MipsISelLowering.cpp revision 7887c90a7b80b994a51a2a3b88eef3643473e67c
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "mips-lower"
16#include "MipsISelLowering.h"
17#include "MipsMachineFunction.h"
18#include "MipsTargetMachine.h"
19#include "MipsTargetObjectFile.h"
20#include "MipsSubtarget.h"
21#include "InstPrinter/MipsInstPrinter.h"
22#include "MCTargetDesc/MipsBaseInfo.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/CallingConv.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/SelectionDAGISel.h"
35#include "llvm/CodeGen/ValueTypes.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/raw_ostream.h"
40
41using namespace llvm;
42
43STATISTIC(NumTailCalls, "Number of tail calls");
44
45static cl::opt<bool>
46EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
47                    cl::desc("MIPS: Enable tail calls."), cl::init(false));
48
49// If I is a shifted mask, set the size (Size) and the first bit of the
50// mask (Pos), and return true.
51// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
52static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
53  if (!isShiftedMask_64(I))
54     return false;
55
56  Size = CountPopulation_64(I);
57  Pos = CountTrailingZeros_64(I);
58  return true;
59}
60
61static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
62  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
63  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
64}
65
66const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
67  switch (Opcode) {
68  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
69  case MipsISD::TailCall:          return "MipsISD::TailCall";
70  case MipsISD::Hi:                return "MipsISD::Hi";
71  case MipsISD::Lo:                return "MipsISD::Lo";
72  case MipsISD::GPRel:             return "MipsISD::GPRel";
73  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
74  case MipsISD::Ret:               return "MipsISD::Ret";
75  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
76  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
77  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
78  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
79  case MipsISD::FPRound:           return "MipsISD::FPRound";
80  case MipsISD::MAdd:              return "MipsISD::MAdd";
81  case MipsISD::MAddu:             return "MipsISD::MAddu";
82  case MipsISD::MSub:              return "MipsISD::MSub";
83  case MipsISD::MSubu:             return "MipsISD::MSubu";
84  case MipsISD::DivRem:            return "MipsISD::DivRem";
85  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
86  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
87  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
88  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
89  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
90  case MipsISD::Sync:              return "MipsISD::Sync";
91  case MipsISD::Ext:               return "MipsISD::Ext";
92  case MipsISD::Ins:               return "MipsISD::Ins";
93  case MipsISD::LWL:               return "MipsISD::LWL";
94  case MipsISD::LWR:               return "MipsISD::LWR";
95  case MipsISD::SWL:               return "MipsISD::SWL";
96  case MipsISD::SWR:               return "MipsISD::SWR";
97  case MipsISD::LDL:               return "MipsISD::LDL";
98  case MipsISD::LDR:               return "MipsISD::LDR";
99  case MipsISD::SDL:               return "MipsISD::SDL";
100  case MipsISD::SDR:               return "MipsISD::SDR";
101  case MipsISD::EXTP:              return "MipsISD::EXTP";
102  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
103  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
104  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
105  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
106  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
107  case MipsISD::SHILO:             return "MipsISD::SHILO";
108  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
109  case MipsISD::MULT:              return "MipsISD::MULT";
110  case MipsISD::MULTU:             return "MipsISD::MULTU";
111  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSPDSP";
112  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
113  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
114  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
115  default:                         return NULL;
116  }
117}
118
119MipsTargetLowering::
120MipsTargetLowering(MipsTargetMachine &TM)
121  : TargetLowering(TM, new MipsTargetObjectFile()),
122    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
123    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
124    IsO32(Subtarget->isABI_O32()) {
125
126  // Mips does not have i1 type, so use i32 for
127  // setcc operations results (slt, sgt, ...).
128  setBooleanContents(ZeroOrOneBooleanContent);
129  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
130
131  // Set up the register classes
132  addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
133
134  if (HasMips64)
135    addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
136
137  if (Subtarget->inMips16Mode()) {
138    addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
139  }
140
141  if (Subtarget->hasDSP()) {
142    MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
143
144    for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
145      addRegisterClass(VecTys[i], &Mips::DSPRegsRegClass);
146
147      // Expand all builtin opcodes.
148      for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
149        setOperationAction(Opc, VecTys[i], Expand);
150
151      setOperationAction(ISD::LOAD, VecTys[i], Legal);
152      setOperationAction(ISD::STORE, VecTys[i], Legal);
153      setOperationAction(ISD::BITCAST, VecTys[i], Legal);
154    }
155  }
156
157  if (!TM.Options.UseSoftFloat) {
158    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
159
160    // When dealing with single precision only, use libcalls
161    if (!Subtarget->isSingleFloat()) {
162      if (HasMips64)
163        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
164      else
165        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
166    }
167  }
168
169  // Load extented operations for i1 types must be promoted
170  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
171  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
172  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
173
174  // MIPS doesn't have extending float->double load/store
175  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
176  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
177
178  // Used by legalize types to correctly generate the setcc result.
179  // Without this, every float setcc comes with a AND/OR with the result,
180  // we don't want this, since the fpcmp result goes to a flag register,
181  // which is used implicitly by brcond and select operations.
182  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
183
184  // Mips Custom Operations
185  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
186  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
187  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
188  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
189  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
190  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
191  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
192  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
193  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
194  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
195  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
196  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
197  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
198  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
199  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
200  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
201  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
202  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
203  if (!Subtarget->inMips16Mode()) {
204    setOperationAction(ISD::LOAD,               MVT::i32, Custom);
205    setOperationAction(ISD::STORE,              MVT::i32, Custom);
206  }
207
208  if (!TM.Options.NoNaNsFPMath) {
209    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
210    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
211  }
212
213  if (HasMips64) {
214    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
215    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
216    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
217    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
218    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
219    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
220    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
221    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
222  }
223
224  if (!HasMips64) {
225    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
226    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
227    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
228  }
229
230  setOperationAction(ISD::SDIV, MVT::i32, Expand);
231  setOperationAction(ISD::SREM, MVT::i32, Expand);
232  setOperationAction(ISD::UDIV, MVT::i32, Expand);
233  setOperationAction(ISD::UREM, MVT::i32, Expand);
234  setOperationAction(ISD::SDIV, MVT::i64, Expand);
235  setOperationAction(ISD::SREM, MVT::i64, Expand);
236  setOperationAction(ISD::UDIV, MVT::i64, Expand);
237  setOperationAction(ISD::UREM, MVT::i64, Expand);
238
239  // Operations not directly supported by Mips.
240  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
241  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
242  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
243  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
244  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
245  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
246  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
247  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
248  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
249  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
250  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
251  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
252  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
253  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
254  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
255  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
256  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
257  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
258  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
259  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
260
261  if (!Subtarget->hasMips32r2())
262    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
263
264  if (!Subtarget->hasMips64r2())
265    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
266
267  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
268  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
269  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
270  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
271  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
272  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
273  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
274  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
275  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
276  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
277  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
278  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
279  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
280  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
281  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
282
283  if (!TM.Options.NoNaNsFPMath) {
284    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
285    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
286  }
287
288  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
289  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
290  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
291  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
292
293  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
294  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
295  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
296
297  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
298  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
299
300  // Use the default for now
301  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
302  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
303
304  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
305  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
306  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
307  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
308
309  setInsertFencesForAtomic(true);
310
311  if (!Subtarget->hasSEInReg()) {
312    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
313    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
314  }
315
316  if (!Subtarget->hasBitCount()) {
317    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
318    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
319  }
320
321  if (!Subtarget->hasSwap()) {
322    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
323    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
324  }
325
326  if (HasMips64) {
327    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
328    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
329    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
330    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
331  }
332
333  setTargetDAGCombine(ISD::ADDE);
334  setTargetDAGCombine(ISD::SUBE);
335  setTargetDAGCombine(ISD::SDIVREM);
336  setTargetDAGCombine(ISD::UDIVREM);
337  setTargetDAGCombine(ISD::SELECT);
338  setTargetDAGCombine(ISD::AND);
339  setTargetDAGCombine(ISD::OR);
340  setTargetDAGCombine(ISD::ADD);
341
342  setMinFunctionAlignment(HasMips64 ? 3 : 2);
343
344  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
345  computeRegisterProperties();
346
347  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
348  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
349
350  maxStoresPerMemcpy = 16;
351}
352
353bool MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
354  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
355
356  if (Subtarget->inMips16Mode())
357    return false;
358
359  switch (SVT) {
360  case MVT::i64:
361  case MVT::i32:
362    return true;
363  default:
364    return false;
365  }
366}
367
368EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
369  return MVT::i32;
370}
371
372// SelectMadd -
373// Transforms a subgraph in CurDAG if the following pattern is found:
374//  (addc multLo, Lo0), (adde multHi, Hi0),
375// where,
376//  multHi/Lo: product of multiplication
377//  Lo0: initial value of Lo register
378//  Hi0: initial value of Hi register
379// Return true if pattern matching was successful.
380static bool SelectMadd(SDNode *ADDENode, SelectionDAG *CurDAG) {
381  // ADDENode's second operand must be a flag output of an ADDC node in order
382  // for the matching to be successful.
383  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
384
385  if (ADDCNode->getOpcode() != ISD::ADDC)
386    return false;
387
388  SDValue MultHi = ADDENode->getOperand(0);
389  SDValue MultLo = ADDCNode->getOperand(0);
390  SDNode *MultNode = MultHi.getNode();
391  unsigned MultOpc = MultHi.getOpcode();
392
393  // MultHi and MultLo must be generated by the same node,
394  if (MultLo.getNode() != MultNode)
395    return false;
396
397  // and it must be a multiplication.
398  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
399    return false;
400
401  // MultLo amd MultHi must be the first and second output of MultNode
402  // respectively.
403  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
404    return false;
405
406  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
407  // of the values of MultNode, in which case MultNode will be removed in later
408  // phases.
409  // If there exist users other than ADDENode or ADDCNode, this function returns
410  // here, which will result in MultNode being mapped to a single MULT
411  // instruction node rather than a pair of MULT and MADD instructions being
412  // produced.
413  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
414    return false;
415
416  SDValue Chain = CurDAG->getEntryNode();
417  DebugLoc dl = ADDENode->getDebugLoc();
418
419  // create MipsMAdd(u) node
420  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
421
422  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
423                                 MultNode->getOperand(0),// Factor 0
424                                 MultNode->getOperand(1),// Factor 1
425                                 ADDCNode->getOperand(1),// Lo0
426                                 ADDENode->getOperand(1));// Hi0
427
428  // create CopyFromReg nodes
429  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
430                                              MAdd);
431  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
432                                              Mips::HI, MVT::i32,
433                                              CopyFromLo.getValue(2));
434
435  // replace uses of adde and addc here
436  if (!SDValue(ADDCNode, 0).use_empty())
437    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
438
439  if (!SDValue(ADDENode, 0).use_empty())
440    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
441
442  return true;
443}
444
445// SelectMsub -
446// Transforms a subgraph in CurDAG if the following pattern is found:
447//  (addc Lo0, multLo), (sube Hi0, multHi),
448// where,
449//  multHi/Lo: product of multiplication
450//  Lo0: initial value of Lo register
451//  Hi0: initial value of Hi register
452// Return true if pattern matching was successful.
453static bool SelectMsub(SDNode *SUBENode, SelectionDAG *CurDAG) {
454  // SUBENode's second operand must be a flag output of an SUBC node in order
455  // for the matching to be successful.
456  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
457
458  if (SUBCNode->getOpcode() != ISD::SUBC)
459    return false;
460
461  SDValue MultHi = SUBENode->getOperand(1);
462  SDValue MultLo = SUBCNode->getOperand(1);
463  SDNode *MultNode = MultHi.getNode();
464  unsigned MultOpc = MultHi.getOpcode();
465
466  // MultHi and MultLo must be generated by the same node,
467  if (MultLo.getNode() != MultNode)
468    return false;
469
470  // and it must be a multiplication.
471  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
472    return false;
473
474  // MultLo amd MultHi must be the first and second output of MultNode
475  // respectively.
476  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
477    return false;
478
479  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
480  // of the values of MultNode, in which case MultNode will be removed in later
481  // phases.
482  // If there exist users other than SUBENode or SUBCNode, this function returns
483  // here, which will result in MultNode being mapped to a single MULT
484  // instruction node rather than a pair of MULT and MSUB instructions being
485  // produced.
486  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
487    return false;
488
489  SDValue Chain = CurDAG->getEntryNode();
490  DebugLoc dl = SUBENode->getDebugLoc();
491
492  // create MipsSub(u) node
493  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
494
495  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
496                                 MultNode->getOperand(0),// Factor 0
497                                 MultNode->getOperand(1),// Factor 1
498                                 SUBCNode->getOperand(0),// Lo0
499                                 SUBENode->getOperand(0));// Hi0
500
501  // create CopyFromReg nodes
502  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
503                                              MSub);
504  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
505                                              Mips::HI, MVT::i32,
506                                              CopyFromLo.getValue(2));
507
508  // replace uses of sube and subc here
509  if (!SDValue(SUBCNode, 0).use_empty())
510    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
511
512  if (!SDValue(SUBENode, 0).use_empty())
513    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
514
515  return true;
516}
517
518static SDValue PerformADDECombine(SDNode *N, SelectionDAG &DAG,
519                                  TargetLowering::DAGCombinerInfo &DCI,
520                                  const MipsSubtarget *Subtarget) {
521  if (DCI.isBeforeLegalize())
522    return SDValue();
523
524  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
525      SelectMadd(N, &DAG))
526    return SDValue(N, 0);
527
528  return SDValue();
529}
530
531static SDValue PerformSUBECombine(SDNode *N, SelectionDAG &DAG,
532                                  TargetLowering::DAGCombinerInfo &DCI,
533                                  const MipsSubtarget *Subtarget) {
534  if (DCI.isBeforeLegalize())
535    return SDValue();
536
537  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
538      SelectMsub(N, &DAG))
539    return SDValue(N, 0);
540
541  return SDValue();
542}
543
544static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG &DAG,
545                                    TargetLowering::DAGCombinerInfo &DCI,
546                                    const MipsSubtarget *Subtarget) {
547  if (DCI.isBeforeLegalizeOps())
548    return SDValue();
549
550  EVT Ty = N->getValueType(0);
551  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
552  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
553  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
554                                                  MipsISD::DivRemU;
555  DebugLoc dl = N->getDebugLoc();
556
557  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
558                               N->getOperand(0), N->getOperand(1));
559  SDValue InChain = DAG.getEntryNode();
560  SDValue InGlue = DivRem;
561
562  // insert MFLO
563  if (N->hasAnyUseOfValue(0)) {
564    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
565                                            InGlue);
566    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
567    InChain = CopyFromLo.getValue(1);
568    InGlue = CopyFromLo.getValue(2);
569  }
570
571  // insert MFHI
572  if (N->hasAnyUseOfValue(1)) {
573    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
574                                            HI, Ty, InGlue);
575    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
576  }
577
578  return SDValue();
579}
580
581static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
582  switch (CC) {
583  default: llvm_unreachable("Unknown fp condition code!");
584  case ISD::SETEQ:
585  case ISD::SETOEQ: return Mips::FCOND_OEQ;
586  case ISD::SETUNE: return Mips::FCOND_UNE;
587  case ISD::SETLT:
588  case ISD::SETOLT: return Mips::FCOND_OLT;
589  case ISD::SETGT:
590  case ISD::SETOGT: return Mips::FCOND_OGT;
591  case ISD::SETLE:
592  case ISD::SETOLE: return Mips::FCOND_OLE;
593  case ISD::SETGE:
594  case ISD::SETOGE: return Mips::FCOND_OGE;
595  case ISD::SETULT: return Mips::FCOND_ULT;
596  case ISD::SETULE: return Mips::FCOND_ULE;
597  case ISD::SETUGT: return Mips::FCOND_UGT;
598  case ISD::SETUGE: return Mips::FCOND_UGE;
599  case ISD::SETUO:  return Mips::FCOND_UN;
600  case ISD::SETO:   return Mips::FCOND_OR;
601  case ISD::SETNE:
602  case ISD::SETONE: return Mips::FCOND_ONE;
603  case ISD::SETUEQ: return Mips::FCOND_UEQ;
604  }
605}
606
607
608// Returns true if condition code has to be inverted.
