
3291    }
3292
3293    // Promote the value if needed.
3294    switch (VA.getLocInfo()) {
3295    default: llvm_unreachable("Unknown loc info!");
3296    case CCValAssign::Full:
3297      if (VA.isRegLoc()) {
3298        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
3299            (ValVT == MVT::f64 && LocVT == MVT::i64))
3300          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
3301        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
3302          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
3303                                   Arg, DAG.getConstant(0, MVT::i32));
3304          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
3305                                   Arg, DAG.getConstant(1, MVT::i32));
3306          if (!Subtarget->isLittle())
3307            std::swap(Lo, Hi);
3308          unsigned LocRegLo = VA.getLocReg();
3309          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
3310          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
3311          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
3312          continue;
3313        }
3314      }
3315      break;
3316    case CCValAssign::SExt:
3317      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
3318      break;
3319    case CCValAssign::ZExt:
3320      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
3321      break;
3322    case CCValAssign::AExt:
3323      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
3324      break;
3325    }
3326
3327    // Arguments that can be passed on register must be kept at
3328    // RegsToPass vector
3329    if (VA.isRegLoc()) {
3330      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3331      continue;
3332    }
3333
3334    // Register can't get to this point...
3335    assert(VA.isMemLoc());
3336
3337    // emit ISD::STORE whichs stores the
3338    // parameter value to a stack Location
3339    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
3340                                         Chain, Arg, dl, isTailCall, DAG));
3341  }
3342
3343  // Transform all store nodes into one single node because all store
3344  // nodes are independent of each other.
3345  if (!MemOpChains.empty())
3346    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3347                        &MemOpChains[0], MemOpChains.size());
3348
3349  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3350  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3351  // node so that legalize doesn't hack it.
3352  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
3353  bool GlobalOrExternal = false, InternalLinkage = false;
3354  SDValue CalleeLo;
3355
3356  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3357    if (IsPICCall) {
3358      InternalLinkage = G->getGlobal()->hasInternalLinkage();
3359
3360      if (InternalLinkage)
3361        Callee = getAddrLocal(Callee, DAG, HasMips64);
3362      else if (LargeGOT)
3363        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
3364                                       MipsII::MO_CALL_LO16);
3365      else
3366        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
3367    } else
3368      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
3369                                          MipsII::MO_NO_FLAG);
3370    GlobalOrExternal = true;
3371  }
3372  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3373    if (!IsN64 && !IsPIC) // !N64 && static
3374      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
3375                                            MipsII::MO_NO_FLAG);
3376    else if (LargeGOT)
3377      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
3378                                     MipsII::MO_CALL_LO16);
3379    else // N64 || PIC
3380      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
3381
3382    GlobalOrExternal = true;
3383  }
3384
3385  SDValue JumpTarget = Callee;
3386
3387  // T9 should contain the address of the callee function if
3388  // -reloction-model=pic or it is an indirect call.
3389  if (IsPICCall || !GlobalOrExternal) {
3390    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
3391    unsigned V0Reg = Mips::V0;
3392    if (needMips16Helper) {
3393      RegsToPass.push_front(std::make_pair(V0Reg, Callee));
3394      JumpTarget = DAG.getExternalSymbol(
3395        mips16HelperFunction, getPointerTy());
3396      JumpTarget = getAddrGlobal(JumpTarget, DAG, MipsII::MO_GOT);
3397    }
3398    else {
3399      RegsToPass.push_front(std::make_pair(T9Reg, Callee));
3400
3401      if (!Subtarget->inMips16Mode())
3402        JumpTarget = SDValue();
3403    }
3404  }
3405
3406  // Insert node "GP copy globalreg" before call to function.
3407  //
3408  // R_MIPS_CALL* operators (emitted when non-internal functions are called
3409  // in PIC mode) allow symbols to be resolved via lazy binding.
3410  // The lazy binding stub requires GP to point to the GOT.
3411  if (IsPICCall && !InternalLinkage) {
3412    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
3413    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
3414    RegsToPass.push_back(std::make_pair(GPReg, GetGlobalReg(DAG, Ty)));
3415  }
3416
3417  // Build a sequence of copy-to-reg nodes chained together with token
3418  // chain and flag operands which copy the outgoing args into registers.
