MipsISelLowering.cpp revision 864f66085cd9543070ef01b9f7371c110ecd7898
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "mips-lower"
16#include "MipsISelLowering.h"
17#include "MipsMachineFunction.h"
18#include "MipsTargetMachine.h"
19#include "MipsTargetObjectFile.h"
20#include "MipsSubtarget.h"
21#include "InstPrinter/MipsInstPrinter.h"
22#include "MCTargetDesc/MipsBaseInfo.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/CallingConv.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38
39using namespace llvm;
40
41// If I is a shifted mask, set the size (Size) and the first bit of the
42// mask (Pos), and return true.
43// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
44static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
45  if (!isShiftedMask_64(I))
46     return false;
47
48  Size = CountPopulation_64(I);
49  Pos = CountTrailingZeros_64(I);
50  return true;
51}
52
53static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
54  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
55  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
56}
57
58const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
59  switch (Opcode) {
60  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
61  case MipsISD::Hi:                return "MipsISD::Hi";
62  case MipsISD::Lo:                return "MipsISD::Lo";
63  case MipsISD::GPRel:             return "MipsISD::GPRel";
64  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
65  case MipsISD::Ret:               return "MipsISD::Ret";
66  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
67  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
68  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
69  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
70  case MipsISD::FPRound:           return "MipsISD::FPRound";
71  case MipsISD::MAdd:              return "MipsISD::MAdd";
72  case MipsISD::MAddu:             return "MipsISD::MAddu";
73  case MipsISD::MSub:              return "MipsISD::MSub";
74  case MipsISD::MSubu:             return "MipsISD::MSubu";
75  case MipsISD::DivRem:            return "MipsISD::DivRem";
76  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
77  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
78  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
79  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
80  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
81  case MipsISD::Sync:              return "MipsISD::Sync";
82  case MipsISD::Ext:               return "MipsISD::Ext";
83  case MipsISD::Ins:               return "MipsISD::Ins";
84  case MipsISD::LWL:               return "MipsISD::LWL";
85  case MipsISD::LWR:               return "MipsISD::LWR";
86  case MipsISD::SWL:               return "MipsISD::SWL";
87  case MipsISD::SWR:               return "MipsISD::SWR";
88  case MipsISD::LDL:               return "MipsISD::LDL";
89  case MipsISD::LDR:               return "MipsISD::LDR";
90  case MipsISD::SDL:               return "MipsISD::SDL";
91  case MipsISD::SDR:               return "MipsISD::SDR";
92  default:                         return NULL;
93  }
94}
95
96MipsTargetLowering::
97MipsTargetLowering(MipsTargetMachine &TM)
98  : TargetLowering(TM, new MipsTargetObjectFile()),
99    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
100    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
101    IsO32(Subtarget->isABI_O32()) {
102
103  // Mips does not have i1 type, so use i32 for
104  // setcc operations results (slt, sgt, ...).
105  setBooleanContents(ZeroOrOneBooleanContent);
106  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
107
108  // Set up the register classes
109  addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
110
111  if (HasMips64)
112    addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
113
114  if (Subtarget->inMips16Mode()) {
115    addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
116    addRegisterClass(MVT::i32, &Mips::CPURARegRegClass);
117  }
118
119  if (!TM.Options.UseSoftFloat) {
120    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
121
122    // When dealing with single precision only, use libcalls
123    if (!Subtarget->isSingleFloat()) {
124      if (HasMips64)
125        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
126      else
127        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
128    }
129  }
130
131  // Load extented operations for i1 types must be promoted
132  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
133  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
134  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
135
136  // MIPS doesn't have extending float->double load/store
137  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
138  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
139
140  // Used by legalize types to correctly generate the setcc result.
141  // Without this, every float setcc comes with a AND/OR with the result,
142  // we don't want this, since the fpcmp result goes to a flag register,
143  // which is used implicitly by brcond and select operations.
144  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
145
146  // Mips Custom Operations
147  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
148  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
149  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
150  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
151  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
152  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
153  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
154  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
155  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
156  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
157  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
158  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,   Custom);
159  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
160  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
161  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
162  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
163  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
164  setOperationAction(ISD::LOAD,               MVT::i32, Custom);
165  setOperationAction(ISD::STORE,              MVT::i32, Custom);
166
167  if (!TM.Options.NoNaNsFPMath) {
168    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
169    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
170  }
171
172  if (HasMips64) {
173    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
174    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
175    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
176    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
177    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
178    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
179    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,   Custom);
180    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
181    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
182  }
183
184  if (!HasMips64) {
185    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
186    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
187    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
188  }
189
190  setOperationAction(ISD::SDIV, MVT::i32, Expand);
191  setOperationAction(ISD::SREM, MVT::i32, Expand);
192  setOperationAction(ISD::UDIV, MVT::i32, Expand);
193  setOperationAction(ISD::UREM, MVT::i32, Expand);
194  setOperationAction(ISD::SDIV, MVT::i64, Expand);
195  setOperationAction(ISD::SREM, MVT::i64, Expand);
196  setOperationAction(ISD::UDIV, MVT::i64, Expand);
197  setOperationAction(ISD::UREM, MVT::i64, Expand);
198
199  // Operations not directly supported by Mips.