609static bool InvertFPCondCode(Mips::CondCode CC) {
610  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
611    return false;
612
613  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
614         "Illegal Condition Code");
615
616  return true;
617}
618
619// Creates and returns an FPCmp node from a setcc node.
620// Returns Op if setcc is not a floating point comparison.
621static SDValue CreateFPCmp(SelectionDAG &DAG, const SDValue &Op) {
622  // must be a SETCC node
623  if (Op.getOpcode() != ISD::SETCC)
624    return Op;
625
626  SDValue LHS = Op.getOperand(0);
627
628  if (!LHS.getValueType().isFloatingPoint())
629    return Op;
630
631  SDValue RHS = Op.getOperand(1);
632  DebugLoc dl = Op.getDebugLoc();
633
634  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
635  // node if necessary.
636  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
637
638  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
639                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
640}
641
642// Creates and returns a CMovFPT/F node.
643static SDValue CreateCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
644                            SDValue False, DebugLoc DL) {
645  bool invert = InvertFPCondCode((Mips::CondCode)
646                                 cast<ConstantSDNode>(Cond.getOperand(2))
647                                 ->getSExtValue());
648
649  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
650                     True.getValueType(), True, False, Cond);
651}
652
653static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
654                                    TargetLowering::DAGCombinerInfo &DCI,
655                                    const MipsSubtarget *Subtarget) {
656  if (DCI.isBeforeLegalizeOps())
657    return SDValue();
658
659  SDValue SetCC = N->getOperand(0);
660
661  if ((SetCC.getOpcode() != ISD::SETCC) ||
662      !SetCC.getOperand(0).getValueType().isInteger())
663    return SDValue();
664
665  SDValue False = N->getOperand(2);
666  EVT FalseTy = False.getValueType();
667
668  if (!FalseTy.isInteger())
669    return SDValue();
670
671  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
672
673  if (!CN || CN->getZExtValue())
674    return SDValue();
675
676  const DebugLoc DL = N->getDebugLoc();
677  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
678  SDValue True = N->getOperand(1);
679
680  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
681                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
682
683  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
684}
685
686static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
687                                 TargetLowering::DAGCombinerInfo &DCI,
688                                 const MipsSubtarget *Subtarget) {
689  // Pattern match EXT.
690  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
691  //  => ext $dst, $src, size, pos
692  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
693    return SDValue();
694
695  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
696  unsigned ShiftRightOpc = ShiftRight.getOpcode();
697
698  // Op's first operand must be a shift right.
699  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
700    return SDValue();
701
702  // The second operand of the shift must be an immediate.
703  ConstantSDNode *CN;
704  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
705    return SDValue();
706
707  uint64_t Pos = CN->getZExtValue();
708  uint64_t SMPos, SMSize;
709
710  // Op's second operand must be a shifted mask.
711  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
712      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
713    return SDValue();
714
715  // Return if the shifted mask does not start at bit 0 or the sum of its size
716  // and Pos exceeds the word's size.
717  EVT ValTy = N->getValueType(0);
718  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
719    return SDValue();
720
721  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
722                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
723                     DAG.getConstant(SMSize, MVT::i32));
724}
725
726static SDValue PerformORCombine(SDNode *N, SelectionDAG &DAG,
727                                TargetLowering::DAGCombinerInfo &DCI,
728                                const MipsSubtarget *Subtarget) {
729  // Pattern match INS.
730  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
731  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
732  //  => ins $dst, $src, size, pos, $src1
733  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
734    return SDValue();
735
736  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
737  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
738  ConstantSDNode *CN;
739
740  // See if Op's first operand matches (and $src1 , mask0).
741  if (And0.getOpcode() != ISD::AND)
742    return SDValue();
743
744  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
745      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
746    return SDValue();
747
748  // See if Op's second operand matches (and (shl $src, pos), mask1).
749  if (And1.getOpcode() != ISD::AND)
750    return SDValue();
751
752  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
753      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
754    return SDValue();
755
756  // The shift masks must have the same position and size.
757  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
758    return SDValue();
759
760  SDValue Shl = And1.getOperand(0);
761  if (Shl.getOpcode() != ISD::SHL)
762    return SDValue();
763
764  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
765    return SDValue();
766
767  unsigned Shamt = CN->getZExtValue();
768
769  // Return if the shift amount and the first bit position of mask are not the
770  // same.
771  EVT ValTy = N->getValueType(0);
772  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
773    return SDValue();
774
775  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
776                     DAG.getConstant(SMPos0, MVT::i32),
777                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
778}
779
780static SDValue PerformADDCombine(SDNode *N, SelectionDAG &DAG,
781                                 TargetLowering::DAGCombinerInfo &DCI,
782                                 const MipsSubtarget *Subtarget) {
783  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
784
785  if (DCI.isBeforeLegalizeOps())
786    return SDValue();
787
788  SDValue Add = N->getOperand(1);
789
790  if (Add.getOpcode() != ISD::ADD)
791    return SDValue();
792
793  SDValue Lo = Add.getOperand(1);
794
795  if ((Lo.getOpcode() != MipsISD::Lo) ||
796      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
797    return SDValue();
798
799  EVT ValTy = N->getValueType(0);
800  DebugLoc DL = N->getDebugLoc();
801
802  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
803                             Add.getOperand(0));
804  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
805}
806
807SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
808  const {
809  SelectionDAG &DAG = DCI.DAG;
810  unsigned opc = N->getOpcode();
811
812  switch (opc) {
813  default: break;
814  case ISD::ADDE:
815    return PerformADDECombine(N, DAG, DCI, Subtarget);
816  case ISD::SUBE:
817    return PerformSUBECombine(N, DAG, DCI, Subtarget);
818  case ISD::SDIVREM:
819  case ISD::UDIVREM:
820    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
821  case ISD::SELECT:
822    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
823  case ISD::AND:
824    return PerformANDCombine(N, DAG, DCI, Subtarget);
825  case ISD::OR:
826    return PerformORCombine(N, DAG, DCI, Subtarget);
827  case ISD::ADD:
828    return PerformADDCombine(N, DAG, DCI, Subtarget);
829  }
830
831  return SDValue();
832}
833
834void
835MipsTargetLowering::LowerOperationWrapper(SDNode *N,
836                                          SmallVectorImpl<SDValue> &Results,
837                                          SelectionDAG &DAG) const {
838  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
839
840  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
841    Results.push_back(Res.getValue(I));
842}
843
844void
845MipsTargetLowering::ReplaceNodeResults(SDNode *N,
846                                       SmallVectorImpl<SDValue> &Results,
847                                       SelectionDAG &DAG) const {
848  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
849
850  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
851    Results.push_back(Res.getValue(I));
852}
853
854SDValue MipsTargetLowering::
855LowerOperation(SDValue Op, SelectionDAG &DAG) const
856{
857  switch (Op.getOpcode())
858  {
859    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
860    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
861    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
862    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
863    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
864    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
865    case ISD::SELECT:             return LowerSELECT(Op, DAG);
866    case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
867    case ISD::SETCC:              return LowerSETCC(Op, DAG);
868    case ISD::VASTART:            return LowerVASTART(Op, DAG);
869    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
870    case ISD::FABS:               return LowerFABS(Op, DAG);
871    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
872    case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
873    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
874    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
875    case ISD::SHL_PARTS:          return LowerShiftLeftParts(Op, DAG);
876    case ISD::SRA_PARTS:          return LowerShiftRightParts(Op, DAG, true);
877    case ISD::SRL_PARTS:          return LowerShiftRightParts(Op, DAG, false);
878    case ISD::LOAD:               return LowerLOAD(Op, DAG);
879    case ISD::STORE:              return LowerSTORE(Op, DAG);
880    case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
881    case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
882  }
883  return SDValue();
884}
885
886//===----------------------------------------------------------------------===//
887//  Lower helper functions
888//===----------------------------------------------------------------------===//
889
890// AddLiveIn - This helper function adds the specified physical register to the
891// MachineFunction as a live in value.  It also creates a corresponding
892// virtual register for it.
893static unsigned
894AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
895{
896  assert(RC->contains(PReg) && "Not the correct regclass!");
897  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
898  MF.getRegInfo().addLiveIn(PReg, VReg);
899  return VReg;
900}
901
902// Get fp branch code (not opcode) from condition code.
903static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
904  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
905    return Mips::BRANCH_T;
906
907  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
908         "Invalid CondCode.");
909
910  return Mips::BRANCH_F;
911}
912
913/*
914static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
915                                        DebugLoc dl,
916                                        const MipsSubtarget *Subtarget,
917                                        const TargetInstrInfo *TII,
918                                        bool isFPCmp, unsigned Opc) {
919  // There is no need to expand CMov instructions if target has
920  // conditional moves.
921  if (Subtarget->hasCondMov())
922    return BB;
923
924  // To "insert" a SELECT_CC instruction, we actually have to insert the
925  // diamond control-flow pattern.  The incoming instruction knows the
926  // destination vreg to set, the condition code register to branch on, the
927  // true/false values to select between, and a branch opcode to use.
928  const BasicBlock *LLVM_BB = BB->getBasicBlock();
929  MachineFunction::iterator It = BB;
930  ++It;
931
932  //  thisMBB:
933  //  ...
934  //   TrueVal = ...
935  //   setcc r1, r2, r3
936  //   bNE   r1, r0, copy1MBB
937  //   fallthrough --> copy0MBB
938  MachineBasicBlock *thisMBB  = BB;
939  MachineFunction *F = BB->getParent();
940  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
941  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
942  F->insert(It, copy0MBB);
943  F->insert(It, sinkMBB);
944
945  // Transfer the remainder of BB and its successor edges to sinkMBB.
946  sinkMBB->splice(sinkMBB->begin(), BB,
947                  llvm::next(MachineBasicBlock::iterator(MI)),
948                  BB->end());
949  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
950
951  // Next, add the true and fallthrough blocks as its successors.
952  BB->addSuccessor(copy0MBB);
953  BB->addSuccessor(sinkMBB);
954
955  // Emit the right instruction according to the type of the operands compared
956  if (isFPCmp)
957    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
958  else
959    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
960      .addReg(Mips::ZERO).addMBB(sinkMBB);
961
962  //  copy0MBB:
963  //   %FalseValue = ...
964  //   # fallthrough to sinkMBB
965  BB = copy0MBB;
966
967  // Update machine-CFG edges
968  BB->addSuccessor(sinkMBB);
969
970  //  sinkMBB:
971  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
972  //  ...
973  BB = sinkMBB;
974
975  if (isFPCmp)
976    BuildMI(*BB, BB->begin(), dl,
977            TII->get(Mips::PHI), MI->getOperand(0).getReg())
978      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
979      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
980  else
981    BuildMI(*BB, BB->begin(), dl,
982            TII->get(Mips::PHI), MI->getOperand(0).getReg())
983      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
984      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
985
986  MI->eraseFromParent();   // The pseudo instruction is gone now.
987  return BB;
988}
989*/
990
991MachineBasicBlock *
992MipsTargetLowering::EmitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
993  // $bb:
994  //  bposge32_pseudo $vr0
995  //  =>
996  // $bb:
997  //  bposge32 $tbb
998  // $fbb:
999  //  li $vr2, 0
1000  //  b $sink
1001  // $tbb:
1002  //  li $vr1, 1
1003  // $sink:
1004  //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
1005
1006  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
1007  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1008  const TargetRegisterClass *RC = &Mips::CPURegsRegClass;
1009  DebugLoc DL = MI->getDebugLoc();
1010  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1011  MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB));
1012  MachineFunction *F = BB->getParent();
1013  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
1014  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
1015  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
1016  F->insert(It, FBB);
1017  F->insert(It, TBB);
1018  F->insert(It, Sink);
1019
1020  // Transfer the remainder of BB and its successor edges to Sink.
1021  Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)),
1022               BB->end());
1023  Sink->transferSuccessorsAndUpdatePHIs(BB);
1024
1025  // Add successors.
1026  BB->addSuccessor(FBB);
1027  BB->addSuccessor(TBB);
1028  FBB->addSuccessor(Sink);
1029  TBB->addSuccessor(Sink);
1030
1031  // Insert the real bposge32 instruction to $BB.
1032  BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
1033
1034  // Fill $FBB.
1035  unsigned VR2 = RegInfo.createVirtualRegister(RC);
1036  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
1037    .addReg(Mips::ZERO).addImm(0);
1038  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
1039
1040  // Fill $TBB.
1041  unsigned VR1 = RegInfo.createVirtualRegister(RC);
1042  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
1043    .addReg(Mips::ZERO).addImm(1);
1044
1045  // Insert phi function to $Sink.