3419  // The InFlag in necessary since all emitted instructions must be
3420  // stuck together.
3421  SDValue InFlag;
3422
3423  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3424    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3425                             RegsToPass[i].second, InFlag);
3426    InFlag = Chain.getValue(1);
3427  }
3428
3429  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
3430  //             = Chain, Callee, Reg#1, Reg#2, ...
3431  //
3432  // Returns a chain & a flag for retval copy to use.
3433  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3434  SmallVector<SDValue, 8> Ops(1, Chain);
3435
3436  if (JumpTarget.getNode())
3437    Ops.push_back(JumpTarget);
3438
3439  // Add argument registers to the end of the list so that they are
3440  // known live into the call.
3441  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3442    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3443                                  RegsToPass[i].second.getValueType()));
3444
3445  // Add a register mask operand representing the call-preserved registers.
3446  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3447  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3448  assert(Mask && "Missing call preserved mask for calling convention");
3449  Ops.push_back(DAG.getRegisterMask(Mask));
3450
3451  if (InFlag.getNode())
3452    Ops.push_back(InFlag);
3453
3454  if (isTailCall)
3455    return DAG.getNode(MipsISD::TailCall, dl, MVT::Other, &Ops[0], Ops.size());
3456
3457  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
3458  InFlag = Chain.getValue(1);
3459
3460  // Create the CALLSEQ_END node.
3461  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
3462                             DAG.getIntPtrConstant(0, true), InFlag);
3463  InFlag = Chain.getValue(1);
3464
3465  // Handle result values, copying them out of physregs into vregs that we
3466  // return.
3467  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3468                         Ins, dl, DAG, InVals);
3469}
3470
3471/// LowerCallResult - Lower the result values of a call into the
3472/// appropriate copies out of appropriate physical registers.
3473SDValue
3474MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3475                                    CallingConv::ID CallConv, bool isVarArg,
3476                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3477                                    DebugLoc dl, SelectionDAG &DAG,
3478                                    SmallVectorImpl<SDValue> &InVals) const {
3479  // Assign locations to each value returned by this call.
3480  SmallVector<CCValAssign, 16> RVLocs;
3481  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3482                 getTargetMachine(), RVLocs, *DAG.getContext());
3483
3484  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
3485
3486  // Copy all of the result registers out of their specified physreg.
3487  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3488    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
3489                               RVLocs[i].getValVT(), InFlag).getValue(1);
3490    InFlag = Chain.getValue(2);
3491    InVals.push_back(Chain.getValue(0));
3492  }
3493
3494  return Chain;
3495}
3496
3497//===----------------------------------------------------------------------===//
3498//             Formal Arguments Calling Convention Implementation
3499//===----------------------------------------------------------------------===//
3500/// LowerFormalArguments - transform physical registers into virtual registers
3501/// and generate load operations for arguments places on the stack.
3502SDValue
3503MipsTargetLowering::LowerFormalArguments(SDValue Chain,
3504                                         CallingConv::ID CallConv,
3505                                         bool isVarArg,
3506                                      const SmallVectorImpl<ISD::InputArg> &Ins,
3507                                         DebugLoc dl, SelectionDAG &DAG,
3508                                         SmallVectorImpl<SDValue> &InVals)
3509                                          const {
3510  MachineFunction &MF = DAG.getMachineFunction();
3511  MachineFrameInfo *MFI = MF.getFrameInfo();
3512  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3513
3514  MipsFI->setVarArgsFrameIndex(0);
3515
3516  // Used with vargs to acumulate store chains.
3517  std::vector<SDValue> OutChains;
3518
3519  // Assign locations to all of the incoming arguments.