200  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
201  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
202  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
203  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
204  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
205  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
206  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
207  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
208  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
209  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
210  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
211  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
212  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
213  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
214  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
215  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
216  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
217  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
218
219  if (!Subtarget->hasMips32r2())
220    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
221
222  if (!Subtarget->hasMips64r2())
223    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
224
225  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
226  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
227  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
228  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
229  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
230  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
231  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
232  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
233  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
234  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
235  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
236  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
237  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
238  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
239  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
240
241  if (!TM.Options.NoNaNsFPMath) {
242    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
243    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
244  }
245
246  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
247  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
248  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
249  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
250
251  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
252  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
253  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
254
255  // Use the default for now
256  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
257  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
258
259  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
260  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
261  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
262  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
263
264  setInsertFencesForAtomic(true);
265
266  if (Subtarget->isSingleFloat())
267    setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
268
269  if (!Subtarget->hasSEInReg()) {
270    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
271    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
272  }
273
274  if (!Subtarget->hasBitCount()) {
275    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
276    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
277  }
278
279  if (!Subtarget->hasSwap()) {
280    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
281    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
282  }
283
284  if (HasMips64) {
285    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
286    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
287    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
288    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
289  }
290
291  setTargetDAGCombine(ISD::ADDE);
292  setTargetDAGCombine(ISD::SUBE);
293  setTargetDAGCombine(ISD::SDIVREM);
294  setTargetDAGCombine(ISD::UDIVREM);
295  setTargetDAGCombine(ISD::SELECT);
296  setTargetDAGCombine(ISD::AND);
297  setTargetDAGCombine(ISD::OR);
298  setTargetDAGCombine(ISD::ADD);
299
300  setMinFunctionAlignment(HasMips64 ? 3 : 2);
301
302  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
303  computeRegisterProperties();
304
305  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
306  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
307
308  maxStoresPerMemcpy = 16;
309}
310
311bool MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
312  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
313
314  switch (SVT) {
315  case MVT::i64:
316  case MVT::i32:
317    return true;
318  case MVT::f32:
319    return Subtarget->hasMips32r2Or64();
320  default:
321    return false;
322  }
323}
324
325EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
326  return MVT::i32;
327}
328
329// SelectMadd -
330// Transforms a subgraph in CurDAG if the following pattern is found:
331//  (addc multLo, Lo0), (adde multHi, Hi0),
332// where,
333//  multHi/Lo: product of multiplication
334//  Lo0: initial value of Lo register
335//  Hi0: initial value of Hi register
336// Return true if pattern matching was successful.
337static bool SelectMadd(SDNode *ADDENode, SelectionDAG *CurDAG) {
338  // ADDENode's second operand must be a flag output of an ADDC node in order
339  // for the matching to be successful.
340  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
341
342  if (ADDCNode->getOpcode() != ISD::ADDC)
343    return false;
344
345  SDValue MultHi = ADDENode->getOperand(0);
346  SDValue MultLo = ADDCNode->getOperand(0);
347  SDNode *MultNode = MultHi.getNode();
348  unsigned MultOpc = MultHi.getOpcode();
349
350  // MultHi and MultLo must be generated by the same node,
351  if (MultLo.getNode() != MultNode)
352    return false;
353
354  // and it must be a multiplication.
355  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
356    return false;
357
358  // MultLo amd MultHi must be the first and second output of MultNode
359  // respectively.
360  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
361    return false;
362
363  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
364  // of the values of MultNode, in which case MultNode will be removed in later
365  // phases.
366  // If there exist users other than ADDENode or ADDCNode, this function returns
367  // here, which will result in MultNode being mapped to a single MULT
368  // instruction node rather than a pair of MULT and MADD instructions being
369  // produced.
370  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
371    return false;
372
373  SDValue Chain = CurDAG->getEntryNode();
374  DebugLoc dl = ADDENode->getDebugLoc();
375
376  // create MipsMAdd(u) node
377  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
378
379  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
380                                 MultNode->getOperand(0),// Factor 0
381                                 MultNode->getOperand(1),// Factor 1
382                                 ADDCNode->getOperand(1),// Lo0
383                                 ADDENode->getOperand(1));// Hi0
384
385  // create CopyFromReg nodes
386  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
387                                              MAdd);
388  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
389                                              Mips::HI, MVT::i32,
390                                              CopyFromLo.getValue(2));
391
392  // replace uses of adde and addc here
393  if (!SDValue(ADDCNode, 0).use_empty())
394    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
395
396  if (!SDValue(ADDENode, 0).use_empty())
397    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
398
399  return true;
400}
401
402// SelectMsub -
403// Transforms a subgraph in CurDAG if the following pattern is found:
404//  (addc Lo0, multLo), (sube Hi0, multHi),
405// where,
406//  multHi/Lo: product of multiplication
407//  Lo0: initial value of Lo register
408//  Hi0: initial value of Hi register
409// Return true if pattern matching was successful.
410static bool SelectMsub(SDNode *SUBENode, SelectionDAG *CurDAG) {
411  // SUBENode's second operand must be a flag output of an SUBC node in order
412  // for the matching to be successful.
413  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
414
415  if (SUBCNode->getOpcode() != ISD::SUBC)
416    return false;
417
418  SDValue MultHi = SUBENode->getOperand(1);
419  SDValue MultLo = SUBCNode->getOperand(1);
420  SDNode *MultNode = MultHi.getNode();
421  unsigned MultOpc = MultHi.getOpcode();
422
423  // MultHi and MultLo must be generated by the same node,
424  if (MultLo.getNode() != MultNode)
425    return false;
426
427  // and it must be a multiplication.