1046  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
1047          MI->getOperand(0).getReg())
1048    .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
1049
1050  MI->eraseFromParent();   // The pseudo instruction is gone now.
1051  return Sink;
1052}
1053
1054MachineBasicBlock *
1055MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1056                                                MachineBasicBlock *BB) const {
1057  switch (MI->getOpcode()) {
1058  default: llvm_unreachable("Unexpected instr type to insert");
1059  case Mips::ATOMIC_LOAD_ADD_I8:
1060  case Mips::ATOMIC_LOAD_ADD_I8_P8:
1061    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
1062  case Mips::ATOMIC_LOAD_ADD_I16:
1063  case Mips::ATOMIC_LOAD_ADD_I16_P8:
1064    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
1065  case Mips::ATOMIC_LOAD_ADD_I32:
1066  case Mips::ATOMIC_LOAD_ADD_I32_P8:
1067    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
1068  case Mips::ATOMIC_LOAD_ADD_I64:
1069  case Mips::ATOMIC_LOAD_ADD_I64_P8:
1070    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
1071
1072  case Mips::ATOMIC_LOAD_AND_I8:
1073  case Mips::ATOMIC_LOAD_AND_I8_P8:
1074    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
1075  case Mips::ATOMIC_LOAD_AND_I16:
1076  case Mips::ATOMIC_LOAD_AND_I16_P8:
1077    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
1078  case Mips::ATOMIC_LOAD_AND_I32:
1079  case Mips::ATOMIC_LOAD_AND_I32_P8:
1080    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
1081  case Mips::ATOMIC_LOAD_AND_I64:
1082  case Mips::ATOMIC_LOAD_AND_I64_P8:
1083    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
1084
1085  case Mips::ATOMIC_LOAD_OR_I8:
1086  case Mips::ATOMIC_LOAD_OR_I8_P8:
1087    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
1088  case Mips::ATOMIC_LOAD_OR_I16:
1089  case Mips::ATOMIC_LOAD_OR_I16_P8:
1090    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
1091  case Mips::ATOMIC_LOAD_OR_I32:
1092  case Mips::ATOMIC_LOAD_OR_I32_P8:
1093    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
1094  case Mips::ATOMIC_LOAD_OR_I64:
1095  case Mips::ATOMIC_LOAD_OR_I64_P8:
1096    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
1097
1098  case Mips::ATOMIC_LOAD_XOR_I8:
1099  case Mips::ATOMIC_LOAD_XOR_I8_P8:
1100    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
1101  case Mips::ATOMIC_LOAD_XOR_I16:
1102  case Mips::ATOMIC_LOAD_XOR_I16_P8:
1103    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
1104  case Mips::ATOMIC_LOAD_XOR_I32:
1105  case Mips::ATOMIC_LOAD_XOR_I32_P8:
1106    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
1107  case Mips::ATOMIC_LOAD_XOR_I64:
1108  case Mips::ATOMIC_LOAD_XOR_I64_P8:
1109    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
1110
1111  case Mips::ATOMIC_LOAD_NAND_I8:
1112  case Mips::ATOMIC_LOAD_NAND_I8_P8:
1113    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
1114  case Mips::ATOMIC_LOAD_NAND_I16:
1115  case Mips::ATOMIC_LOAD_NAND_I16_P8:
1116    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
1117  case Mips::ATOMIC_LOAD_NAND_I32:
1118  case Mips::ATOMIC_LOAD_NAND_I32_P8:
1119    return EmitAtomicBinary(MI, BB, 4, 0, true);
1120  case Mips::ATOMIC_LOAD_NAND_I64:
1121  case Mips::ATOMIC_LOAD_NAND_I64_P8:
1122    return EmitAtomicBinary(MI, BB, 8, 0, true);
1123
1124  case Mips::ATOMIC_LOAD_SUB_I8:
1125  case Mips::ATOMIC_LOAD_SUB_I8_P8:
1126    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
1127  case Mips::ATOMIC_LOAD_SUB_I16:
1128  case Mips::ATOMIC_LOAD_SUB_I16_P8:
1129    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
1130  case Mips::ATOMIC_LOAD_SUB_I32:
1131  case Mips::ATOMIC_LOAD_SUB_I32_P8:
1132    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
1133  case Mips::ATOMIC_LOAD_SUB_I64:
1134  case Mips::ATOMIC_LOAD_SUB_I64_P8:
1135    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
1136
1137  case Mips::ATOMIC_SWAP_I8:
1138  case Mips::ATOMIC_SWAP_I8_P8:
1139    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
1140  case Mips::ATOMIC_SWAP_I16:
1141  case Mips::ATOMIC_SWAP_I16_P8:
1142    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
1143  case Mips::ATOMIC_SWAP_I32:
1144  case Mips::ATOMIC_SWAP_I32_P8:
1145    return EmitAtomicBinary(MI, BB, 4, 0);
1146  case Mips::ATOMIC_SWAP_I64:
1147  case Mips::ATOMIC_SWAP_I64_P8:
1148    return EmitAtomicBinary(MI, BB, 8, 0);
1149
1150  case Mips::ATOMIC_CMP_SWAP_I8:
1151  case Mips::ATOMIC_CMP_SWAP_I8_P8:
1152    return EmitAtomicCmpSwapPartword(MI, BB, 1);
1153  case Mips::ATOMIC_CMP_SWAP_I16:
1154  case Mips::ATOMIC_CMP_SWAP_I16_P8:
1155    return EmitAtomicCmpSwapPartword(MI, BB, 2);
1156  case Mips::ATOMIC_CMP_SWAP_I32:
1157  case Mips::ATOMIC_CMP_SWAP_I32_P8:
1158    return EmitAtomicCmpSwap(MI, BB, 4);
1159  case Mips::ATOMIC_CMP_SWAP_I64:
1160  case Mips::ATOMIC_CMP_SWAP_I64_P8:
1161    return EmitAtomicCmpSwap(MI, BB, 8);
1162  case Mips::BPOSGE32_PSEUDO:
1163    return EmitBPOSGE32(MI, BB);
1164  }
1165}
1166
1167// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1168// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1169MachineBasicBlock *
1170MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1171                                     unsigned Size, unsigned BinOpcode,
1172                                     bool Nand) const {
1173  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1174
1175  MachineFunction *MF = BB->getParent();
1176  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1177  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1178  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1179  DebugLoc dl = MI->getDebugLoc();
1180  unsigned LL, SC, AND, NOR, ZERO, BEQ;
1181
1182  if (Size == 4) {
1183    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1184    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1185    AND = Mips::AND;
1186    NOR = Mips::NOR;
1187    ZERO = Mips::ZERO;
1188    BEQ = Mips::BEQ;
1189  }
1190  else {
1191    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1192    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1193    AND = Mips::AND64;
1194    NOR = Mips::NOR64;
1195    ZERO = Mips::ZERO_64;
1196    BEQ = Mips::BEQ64;
1197  }
1198
1199  unsigned OldVal = MI->getOperand(0).getReg();
1200  unsigned Ptr = MI->getOperand(1).getReg();
1201  unsigned Incr = MI->getOperand(2).getReg();
1202
1203  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1204  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1205  unsigned Success = RegInfo.createVirtualRegister(RC);
1206
1207  // insert new blocks after the current block
1208  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1209  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1210  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1211  MachineFunction::iterator It = BB;
1212  ++It;
1213  MF->insert(It, loopMBB);
1214  MF->insert(It, exitMBB);
1215
1216  // Transfer the remainder of BB and its successor edges to exitMBB.
1217  exitMBB->splice(exitMBB->begin(), BB,
1218                  llvm::next(MachineBasicBlock::iterator(MI)),
1219                  BB->end());
1220  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1221
1222  //  thisMBB:
1223  //    ...
1224  //    fallthrough --> loopMBB
1225  BB->addSuccessor(loopMBB);
1226  loopMBB->addSuccessor(loopMBB);
1227  loopMBB->addSuccessor(exitMBB);
1228
1229  //  loopMBB:
1230  //    ll oldval, 0(ptr)
1231  //    <binop> storeval, oldval, incr
1232  //    sc success, storeval, 0(ptr)
1233  //    beq success, $0, loopMBB
1234  BB = loopMBB;
1235  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1236  if (Nand) {
1237    //  and andres, oldval, incr
1238    //  nor storeval, $0, andres
1239    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1240    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1241  } else if (BinOpcode) {
1242    //  <binop> storeval, oldval, incr
1243    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1244  } else {
1245    StoreVal = Incr;
1246  }
1247  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1248  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1249
1250  MI->eraseFromParent();   // The instruction is gone now.
1251
1252  return exitMBB;
1253}
1254
1255MachineBasicBlock *
1256MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1257                                             MachineBasicBlock *BB,
1258                                             unsigned Size, unsigned BinOpcode,
1259                                             bool Nand) const {
1260  assert((Size == 1 || Size == 2) &&
1261      "Unsupported size for EmitAtomicBinaryPartial.");
1262
1263  MachineFunction *MF = BB->getParent();
1264  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1265  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1266  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1267  DebugLoc dl = MI->getDebugLoc();
1268  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1269  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1270
1271  unsigned Dest = MI->getOperand(0).getReg();
1272  unsigned Ptr = MI->getOperand(1).getReg();
1273  unsigned Incr = MI->getOperand(2).getReg();
1274
1275  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1276  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1277  unsigned Mask = RegInfo.createVirtualRegister(RC);
1278  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1279  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1280  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1281  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1282  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1283  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1284  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1285  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1286  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1287  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1288  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1289  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1290  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1291  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1292  unsigned Success = RegInfo.createVirtualRegister(RC);
1293
1294  // insert new blocks after the current block
1295  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1296  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1297  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1298  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1299  MachineFunction::iterator It = BB;
1300  ++It;
1301  MF->insert(It, loopMBB);
1302  MF->insert(It, sinkMBB);
1303  MF->insert(It, exitMBB);
1304
1305  // Transfer the remainder of BB and its successor edges to exitMBB.
1306  exitMBB->splice(exitMBB->begin(), BB,
1307                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1308  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1309
1310  BB->addSuccessor(loopMBB);
1311  loopMBB->addSuccessor(loopMBB);
1312  loopMBB->addSuccessor(sinkMBB);
1313  sinkMBB->addSuccessor(exitMBB);
1314
1315  //  thisMBB:
1316  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1317  //    and     alignedaddr,ptr,masklsb2
1318  //    andi    ptrlsb2,ptr,3
1319  //    sll     shiftamt,ptrlsb2,3
1320  //    ori     maskupper,$0,255               # 0xff
1321  //    sll     mask,maskupper,shiftamt
1322  //    nor     mask2,$0,mask
1323  //    sll     incr2,incr,shiftamt
1324
1325  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1326  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1327    .addReg(Mips::ZERO).addImm(-4);
1328  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1329    .addReg(Ptr).addReg(MaskLSB2);
1330  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1331  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1332  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1333    .addReg(Mips::ZERO).addImm(MaskImm);
1334  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1335    .addReg(ShiftAmt).addReg(MaskUpper);
1336  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1337  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1338
1339  // atomic.load.binop
1340  // loopMBB:
1341  //   ll      oldval,0(alignedaddr)
1342  //   binop   binopres,oldval,incr2
1343  //   and     newval,binopres,mask
1344  //   and     maskedoldval0,oldval,mask2
1345  //   or      storeval,maskedoldval0,newval
1346  //   sc      success,storeval,0(alignedaddr)
1347  //   beq     success,$0,loopMBB
1348
1349  // atomic.swap
1350  // loopMBB:
1351  //   ll      oldval,0(alignedaddr)
1352  //   and     newval,incr2,mask
1353  //   and     maskedoldval0,oldval,mask2
1354  //   or      storeval,maskedoldval0,newval
1355  //   sc      success,storeval,0(alignedaddr)
1356  //   beq     success,$0,loopMBB
1357
1358  BB = loopMBB;
1359  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1360  if (Nand) {
1361    //  and andres, oldval, incr2
1362    //  nor binopres, $0, andres
1363    //  and newval, binopres, mask
1364    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1365    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1366      .addReg(Mips::ZERO).addReg(AndRes);
1367    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1368  } else if (BinOpcode) {
1369    //  <binop> binopres, oldval, incr2
1370    //  and newval, binopres, mask
1371    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1372    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1373  } else {// atomic.swap
1374    //  and newval, incr2, mask
1375    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1376  }
1377
1378  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1379    .addReg(OldVal).addReg(Mask2);
1380  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1381    .addReg(MaskedOldVal0).addReg(NewVal);
1382  BuildMI(BB, dl, TII->get(SC), Success)
1383    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1384  BuildMI(BB, dl, TII->get(Mips::BEQ))
1385    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1386
1387  //  sinkMBB:
1388  //    and     maskedoldval1,oldval,mask
1389  //    srl     srlres,maskedoldval1,shiftamt
1390  //    sll     sllres,srlres,24
1391  //    sra     dest,sllres,24
1392  BB = sinkMBB;
1393  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1394
1395  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1396    .addReg(OldVal).addReg(Mask);
1397  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1398      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1399  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1400      .addReg(SrlRes).addImm(ShiftImm);
1401  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1402      .addReg(SllRes).addImm(ShiftImm);
1403
1404  MI->eraseFromParent();   // The instruction is gone now.
1405
1406  return exitMBB;
1407}
1408
1409MachineBasicBlock *
1410MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1411                                      MachineBasicBlock *BB,
1412                                      unsigned Size) const {
1413  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1414
1415  MachineFunction *MF = BB->getParent();
1416  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1417  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1418  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1419  DebugLoc dl = MI->getDebugLoc();
1420  unsigned LL, SC, ZERO, BNE, BEQ;
1421
1422  if (Size == 4) {
1423    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1424    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1425    ZERO = Mips::ZERO;
1426    BNE = Mips::BNE;
1427    BEQ = Mips::BEQ;
1428  }
1429  else {
1430    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1431    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1432    ZERO = Mips::ZERO_64;
1433    BNE = Mips::BNE64;
1434    BEQ = Mips::BEQ64;
1435  }
1436
1437  unsigned Dest    = MI->getOperand(0).getReg();
1438  unsigned Ptr     = MI->getOperand(1).getReg();
1439  unsigned OldVal  = MI->getOperand(2).getReg();
1440  unsigned NewVal  = MI->getOperand(3).getReg();
1441
1442  unsigned Success = RegInfo.createVirtualRegister(RC);
1443
1444  // insert new blocks after the current block
1445  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1446  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1447  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1448  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1449  MachineFunction::iterator It = BB;
1450  ++It;
1451  MF->insert(It, loop1MBB);
1452  MF->insert(It, loop2MBB);
1453  MF->insert(It, exitMBB);
1454
1455  // Transfer the remainder of BB and its successor edges to exitMBB.
1456  exitMBB->splice(exitMBB->begin(), BB,
1457                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1458  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1459
1460  //  thisMBB:
1461  //    ...
1462  //    fallthrough --> loop1MBB
1463  BB->addSuccessor(loop1MBB);
1464  loop1MBB->addSuccessor(exitMBB);
1465  loop1MBB->addSuccessor(loop2MBB);
1466  loop2MBB->addSuccessor(loop1MBB);
1467  loop2MBB->addSuccessor(exitMBB);
1468
1469  // loop1MBB:
1470  //   ll dest, 0(ptr)
1471  //   bne dest, oldval, exitMBB
1472  BB = loop1MBB;
1473  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1474  BuildMI(BB, dl, TII->get(BNE))
1475    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1476
1477  // loop2MBB:
1478  //   sc success, newval, 0(ptr)
1479  //   beq success, $0, loop1MBB
1480  BB = loop2MBB;
1481  BuildMI(BB, dl, TII->get(SC), Success)
1482    .addReg(NewVal).addReg(Ptr).addImm(0);
1483  BuildMI(BB, dl, TII->get(BEQ))
1484    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1485
1486  MI->eraseFromParent();   // The instruction is gone now.
1487
1488  return exitMBB;
1489}
1490
1491MachineBasicBlock *
1492MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1493                                              MachineBasicBlock *BB,
1494                                              unsigned Size) const {
1495  assert((Size == 1 || Size == 2) &&
1496      "Unsupported size for EmitAtomicCmpSwapPartial.");
1497
1498  MachineFunction *MF = BB->getParent();
1499  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1500  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1501  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1502  DebugLoc dl = MI->getDebugLoc();
1503  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1504  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1505
1506  unsigned Dest    = MI->getOperand(0).getReg();
1507  unsigned Ptr     = MI->getOperand(1).getReg();
1508  unsigned CmpVal  = MI->getOperand(2).getReg();
1509  unsigned NewVal  = MI->getOperand(3).getReg();
1510
1511  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1512  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1513  unsigned Mask = RegInfo.createVirtualRegister(RC);
1514  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1515  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1516  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1517  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1518  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1519  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1520  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1521  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1522  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1523  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1524  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1525  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1526  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1527  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1528  unsigned Success = RegInfo.createVirtualRegister(RC);
1529
1530  // insert new blocks after the current block
1531  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1532  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1533  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1534  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1535  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1536  MachineFunction::iterator It = BB;
1537  ++It;
1538  MF->insert(It, loop1MBB);
1539  MF->insert(It, loop2MBB);
1540  MF->insert(It, sinkMBB);
1541  MF->insert(It, exitMBB);
1542
1543  // Transfer the remainder of BB and its successor edges to exitMBB.
1544  exitMBB->splice(exitMBB->begin(), BB,
1545                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1546  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1547
1548  BB->addSuccessor(loop1MBB);
1549  loop1MBB->addSuccessor(sinkMBB);
1550  loop1MBB->addSuccessor(loop2MBB);
1551  loop2MBB->addSuccessor(loop1MBB);
1552  loop2MBB->addSuccessor(sinkMBB);
1553  sinkMBB->addSuccessor(exitMBB);
1554
1555  // FIXME: computation of newval2 can be moved to loop2MBB.