3520  SmallVector<CCValAssign, 16> ArgLocs;
3521  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3522                 getTargetMachine(), ArgLocs, *DAG.getContext());
3523  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
3524
3525  MipsCCInfo.analyzeFormalArguments(Ins);
3526  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
3527                           MipsCCInfo.hasByValArg());
3528
3529  Function::const_arg_iterator FuncArg =
3530    DAG.getMachineFunction().getFunction()->arg_begin();
3531  unsigned CurArgIdx = 0;
3532  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
3533
3534  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3535    CCValAssign &VA = ArgLocs[i];
3536    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
3537    CurArgIdx = Ins[i].OrigArgIndex;
3538    EVT ValVT = VA.getValVT();
3539    ISD::ArgFlagsTy Flags = Ins[i].Flags;
3540    bool IsRegLoc = VA.isRegLoc();
3541
3542    if (Flags.isByVal()) {
3543      assert(Flags.getByValSize() &&
3544             "ByVal args of size 0 should have been ignored by front-end.");
3545      assert(ByValArg != MipsCCInfo.byval_end());
3546      copyByValRegs(Chain, dl, OutChains, DAG, Flags, InVals, &*FuncArg,
3547                    MipsCCInfo, *ByValArg);
3548      ++ByValArg;
3549      continue;
3550    }
3551
3552    // Arguments stored on registers
3553    if (IsRegLoc) {
3554      EVT RegVT = VA.getLocVT();
3555      unsigned ArgReg = VA.getLocReg();
3556      const TargetRegisterClass *RC;
3557
3558      if (RegVT == MVT::i32)
3559        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
3560                                        &Mips::CPURegsRegClass;
3561      else if (RegVT == MVT::i64)
3562        RC = &Mips::CPU64RegsRegClass;
3563      else if (RegVT == MVT::f32)
3564        RC = &Mips::FGR32RegClass;
3565      else if (RegVT == MVT::f64)
3566        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
3567      else
3568        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
3569
3570      // Transform the arguments stored on
3571      // physical registers into virtual ones
3572      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3573      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3574
3575      // If this is an 8 or 16-bit value, it has been passed promoted
3576      // to 32 bits.  Insert an assert[sz]ext to capture this, then
3577      // truncate to the right size.
3578      if (VA.getLocInfo() != CCValAssign::Full) {
3579        unsigned Opcode = 0;
3580        if (VA.getLocInfo() == CCValAssign::SExt)
3581          Opcode = ISD::AssertSext;
3582        else if (VA.getLocInfo() == CCValAssign::ZExt)
3583          Opcode = ISD::AssertZext;
3584        if (Opcode)
3585          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
3586                                 DAG.getValueType(ValVT));
3587        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
3588      }
3589
3590      // Handle floating point arguments passed in integer registers.
3591      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3592          (RegVT == MVT::i64 && ValVT == MVT::f64))
3593        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
3594      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
3595        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
3596                                  getNextIntArgReg(ArgReg), RC);
3597        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
3598        if (!Subtarget->isLittle())
3599          std::swap(ArgValue, ArgValue2);
3600        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
3601                               ArgValue, ArgValue2);
3602      }
3603
3604      InVals.push_back(ArgValue);
3605    } else { // VA.isRegLoc()
3606
3607      // sanity check
3608      assert(VA.isMemLoc());
3609
3610      // The stack pointer offset is relative to the caller stack frame.
3611      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
3612                                      VA.getLocMemOffset(), true);
3613
3614      // Create load nodes to retrieve arguments from the stack
3615      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3616      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
3617                                   MachinePointerInfo::getFixedStack(FI),
3618                                   false, false, false, 0));
3619    }
3620  }
3621
3622  // The mips ABIs for returning structs by value requires that we copy
3623  // the sret argument into $v0 for the return. Save the argument into
3624  // a virtual register so that we can access it from the return points.
3625  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3626    unsigned Reg = MipsFI->getSRetReturnReg();