428  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
429    return false;
430
431  // MultLo amd MultHi must be the first and second output of MultNode
432  // respectively.
433  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
434    return false;
435
436  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
437  // of the values of MultNode, in which case MultNode will be removed in later
438  // phases.
439  // If there exist users other than SUBENode or SUBCNode, this function returns
440  // here, which will result in MultNode being mapped to a single MULT
441  // instruction node rather than a pair of MULT and MSUB instructions being
442  // produced.
443  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
444    return false;
445
446  SDValue Chain = CurDAG->getEntryNode();
447  DebugLoc dl = SUBENode->getDebugLoc();
448
449  // create MipsSub(u) node
450  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
451
452  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
453                                 MultNode->getOperand(0),// Factor 0
454                                 MultNode->getOperand(1),// Factor 1
455                                 SUBCNode->getOperand(0),// Lo0
456                                 SUBENode->getOperand(0));// Hi0
457
458  // create CopyFromReg nodes
459  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
460                                              MSub);
461  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
462                                              Mips::HI, MVT::i32,
463                                              CopyFromLo.getValue(2));
464
465  // replace uses of sube and subc here
466  if (!SDValue(SUBCNode, 0).use_empty())
467    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
468
469  if (!SDValue(SUBENode, 0).use_empty())
470    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
471
472  return true;
473}
474
475static SDValue PerformADDECombine(SDNode *N, SelectionDAG &DAG,
476                                  TargetLowering::DAGCombinerInfo &DCI,
477                                  const MipsSubtarget *Subtarget) {
478  if (DCI.isBeforeLegalize())
479    return SDValue();
480
481  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
482      SelectMadd(N, &DAG))
483    return SDValue(N, 0);
484
485  return SDValue();
486}
487
488static SDValue PerformSUBECombine(SDNode *N, SelectionDAG &DAG,
489                                  TargetLowering::DAGCombinerInfo &DCI,
490                                  const MipsSubtarget *Subtarget) {
491  if (DCI.isBeforeLegalize())
492    return SDValue();
493
494  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
495      SelectMsub(N, &DAG))
496    return SDValue(N, 0);
497
498  return SDValue();
499}
500
501static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG &DAG,
502                                    TargetLowering::DAGCombinerInfo &DCI,
503                                    const MipsSubtarget *Subtarget) {
504  if (DCI.isBeforeLegalizeOps())
505    return SDValue();
506
507  EVT Ty = N->getValueType(0);
508  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
509  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
510  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
511                                                  MipsISD::DivRemU;
512  DebugLoc dl = N->getDebugLoc();
513
514  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
515                               N->getOperand(0), N->getOperand(1));
516  SDValue InChain = DAG.getEntryNode();
517  SDValue InGlue = DivRem;
518
519  // insert MFLO
520  if (N->hasAnyUseOfValue(0)) {
521    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
522                                            InGlue);
523    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
524    InChain = CopyFromLo.getValue(1);
525    InGlue = CopyFromLo.getValue(2);
526  }
527
528  // insert MFHI
529  if (N->hasAnyUseOfValue(1)) {
530    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
531                                            HI, Ty, InGlue);
532    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
533  }
534
535  return SDValue();
536}
537
538static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
539  switch (CC) {
540  default: llvm_unreachable("Unknown fp condition code!");
541  case ISD::SETEQ:
542  case ISD::SETOEQ: return Mips::FCOND_OEQ;
543  case ISD::SETUNE: return Mips::FCOND_UNE;
544  case ISD::SETLT:
545  case ISD::SETOLT: return Mips::FCOND_OLT;
546  case ISD::SETGT:
547  case ISD::SETOGT: return Mips::FCOND_OGT;
548  case ISD::SETLE:
549  case ISD::SETOLE: return Mips::FCOND_OLE;
550  case ISD::SETGE:
551  case ISD::SETOGE: return Mips::FCOND_OGE;
552  case ISD::SETULT: return Mips::FCOND_ULT;
553  case ISD::SETULE: return Mips::FCOND_ULE;
554  case ISD::SETUGT: return Mips::FCOND_UGT;
555  case ISD::SETUGE: return Mips::FCOND_UGE;
556  case ISD::SETUO:  return Mips::FCOND_UN;
557  case ISD::SETO:   return Mips::FCOND_OR;
558  case ISD::SETNE:
559  case ISD::SETONE: return Mips::FCOND_ONE;
560  case ISD::SETUEQ: return Mips::FCOND_UEQ;
561  }
562}
563
564
565// Returns true if condition code has to be inverted.
566static bool InvertFPCondCode(Mips::CondCode CC) {
567  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
568    return false;
569
570  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
571         "Illegal Condition Code");
572
573  return true;
574}
575
576// Creates and returns an FPCmp node from a setcc node.
577// Returns Op if setcc is not a floating point comparison.
578static SDValue CreateFPCmp(SelectionDAG &DAG, const SDValue &Op) {
579  // must be a SETCC node
580  if (Op.getOpcode() != ISD::SETCC)
581    return Op;
582
583  SDValue LHS = Op.getOperand(0);
584
585  if (!LHS.getValueType().isFloatingPoint())
586    return Op;
587
588  SDValue RHS = Op.getOperand(1);
589  DebugLoc dl = Op.getDebugLoc();
590
591  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
592  // node if necessary.