1556  //  thisMBB:
1557  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1558  //    and     alignedaddr,ptr,masklsb2
1559  //    andi    ptrlsb2,ptr,3
1560  //    sll     shiftamt,ptrlsb2,3
1561  //    ori     maskupper,$0,255               # 0xff
1562  //    sll     mask,maskupper,shiftamt
1563  //    nor     mask2,$0,mask
1564  //    andi    maskedcmpval,cmpval,255
1565  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1566  //    andi    maskednewval,newval,255
1567  //    sll     shiftednewval,maskednewval,shiftamt
1568  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1569  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1570    .addReg(Mips::ZERO).addImm(-4);
1571  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1572    .addReg(Ptr).addReg(MaskLSB2);
1573  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1574  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1575  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1576    .addReg(Mips::ZERO).addImm(MaskImm);
1577  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1578    .addReg(ShiftAmt).addReg(MaskUpper);
1579  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1580  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1581    .addReg(CmpVal).addImm(MaskImm);
1582  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1583    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1584  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1585    .addReg(NewVal).addImm(MaskImm);
1586  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1587    .addReg(ShiftAmt).addReg(MaskedNewVal);
1588
1589  //  loop1MBB:
1590  //    ll      oldval,0(alginedaddr)
1591  //    and     maskedoldval0,oldval,mask
1592  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1593  BB = loop1MBB;
1594  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1595  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1596    .addReg(OldVal).addReg(Mask);
1597  BuildMI(BB, dl, TII->get(Mips::BNE))
1598    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1599
1600  //  loop2MBB:
1601  //    and     maskedoldval1,oldval,mask2
1602  //    or      storeval,maskedoldval1,shiftednewval
1603  //    sc      success,storeval,0(alignedaddr)
1604  //    beq     success,$0,loop1MBB
1605  BB = loop2MBB;
1606  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1607    .addReg(OldVal).addReg(Mask2);
1608  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1609    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1610  BuildMI(BB, dl, TII->get(SC), Success)
1611      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1612  BuildMI(BB, dl, TII->get(Mips::BEQ))
1613      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1614
1615  //  sinkMBB:
1616  //    srl     srlres,maskedoldval0,shiftamt
1617  //    sll     sllres,srlres,24
1618  //    sra     dest,sllres,24
1619  BB = sinkMBB;
1620  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1621
1622  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1623      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1624  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1625      .addReg(SrlRes).addImm(ShiftImm);
1626  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1627      .addReg(SllRes).addImm(ShiftImm);
1628
1629  MI->eraseFromParent();   // The instruction is gone now.
1630
1631  return exitMBB;
1632}
1633
1634//===----------------------------------------------------------------------===//
1635//  Misc Lower Operation implementation
1636//===----------------------------------------------------------------------===//
1637SDValue MipsTargetLowering::
1638LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1639{
1640  // The first operand is the chain, the second is the condition, the third is
1641  // the block to branch to if the condition is true.
1642  SDValue Chain = Op.getOperand(0);
1643  SDValue Dest = Op.getOperand(2);
1644  DebugLoc dl = Op.getDebugLoc();
1645
1646  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
1647
1648  // Return if flag is not set by a floating point comparison.
1649  if (CondRes.getOpcode() != MipsISD::FPCmp)
1650    return Op;
1651
1652  SDValue CCNode  = CondRes.getOperand(2);
1653  Mips::CondCode CC =
1654    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1655  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
1656
1657  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
1658                     Dest, CondRes);
1659}
1660
1661SDValue MipsTargetLowering::
1662LowerSELECT(SDValue Op, SelectionDAG &DAG) const
1663{
1664  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
1665
1666  // Return if flag is not set by a floating point comparison.
1667  if (Cond.getOpcode() != MipsISD::FPCmp)
1668    return Op;
1669
1670  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1671                      Op.getDebugLoc());
1672}
1673
1674SDValue MipsTargetLowering::
1675LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1676{
1677  DebugLoc DL = Op.getDebugLoc();
1678  EVT Ty = Op.getOperand(0).getValueType();
1679  SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
1680                             Op.getOperand(0), Op.getOperand(1),
1681                             Op.getOperand(4));
1682
1683  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1684                     Op.getOperand(3));
1685}
1686
1687SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1688  SDValue Cond = CreateFPCmp(DAG, Op);
1689
1690  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1691         "Floating point operand expected.");
1692
1693  SDValue True  = DAG.getConstant(1, MVT::i32);
1694  SDValue False = DAG.getConstant(0, MVT::i32);
1695
1696  return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1697}
1698
1699SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
1700                                               SelectionDAG &DAG) const {
1701  // FIXME there isn't actually debug info here
1702  DebugLoc dl = Op.getDebugLoc();
1703  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1704
1705  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1706    SDVTList VTs = DAG.getVTList(MVT::i32);
1707
1708    const MipsTargetObjectFile &TLOF =
1709      (const MipsTargetObjectFile&)getObjFileLowering();
1710
1711    // %gp_rel relocation
1712    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1713      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1714                                              MipsII::MO_GPREL);
1715      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
1716      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1717      return DAG.getNode(ISD::ADD, dl, MVT::i32, GPReg, GPRelNode);
1718    }
1719    // %hi/%lo relocation
1720    SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1721                                              MipsII::MO_ABS_HI);
1722    SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1723                                              MipsII::MO_ABS_LO);
1724    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1);
1725    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
1726    return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1727  }
1728
1729  EVT ValTy = Op.getValueType();
1730  bool HasGotOfst = (GV->hasInternalLinkage() ||
1731                     (GV->hasLocalLinkage() && !isa<Function>(GV)));
1732  unsigned GotFlag = HasMips64 ?
1733                     (HasGotOfst ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT_DISP) :
1734                     (HasGotOfst ? MipsII::MO_GOT : MipsII::MO_GOT16);
1735  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0, GotFlag);
1736  GA = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), GA);
1737  SDValue ResNode = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), GA,
1738                                MachinePointerInfo(), false, false, false, 0);
1739  // On functions and global targets not internal linked only
1740  // a load from got/GP is necessary for PIC to work.
1741  if (!HasGotOfst)
1742    return ResNode;
1743  SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0,
1744                                            HasMips64 ? MipsII::MO_GOT_OFST :
1745                                                        MipsII::MO_ABS_LO);
1746  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, GALo);
1747  return DAG.getNode(ISD::ADD, dl, ValTy, ResNode, Lo);
1748}
1749
1750SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
1751                                              SelectionDAG &DAG) const {
1752  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1753  // FIXME there isn't actually debug info here
1754  DebugLoc dl = Op.getDebugLoc();
1755
1756  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1757    // %hi/%lo relocation
1758    SDValue BAHi =
1759      DAG.getTargetBlockAddress(BA, MVT::i32, 0, MipsII::MO_ABS_HI);
1760    SDValue BALo =
1761      DAG.getTargetBlockAddress(BA, MVT::i32, 0, MipsII::MO_ABS_LO);
1762    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi);
1763    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo);
1764    return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
1765  }
1766
1767  EVT ValTy = Op.getValueType();
1768  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1769  unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1770  SDValue BAGOTOffset = DAG.getTargetBlockAddress(BA, ValTy, 0, GOTFlag);
1771  BAGOTOffset = DAG.getNode(MipsISD::Wrapper, dl, ValTy,
1772                            GetGlobalReg(DAG, ValTy), BAGOTOffset);
1773  SDValue BALOOffset = DAG.getTargetBlockAddress(BA, ValTy, 0, OFSTFlag);
1774  SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), BAGOTOffset,
1775                             MachinePointerInfo(), false, false, false, 0);
1776  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, BALOOffset);
1777  return DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1778}
1779
1780SDValue MipsTargetLowering::
1781LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1782{
1783  // If the relocation model is PIC, use the General Dynamic TLS Model or
1784  // Local Dynamic TLS model, otherwise use the Initial Exec or
1785  // Local Exec TLS Model.
1786
1787  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1788  DebugLoc dl = GA->getDebugLoc();
1789  const GlobalValue *GV = GA->getGlobal();
1790  EVT PtrVT = getPointerTy();
1791
1792  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1793
1794  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1795    // General Dynamic and Local Dynamic TLS Model.
1796    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1797                                                      : MipsII::MO_TLSGD;
1798
1799    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
1800    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
1801                                   GetGlobalReg(DAG, PtrVT), TGA);
1802    unsigned PtrSize = PtrVT.getSizeInBits();
1803    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1804
1805    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1806
1807    ArgListTy Args;
1808    ArgListEntry Entry;
1809    Entry.Node = Argument;
1810    Entry.Ty = PtrTy;
1811    Args.push_back(Entry);
1812
1813    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1814                  false, false, false, false, 0, CallingConv::C,
1815                  /*isTailCall=*/false, /*doesNotRet=*/false,
1816                  /*isReturnValueUsed=*/true,
1817                  TlsGetAddr, Args, DAG, dl);
1818    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1819
1820    SDValue Ret = CallResult.first;
1821
1822    if (model != TLSModel::LocalDynamic)
1823      return Ret;
1824
1825    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1826                                               MipsII::MO_DTPREL_HI);
1827    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1828    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1829                                               MipsII::MO_DTPREL_LO);
1830    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1831    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
1832    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
1833  }
1834
1835  SDValue Offset;
1836  if (model == TLSModel::InitialExec) {
1837    // Initial Exec TLS Model
1838    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1839                                             MipsII::MO_GOTTPREL);
1840    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1841                      TGA);
1842    Offset = DAG.getLoad(PtrVT, dl,
1843                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1844                         false, false, false, 0);
1845  } else {
1846    // Local Exec TLS Model
1847    assert(model == TLSModel::LocalExec);
1848    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1849                                               MipsII::MO_TPREL_HI);
1850    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1851                                               MipsII::MO_TPREL_LO);
1852    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1853    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1854    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1855  }
1856
1857  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
1858  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1859}
1860
1861SDValue MipsTargetLowering::
1862LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1863{
1864  SDValue HiPart, JTI, JTILo;
1865  // FIXME there isn't actually debug info here
1866  DebugLoc dl = Op.getDebugLoc();
1867  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1868  EVT PtrVT = Op.getValueType();
1869  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1870
1871  if (!IsPIC && !IsN64) {
1872    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_HI);
1873    HiPart = DAG.getNode(MipsISD::Hi, dl, PtrVT, JTI);
1874    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_LO);
1875  } else {// Emit Load from Global Pointer
1876    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1877    unsigned OfstFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1878    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, GOTFlag);
1879    JTI = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1880                      JTI);
1881    HiPart = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), JTI,
1882                         MachinePointerInfo(), false, false, false, 0);
1883    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OfstFlag);
1884  }
1885
1886  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, JTILo);
1887  return DAG.getNode(ISD::ADD, dl, PtrVT, HiPart, Lo);
1888}
1889
1890SDValue MipsTargetLowering::
1891LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1892{
1893  SDValue ResNode;
1894  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1895  const Constant *C = N->getConstVal();
1896  // FIXME there isn't actually debug info here
1897  DebugLoc dl = Op.getDebugLoc();
1898
1899  // gp_rel relocation
1900  // FIXME: we should reference the constant pool using small data sections,
1901  // but the asm printer currently doesn't support this feature without
1902  // hacking it. This feature should come soon so we can uncomment the
1903  // stuff below.
1904  //if (IsInSmallSection(C->getType())) {
1905  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1906  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1907  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1908
1909  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1910    SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1911                                             N->getOffset(), MipsII::MO_ABS_HI);
1912    SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1913                                             N->getOffset(), MipsII::MO_ABS_LO);
1914    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi);
1915    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
1916    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1917  } else {
1918    EVT ValTy = Op.getValueType();
1919    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1920    unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1921    SDValue CP = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1922                                           N->getOffset(), GOTFlag);
1923    CP = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), CP);
1924    SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), CP,
1925                               MachinePointerInfo::getConstantPool(), false,
1926                               false, false, 0);
1927    SDValue CPLo = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1928                                             N->getOffset(), OFSTFlag);
1929    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, CPLo);
1930    ResNode = DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1931  }
1932
1933  return ResNode;
1934}
1935
1936SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1937  MachineFunction &MF = DAG.getMachineFunction();
1938  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1939
1940  DebugLoc dl = Op.getDebugLoc();
1941  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1942                                 getPointerTy());
1943
1944  // vastart just stores the address of the VarArgsFrameIndex slot into the
1945  // memory location argument.
1946  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1947  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
1948                      MachinePointerInfo(SV), false, false, 0);
1949}
1950
1951static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1952  EVT TyX = Op.getOperand(0).getValueType();
1953  EVT TyY = Op.getOperand(1).getValueType();
1954  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1955  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1956  DebugLoc DL = Op.getDebugLoc();
1957  SDValue Res;
1958
1959  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1960  // to i32.
1961  SDValue X = (TyX == MVT::f32) ?
1962    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1963    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1964                Const1);
1965  SDValue Y = (TyY == MVT::f32) ?
1966    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1967    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1968                Const1);
1969
1970  if (HasR2) {
1971    // ext  E, Y, 31, 1  ; extract bit31 of Y
1972    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1973    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1974    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1975  } else {
1976    // sll SllX, X, 1
1977    // srl SrlX, SllX, 1
1978    // srl SrlY, Y, 31
1979    // sll SllY, SrlX, 31
1980    // or  Or, SrlX, SllY
1981    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1982    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1983    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1984    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1985    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1986  }
1987
1988  if (TyX == MVT::f32)
1989    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1990
1991  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1992                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1993  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1994}
1995
1996static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1997  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1998  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1999  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2000  SDValue Const1 = DAG.getConstant(1, MVT::i32);
2001  DebugLoc DL = Op.getDebugLoc();
2002
2003  // Bitcast to integer nodes.
2004  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2005  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2006
2007  if (HasR2) {
2008    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
2009    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
2010    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2011                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
2012
2013    if (WidthX > WidthY)
2014      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2015    else if (WidthY > WidthX)
2016      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2017
2018    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2019                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
2020    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2021  }
2022
2023  // (d)sll SllX, X, 1
2024  // (d)srl SrlX, SllX, 1
2025  // (d)srl SrlY, Y, width(Y)-1
2026  // (d)sll SllY, SrlX, width(Y)-1
2027  // or     Or, SrlX, SllY
2028  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2029  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2030  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2031                             DAG.getConstant(WidthY - 1, MVT::i32));
2032
2033  if (WidthX > WidthY)
2034    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2035  else if (WidthY > WidthX)
2036    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2037
2038  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2039                             DAG.getConstant(WidthX - 1, MVT::i32));
2040  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2041  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2042}
2043
2044SDValue
2045MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2046  if (Subtarget->hasMips64())
2047    return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
2048
2049  return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
2050}
2051
2052static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2053  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2054  DebugLoc DL = Op.getDebugLoc();
2055
2056  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2057  // to i32.
2058  SDValue X = (Op.getValueType() == MVT::f32) ?
2059    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2060    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2061                Const1);
2062
2063  // Clear MSB.
2064  if (HasR2)
2065    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
2066                      DAG.getRegister(Mips::ZERO, MVT::i32),
2067                      DAG.getConstant(31, MVT::i32), Const1, X);
2068  else {
2069    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2070    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2071  }
2072
2073  if (Op.getValueType() == MVT::f32)
2074    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
2075
2076  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2077                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
2078  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2079}
2080
2081static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2082  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2083  DebugLoc DL = Op.getDebugLoc();
2084
2085  // Bitcast to integer node.
2086  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2087
2088  // Clear MSB.
2089  if (HasR2)
2090    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2091                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
2092                      DAG.getConstant(63, MVT::i32), Const1, X);
2093  else {
2094    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2095    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2096  }
2097
2098  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2099}
2100
2101SDValue
2102MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
2103  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
2104    return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
2105
2106  return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
2107}
2108
2109SDValue MipsTargetLowering::
2110LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2111  // check the depth
2112  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2113         "Frame address can only be determined for current frame.");
2114
2115  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2116  MFI->setFrameAddressIsTaken(true);
2117  EVT VT = Op.getValueType();
2118  DebugLoc dl = Op.getDebugLoc();
2119  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2120                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
2121  return FrameAddr;
2122}
2123
2124SDValue MipsTargetLowering::LowerRETURNADDR(SDValue Op,
2125                                            SelectionDAG &DAG) const {
2126  // check the depth
2127  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2128         "Return address can be determined only for current frame.");
2129
2130  MachineFunction &MF = DAG.getMachineFunction();
2131  MachineFrameInfo *MFI = MF.getFrameInfo();
2132  EVT VT = Op.getValueType();
2133  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
2134  MFI->setReturnAddressIsTaken(true);
2135
2136  // Return RA, which contains the return address. Mark it an implicit live-in.
2137  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2138  return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
2139}
2140
2141// TODO: set SType according to the desired memory barrier behavior.
2142SDValue
2143MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
2144  unsigned SType = 0;
2145  DebugLoc dl = Op.getDebugLoc();
2146  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2147                     DAG.getConstant(SType, MVT::i32));
2148}
2149
2150SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
2151                                              SelectionDAG &DAG) const {
2152  // FIXME: Need pseudo-fence for 'singlethread' fences
2153  // FIXME: Set SType for weaker fences where supported/appropriate.