3627    if (!Reg) {
3628      Reg = MF.getRegInfo().
3629        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
3630      MipsFI->setSRetReturnReg(Reg);
3631    }
3632    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
3633    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
3634  }
3635
3636  if (isVarArg)
3637    writeVarArgRegs(OutChains, MipsCCInfo, Chain, dl, DAG);
3638
3639  // All stores are grouped in one node to allow the matching between
3640  // the size of Ins and InVals. This only happens when on varg functions
3641  if (!OutChains.empty()) {
3642    OutChains.push_back(Chain);
3643    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3644                        &OutChains[0], OutChains.size());
3645  }
3646
3647  return Chain;
3648}
3649
3650//===----------------------------------------------------------------------===//
3651//               Return Value Calling Convention Implementation
3652//===----------------------------------------------------------------------===//
3653
3654bool
3655MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3656                                   MachineFunction &MF, bool isVarArg,
3657                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3658                                   LLVMContext &Context) const {
3659  SmallVector<CCValAssign, 16> RVLocs;
3660  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
3661                 RVLocs, Context);
3662  return CCInfo.CheckReturn(Outs, RetCC_Mips);
3663}
3664
3665SDValue
3666MipsTargetLowering::LowerReturn(SDValue Chain,
3667                                CallingConv::ID CallConv, bool isVarArg,
3668                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3669                                const SmallVectorImpl<SDValue> &OutVals,
3670                                DebugLoc dl, SelectionDAG &DAG) const {
3671
3672  // CCValAssign - represent the assignment of
3673  // the return value to a location
3674  SmallVector<CCValAssign, 16> RVLocs;
3675
3676  // CCState - Info about the registers and stack slot.
3677  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3678                 getTargetMachine(), RVLocs, *DAG.getContext());
3679
3680  // Analize return values.
3681  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3682
3683  SDValue Flag;
3684  SmallVector<SDValue, 4> RetOps(1, Chain);
3685
3686  // Copy the result values into the output registers.
3687  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3688    CCValAssign &VA = RVLocs[i];
3689    assert(VA.isRegLoc() && "Can only return in registers!");
3690
3691    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
3692
3693    // Guarantee that all emitted copies are stuck together with flags.
3694    Flag = Chain.getValue(1);
3695    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3696  }
3697
3698  // The mips ABIs for returning structs by value requires that we copy
3699  // the sret argument into $v0 for the return. We saved the argument into
3700  // a virtual register in the entry block, so now we copy the value out
3701  // and into $v0.
3702  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3703    MachineFunction &MF      = DAG.getMachineFunction();
3704    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3705    unsigned Reg = MipsFI->getSRetReturnReg();
3706
3707    if (!Reg)
3708      llvm_unreachable("sret virtual register not created in the entry block");
3709    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
3710    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
3711
3712    Chain = DAG.getCopyToReg(Chain, dl, V0, Val, Flag);
3713    Flag = Chain.getValue(1);
3714    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
3715  }
3716
3717  RetOps[0] = Chain;  // Update chain.
3718
3719  // Add the flag if we have it.
3720  if (Flag.getNode())
3721    RetOps.push_back(Flag);
3722
3723  // Return on Mips is always a "jr $ra"
3724  return DAG.getNode(MipsISD::Ret, dl, MVT::Other, &RetOps[0], RetOps.size());
3725}
3726
3727//===----------------------------------------------------------------------===//
3728//                           Mips Inline Assembly Support
3729//===----------------------------------------------------------------------===//
3730
3731/// getConstraintType - Given a constraint letter, return the type of
3732/// constraint it is for this target.
3733MipsTargetLowering::ConstraintType MipsTargetLowering::
3734getConstraintType(const std::string &Constraint) const
3735{
3736  // Mips specific constrainy
3737  // GCC config/mips/constraints.md
3738  //
3739  // 'd' : An address register. Equivalent to r
3740  //       unless generating MIPS16 code.
3741  // 'y' : Equivalent to r; retained for
3742  //       backwards compatibility.
3743  // 'c' : A register suitable for use in an indirect
3744  //       jump. This will always be $25 for -mabicalls.
3745  // 'l' : The lo register. 1 word storage.
3746  // 'x' : The hilo register pair. Double word storage.
3747  if (Constraint.size() == 1) {
3748    switch (Constraint[0]) {
3749      default : break;
3750      case 'd':
3751      case 'y':
3752      case 'f':
3753      case 'c':
3754      case 'l':
3755      case 'x':
3756        return C_RegisterClass;
3757    }
3758  }
3759  return TargetLowering::getConstraintType(Constraint);
3760}
3761
3762/// Examine constraint type and operand type and determine a weight value.
3763/// This object must already have been set up with the operand type
3764/// and the current alternative constraint selected.
3765TargetLowering::ConstraintWeight
3766MipsTargetLowering::getSingleConstraintMatchWeight(
3767    AsmOperandInfo &info, const char *constraint) const {
3768  ConstraintWeight weight = CW_Invalid;
3769  Value *CallOperandVal = info.CallOperandVal;
3770    // If we don't have a value, we can't do a match,
3771    // but allow it at the lowest weight.