593  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
594
595  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
596                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
597}
598
599// Creates and returns a CMovFPT/F node.
600static SDValue CreateCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
601                            SDValue False, DebugLoc DL) {
602  bool invert = InvertFPCondCode((Mips::CondCode)
603                                 cast<ConstantSDNode>(Cond.getOperand(2))
604                                 ->getSExtValue());
605
606  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
607                     True.getValueType(), True, False, Cond);
608}
609
610static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
611                                    TargetLowering::DAGCombinerInfo &DCI,
612                                    const MipsSubtarget *Subtarget) {
613  if (DCI.isBeforeLegalizeOps())
614    return SDValue();
615
616  SDValue SetCC = N->getOperand(0);
617
618  if ((SetCC.getOpcode() != ISD::SETCC) ||
619      !SetCC.getOperand(0).getValueType().isInteger())
620    return SDValue();
621
622  SDValue False = N->getOperand(2);
623  EVT FalseTy = False.getValueType();
624
625  if (!FalseTy.isInteger())
626    return SDValue();
627
628  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
629
630  if (!CN || CN->getZExtValue())
631    return SDValue();
632
633  const DebugLoc DL = N->getDebugLoc();
634  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
635  SDValue True = N->getOperand(1);
636
637  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
638                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
639
640  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
641}
642
643static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
644                                 TargetLowering::DAGCombinerInfo &DCI,
645                                 const MipsSubtarget *Subtarget) {
646  // Pattern match EXT.
647  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
648  //  => ext $dst, $src, size, pos
649  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
650    return SDValue();
651
652  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
653  unsigned ShiftRightOpc = ShiftRight.getOpcode();
654
655  // Op's first operand must be a shift right.
656  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
657    return SDValue();
658
659  // The second operand of the shift must be an immediate.
660  ConstantSDNode *CN;
661  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
662    return SDValue();
663
664  uint64_t Pos = CN->getZExtValue();
665  uint64_t SMPos, SMSize;
666
667  // Op's second operand must be a shifted mask.
668  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
669      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
670    return SDValue();
671
672  // Return if the shifted mask does not start at bit 0 or the sum of its size
673  // and Pos exceeds the word's size.
674  EVT ValTy = N->getValueType(0);
675  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
676    return SDValue();
677
678  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
679                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
680                     DAG.getConstant(SMSize, MVT::i32));
681}
682
683static SDValue PerformORCombine(SDNode *N, SelectionDAG &DAG,
684                                TargetLowering::DAGCombinerInfo &DCI,
685                                const MipsSubtarget *Subtarget) {
686  // Pattern match INS.
687  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
688  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
689  //  => ins $dst, $src, size, pos, $src1
690  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
691    return SDValue();
692
693  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
694  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
695  ConstantSDNode *CN;
696
697  // See if Op's first operand matches (and $src1 , mask0).
698  if (And0.getOpcode() != ISD::AND)
699    return SDValue();
700
701  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
702      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
703    return SDValue();
704
705  // See if Op's second operand matches (and (shl $src, pos), mask1).
706  if (And1.getOpcode() != ISD::AND)
707    return SDValue();
708
709  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
710      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
711    return SDValue();
712
713  // The shift masks must have the same position and size.
714  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
715    return SDValue();
716
717  SDValue Shl = And1.getOperand(0);
718  if (Shl.getOpcode() != ISD::SHL)
719    return SDValue();
720
721  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
722    return SDValue();
723
724  unsigned Shamt = CN->getZExtValue();
725
726  // Return if the shift amount and the first bit position of mask are not the
727  // same.