2154  unsigned SType = 0;
2155  DebugLoc dl = Op.getDebugLoc();
2156  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2157                     DAG.getConstant(SType, MVT::i32));
2158}
2159
2160SDValue MipsTargetLowering::LowerShiftLeftParts(SDValue Op,
2161                                                SelectionDAG &DAG) const {
2162  DebugLoc DL = Op.getDebugLoc();
2163  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2164  SDValue Shamt = Op.getOperand(2);
2165
2166  // if shamt < 32:
2167  //  lo = (shl lo, shamt)
2168  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2169  // else:
2170  //  lo = 0
2171  //  hi = (shl lo, shamt[4:0])
2172  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2173                            DAG.getConstant(-1, MVT::i32));
2174  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
2175                                      DAG.getConstant(1, MVT::i32));
2176  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
2177                                     Not);
2178  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
2179  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2180  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
2181  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2182                             DAG.getConstant(0x20, MVT::i32));
2183  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2184                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
2185  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
2186
2187  SDValue Ops[2] = {Lo, Hi};
2188  return DAG.getMergeValues(Ops, 2, DL);
2189}
2190
2191SDValue MipsTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2192                                                 bool IsSRA) const {
2193  DebugLoc DL = Op.getDebugLoc();
2194  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2195  SDValue Shamt = Op.getOperand(2);
2196
2197  // if shamt < 32:
2198  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2199  //  if isSRA:
2200  //    hi = (sra hi, shamt)
2201  //  else:
2202  //    hi = (srl hi, shamt)
2203  // else:
2204  //  if isSRA:
2205  //   lo = (sra hi, shamt[4:0])
2206  //   hi = (sra hi, 31)
2207  //  else:
2208  //   lo = (srl hi, shamt[4:0])
2209  //   hi = 0
2210  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2211                            DAG.getConstant(-1, MVT::i32));
2212  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
2213                                     DAG.getConstant(1, MVT::i32));
2214  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
2215  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
2216  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2217  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2218                                     Hi, Shamt);
2219  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2220                             DAG.getConstant(0x20, MVT::i32));
2221  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
2222                                DAG.getConstant(31, MVT::i32));
2223  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
2224  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2225                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2226                   ShiftRightHi);
2227
2228  SDValue Ops[2] = {Lo, Hi};
2229  return DAG.getMergeValues(Ops, 2, DL);
2230}
2231
2232static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2233                            SDValue Chain, SDValue Src, unsigned Offset) {
2234  SDValue Ptr = LD->getBasePtr();
2235  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2236  EVT BasePtrVT = Ptr.getValueType();
2237  DebugLoc DL = LD->getDebugLoc();
2238  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2239
2240  if (Offset)
2241    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2242                      DAG.getConstant(Offset, BasePtrVT));
2243
2244  SDValue Ops[] = { Chain, Ptr, Src };
2245  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2246                                 LD->getMemOperand());
2247}
2248
2249// Expand an unaligned 32 or 64-bit integer load node.
2250SDValue MipsTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2251  LoadSDNode *LD = cast<LoadSDNode>(Op);
2252  EVT MemVT = LD->getMemoryVT();
2253
2254  // Return if load is aligned or if MemVT is neither i32 nor i64.
2255  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2256      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2257    return SDValue();
2258
2259  bool IsLittle = Subtarget->isLittle();
2260  EVT VT = Op.getValueType();
2261  ISD::LoadExtType ExtType = LD->getExtensionType();
2262  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2263
2264  assert((VT == MVT::i32) || (VT == MVT::i64));
2265
2266  // Expand
2267  //  (set dst, (i64 (load baseptr)))
2268  // to
2269  //  (set tmp, (ldl (add baseptr, 7), undef))
2270  //  (set dst, (ldr baseptr, tmp))
2271  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2272    SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2273                               IsLittle ? 7 : 0);
2274    return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2275                        IsLittle ? 0 : 7);
2276  }
2277
2278  SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2279                             IsLittle ? 3 : 0);
2280  SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2281                             IsLittle ? 0 : 3);
2282
2283  // Expand
2284  //  (set dst, (i32 (load baseptr))) or
2285  //  (set dst, (i64 (sextload baseptr))) or
2286  //  (set dst, (i64 (extload baseptr)))
2287  // to
2288  //  (set tmp, (lwl (add baseptr, 3), undef))
2289  //  (set dst, (lwr baseptr, tmp))
2290  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2291      (ExtType == ISD::EXTLOAD))
2292    return LWR;
2293
2294  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2295
2296  // Expand
2297  //  (set dst, (i64 (zextload baseptr)))
2298  // to
2299  //  (set tmp0, (lwl (add baseptr, 3), undef))
2300  //  (set tmp1, (lwr baseptr, tmp0))
2301  //  (set tmp2, (shl tmp1, 32))
2302  //  (set dst, (srl tmp2, 32))
2303  DebugLoc DL = LD->getDebugLoc();
2304  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2305  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2306  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2307  SDValue Ops[] = { SRL, LWR.getValue(1) };
2308  return DAG.getMergeValues(Ops, 2, DL);
2309}
2310
2311static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2312                             SDValue Chain, unsigned Offset) {
2313  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2314  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2315  DebugLoc DL = SD->getDebugLoc();
2316  SDVTList VTList = DAG.getVTList(MVT::Other);
2317
2318  if (Offset)
2319    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2320                      DAG.getConstant(Offset, BasePtrVT));
2321
2322  SDValue Ops[] = { Chain, Value, Ptr };
2323  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2324                                 SD->getMemOperand());
2325}
2326
2327// Expand an unaligned 32 or 64-bit integer store node.
2328SDValue MipsTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2329  StoreSDNode *SD = cast<StoreSDNode>(Op);
2330  EVT MemVT = SD->getMemoryVT();
2331
2332  // Return if store is aligned or if MemVT is neither i32 nor i64.
2333  if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2334      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2335    return SDValue();
2336
2337  bool IsLittle = Subtarget->isLittle();
2338  SDValue Value = SD->getValue(), Chain = SD->getChain();
2339  EVT VT = Value.getValueType();
2340
2341  // Expand
2342  //  (store val, baseptr) or
2343  //  (truncstore val, baseptr)
2344  // to
2345  //  (swl val, (add baseptr, 3))
2346  //  (swr val, baseptr)
2347  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2348    SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
2349                                IsLittle ? 3 : 0);
2350    return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2351  }
2352
2353  assert(VT == MVT::i64);
2354
2355  // Expand
2356  //  (store val, baseptr)
2357  // to
2358  //  (sdl val, (add baseptr, 7))
2359  //  (sdr val, baseptr)
2360  SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2361  return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2362}
2363
2364// This function expands mips intrinsic nodes which have 64-bit input operands
2365// or output values.
2366//
2367// out64 = intrinsic-node in64
2368// =>
2369// lo = copy (extract-element (in64, 0))
2370// hi = copy (extract-element (in64, 1))
2371// mips-specific-node
2372// v0 = copy lo
2373// v1 = copy hi
2374// out64 = merge-values (v0, v1)
2375//
2376static SDValue LowerDSPIntr(SDValue Op, SelectionDAG &DAG,
2377                            unsigned Opc, bool HasI64In, bool HasI64Out) {
2378  DebugLoc DL = Op.getDebugLoc();
2379  bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
2380  SDValue Chain = HasChainIn ? Op->getOperand(0) : DAG.getEntryNode();
2381  SmallVector<SDValue, 3> Ops;
2382
2383  if (HasI64In) {
2384    SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2385                               Op->getOperand(1 + HasChainIn),
2386                               DAG.getConstant(0, MVT::i32));
2387    SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2388                               Op->getOperand(1 + HasChainIn),
2389                               DAG.getConstant(1, MVT::i32));
2390
2391    Chain = DAG.getCopyToReg(Chain, DL, Mips::LO, InLo, SDValue());
2392    Chain = DAG.getCopyToReg(Chain, DL, Mips::HI, InHi, Chain.getValue(1));
2393
2394    Ops.push_back(Chain);
2395    Ops.append(Op->op_begin() + HasChainIn + 2, Op->op_end());
2396    Ops.push_back(Chain.getValue(1));
2397  } else {
2398    Ops.push_back(Chain);
2399    Ops.append(Op->op_begin() + HasChainIn + 1, Op->op_end());
2400  }
2401
2402  if (!HasI64Out)
2403    return DAG.getNode(Opc, DL, Op->value_begin(), Op->getNumValues(),
2404                       Ops.begin(), Ops.size());
2405
2406  SDValue Intr = DAG.getNode(Opc, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2407                             Ops.begin(), Ops.size());
2408  SDValue OutLo = DAG.getCopyFromReg(Intr.getValue(0), DL, Mips::LO, MVT::i32,
2409                                     Intr.getValue(1));
2410  SDValue OutHi = DAG.getCopyFromReg(OutLo.getValue(1), DL, Mips::HI, MVT::i32,
2411                                     OutLo.getValue(2));
2412  SDValue Out = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, OutLo, OutHi);
2413
2414  if (!HasChainIn)
2415    return Out;
2416
2417  SDValue Vals[] = { Out, OutHi.getValue(1) };
2418  return DAG.getMergeValues(Vals, 2, DL);
2419}
2420
2421SDValue MipsTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2422                                                    SelectionDAG &DAG) const {
2423  switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
2424  default:
2425    return SDValue();
2426  case Intrinsic::mips_shilo:
2427    return LowerDSPIntr(Op, DAG, MipsISD::SHILO, true, true);
2428  case Intrinsic::mips_dpau_h_qbl:
2429    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL, true, true);
2430  case Intrinsic::mips_dpau_h_qbr:
2431    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR, true, true);
2432  case Intrinsic::mips_dpsu_h_qbl:
2433    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL, true, true);
2434  case Intrinsic::mips_dpsu_h_qbr:
2435    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR, true, true);
2436  case Intrinsic::mips_dpa_w_ph:
2437    return LowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH, true, true);
2438  case Intrinsic::mips_dps_w_ph:
2439    return LowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH, true, true);
2440  case Intrinsic::mips_dpax_w_ph:
2441    return LowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH, true, true);
2442  case Intrinsic::mips_dpsx_w_ph:
2443    return LowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH, true, true);
2444  case Intrinsic::mips_mulsa_w_ph:
2445    return LowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH, true, true);
2446  case Intrinsic::mips_mult:
2447    return LowerDSPIntr(Op, DAG, MipsISD::MULT, false, true);
2448  case Intrinsic::mips_multu:
2449    return LowerDSPIntr(Op, DAG, MipsISD::MULTU, false, true);
2450  case Intrinsic::mips_madd:
2451    return LowerDSPIntr(Op, DAG, MipsISD::MADD_DSP, true, true);
2452  case Intrinsic::mips_maddu:
2453    return LowerDSPIntr(Op, DAG, MipsISD::MADDU_DSP, true, true);
2454  case Intrinsic::mips_msub:
2455    return LowerDSPIntr(Op, DAG, MipsISD::MSUB_DSP, true, true);
2456  case Intrinsic::mips_msubu:
2457    return LowerDSPIntr(Op, DAG, MipsISD::MSUBU_DSP, true, true);
2458  }
2459}
2460
2461SDValue MipsTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
2462                                                   SelectionDAG &DAG) const {
2463  switch (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue()) {
2464  default:
2465    return SDValue();
2466  case Intrinsic::mips_extp:
2467    return LowerDSPIntr(Op, DAG, MipsISD::EXTP, true, false);
2468  case Intrinsic::mips_extpdp:
2469    return LowerDSPIntr(Op, DAG, MipsISD::EXTPDP, true, false);
2470  case Intrinsic::mips_extr_w:
2471    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_W, true, false);
2472  case Intrinsic::mips_extr_r_w:
2473    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W, true, false);
2474  case Intrinsic::mips_extr_rs_w:
2475    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W, true, false);
2476  case Intrinsic::mips_extr_s_h:
2477    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H, true, false);
2478  case Intrinsic::mips_mthlip:
2479    return LowerDSPIntr(Op, DAG, MipsISD::MTHLIP, true, true);
2480  case Intrinsic::mips_mulsaq_s_w_ph:
2481    return LowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH, true, true);
2482  case Intrinsic::mips_maq_s_w_phl:
2483    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL, true, true);
2484  case Intrinsic::mips_maq_s_w_phr:
2485    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR, true, true);
2486  case Intrinsic::mips_maq_sa_w_phl:
2487    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL, true, true);
2488  case Intrinsic::mips_maq_sa_w_phr:
2489    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR, true, true);
2490  case Intrinsic::mips_dpaq_s_w_ph:
2491    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH, true, true);
2492  case Intrinsic::mips_dpsq_s_w_ph:
2493    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH, true, true);
2494  case Intrinsic::mips_dpaq_sa_l_w:
2495    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W, true, true);
2496  case Intrinsic::mips_dpsq_sa_l_w:
2497    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W, true, true);
2498  case Intrinsic::mips_dpaqx_s_w_ph:
2499    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH, true, true);
2500  case Intrinsic::mips_dpaqx_sa_w_ph:
2501    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH, true, true);
2502  case Intrinsic::mips_dpsqx_s_w_ph:
2503    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH, true, true);
2504  case Intrinsic::mips_dpsqx_sa_w_ph:
2505    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH, true, true);
2506  }
2507}
2508
2509//===----------------------------------------------------------------------===//
2510//                      Calling Convention Implementation
2511//===----------------------------------------------------------------------===//
2512
2513//===----------------------------------------------------------------------===//
2514// TODO: Implement a generic logic using tblgen that can support this.
2515// Mips O32 ABI rules:
2516// ---
2517// i32 - Passed in A0, A1, A2, A3 and stack
2518// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2519//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2520// f64 - Only passed in two aliased f32 registers if no int reg has been used
2521//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2522//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2523//       go to stack.
2524//
2525//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2526//===----------------------------------------------------------------------===//
2527
2528static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2529                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2530                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2531
2532  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2533
2534  static const uint16_t IntRegs[] = {
2535      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2536  };
2537  static const uint16_t F32Regs[] = {
2538      Mips::F12, Mips::F14
2539  };
2540  static const uint16_t F64Regs[] = {
2541      Mips::D6, Mips::D7
2542  };
2543
2544  // ByVal Args
2545  if (ArgFlags.isByVal()) {
2546    State.HandleByVal(ValNo, ValVT, LocVT, LocInfo,
2547                      1 /*MinSize*/, 4 /*MinAlign*/, ArgFlags);
2548    unsigned NextReg = (State.getNextStackOffset() + 3) / 4;
2549    for (unsigned r = State.getFirstUnallocated(IntRegs, IntRegsSize);
2550         r < std::min(IntRegsSize, NextReg); ++r)
2551      State.AllocateReg(IntRegs[r]);
2552    return false;
2553  }
2554
2555  // Promote i8 and i16
2556  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2557    LocVT = MVT::i32;
2558    if (ArgFlags.isSExt())
2559      LocInfo = CCValAssign::SExt;
2560    else if (ArgFlags.isZExt())
2561      LocInfo = CCValAssign::ZExt;
2562    else
2563      LocInfo = CCValAssign::AExt;
2564  }
2565
2566  unsigned Reg;
2567
2568  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2569  // is true: function is vararg, argument is 3rd or higher, there is previous
2570  // argument which is not f32 or f64.
2571  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2572      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2573  unsigned OrigAlign = ArgFlags.getOrigAlign();
2574  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2575
2576  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2577    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2578    // If this is the first part of an i64 arg,
2579    // the allocated register must be either A0 or A2.
2580    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2581      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2582    LocVT = MVT::i32;
2583  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2584    // Allocate int register and shadow next int register. If first
2585    // available register is Mips::A1 or Mips::A3, shadow it too.