3772  if (CallOperandVal == NULL)
3773    return CW_Default;
3774  Type *type = CallOperandVal->getType();
3775  // Look at the constraint type.
3776  switch (*constraint) {
3777  default:
3778    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3779    break;
3780  case 'd':
3781  case 'y':
3782    if (type->isIntegerTy())
3783      weight = CW_Register;
3784    break;
3785  case 'f':
3786    if (type->isFloatTy())
3787      weight = CW_Register;
3788    break;
3789  case 'c': // $25 for indirect jumps
3790  case 'l': // lo register
3791  case 'x': // hilo register pair
3792      if (type->isIntegerTy())
3793      weight = CW_SpecificReg;
3794      break;
3795  case 'I': // signed 16 bit immediate
3796  case 'J': // integer zero
3797  case 'K': // unsigned 16 bit immediate
3798  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3799  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3800  case 'O': // signed 15 bit immediate (+- 16383)
3801  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3802    if (isa<ConstantInt>(CallOperandVal))
3803      weight = CW_Constant;
3804    break;
3805  }
3806  return weight;
3807}
3808
3809/// Given a register class constraint, like 'r', if this corresponds directly
3810/// to an LLVM register class, return a register of 0 and the register class
3811/// pointer.
3812std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3813getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3814{
3815  if (Constraint.size() == 1) {
3816    switch (Constraint[0]) {
3817    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3818    case 'y': // Same as 'r'. Exists for compatibility.
3819    case 'r':
3820      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3821        if (Subtarget->inMips16Mode())
3822          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3823        return std::make_pair(0U, &Mips::CPURegsRegClass);
3824      }
3825      if (VT == MVT::i64 && !HasMips64)
3826        return std::make_pair(0U, &Mips::CPURegsRegClass);
3827      if (VT == MVT::i64 && HasMips64)
3828        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
3829      // This will generate an error message
3830      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3831    case 'f':
3832      if (VT == MVT::f32)
3833        return std::make_pair(0U, &Mips::FGR32RegClass);
3834      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3835        if (Subtarget->isFP64bit())
3836          return std::make_pair(0U, &Mips::FGR64RegClass);
3837        return std::make_pair(0U, &Mips::AFGR64RegClass);
3838      }
3839      break;
3840    case 'c': // register suitable for indirect jump
3841      if (VT == MVT::i32)
3842        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
3843      assert(VT == MVT::i64 && "Unexpected type.");
3844      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
3845    case 'l': // register suitable for indirect jump
3846      if (VT == MVT::i32)
3847        return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
3848      return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
3849    case 'x': // register suitable for indirect jump
3850      // Fixme: Not triggering the use of both hi and low
3851      // This will generate an error message
3852      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3853    }
3854  }
3855  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3856}
3857
3858/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3859/// vector.  If it is invalid, don't add anything to Ops.
3860void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3861                                                     std::string &Constraint,
3862                                                     std::vector<SDValue>&Ops,
3863                                                     SelectionDAG &DAG) const {
3864  SDValue Result(0, 0);
3865
3866  // Only support length 1 constraints for now.