728  EVT ValTy = N->getValueType(0);
729  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
730    return SDValue();
731
732  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
733                     DAG.getConstant(SMPos0, MVT::i32),
734                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
735}
736
737static SDValue PerformADDCombine(SDNode *N, SelectionDAG &DAG,
738                                 TargetLowering::DAGCombinerInfo &DCI,
739                                 const MipsSubtarget *Subtarget) {
740  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
741
742  if (DCI.isBeforeLegalizeOps())
743    return SDValue();
744
745  SDValue Add = N->getOperand(1);
746
747  if (Add.getOpcode() != ISD::ADD)
748    return SDValue();
749
750  SDValue Lo = Add.getOperand(1);
751
752  if ((Lo.getOpcode() != MipsISD::Lo) ||
753      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
754    return SDValue();
755
756  EVT ValTy = N->getValueType(0);
757  DebugLoc DL = N->getDebugLoc();
758
759  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
760                             Add.getOperand(0));
761  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
762}
763
764SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
765  const {
766  SelectionDAG &DAG = DCI.DAG;
767  unsigned opc = N->getOpcode();
768
769  switch (opc) {
770  default: break;
771  case ISD::ADDE:
772    return PerformADDECombine(N, DAG, DCI, Subtarget);
773  case ISD::SUBE:
774    return PerformSUBECombine(N, DAG, DCI, Subtarget);
775  case ISD::SDIVREM:
776  case ISD::UDIVREM:
777    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
778  case ISD::SELECT:
779    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
780  case ISD::AND:
781    return PerformANDCombine(N, DAG, DCI, Subtarget);
782  case ISD::OR:
783    return PerformORCombine(N, DAG, DCI, Subtarget);
784  case ISD::ADD:
785    return PerformADDCombine(N, DAG, DCI, Subtarget);
786  }
787
788  return SDValue();
789}
790
791SDValue MipsTargetLowering::
792LowerOperation(SDValue Op, SelectionDAG &DAG) const
793{
794  switch (Op.getOpcode())
795  {
796    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
797    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
798    case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
799    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
800    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
801    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
802    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
803    case ISD::SELECT:             return LowerSELECT(Op, DAG);
804    case ISD::SETCC:              return LowerSETCC(Op, DAG);
805    case ISD::VASTART:            return LowerVASTART(Op, DAG);
806    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
807    case ISD::FABS:               return LowerFABS(Op, DAG);
808    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
809    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
810    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
811    case ISD::SHL_PARTS:          return LowerShiftLeftParts(Op, DAG);
812    case ISD::SRA_PARTS:          return LowerShiftRightParts(Op, DAG, true);
813    case ISD::SRL_PARTS:          return LowerShiftRightParts(Op, DAG, false);
814    case ISD::LOAD:               return LowerLOAD(Op, DAG);
815    case ISD::STORE:              return LowerSTORE(Op, DAG);
816  }
817  return SDValue();
818}
819
820//===----------------------------------------------------------------------===//
821//  Lower helper functions
822//===----------------------------------------------------------------------===//
823
824// AddLiveIn - This helper function adds the specified physical register to the
825// MachineFunction as a live in value.  It also creates a corresponding
826// virtual register for it.
827static unsigned
828AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
829{
830  assert(RC->contains(PReg) && "Not the correct regclass!");
831  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
832  MF.getRegInfo().addLiveIn(PReg, VReg);
833  return VReg;
834}
835
836// Get fp branch code (not opcode) from condition code.
837static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
838  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
839    return Mips::BRANCH_T;
840
841  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
842         "Invalid CondCode.");
843
844  return Mips::BRANCH_F;
845}
846
847/*
848static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
849                                        DebugLoc dl,
850                                        const MipsSubtarget *Subtarget,
851                                        const TargetInstrInfo *TII,
852                                        bool isFPCmp, unsigned Opc) {
853  // There is no need to expand CMov instructions if target has
854  // conditional moves.
855  if (Subtarget->hasCondMov())
856    return BB;
857
858  // To "insert" a SELECT_CC instruction, we actually have to insert the
859  // diamond control-flow pattern.  The incoming instruction knows the
860  // destination vreg to set, the condition code register to branch on, the
861  // true/false values to select between, and a branch opcode to use.
862  const BasicBlock *LLVM_BB = BB->getBasicBlock();
863  MachineFunction::iterator It = BB;
864  ++It;
865
866  //  thisMBB:
867  //  ...
868  //   TrueVal = ...
869  //   setcc r1, r2, r3
870  //   bNE   r1, r0, copy1MBB
871  //   fallthrough --> copy0MBB
872  MachineBasicBlock *thisMBB  = BB;
873  MachineFunction *F = BB->getParent();
874  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
875  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
876  F->insert(It, copy0MBB);
877  F->insert(It, sinkMBB);
878
879  // Transfer the remainder of BB and its successor edges to sinkMBB.
880  sinkMBB->splice(sinkMBB->begin(), BB,
881                  llvm::next(MachineBasicBlock::iterator(MI)),
882                  BB->end());
883  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
884
885  // Next, add the true and fallthrough blocks as its successors.
886  BB->addSuccessor(copy0MBB);
887  BB->addSuccessor(sinkMBB);
888
889  // Emit the right instruction according to the type of the operands compared
890  if (isFPCmp)
891    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
892  else
893    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
894      .addReg(Mips::ZERO).addMBB(sinkMBB);
895
896  //  copy0MBB:
897  //   %FalseValue = ...
898  //   # fallthrough to sinkMBB
899  BB = copy0MBB;
900
901  // Update machine-CFG edges
902  BB->addSuccessor(sinkMBB);
903
904  //  sinkMBB:
905  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
906  //  ...
907  BB = sinkMBB;
908
909  if (isFPCmp)