2586    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2587    if (Reg == Mips::A1 || Reg == Mips::A3)
2588      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2589    State.AllocateReg(IntRegs, IntRegsSize);
2590    LocVT = MVT::i32;
2591  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2592    // we are guaranteed to find an available float register
2593    if (ValVT == MVT::f32) {
2594      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2595      // Shadow int register
2596      State.AllocateReg(IntRegs, IntRegsSize);
2597    } else {
2598      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2599      // Shadow int registers
2600      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2601      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2602        State.AllocateReg(IntRegs, IntRegsSize);
2603      State.AllocateReg(IntRegs, IntRegsSize);
2604    }
2605  } else
2606    llvm_unreachable("Cannot handle this ValVT.");
2607
2608  unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
2609  unsigned Offset;
2610  if (!ArgFlags.isSRet())
2611    Offset = State.AllocateStack(SizeInBytes, OrigAlign);
2612  else
2613    Offset = State.AllocateStack(SizeInBytes, SizeInBytes);
2614
2615  if (!Reg)
2616    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2617  else
2618    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2619
2620  return false; // CC must always match
2621}
2622
2623static const uint16_t Mips64IntRegs[8] =
2624  {Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
2625   Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64};
2626static const uint16_t Mips64DPRegs[8] =
2627  {Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
2628   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64};
2629
2630static bool CC_Mips64Byval(unsigned ValNo, MVT ValVT, MVT LocVT,
2631                           CCValAssign::LocInfo LocInfo,
2632                           ISD::ArgFlagsTy ArgFlags, CCState &State) {
2633  unsigned Align = std::max(ArgFlags.getByValAlign(), (unsigned)8);
2634  unsigned Size  = (ArgFlags.getByValSize() + 7) / 8 * 8;
2635  unsigned FirstIdx = State.getFirstUnallocated(Mips64IntRegs, 8);
2636
2637  assert(Align <= 16 && "Cannot handle alignments larger than 16.");
2638
2639  // If byval is 16-byte aligned, the first arg register must be even.
2640  if ((Align == 16) && (FirstIdx % 2)) {
2641    State.AllocateReg(Mips64IntRegs[FirstIdx], Mips64DPRegs[FirstIdx]);
2642    ++FirstIdx;
2643  }
2644
2645  // Mark the registers allocated.
2646  for (unsigned I = FirstIdx; Size && (I < 8); Size -= 8, ++I)
2647    State.AllocateReg(Mips64IntRegs[I], Mips64DPRegs[I]);
2648
2649  // Allocate space on caller's stack.
2650  unsigned Offset = State.AllocateStack(Size, Align);
2651
2652  if (FirstIdx < 8)
2653    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Mips64IntRegs[FirstIdx],
2654                                     LocVT, LocInfo));
2655  else
2656    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2657
2658  return true;
2659}
2660
2661#include "MipsGenCallingConv.inc"
2662
2663static void
2664AnalyzeMips64CallOperands(CCState &CCInfo,
2665                          const SmallVectorImpl<ISD::OutputArg> &Outs) {
2666  unsigned NumOps = Outs.size();
2667  for (unsigned i = 0; i != NumOps; ++i) {
2668    MVT ArgVT = Outs[i].VT;
2669    ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2670    bool R;
2671
2672    if (Outs[i].IsFixed)
2673      R = CC_MipsN(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2674    else
2675      R = CC_MipsN_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2676
2677    if (R) {
2678#ifndef NDEBUG
2679      dbgs() << "Call operand #" << i << " has unhandled type "
2680             << EVT(ArgVT).getEVTString();
2681#endif
2682      llvm_unreachable(0);
2683    }
2684  }
2685}
2686
2687//===----------------------------------------------------------------------===//
2688//                  Call Calling Convention Implementation
2689//===----------------------------------------------------------------------===//
2690
2691static const unsigned O32IntRegsSize = 4;
2692
2693static const uint16_t O32IntRegs[] = {
2694  Mips::A0, Mips::A1, Mips::A2, Mips::A3
2695};
2696
2697// Return next O32 integer argument register.
2698static unsigned getNextIntArgReg(unsigned Reg) {
2699  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2700  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2701}
2702
2703// Write ByVal Arg to arg registers and stack.
2704static void
2705WriteByValArg(SDValue Chain, DebugLoc dl,
2706              SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
2707              SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
2708              MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2709              const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2710              MVT PtrType, bool isLittle) {
2711  unsigned LocMemOffset = VA.getLocMemOffset();
2712  unsigned Offset = 0;
2713  uint32_t RemainingSize = Flags.getByValSize();
2714  unsigned ByValAlign = Flags.getByValAlign();
2715
2716  // Copy the first 4 words of byval arg to registers A0 - A3.
2717  // FIXME: Use a stricter alignment if it enables better optimization in passes
2718  //        run later.
2719  for (; RemainingSize >= 4 && LocMemOffset < 4 * 4;
2720       Offset += 4, RemainingSize -= 4, LocMemOffset += 4) {
2721    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2722                                  DAG.getConstant(Offset, MVT::i32));
2723    SDValue LoadVal = DAG.getLoad(MVT::i32, dl, Chain, LoadPtr,
2724                                  MachinePointerInfo(), false, false, false,
2725                                  std::min(ByValAlign, (unsigned )4));
2726    MemOpChains.push_back(LoadVal.getValue(1));
2727    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2728    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2729  }
2730
2731  if (RemainingSize == 0)
2732    return;
2733
2734  // If there still is a register available for argument passing, write the
2735  // remaining part of the structure to it using subword loads and shifts.
2736  if (LocMemOffset < 4 * 4) {
2737    assert(RemainingSize <= 3 && RemainingSize >= 1 &&
2738           "There must be one to three bytes remaining.");
2739    unsigned LoadSize = (RemainingSize == 3 ? 2 : RemainingSize);
2740    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2741                                  DAG.getConstant(Offset, MVT::i32));
2742    unsigned Alignment = std::min(ByValAlign, (unsigned )4);
2743    SDValue LoadVal = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2744                                     LoadPtr, MachinePointerInfo(),
2745                                     MVT::getIntegerVT(LoadSize * 8), false,
2746                                     false, Alignment);
2747    MemOpChains.push_back(LoadVal.getValue(1));
2748
2749    // If target is big endian, shift it to the most significant half-word or
2750    // byte.
2751    if (!isLittle)
2752      LoadVal = DAG.getNode(ISD::SHL, dl, MVT::i32, LoadVal,
2753                            DAG.getConstant(32 - LoadSize * 8, MVT::i32));
2754
2755    Offset += LoadSize;
2756    RemainingSize -= LoadSize;
2757
2758    // Read second subword if necessary.
2759    if (RemainingSize != 0)  {
2760      assert(RemainingSize == 1 && "There must be one byte remaining.");
2761      LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2762                            DAG.getConstant(Offset, MVT::i32));
2763      unsigned Alignment = std::min(ByValAlign, (unsigned )2);
2764      SDValue Subword = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2765                                       LoadPtr, MachinePointerInfo(),
2766                                       MVT::i8, false, false, Alignment);
2767      MemOpChains.push_back(Subword.getValue(1));
2768      // Insert the loaded byte to LoadVal.
2769      // FIXME: Use INS if supported by target.
2770      unsigned ShiftAmt = isLittle ? 16 : 8;
2771      SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i32, Subword,
2772                                  DAG.getConstant(ShiftAmt, MVT::i32));
2773      LoadVal = DAG.getNode(ISD::OR, dl, MVT::i32, LoadVal, Shift);
2774    }
2775
2776    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2777    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2778    return;
2779  }
2780
2781  // Copy remaining part of byval arg using memcpy.
2782  SDValue Src = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2783                            DAG.getConstant(Offset, MVT::i32));
2784  SDValue Dst = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr,
2785                            DAG.getIntPtrConstant(LocMemOffset));
2786  Chain = DAG.getMemcpy(Chain, dl, Dst, Src,
2787                        DAG.getConstant(RemainingSize, MVT::i32),
2788                        std::min(ByValAlign, (unsigned)4),
2789                        /*isVolatile=*/false, /*AlwaysInline=*/false,
2790                        MachinePointerInfo(0), MachinePointerInfo(0));
2791  MemOpChains.push_back(Chain);
2792}
2793
2794// Copy Mips64 byVal arg to registers and stack.
2795void static
2796PassByValArg64(SDValue Chain, DebugLoc dl,
2797               SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
2798               SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
2799               MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2800               const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2801               EVT PtrTy, bool isLittle) {
2802  unsigned ByValSize = Flags.getByValSize();
2803  unsigned Alignment = std::min(Flags.getByValAlign(), (unsigned)8);
2804  bool IsRegLoc = VA.isRegLoc();
2805  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
2806  unsigned LocMemOffset = 0;
2807  unsigned MemCpySize = ByValSize;
2808
2809  if (!IsRegLoc)
2810    LocMemOffset = VA.getLocMemOffset();
2811  else {
2812    const uint16_t *Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8,
2813                                    VA.getLocReg());
2814    const uint16_t *RegEnd = Mips64IntRegs + 8;
2815
2816    // Copy double words to registers.
2817    for (; (Reg != RegEnd) && (ByValSize >= Offset + 8); ++Reg, Offset += 8) {
2818      SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2819                                    DAG.getConstant(Offset, PtrTy));
2820      SDValue LoadVal = DAG.getLoad(MVT::i64, dl, Chain, LoadPtr,
2821                                    MachinePointerInfo(), false, false, false,
2822                                    Alignment);
2823      MemOpChains.push_back(LoadVal.getValue(1));
2824      RegsToPass.push_back(std::make_pair(*Reg, LoadVal));
2825    }
2826
2827    // Return if the struct has been fully copied.
2828    if (!(MemCpySize = ByValSize - Offset))
2829      return;
2830
2831    // If there is an argument register available, copy the remainder of the
2832    // byval argument with sub-doubleword loads and shifts.
2833    if (Reg != RegEnd) {
2834      assert((ByValSize < Offset + 8) &&
2835             "Size of the remainder should be smaller than 8-byte.");
2836      SDValue Val;
2837      for (unsigned LoadSize = 4; Offset < ByValSize; LoadSize /= 2) {
2838        unsigned RemSize = ByValSize - Offset;
2839
2840        if (RemSize < LoadSize)
2841          continue;
2842
2843        SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2844                                      DAG.getConstant(Offset, PtrTy));
2845        SDValue LoadVal =
2846          DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i64, Chain, LoadPtr,
2847                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
2848                         false, false, Alignment);
2849        MemOpChains.push_back(LoadVal.getValue(1));
2850
2851        // Offset in number of bits from double word boundary.
2852        unsigned OffsetDW = (Offset % 8) * 8;
2853        unsigned Shamt = isLittle ? OffsetDW : 64 - (OffsetDW + LoadSize * 8);
2854        SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i64, LoadVal,
2855                                    DAG.getConstant(Shamt, MVT::i32));
2856
2857        Val = Val.getNode() ? DAG.getNode(ISD::OR, dl, MVT::i64, Val, Shift) :
2858                              Shift;
2859        Offset += LoadSize;
2860        Alignment = std::min(Alignment, LoadSize);
2861      }
2862
2863      RegsToPass.push_back(std::make_pair(*Reg, Val));
2864      return;
2865    }
2866  }
2867
2868  assert(MemCpySize && "MemCpySize must not be zero.");
2869
2870  // Copy remainder of byval arg to it with memcpy.
2871  SDValue Src = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2872                            DAG.getConstant(Offset, PtrTy));
2873  SDValue Dst = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr,
2874                            DAG.getIntPtrConstant(LocMemOffset));
2875  Chain = DAG.getMemcpy(Chain, dl, Dst, Src,
2876                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
2877                        /*isVolatile=*/false, /*AlwaysInline=*/false,
2878                        MachinePointerInfo(0), MachinePointerInfo(0));
2879  MemOpChains.push_back(Chain);
2880}
2881
2882/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2883/// for tail call optimization.
2884bool MipsTargetLowering::
2885IsEligibleForTailCallOptimization(CallingConv::ID CalleeCC,
2886                                  unsigned NextStackOffset) const {
2887  if (!EnableMipsTailCalls)
2888    return false;
2889
2890  // Do not tail-call optimize if there is an argument passed on stack.
2891  if (IsO32 && (CalleeCC != CallingConv::Fast)) {
2892    if (NextStackOffset > 16)
2893      return false;
2894  } else if (NextStackOffset)
2895    return false;
2896
2897  return true;
2898}
2899
2900/// LowerCall - functions arguments are copied from virtual regs to
2901/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2902SDValue
2903MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2904                              SmallVectorImpl<SDValue> &InVals) const {
2905  SelectionDAG &DAG                     = CLI.DAG;
2906  DebugLoc &dl                          = CLI.DL;
2907  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2908  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2909  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2910  SDValue Chain                         = CLI.Chain;
2911  SDValue Callee                        = CLI.Callee;
2912  bool &isTailCall                      = CLI.IsTailCall;
2913  CallingConv::ID CallConv              = CLI.CallConv;
2914  bool isVarArg                         = CLI.IsVarArg;
2915
2916  MachineFunction &MF = DAG.getMachineFunction();
2917  MachineFrameInfo *MFI = MF.getFrameInfo();
2918  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2919  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2920
2921  // Analyze operands of the call, assigning locations to each operand.
2922  SmallVector<CCValAssign, 16> ArgLocs;
2923  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2924                 getTargetMachine(), ArgLocs, *DAG.getContext());
2925
2926  if (CallConv == CallingConv::Fast)
2927    CCInfo.AnalyzeCallOperands(Outs, CC_Mips_FastCC);
2928  else if (IsO32)
2929    CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32);
2930  else if (HasMips64)
2931    AnalyzeMips64CallOperands(CCInfo, Outs);
2932  else
2933    CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
2934
2935  // Get a count of how many bytes are to be pushed on the stack.
2936  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2937  unsigned StackAlignment = TFL->getStackAlignment();
2938  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2939
2940  // Update size of the maximum argument space.
2941  // For O32, a minimum of four words (16 bytes) of argument space is
2942  // allocated.
2943  if (IsO32 && (CallConv != CallingConv::Fast))
2944    NextStackOffset = std::max(NextStackOffset, (unsigned)16);
2945
2946  // Check if it's really possible to do a tail call.
2947  if (isTailCall)
2948    isTailCall = IsEligibleForTailCallOptimization(CallConv, NextStackOffset);
2949
2950  if (isTailCall)
2951    ++NumTailCalls;
2952
2953  // Chain is the output chain of the last Load/Store or CopyToReg node.
2954  // ByValChain is the output chain of the last Memcpy node created for copying
2955  // byval arguments to the stack.
2956  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2957
2958  if (!isTailCall)
2959    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
2960
2961  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl,
2962                                        IsN64 ? Mips::SP_64 : Mips::SP,
2963                                        getPointerTy());
2964
2965  // With EABI is it possible to have 16 args on registers.
2966  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
2967  SmallVector<SDValue, 8> MemOpChains;
2968
2969  // Walk the register/memloc assignments, inserting copies/loads.
2970  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2971    SDValue Arg = OutVals[i];
2972    CCValAssign &VA = ArgLocs[i];
2973    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2974    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2975
2976    // ByVal Arg.
2977    if (Flags.isByVal()) {
2978      assert(Flags.getByValSize() &&
2979             "ByVal args of size 0 should have been ignored by front-end.");
2980      if (IsO32)
2981        WriteByValArg(Chain, dl, RegsToPass, MemOpChains, StackPtr,
2982                      MFI, DAG, Arg, VA, Flags, getPointerTy(),
2983                      Subtarget->isLittle());
2984      else
2985        PassByValArg64(Chain, dl, RegsToPass, MemOpChains, StackPtr,
2986                       MFI, DAG, Arg, VA, Flags, getPointerTy(),
2987                       Subtarget->isLittle());
2988      continue;
2989    }
2990
2991    // Promote the value if needed.
2992    switch (VA.getLocInfo()) {
2993    default: llvm_unreachable("Unknown loc info!");
2994    case CCValAssign::Full:
2995      if (VA.isRegLoc()) {
2996        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2997            (ValVT == MVT::f64 && LocVT == MVT::i64))
2998          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
2999        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
3000          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
3001                                   Arg, DAG.getConstant(0, MVT::i32));
3002          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
3003                                   Arg, DAG.getConstant(1, MVT::i32));
3004          if (!Subtarget->isLittle())
3005            std::swap(Lo, Hi);
3006          unsigned LocRegLo = VA.getLocReg();
3007          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
3008          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
3009          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
3010          continue;
3011        }
3012      }
3013      break;
3014    case CCValAssign::SExt:
3015      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
3016      break;
3017    case CCValAssign::ZExt:
3018      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
3019      break;
3020    case CCValAssign::AExt:
3021      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
3022      break;
3023    }
3024
3025    // Arguments that can be passed on register must be kept at
3026    // RegsToPass vector
3027    if (VA.isRegLoc()) {
3028      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3029      continue;
3030    }
3031
3032    // Register can't get to this point...