3867  if (Constraint.length() > 1) return;
3868
3869  char ConstraintLetter = Constraint[0];
3870  switch (ConstraintLetter) {
3871  default: break; // This will fall through to the generic implementation
3872  case 'I': // Signed 16 bit constant
3873    // If this fails, the parent routine will give an error
3874    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3875      EVT Type = Op.getValueType();
3876      int64_t Val = C->getSExtValue();
3877      if (isInt<16>(Val)) {
3878        Result = DAG.getTargetConstant(Val, Type);
3879        break;
3880      }
3881    }
3882    return;
3883  case 'J': // integer zero
3884    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3885      EVT Type = Op.getValueType();
3886      int64_t Val = C->getZExtValue();
3887      if (Val == 0) {
3888        Result = DAG.getTargetConstant(0, Type);
3889        break;
3890      }
3891    }
3892    return;
3893  case 'K': // unsigned 16 bit immediate
3894    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3895      EVT Type = Op.getValueType();
3896      uint64_t Val = (uint64_t)C->getZExtValue();
3897      if (isUInt<16>(Val)) {
3898        Result = DAG.getTargetConstant(Val, Type);
3899        break;
3900      }
3901    }
3902    return;
3903  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3904    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3905      EVT Type = Op.getValueType();
3906      int64_t Val = C->getSExtValue();
3907      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3908        Result = DAG.getTargetConstant(Val, Type);
3909        break;
3910      }
3911    }
3912    return;
3913  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3914    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3915      EVT Type = Op.getValueType();
3916      int64_t Val = C->getSExtValue();
3917      if ((Val >= -65535) && (Val <= -1)) {
3918        Result = DAG.getTargetConstant(Val, Type);
3919        break;
3920      }
3921    }
3922    return;
3923  case 'O': // signed 15 bit immediate
3924    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3925      EVT Type = Op.getValueType();
3926      int64_t Val = C->getSExtValue();
3927      if ((isInt<15>(Val))) {
3928        Result = DAG.getTargetConstant(Val, Type);
3929        break;
3930      }
3931    }
3932    return;
3933  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3934    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3935      EVT Type = Op.getValueType();
3936      int64_t Val = C->getSExtValue();
3937      if ((Val <= 65535) && (Val >= 1)) {
3938        Result = DAG.getTargetConstant(Val, Type);
3939        break;
3940      }
3941    }
3942    return;
3943  }
3944
3945  if (Result.getNode()) {
3946    Ops.push_back(Result);
3947    return;
3948  }
3949
3950  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3951}
3952
3953bool
3954MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
3955  // No global is ever allowed as a base.
3956  if (AM.BaseGV)
3957    return false;
3958
3959  switch (AM.Scale) {
3960  case 0: // "r+i" or just "i", depending on HasBaseReg.
3961    break;
3962  case 1:
3963    if (!AM.HasBaseReg) // allow "r+i".
3964      break;
3965    return false; // disallow "r+r" or "r+r+i".
3966  default:
3967    return false;
3968  }
3969
3970  return true;
3971}
3972
3973bool
3974MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3975  // The Mips target isn't yet aware of offsets.
3976  return false;
3977}
3978
3979EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3980                                            unsigned SrcAlign,
3981                                            bool IsMemset, bool ZeroMemset,
3982                                            bool MemcpyStrSrc,
3983                                            MachineFunction &MF) const {
3984  if (Subtarget->hasMips64())
3985    return MVT::i64;
3986
3987  return MVT::i32;
3988}
3989
3990bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3991  if (VT != MVT::f32 && VT != MVT::f64)
3992    return false;
3993  if (Imm.isNegZero())
3994    return false;
3995  return Imm.isZero();
3996}
3997
3998unsigned MipsTargetLowering::getJumpTableEncoding() const {
3999  if (IsN64)
4000    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
4001
4002  return TargetLowering::getJumpTableEncoding();
4003}
4004
4005MipsTargetLowering::MipsCC::MipsCC(CallingConv::ID CC, bool IsO32_,
4006                                   CCState &Info)
4007  : CCInfo(Info), CallConv(CC), IsO32(IsO32_) {
4008  // Pre-allocate reserved argument area.