910    BuildMI(*BB, BB->begin(), dl,
911            TII->get(Mips::PHI), MI->getOperand(0).getReg())
912      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
913      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
914  else
915    BuildMI(*BB, BB->begin(), dl,
916            TII->get(Mips::PHI), MI->getOperand(0).getReg())
917      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
918      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
919
920  MI->eraseFromParent();   // The pseudo instruction is gone now.
921  return BB;
922}
923*/
924MachineBasicBlock *
925MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
926                                                MachineBasicBlock *BB) const {
927  switch (MI->getOpcode()) {
928  default: llvm_unreachable("Unexpected instr type to insert");
929  case Mips::ATOMIC_LOAD_ADD_I8:
930  case Mips::ATOMIC_LOAD_ADD_I8_P8:
931    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
932  case Mips::ATOMIC_LOAD_ADD_I16:
933  case Mips::ATOMIC_LOAD_ADD_I16_P8:
934    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
935  case Mips::ATOMIC_LOAD_ADD_I32:
936  case Mips::ATOMIC_LOAD_ADD_I32_P8:
937    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
938  case Mips::ATOMIC_LOAD_ADD_I64:
939  case Mips::ATOMIC_LOAD_ADD_I64_P8:
940    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
941
942  case Mips::ATOMIC_LOAD_AND_I8:
943  case Mips::ATOMIC_LOAD_AND_I8_P8:
944    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
945  case Mips::ATOMIC_LOAD_AND_I16:
946  case Mips::ATOMIC_LOAD_AND_I16_P8:
947    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
948  case Mips::ATOMIC_LOAD_AND_I32:
949  case Mips::ATOMIC_LOAD_AND_I32_P8:
950    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
951  case Mips::ATOMIC_LOAD_AND_I64:
952  case Mips::ATOMIC_LOAD_AND_I64_P8:
953    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
954
955  case Mips::ATOMIC_LOAD_OR_I8:
956  case Mips::ATOMIC_LOAD_OR_I8_P8:
957    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
958  case Mips::ATOMIC_LOAD_OR_I16:
959  case Mips::ATOMIC_LOAD_OR_I16_P8:
960    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
961  case Mips::ATOMIC_LOAD_OR_I32:
962  case Mips::ATOMIC_LOAD_OR_I32_P8:
963    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
964  case Mips::ATOMIC_LOAD_OR_I64:
965  case Mips::ATOMIC_LOAD_OR_I64_P8:
966    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
967
968  case Mips::ATOMIC_LOAD_XOR_I8:
969  case Mips::ATOMIC_LOAD_XOR_I8_P8:
970    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
971  case Mips::ATOMIC_LOAD_XOR_I16:
972  case Mips::ATOMIC_LOAD_XOR_I16_P8:
973    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
974  case Mips::ATOMIC_LOAD_XOR_I32:
975  case Mips::ATOMIC_LOAD_XOR_I32_P8:
976    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
977  case Mips::ATOMIC_LOAD_XOR_I64:
978  case Mips::ATOMIC_LOAD_XOR_I64_P8:
979    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
980
981  case Mips::ATOMIC_LOAD_NAND_I8:
982  case Mips::ATOMIC_LOAD_NAND_I8_P8:
983    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
984  case Mips::ATOMIC_LOAD_NAND_I16:
985  case Mips::ATOMIC_LOAD_NAND_I16_P8:
986    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
987  case Mips::ATOMIC_LOAD_NAND_I32:
988  case Mips::ATOMIC_LOAD_NAND_I32_P8:
989    return EmitAtomicBinary(MI, BB, 4, 0, true);
990  case Mips::ATOMIC_LOAD_NAND_I64:
991  case Mips::ATOMIC_LOAD_NAND_I64_P8:
992    return EmitAtomicBinary(MI, BB, 8, 0, true);
993
994  case Mips::ATOMIC_LOAD_SUB_I8:
995  case Mips::ATOMIC_LOAD_SUB_I8_P8:
996    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
997  case Mips::ATOMIC_LOAD_SUB_I16:
998  case Mips::ATOMIC_LOAD_SUB_I16_P8:
999    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
1000  case Mips::ATOMIC_LOAD_SUB_I32:
1001  case Mips::ATOMIC_LOAD_SUB_I32_P8:
1002    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
1003  case Mips::ATOMIC_LOAD_SUB_I64:
1004  case Mips::ATOMIC_LOAD_SUB_I64_P8:
1005    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
1006
1007  case Mips::ATOMIC_SWAP_I8:
1008  case Mips::ATOMIC_SWAP_I8_P8:
1009    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
1010  case Mips::ATOMIC_SWAP_I16:
1011  case Mips::ATOMIC_SWAP_I16_P8:
1012    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
1013  case Mips::ATOMIC_SWAP_I32:
1014  case Mips::ATOMIC_SWAP_I32_P8:
1015    return EmitAtomicBinary(MI, BB, 4, 0);
1016  case Mips::ATOMIC_SWAP_I64:
1017  case Mips::ATOMIC_SWAP_I64_P8:
1018    return EmitAtomicBinary(MI, BB, 8, 0);
1019
1020  case Mips::ATOMIC_CMP_SWAP_I8:
1021  case Mips::ATOMIC_CMP_SWAP_I8_P8:
1022    return EmitAtomicCmpSwapPartword(MI, BB, 1);
1023  case Mips::ATOMIC_CMP_SWAP_I16:
1024  case Mips::ATOMIC_CMP_SWAP_I16_P8:
1025    return EmitAtomicCmpSwapPartword(MI, BB, 2);
1026  case Mips::ATOMIC_CMP_SWAP_I32:
1027  case Mips::ATOMIC_CMP_SWAP_I32_P8:
1028    return EmitAtomicCmpSwap(MI, BB, 4);
1029  case Mips::ATOMIC_CMP_SWAP_I64:
1030  case Mips::ATOMIC_CMP_SWAP_I64_P8:
1031    return EmitAtomicCmpSwap(MI, BB, 8);
1032  }
1033}
1034
1035// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1036// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1037MachineBasicBlock *
1038MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1039                                     unsigned Size, unsigned BinOpcode,
1040                                     bool Nand) const {
1041  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1042
1043  MachineFunction *MF = BB->getParent();
1044  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1045  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1046  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1047  DebugLoc dl = MI->getDebugLoc();
1048  unsigned LL, SC, AND, NOR, ZERO, BEQ;
1049
1050  if (Size == 4) {
1051    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1052    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1053    AND = Mips::AND;
1054    NOR = Mips::NOR;
1055    ZERO = Mips::ZERO;
1056    BEQ = Mips::BEQ;
1057  }
1058  else {
1059    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1060    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1061    AND = Mips::AND64;
1062    NOR = Mips::NOR64;
1063    ZERO = Mips::ZERO_64;
1064    BEQ = Mips::BEQ64;
1065  }
1066
1067  unsigned OldVal = MI->getOperand(0).getReg();
1068  unsigned Ptr = MI->getOperand(1).getReg();
1069  unsigned Incr = MI->getOperand(2).getReg();
1070
1071  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1072  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1073  unsigned Success = RegInfo.createVirtualRegister(RC);
1074
1075  // insert new blocks after the current block
1076  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1077  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1078  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1079  MachineFunction::iterator It = BB;
1080  ++It;
1081  MF->insert(It, loopMBB);
1082  MF->insert(It, exitMBB);
1083
1084  // Transfer the remainder of BB and its successor edges to exitMBB.