3033    assert(VA.isMemLoc());
3034
3035    // emit ISD::STORE whichs stores the
3036    // parameter value to a stack Location
3037    SDValue PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
3038                                 DAG.getIntPtrConstant(VA.getLocMemOffset()));
3039    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3040                                       MachinePointerInfo(), false, false, 0));
3041  }
3042
3043  // Transform all store nodes into one single node because all store
3044  // nodes are independent of each other.
3045  if (!MemOpChains.empty())
3046    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3047                        &MemOpChains[0], MemOpChains.size());
3048
3049  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3050  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3051  // node so that legalize doesn't hack it.
3052  unsigned char OpFlag;
3053  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
3054  bool GlobalOrExternal = false;
3055  SDValue CalleeLo;
3056
3057  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3058    if (IsPICCall && G->getGlobal()->hasInternalLinkage()) {
3059      OpFlag = IsO32 ? MipsII::MO_GOT : MipsII::MO_GOT_PAGE;
3060      unsigned char LoFlag = IsO32 ? MipsII::MO_ABS_LO : MipsII::MO_GOT_OFST;
3061      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
3062                                          OpFlag);
3063      CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(),
3064                                            0, LoFlag);
3065    } else {
3066      OpFlag = IsPICCall ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
3067      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3068                                          getPointerTy(), 0, OpFlag);
3069    }
3070
3071    GlobalOrExternal = true;
3072  }
3073  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3074    if (IsN64 || (!IsO32 && IsPIC))
3075      OpFlag = MipsII::MO_GOT_DISP;
3076    else if (!IsPIC) // !N64 && static
3077      OpFlag = MipsII::MO_NO_FLAG;
3078    else // O32 & PIC
3079      OpFlag = MipsII::MO_GOT_CALL;
3080    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
3081                                         OpFlag);
3082    GlobalOrExternal = true;
3083  }
3084
3085  SDValue InFlag;
3086
3087  // Create nodes that load address of callee and copy it to T9
3088  if (IsPICCall) {
3089    if (GlobalOrExternal) {
3090      // Load callee address
3091      Callee = DAG.getNode(MipsISD::Wrapper, dl, getPointerTy(),
3092                           GetGlobalReg(DAG, getPointerTy()), Callee);
3093      SDValue LoadValue = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
3094                                      Callee, MachinePointerInfo::getGOT(),
3095                                      false, false, false, 0);
3096
3097      // Use GOT+LO if callee has internal linkage.
3098      if (CalleeLo.getNode()) {
3099        SDValue Lo = DAG.getNode(MipsISD::Lo, dl, getPointerTy(), CalleeLo);
3100        Callee = DAG.getNode(ISD::ADD, dl, getPointerTy(), LoadValue, Lo);
3101      } else
3102        Callee = LoadValue;
3103    }
3104  }
3105
3106  // T9 register operand.
3107  SDValue T9;
3108
3109  // T9 should contain the address of the callee function if
3110  // -reloction-model=pic or it is an indirect call.
3111  if (IsPICCall || !GlobalOrExternal) {
3112    // copy to T9
3113    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
3114    Chain = DAG.getCopyToReg(Chain, dl, T9Reg, Callee, SDValue(0, 0));
3115    InFlag = Chain.getValue(1);
3116
3117    if (Subtarget->inMips16Mode())
3118      T9 = DAG.getRegister(T9Reg, getPointerTy());
3119    else
3120      Callee = DAG.getRegister(T9Reg, getPointerTy());
3121  }
3122
3123  // Insert node "GP copy globalreg" before call to function.
3124  // Lazy-binding stubs require GP to point to the GOT.
3125  if (IsPICCall) {
3126    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
3127    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
3128    RegsToPass.push_back(std::make_pair(GPReg, GetGlobalReg(DAG, Ty)));
3129  }
3130
3131  // Build a sequence of copy-to-reg nodes chained together with token
3132  // chain and flag operands which copy the outgoing args into registers.
3133  // The InFlag in necessary since all emitted instructions must be
3134  // stuck together.
3135  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3136    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3137                             RegsToPass[i].second, InFlag);
3138    InFlag = Chain.getValue(1);
3139  }
3140
3141  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
3142  //             = Chain, Callee, Reg#1, Reg#2, ...
3143  //
3144  // Returns a chain & a flag for retval copy to use.
3145  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3146  SmallVector<SDValue, 8> Ops;
3147  Ops.push_back(Chain);
3148  Ops.push_back(Callee);
3149
3150  // Add argument registers to the end of the list so that they are
3151  // known live into the call.
3152  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3153    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3154                                  RegsToPass[i].second.getValueType()));
3155
3156  // Add T9 register operand.
3157  if (T9.getNode())
3158    Ops.push_back(T9);
3159
3160  // Add a register mask operand representing the call-preserved registers.
3161  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3162  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3163  assert(Mask && "Missing call preserved mask for calling convention");
3164  Ops.push_back(DAG.getRegisterMask(Mask));
3165
3166  if (InFlag.getNode())
3167    Ops.push_back(InFlag);
3168
3169  if (isTailCall)
3170    return DAG.getNode(MipsISD::TailCall, dl, MVT::Other, &Ops[0], Ops.size());
3171
3172  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
3173  InFlag = Chain.getValue(1);
3174
3175  // Create the CALLSEQ_END node.
3176  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
3177                             DAG.getIntPtrConstant(0, true), InFlag);
3178  InFlag = Chain.getValue(1);
3179
3180  // Handle result values, copying them out of physregs into vregs that we
3181  // return.
3182  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3183                         Ins, dl, DAG, InVals);
3184}
3185
3186/// LowerCallResult - Lower the result values of a call into the
3187/// appropriate copies out of appropriate physical registers.
3188SDValue
3189MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3190                                    CallingConv::ID CallConv, bool isVarArg,
3191                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3192                                    DebugLoc dl, SelectionDAG &DAG,
3193                                    SmallVectorImpl<SDValue> &InVals) const {
3194  // Assign locations to each value returned by this call.
3195  SmallVector<CCValAssign, 16> RVLocs;
3196  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3197                 getTargetMachine(), RVLocs, *DAG.getContext());
3198
3199  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
3200
3201  // Copy all of the result registers out of their specified physreg.
3202  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3203    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
3204                               RVLocs[i].getValVT(), InFlag).getValue(1);
3205    InFlag = Chain.getValue(2);
3206    InVals.push_back(Chain.getValue(0));
3207  }
3208
3209  return Chain;
3210}
3211
3212//===----------------------------------------------------------------------===//
3213//             Formal Arguments Calling Convention Implementation
3214//===----------------------------------------------------------------------===//
3215static void ReadByValArg(MachineFunction &MF, SDValue Chain, DebugLoc dl,
3216                         std::vector<SDValue> &OutChains,
3217                         SelectionDAG &DAG, unsigned NumWords, SDValue FIN,
3218                         const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
3219                         const Argument *FuncArg) {
3220  unsigned LocMem = VA.getLocMemOffset();
3221  unsigned FirstWord = LocMem / 4;
3222
3223  // copy register A0 - A3 to frame object
3224  for (unsigned i = 0; i < NumWords; ++i) {
3225    unsigned CurWord = FirstWord + i;
3226    if (CurWord >= O32IntRegsSize)
3227      break;
3228
3229    unsigned SrcReg = O32IntRegs[CurWord];
3230    unsigned Reg = AddLiveIn(MF, SrcReg, &Mips::CPURegsRegClass);
3231    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN,
3232                                   DAG.getConstant(i * 4, MVT::i32));
3233    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(Reg, MVT::i32),
3234                                 StorePtr, MachinePointerInfo(FuncArg, i * 4),
3235                                 false, false, 0);
3236    OutChains.push_back(Store);
3237  }
3238}
3239
3240// Create frame object on stack and copy registers used for byval passing to it.
3241static unsigned
3242CopyMips64ByValRegs(MachineFunction &MF, SDValue Chain, DebugLoc dl,
3243                    std::vector<SDValue> &OutChains, SelectionDAG &DAG,
3244                    const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
3245                    MachineFrameInfo *MFI, bool IsRegLoc,
3246                    SmallVectorImpl<SDValue> &InVals, MipsFunctionInfo *MipsFI,
3247                    EVT PtrTy, const Argument *FuncArg) {
3248  const uint16_t *Reg = Mips64IntRegs + 8;
3249  int FOOffset; // Frame object offset from virtual frame pointer.
3250
3251  if (IsRegLoc) {
3252    Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8, VA.getLocReg());
3253    FOOffset = (Reg - Mips64IntRegs) * 8 - 8 * 8;
3254  }
3255  else
3256    FOOffset = VA.getLocMemOffset();
3257
3258  // Create frame object.
3259  unsigned NumRegs = (Flags.getByValSize() + 7) / 8;
3260  unsigned LastFI = MFI->CreateFixedObject(NumRegs * 8, FOOffset, true);
3261  SDValue FIN = DAG.getFrameIndex(LastFI, PtrTy);
3262  InVals.push_back(FIN);
3263
3264  // Copy arg registers.
3265  for (unsigned I = 0; (Reg != Mips64IntRegs + 8) && (I < NumRegs);
3266       ++Reg, ++I) {
3267    unsigned VReg = AddLiveIn(MF, *Reg, &Mips::CPU64RegsRegClass);
3268    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, PtrTy, FIN,
3269                                   DAG.getConstant(I * 8, PtrTy));
3270    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(VReg, MVT::i64),
3271                                 StorePtr, MachinePointerInfo(FuncArg, I * 8),
3272                                 false, false, 0);
3273    OutChains.push_back(Store);
3274  }
3275
3276  return LastFI;
3277}
3278
3279/// LowerFormalArguments - transform physical registers into virtual registers
3280/// and generate load operations for arguments places on the stack.
3281SDValue
3282MipsTargetLowering::LowerFormalArguments(SDValue Chain,
3283                                         CallingConv::ID CallConv,
3284                                         bool isVarArg,
3285                                      const SmallVectorImpl<ISD::InputArg> &Ins,
3286                                         DebugLoc dl, SelectionDAG &DAG,
3287                                         SmallVectorImpl<SDValue> &InVals)
3288                                          const {
3289  MachineFunction &MF = DAG.getMachineFunction();
3290  MachineFrameInfo *MFI = MF.getFrameInfo();
3291  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3292
3293  MipsFI->setVarArgsFrameIndex(0);
3294
3295  // Used with vargs to acumulate store chains.
3296  std::vector<SDValue> OutChains;
3297
3298  // Assign locations to all of the incoming arguments.
3299  SmallVector<CCValAssign, 16> ArgLocs;
3300  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3301                 getTargetMachine(), ArgLocs, *DAG.getContext());
3302
3303  if (CallConv == CallingConv::Fast)
3304    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FastCC);
3305  else if (IsO32)
3306    CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32);
3307  else
3308    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
3309
3310  Function::const_arg_iterator FuncArg =
3311    DAG.getMachineFunction().getFunction()->arg_begin();
3312  int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function.
3313
3314  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++FuncArg) {
3315    CCValAssign &VA = ArgLocs[i];
3316    EVT ValVT = VA.getValVT();
3317    ISD::ArgFlagsTy Flags = Ins[i].Flags;
3318    bool IsRegLoc = VA.isRegLoc();
3319
3320    if (Flags.isByVal()) {
3321      assert(Flags.getByValSize() &&
3322             "ByVal args of size 0 should have been ignored by front-end.");
3323      if (IsO32) {
3324        unsigned NumWords = (Flags.getByValSize() + 3) / 4;
3325        LastFI = MFI->CreateFixedObject(NumWords * 4, VA.getLocMemOffset(),
3326                                        true);
3327        SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3328        InVals.push_back(FIN);
3329        ReadByValArg(MF, Chain, dl, OutChains, DAG, NumWords, FIN, VA, Flags,
3330                     &*FuncArg);
3331      } else // N32/64
3332        LastFI = CopyMips64ByValRegs(MF, Chain, dl, OutChains, DAG, VA, Flags,
3333                                     MFI, IsRegLoc, InVals, MipsFI,
3334                                     getPointerTy(), &*FuncArg);
3335      continue;
3336    }
3337
3338    // Arguments stored on registers
3339    if (IsRegLoc) {
3340      EVT RegVT = VA.getLocVT();
3341      unsigned ArgReg = VA.getLocReg();
3342      const TargetRegisterClass *RC;
3343
3344      if (RegVT == MVT::i32)
3345        RC = &Mips::CPURegsRegClass;
3346      else if (RegVT == MVT::i64)
3347        RC = &Mips::CPU64RegsRegClass;
3348      else if (RegVT == MVT::f32)
3349        RC = &Mips::FGR32RegClass;
3350      else if (RegVT == MVT::f64)
3351        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
3352      else
3353        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
3354
3355      // Transform the arguments stored on
3356      // physical registers into virtual ones
3357      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3358      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3359
3360      // If this is an 8 or 16-bit value, it has been passed promoted
3361      // to 32 bits.  Insert an assert[sz]ext to capture this, then
3362      // truncate to the right size.
3363      if (VA.getLocInfo() != CCValAssign::Full) {
3364        unsigned Opcode = 0;
3365        if (VA.getLocInfo() == CCValAssign::SExt)
3366          Opcode = ISD::AssertSext;
3367        else if (VA.getLocInfo() == CCValAssign::ZExt)
3368          Opcode = ISD::AssertZext;
3369        if (Opcode)
3370          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
3371                                 DAG.getValueType(ValVT));
3372        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
3373      }
3374
3375      // Handle floating point arguments passed in integer registers.
3376      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3377          (RegVT == MVT::i64 && ValVT == MVT::f64))
3378        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
3379      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
3380        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
3381                                  getNextIntArgReg(ArgReg), RC);
3382        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
3383        if (!Subtarget->isLittle())
3384          std::swap(ArgValue, ArgValue2);
3385        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
3386                               ArgValue, ArgValue2);
3387      }
3388
3389      InVals.push_back(ArgValue);
3390    } else { // VA.isRegLoc()
3391
3392      // sanity check
3393      assert(VA.isMemLoc());
3394
3395      // The stack pointer offset is relative to the caller stack frame.
3396      LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
3397                                      VA.getLocMemOffset(), true);
3398
3399      // Create load nodes to retrieve arguments from the stack
3400      SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3401      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
3402                                   MachinePointerInfo::getFixedStack(LastFI),
3403                                   false, false, false, 0));
3404    }
3405  }
3406
3407  // The mips ABIs for returning structs by value requires that we copy
3408  // the sret argument into $v0 for the return. Save the argument into
3409  // a virtual register so that we can access it from the return points.
3410  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3411    unsigned Reg = MipsFI->getSRetReturnReg();
3412    if (!Reg) {
3413      Reg = MF.getRegInfo().
3414        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
3415      MipsFI->setSRetReturnReg(Reg);
3416    }
3417    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
3418    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
3419  }
3420
3421  if (isVarArg) {
3422    unsigned NumOfRegs = IsO32 ? 4 : 8;
3423    const uint16_t *ArgRegs = IsO32 ? O32IntRegs : Mips64IntRegs;
3424    unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumOfRegs);
3425    int FirstRegSlotOffset = IsO32 ? 0 : -64 ; // offset of $a0's slot.
3426    const TargetRegisterClass *RC = IsO32 ?
3427      (const TargetRegisterClass*)&Mips::CPURegsRegClass :
3428      (const TargetRegisterClass*)&Mips::CPU64RegsRegClass;
3429    unsigned RegSize = RC->getSize();
3430    int RegSlotOffset = FirstRegSlotOffset + Idx * RegSize;
3431
3432    // Offset of the first variable argument from stack pointer.