4009  CCInfo.AllocateStack(reservedArgArea(), 1);
4010}
4011
4012void MipsTargetLowering::MipsCC::
4013analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
4014                    bool IsVarArg) {
4015  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
4016         "CallingConv::Fast shouldn't be used for vararg functions.");
4017
4018  unsigned NumOpnds = Args.size();
4019  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
4020
4021  for (unsigned I = 0; I != NumOpnds; ++I) {
4022    MVT ArgVT = Args[I].VT;
4023    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
4024    bool R;
4025
4026    if (ArgFlags.isByVal()) {
4027      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
4028      continue;
4029    }
4030
4031    if (IsVarArg && !Args[I].IsFixed)
4032      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
4033    else
4034      R = FixedFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
4035
4036    if (R) {
4037#ifndef NDEBUG
4038      dbgs() << "Call operand #" << I << " has unhandled type "
4039             << EVT(ArgVT).getEVTString();
4040#endif
4041      llvm_unreachable(0);
4042    }
4043  }
4044}
4045
4046void MipsTargetLowering::MipsCC::
4047analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args) {
4048  unsigned NumArgs = Args.size();
4049  llvm::CCAssignFn *FixedFn = fixedArgFn();
4050
4051  for (unsigned I = 0; I != NumArgs; ++I) {
4052    MVT ArgVT = Args[I].VT;
4053    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
4054
4055    if (ArgFlags.isByVal()) {
4056      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
4057      continue;
4058    }
4059
4060    if (!FixedFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo))
4061      continue;
4062
4063#ifndef NDEBUG
4064    dbgs() << "Formal Arg #" << I << " has unhandled type "
4065           << EVT(ArgVT).getEVTString();
4066#endif
4067    llvm_unreachable(0);
4068  }
4069}
4070
4071void
4072MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
4073                                           MVT LocVT,
4074                                           CCValAssign::LocInfo LocInfo,
4075                                           ISD::ArgFlagsTy ArgFlags) {
4076  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
4077
4078  struct ByValArgInfo ByVal;
4079  unsigned RegSize = regSize();
4080  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
4081  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
4082                            RegSize * 2);
4083
4084  if (useRegsForByval())
4085    allocateRegs(ByVal, ByValSize, Align);
4086
4087  // Allocate space on caller's stack.
4088  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
4089                                       Align);
4090  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
4091                                    LocInfo));
4092  ByValArgs.push_back(ByVal);
4093}
4094
4095unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
4096  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
4097}
4098
4099unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
4100  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
4101}
4102
4103const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
4104  return IsO32 ? O32IntRegs : Mips64IntRegs;
4105}
4106
4107llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
4108  if (CallConv == CallingConv::Fast)
4109    return CC_Mips_FastCC;
4110
4111  return IsO32 ? CC_MipsO32 : CC_MipsN;
4112}
4113
4114llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
4115  return IsO32 ? CC_MipsO32 : CC_MipsN_VarArg;
4116}
4117
4118const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
4119  return IsO32 ? O32IntRegs : Mips64DPRegs;
4120}
4121
4122void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
4123                                              unsigned ByValSize,
4124                                              unsigned Align) {
4125  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
4126  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
4127  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
4128         "Byval argument's size and alignment should be a multiple of"
4129         "RegSize.");
4130
4131  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
4132
4133  // If Align > RegSize, the first arg register must be even.
4134  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
4135    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
4136    ++ByVal.FirstIdx;
4137  }
4138
4139  // Mark the registers allocated.
4140  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
4141       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
4142    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
4143}
4144
4145void MipsTargetLowering::
4146copyByValRegs(SDValue Chain, DebugLoc DL, std::vector<SDValue> &OutChains,
4147              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
4148              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
4149              const MipsCC &CC, const ByValArgInfo &ByVal) const {
4150  MachineFunction &MF = DAG.getMachineFunction();
4151  MachineFrameInfo *MFI = MF.getFrameInfo();
4152  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
4153  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
4154  int FrameObjOffset;
4155
4156  if (RegAreaSize)
4157    FrameObjOffset = (int)CC.reservedArgArea() -
4158      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
4159  else
4160    FrameObjOffset = ByVal.Address;
4161
4162  // Create frame object.
4163  EVT PtrTy = getPointerTy();
4164  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
4165  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4166  InVals.push_back(FIN);
4167
4168  if (!ByVal.NumRegs)
4169    return;
4170
4171  // Copy arg registers.
4172  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
4173  const TargetRegisterClass *RC = getRegClassFor(RegTy);
4174
4175  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
4176    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
4177    unsigned VReg = AddLiveIn(MF, ArgReg, RC);
4178    unsigned Offset = I * CC.regSize();
4179    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
4180                                   DAG.getConstant(Offset, PtrTy));
4181    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
4182                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
4183                                 false, false, 0);
4184    OutChains.push_back(Store);
4185  }
4186}
4187
4188// Copy byVal arg to registers and stack.