1085  exitMBB->splice(exitMBB->begin(), BB,
1086                  llvm::next(MachineBasicBlock::iterator(MI)),
1087                  BB->end());
1088  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1089
1090  //  thisMBB:
1091  //    ...
1092  //    fallthrough --> loopMBB
1093  BB->addSuccessor(loopMBB);
1094  loopMBB->addSuccessor(loopMBB);
1095  loopMBB->addSuccessor(exitMBB);
1096
1097  //  loopMBB:
1098  //    ll oldval, 0(ptr)
1099  //    <binop> storeval, oldval, incr
1100  //    sc success, storeval, 0(ptr)
1101  //    beq success, $0, loopMBB
1102  BB = loopMBB;
1103  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1104  if (Nand) {
1105    //  and andres, oldval, incr
1106    //  nor storeval, $0, andres
1107    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1108    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1109  } else if (BinOpcode) {
1110    //  <binop> storeval, oldval, incr
1111    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1112  } else {
1113    StoreVal = Incr;
1114  }
1115  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1116  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1117
1118  MI->eraseFromParent();   // The instruction is gone now.
1119
1120  return exitMBB;
1121}
1122
1123MachineBasicBlock *
1124MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1125                                             MachineBasicBlock *BB,
1126                                             unsigned Size, unsigned BinOpcode,
1127                                             bool Nand) const {
1128  assert((Size == 1 || Size == 2) &&
1129      "Unsupported size for EmitAtomicBinaryPartial.");
1130
1131  MachineFunction *MF = BB->getParent();
1132  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1133  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1134  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1135  DebugLoc dl = MI->getDebugLoc();
1136  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1137  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1138
1139  unsigned Dest = MI->getOperand(0).getReg();
1140  unsigned Ptr = MI->getOperand(1).getReg();
1141  unsigned Incr = MI->getOperand(2).getReg();
1142
1143  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1144  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1145  unsigned Mask = RegInfo.createVirtualRegister(RC);
1146  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1147  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1148  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1149  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1150  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1151  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1152  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1153  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1154  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1155  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1156  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1157  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1158  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1159  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1160  unsigned Success = RegInfo.createVirtualRegister(RC);
1161
1162  // insert new blocks after the current block
1163  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1164  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1165  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1166  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1167  MachineFunction::iterator It = BB;
1168  ++It;
1169  MF->insert(It, loopMBB);
1170  MF->insert(It, sinkMBB);
1171  MF->insert(It, exitMBB);
1172
1173  // Transfer the remainder of BB and its successor edges to exitMBB.
1174  exitMBB->splice(exitMBB->begin(), BB,
1175                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1176  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1177
1178  BB->addSuccessor(loopMBB);
1179  loopMBB->addSuccessor(loopMBB);
1180  loopMBB->addSuccessor(sinkMBB);
1181  sinkMBB->addSuccessor(exitMBB);
1182
1183  //  thisMBB:
1184  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1185  //    and     alignedaddr,ptr,masklsb2
1186  //    andi    ptrlsb2,ptr,3
1187  //    sll     shiftamt,ptrlsb2,3
1188  //    ori     maskupper,$0,255               # 0xff
1189  //    sll     mask,maskupper,shiftamt
1190  //    nor     mask2,$0,mask
1191  //    sll     incr2,incr,shiftamt
1192
1193  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1194  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1195    .addReg(Mips::ZERO).addImm(-4);
1196  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1197    .addReg(Ptr).addReg(MaskLSB2);
1198  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1199  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1200  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1201    .addReg(Mips::ZERO).addImm(MaskImm);
1202  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1203    .addReg(ShiftAmt).addReg(MaskUpper);
1204  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1205  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1206
1207  // atomic.load.binop
1208  // loopMBB:
1209  //   ll      oldval,0(alignedaddr)
1210  //   binop   binopres,oldval,incr2
1211  //   and     newval,binopres,mask
1212  //   and     maskedoldval0,oldval,mask2
1213  //   or      storeval,maskedoldval0,newval
1214  //   sc      success,storeval,0(alignedaddr)
1215  //   beq     success,$0,loopMBB
1216
1217  // atomic.swap
1218  // loopMBB:
1219  //   ll      oldval,0(alignedaddr)
1220  //   and     newval,incr2,mask
1221  //   and     maskedoldval0,oldval,mask2
1222  //   or      storeval,maskedoldval0,newval
1223  //   sc      success,storeval,0(alignedaddr)
1224  //   beq     success,$0,loopMBB
1225
1226  BB = loopMBB;
1227  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1228  if (Nand) {