3433    int FirstVaArgOffset;
3434
3435    if (IsO32 || (Idx == NumOfRegs)) {
3436      FirstVaArgOffset =
3437        (CCInfo.getNextStackOffset() + RegSize - 1) / RegSize * RegSize;
3438    } else
3439      FirstVaArgOffset = RegSlotOffset;
3440
3441    // Record the frame index of the first variable argument
3442    // which is a value necessary to VASTART.
3443    LastFI = MFI->CreateFixedObject(RegSize, FirstVaArgOffset, true);
3444    MipsFI->setVarArgsFrameIndex(LastFI);
3445
3446    // Copy the integer registers that have not been used for argument passing
3447    // to the argument register save area. For O32, the save area is allocated
3448    // in the caller's stack frame, while for N32/64, it is allocated in the
3449    // callee's stack frame.
3450    for (int StackOffset = RegSlotOffset;
3451         Idx < NumOfRegs; ++Idx, StackOffset += RegSize) {
3452      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegs[Idx], RC);
3453      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3454                                            MVT::getIntegerVT(RegSize * 8));
3455      LastFI = MFI->CreateFixedObject(RegSize, StackOffset, true);
3456      SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
3457      OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
3458                                       MachinePointerInfo(), false, false, 0));
3459    }
3460  }
3461
3462  // All stores are grouped in one node to allow the matching between
3463  // the size of Ins and InVals. This only happens when on varg functions
3464  if (!OutChains.empty()) {
3465    OutChains.push_back(Chain);
3466    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3467                        &OutChains[0], OutChains.size());
3468  }
3469
3470  return Chain;
3471}
3472
3473//===----------------------------------------------------------------------===//
3474//               Return Value Calling Convention Implementation
3475//===----------------------------------------------------------------------===//
3476
3477bool
3478MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3479                                   MachineFunction &MF, bool isVarArg,
3480                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3481                                   LLVMContext &Context) const {
3482  SmallVector<CCValAssign, 16> RVLocs;
3483  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
3484                 RVLocs, Context);
3485  return CCInfo.CheckReturn(Outs, RetCC_Mips);
3486}
3487
3488SDValue
3489MipsTargetLowering::LowerReturn(SDValue Chain,
3490                                CallingConv::ID CallConv, bool isVarArg,
3491                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3492                                const SmallVectorImpl<SDValue> &OutVals,
3493                                DebugLoc dl, SelectionDAG &DAG) const {
3494
3495  // CCValAssign - represent the assignment of
3496  // the return value to a location
3497  SmallVector<CCValAssign, 16> RVLocs;
3498
3499  // CCState - Info about the registers and stack slot.
3500  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3501                 getTargetMachine(), RVLocs, *DAG.getContext());
3502
3503  // Analize return values.
3504  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3505
3506  // If this is the first return lowered for this function, add
3507  // the regs to the liveout set for the function.
3508  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3509    for (unsigned i = 0; i != RVLocs.size(); ++i)
3510      if (RVLocs[i].isRegLoc())
3511        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3512  }
3513
3514  SDValue Flag;
3515
3516  // Copy the result values into the output registers.
3517  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3518    CCValAssign &VA = RVLocs[i];
3519    assert(VA.isRegLoc() && "Can only return in registers!");
3520
3521    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
3522
3523    // guarantee that all emitted copies are
3524    // stuck together, avoiding something bad
3525    Flag = Chain.getValue(1);
3526  }
3527
3528  // The mips ABIs for returning structs by value requires that we copy
3529  // the sret argument into $v0 for the return. We saved the argument into
3530  // a virtual register in the entry block, so now we copy the value out
3531  // and into $v0.
3532  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3533    MachineFunction &MF      = DAG.getMachineFunction();
3534    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3535    unsigned Reg = MipsFI->getSRetReturnReg();
3536
3537    if (!Reg)
3538      llvm_unreachable("sret virtual register not created in the entry block");
3539    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
3540    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
3541
3542    Chain = DAG.getCopyToReg(Chain, dl, V0, Val, Flag);
3543    Flag = Chain.getValue(1);
3544    MF.getRegInfo().addLiveOut(V0);
3545  }
3546
3547  // Return on Mips is always a "jr $ra"
3548  if (Flag.getNode())
3549    return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain, Flag);
3550
3551  // Return Void
3552  return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain);
3553}
3554
3555//===----------------------------------------------------------------------===//
3556//                           Mips Inline Assembly Support
3557//===----------------------------------------------------------------------===//
3558
3559/// getConstraintType - Given a constraint letter, return the type of
3560/// constraint it is for this target.
3561MipsTargetLowering::ConstraintType MipsTargetLowering::
3562getConstraintType(const std::string &Constraint) const
3563{
3564  // Mips specific constrainy
3565  // GCC config/mips/constraints.md
3566  //
3567  // 'd' : An address register. Equivalent to r
3568  //       unless generating MIPS16 code.
3569  // 'y' : Equivalent to r; retained for
3570  //       backwards compatibility.
3571  // 'c' : A register suitable for use in an indirect
3572  //       jump. This will always be $25 for -mabicalls.
3573  // 'l' : The lo register. 1 word storage.
3574  // 'x' : The hilo register pair. Double word storage.
3575  if (Constraint.size() == 1) {
3576    switch (Constraint[0]) {
3577      default : break;
3578      case 'd':
3579      case 'y':
3580      case 'f':
3581      case 'c':
3582      case 'l':
3583      case 'x':
3584        return C_RegisterClass;
3585    }
3586  }
3587  return TargetLowering::getConstraintType(Constraint);
3588}
3589
3590/// Examine constraint type and operand type and determine a weight value.
3591/// This object must already have been set up with the operand type
3592/// and the current alternative constraint selected.
3593TargetLowering::ConstraintWeight
3594MipsTargetLowering::getSingleConstraintMatchWeight(
3595    AsmOperandInfo &info, const char *constraint) const {
3596  ConstraintWeight weight = CW_Invalid;
3597  Value *CallOperandVal = info.CallOperandVal;
3598    // If we don't have a value, we can't do a match,
3599    // but allow it at the lowest weight.
3600  if (CallOperandVal == NULL)
3601    return CW_Default;
3602  Type *type = CallOperandVal->getType();
3603  // Look at the constraint type.
3604  switch (*constraint) {
3605  default:
3606    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3607    break;
3608  case 'd':
3609  case 'y':
3610    if (type->isIntegerTy())
3611      weight = CW_Register;
3612    break;
3613  case 'f':
3614    if (type->isFloatTy())
3615      weight = CW_Register;
3616    break;
3617  case 'c': // $25 for indirect jumps
3618  case 'l': // lo register
3619  case 'x': // hilo register pair
3620      if (type->isIntegerTy())
3621      weight = CW_SpecificReg;
3622      break;
3623  case 'I': // signed 16 bit immediate
3624  case 'J': // integer zero
3625  case 'K': // unsigned 16 bit immediate
3626  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3627  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3628  case 'O': // signed 15 bit immediate (+- 16383)
3629  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3630    if (isa<ConstantInt>(CallOperandVal))
3631      weight = CW_Constant;
3632    break;
3633  }
3634  return weight;
3635}
3636
3637/// Given a register class constraint, like 'r', if this corresponds directly
3638/// to an LLVM register class, return a register of 0 and the register class
3639/// pointer.
3640std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3641getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3642{
3643  if (Constraint.size() == 1) {
3644    switch (Constraint[0]) {
3645    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3646    case 'y': // Same as 'r'. Exists for compatibility.
3647    case 'r':
3648      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3649        if (Subtarget->inMips16Mode())
3650          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3651        return std::make_pair(0U, &Mips::CPURegsRegClass);
3652      }
3653      if (VT == MVT::i64 && !HasMips64)
3654        return std::make_pair(0U, &Mips::CPURegsRegClass);
3655      if (VT == MVT::i64 && HasMips64)
3656        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
3657      // This will generate an error message
3658      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3659    case 'f':
3660      if (VT == MVT::f32)
3661        return std::make_pair(0U, &Mips::FGR32RegClass);
3662      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3663        if (Subtarget->isFP64bit())
3664          return std::make_pair(0U, &Mips::FGR64RegClass);
3665        return std::make_pair(0U, &Mips::AFGR64RegClass);
3666      }
3667      break;
3668    case 'c': // register suitable for indirect jump
3669      if (VT == MVT::i32)
3670        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
3671      assert(VT == MVT::i64 && "Unexpected type.");
3672      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
3673    case 'l': // register suitable for indirect jump
3674      if (VT == MVT::i32)
3675        return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
3676      return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
3677    case 'x': // register suitable for indirect jump
3678      // Fixme: Not triggering the use of both hi and low
3679      // This will generate an error message
3680      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3681    }
3682  }
3683  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3684}
3685
3686/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3687/// vector.  If it is invalid, don't add anything to Ops.
3688void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3689                                                     std::string &Constraint,
3690                                                     std::vector<SDValue>&Ops,
3691                                                     SelectionDAG &DAG) const {
3692  SDValue Result(0, 0);
3693
3694  // Only support length 1 constraints for now.
3695  if (Constraint.length() > 1) return;
3696
3697  char ConstraintLetter = Constraint[0];
3698  switch (ConstraintLetter) {
3699  default: break; // This will fall through to the generic implementation
3700  case 'I': // Signed 16 bit constant
3701    // If this fails, the parent routine will give an error
3702    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3703      EVT Type = Op.getValueType();
3704      int64_t Val = C->getSExtValue();
3705      if (isInt<16>(Val)) {
3706        Result = DAG.getTargetConstant(Val, Type);
3707        break;
3708      }
3709    }
3710    return;
3711  case 'J': // integer zero
3712    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3713      EVT Type = Op.getValueType();
3714      int64_t Val = C->getZExtValue();
3715      if (Val == 0) {
3716        Result = DAG.getTargetConstant(0, Type);
3717        break;
3718      }
3719    }
3720    return;
3721  case 'K': // unsigned 16 bit immediate
3722    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3723      EVT Type = Op.getValueType();
3724      uint64_t Val = (uint64_t)C->getZExtValue();
3725      if (isUInt<16>(Val)) {
3726        Result = DAG.getTargetConstant(Val, Type);
3727        break;
3728      }
3729    }
3730    return;
3731  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3732    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3733      EVT Type = Op.getValueType();
3734      int64_t Val = C->getSExtValue();
3735      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3736        Result = DAG.getTargetConstant(Val, Type);
3737        break;
3738      }
3739    }
3740    return;
3741  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3742    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3743      EVT Type = Op.getValueType();
3744      int64_t Val = C->getSExtValue();
3745      if ((Val >= -65535) && (Val <= -1)) {
3746        Result = DAG.getTargetConstant(Val, Type);
3747        break;
3748      }
3749    }
3750    return;
3751  case 'O': // signed 15 bit immediate
3752    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3753      EVT Type = Op.getValueType();
3754      int64_t Val = C->getSExtValue();
3755      if ((isInt<15>(Val))) {
3756        Result = DAG.getTargetConstant(Val, Type);
3757        break;
3758      }
3759    }
3760    return;
3761  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3762    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3763      EVT Type = Op.getValueType();
3764      int64_t Val = C->getSExtValue();
3765      if ((Val <= 65535) && (Val >= 1)) {
3766        Result = DAG.getTargetConstant(Val, Type);
3767        break;
3768      }
3769    }
3770    return;
3771  }
3772
3773  if (Result.getNode()) {
3774    Ops.push_back(Result);
3775    return;
3776  }
3777
3778  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3779}
3780
3781bool
3782MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3783  // The Mips target isn't yet aware of offsets.
3784  return false;
3785}
3786
3787EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3788                                            unsigned SrcAlign, bool IsZeroVal,
3789                                            bool MemcpyStrSrc,
3790                                            MachineFunction &MF) const {
3791  if (Subtarget->hasMips64())
3792    return MVT::i64;
3793
3794  return MVT::i32;
3795}
3796
3797bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3798  if (VT != MVT::f32 && VT != MVT::f64)
3799    return false;
3800  if (Imm.isNegZero())
3801    return false;
3802  return Imm.isZero();
3803}
3804
3805unsigned MipsTargetLowering::getJumpTableEncoding() const {
3806  if (IsN64)
3807    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3808
3809  return TargetLowering::getJumpTableEncoding();
3810}
3811
3812MipsTargetLowering::MipsCC::MipsCC(CallingConv::ID CallConv, bool IsVarArg,
3813                                   bool IsO32, CCState &Info) : CCInfo(Info) {
3814  UseRegsForByval = true;
3815
3816  if (IsO32) {
3817    RegSize = 4;
3818    NumIntArgRegs = array_lengthof(O32IntRegs);
3819    ReservedArgArea = 16;
3820    IntArgRegs = ShadowRegs = O32IntRegs;
3821    FixedFn = VarFn = CC_MipsO32;
3822  } else {
3823    RegSize = 8;
3824    NumIntArgRegs = array_lengthof(Mips64IntRegs);
3825    ReservedArgArea = 0;
3826    IntArgRegs = Mips64IntRegs;
3827    ShadowRegs = Mips64DPRegs;
3828    FixedFn = CC_MipsN;
3829    VarFn = CC_MipsN_VarArg;
3830  }
3831
3832  if (CallConv == CallingConv::Fast) {
3833    assert(!IsVarArg);
3834    UseRegsForByval = false;
3835    ReservedArgArea = 0;
3836    FixedFn = VarFn = CC_Mips_FastCC;
3837  }
3838
3839  // Pre-allocate reserved argument area.
3840  CCInfo.AllocateStack(ReservedArgArea, 1);
3841}
3842
3843void MipsTargetLowering::MipsCC::
3844analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args) {
3845  unsigned NumOpnds = Args.size();
3846
3847  for (unsigned I = 0; I != NumOpnds; ++I) {
3848    MVT ArgVT = Args[I].VT;
3849    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3850    bool R;
3851
3852    if (ArgFlags.isByVal()) {
3853      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3854      continue;
3855    }
3856
3857    if (Args[I].IsFixed)
3858      R = FixedFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3859    else
3860      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3861
3862    if (R) {
3863#ifndef NDEBUG
3864      dbgs() << "Call operand #" << I << " has unhandled type "
3865             << EVT(ArgVT).getEVTString();
3866#endif
3867      llvm_unreachable(0);
3868    }
3869  }
3870}
3871
3872void MipsTargetLowering::MipsCC::
3873analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args) {
3874  unsigned NumArgs = Args.size();
3875
3876  for (unsigned I = 0; I != NumArgs; ++I) {
3877    MVT ArgVT = Args[I].VT;
3878    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3879
3880    if (ArgFlags.isByVal()) {
3881      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3882      continue;
3883    }
3884
3885    if (!FixedFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo))
3886      continue;
3887
3888#ifndef NDEBUG
3889    dbgs() << "Formal Arg #" << I << " has unhandled type "
3890           << EVT(ArgVT).getEVTString();
3891#endif
3892    llvm_unreachable(0);
3893  }
3894}
3895
3896void
3897MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3898                                           MVT LocVT,
3899                                           CCValAssign::LocInfo LocInfo,
3900                                           ISD::ArgFlagsTy ArgFlags) {
3901  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3902
3903  struct ByValArgInfo ByVal;
3904  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3905  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3906                            RegSize * 2);
3907
3908  if (UseRegsForByval)
3909    allocateRegs(ByVal, ByValSize, Align);
3910
3911  // Allocate space on caller's stack.
3912  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3913                                       Align);
3914  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3915                                    LocInfo));
3916  ByValArgs.push_back(ByVal);
3917}
3918
3919void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3920                                              unsigned ByValSize,
3921                                              unsigned Align) {
3922  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3923         "Byval argument's size and alignment should be a multiple of"
3924         "RegSize.");
3925
3926  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3927
3928  // If Align > RegSize, the first arg register must be even.
3929  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3930    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3931    ++ByVal.FirstIdx;
3932  }
3933
3934  // Mark the registers allocated.
3935  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3936       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3937    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3938}
3939