4189void MipsTargetLowering::
4190passByValArg(SDValue Chain, DebugLoc DL,
4191             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
4192             SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
4193             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
4194             const MipsCC &CC, const ByValArgInfo &ByVal,
4195             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
4196  unsigned ByValSize = Flags.getByValSize();
4197  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
4198  unsigned RegSize = CC.regSize();
4199  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
4200  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
4201
4202  if (ByVal.NumRegs) {
4203    const uint16_t *ArgRegs = CC.intArgRegs();
4204    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
4205    unsigned I = 0;
4206
4207    // Copy words to registers.
4208    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
4209      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4210                                    DAG.getConstant(Offset, PtrTy));
4211      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
4212                                    MachinePointerInfo(), false, false, false,
4213                                    Alignment);
4214      MemOpChains.push_back(LoadVal.getValue(1));
4215      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
4216      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
4217    }
4218
4219    // Return if the struct has been fully copied.
4220    if (ByValSize == Offset)
4221      return;
4222
4223    // Copy the remainder of the byval argument with sub-word loads and shifts.
4224    if (LeftoverBytes) {
4225      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
4226             "Size of the remainder should be smaller than RegSize.");
4227      SDValue Val;
4228
4229      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
4230           Offset < ByValSize; LoadSize /= 2) {
4231        unsigned RemSize = ByValSize - Offset;
4232
4233        if (RemSize < LoadSize)
4234          continue;
4235
4236        // Load subword.
4237        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4238                                      DAG.getConstant(Offset, PtrTy));
4239        SDValue LoadVal =
4240          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
4241                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
4242                         false, false, Alignment);
4243        MemOpChains.push_back(LoadVal.getValue(1));
4244
4245        // Shift the loaded value.
4246        unsigned Shamt;
4247
4248        if (isLittle)
4249          Shamt = TotalSizeLoaded;
4250        else
4251          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
4252
4253        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
4254                                    DAG.getConstant(Shamt, MVT::i32));
4255
4256        if (Val.getNode())
4257          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
4258        else
4259          Val = Shift;
4260
4261        Offset += LoadSize;
4262        TotalSizeLoaded += LoadSize;
4263        Alignment = std::min(Alignment, LoadSize);
4264      }
4265
4266      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
4267      RegsToPass.push_back(std::make_pair(ArgReg, Val));
4268      return;
4269    }
4270  }
4271
4272  // Copy remainder of byval arg to it with memcpy.
4273  unsigned MemCpySize = ByValSize - Offset;
4274  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4275                            DAG.getConstant(Offset, PtrTy));
4276  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
4277                            DAG.getIntPtrConstant(ByVal.Address));
4278  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
4279                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
4280                        /*isVolatile=*/false, /*AlwaysInline=*/false,
4281                        MachinePointerInfo(0), MachinePointerInfo(0));
4282  MemOpChains.push_back(Chain);
4283}
4284
4285void
4286MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
4287                                    const MipsCC &CC, SDValue Chain,
4288                                    DebugLoc DL, SelectionDAG &DAG) const {
4289  unsigned NumRegs = CC.numIntArgRegs();
4290  const uint16_t *ArgRegs = CC.intArgRegs();
4291  const CCState &CCInfo = CC.getCCInfo();
4292  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
4293  unsigned RegSize = CC.regSize();
4294  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
4295  const TargetRegisterClass *RC = getRegClassFor(RegTy);
4296  MachineFunction &MF = DAG.getMachineFunction();
4297  MachineFrameInfo *MFI = MF.getFrameInfo();
4298  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
4299
4300  // Offset of the first variable argument from stack pointer.
4301  int VaArgOffset;
4302
4303  if (NumRegs == Idx)
4304    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
4305  else
4306    VaArgOffset =
4307      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
4308
4309  // Record the frame index of the first variable argument
4310  // which is a value necessary to VASTART.
4311  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
4312  MipsFI->setVarArgsFrameIndex(FI);
4313
4314  // Copy the integer registers that have not been used for argument passing
4315  // to the argument register save area. For O32, the save area is allocated
4316  // in the caller's stack frame, while for N32/64, it is allocated in the
4317  // callee's stack frame.
4318  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
4319    unsigned Reg = AddLiveIn(MF, ArgRegs[I], RC);
4320    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
4321    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
4322    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
4323    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
4324                                 MachinePointerInfo(), false, false, 0);
4325    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
4326    OutChains.push_back(Store);
4327  }
4328}
4329