1229    //  and andres, oldval, incr2
1230    //  nor binopres, $0, andres
1231    //  and newval, binopres, mask
1232    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1233    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1234      .addReg(Mips::ZERO).addReg(AndRes);
1235    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1236  } else if (BinOpcode) {
1237    //  <binop> binopres, oldval, incr2
1238    //  and newval, binopres, mask
1239    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1240    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1241  } else {// atomic.swap
1242    //  and newval, incr2, mask
1243    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1244  }
1245
1246  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1247    .addReg(OldVal).addReg(Mask2);
1248  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1249    .addReg(MaskedOldVal0).addReg(NewVal);
1250  BuildMI(BB, dl, TII->get(SC), Success)
1251    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1252  BuildMI(BB, dl, TII->get(Mips::BEQ))
1253    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1254
1255  //  sinkMBB:
1256  //    and     maskedoldval1,oldval,mask
1257  //    srl     srlres,maskedoldval1,shiftamt
1258  //    sll     sllres,srlres,24
1259  //    sra     dest,sllres,24
1260  BB = sinkMBB;
1261  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1262
1263  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1264    .addReg(OldVal).addReg(Mask);
1265  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1266      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1267  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1268      .addReg(SrlRes).addImm(ShiftImm);
1269  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1270      .addReg(SllRes).addImm(ShiftImm);
1271
1272  MI->eraseFromParent();   // The instruction is gone now.
1273
1274  return exitMBB;
1275}
1276
1277MachineBasicBlock *
1278MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1279                                      MachineBasicBlock *BB,
1280                                      unsigned Size) const {
1281  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1282
1283  MachineFunction *MF = BB->getParent();
1284  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1285  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1286  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1287  DebugLoc dl = MI->getDebugLoc();
1288  unsigned LL, SC, ZERO, BNE, BEQ;
1289
1290  if (Size == 4) {
1291    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1292    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1293    ZERO = Mips::ZERO;
1294    BNE = Mips::BNE;
1295    BEQ = Mips::BEQ;
1296  }
1297  else {
1298    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1299    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1300    ZERO = Mips::ZERO_64;
1301    BNE = Mips::BNE64;
1302    BEQ = Mips::BEQ64;
1303  }
1304
1305  unsigned Dest    = MI->getOperand(0).getReg();
1306  unsigned Ptr     = MI->getOperand(1).getReg();
1307  unsigned OldVal  = MI->getOperand(2).getReg();
1308  unsigned NewVal  = MI->getOperand(3).getReg();
1309
1310  unsigned Success = RegInfo.createVirtualRegister(RC);
1311
1312  // insert new blocks after the current block
1313  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1314  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1315  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1316  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1317  MachineFunction::iterator It = BB;
1318  ++It;
1319  MF->insert(It, loop1MBB);
1320  MF->insert(It, loop2MBB);
1321  MF->insert(It, exitMBB);
1322
1323  // Transfer the remainder of BB and its successor edges to exitMBB.
1324  exitMBB->splice(exitMBB->begin(), BB,
1325                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1326  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1327
1328  //  thisMBB:
1329  //    ...
1330  //    fallthrough --> loop1MBB
1331  BB->addSuccessor(loop1MBB);
1332  loop1MBB->addSuccessor(exitMBB);
1333  loop1MBB->addSuccessor(loop2MBB);
1334  loop2MBB->addSuccessor(loop1MBB);
1335  loop2MBB->addSuccessor(exitMBB);
1336
1337  // loop1MBB:
1338  //   ll dest, 0(ptr)
1339  //   bne dest, oldval, exitMBB
1340  BB = loop1MBB;
1341  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1342  BuildMI(BB, dl, TII->get(BNE))
1343    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1344
1345  // loop2MBB:
1346  //   sc success, newval, 0(ptr)
1347  //   beq success, $0, loop1MBB
1348  BB = loop2MBB;
1349  BuildMI(BB, dl, TII->get(SC), Success)
1350    .addReg(NewVal).addReg(Ptr).addImm(0);
1351  BuildMI(BB, dl, TII->get(BEQ))
1352    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1353
1354  MI->eraseFromParent();   // The instruction is gone now.
1355
1356  return exitMBB;
1357}
1358
1359MachineBasicBlock *
1360MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1361                                              MachineBasicBlock *BB,
1362                                              unsigned Size) const {
1363  assert((Size == 1 || Size == 2) &&
1364      "Unsupported size for EmitAtomicCmpSwapPartial.");
1365
1366  MachineFunction *MF = BB->getParent();
1367  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1368  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1369  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1370  DebugLoc dl = MI->getDebugLoc();
1371  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1372  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1373
1374  unsigned Dest    = MI->getOperand(0).getReg();
1375  unsigned Ptr     = MI->getOperand(1).getReg();
1376  unsigned CmpVal  = MI->getOperand(2).getReg();
1377  unsigned NewVal  = MI->getOperand(3).getReg();
1378
1379  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1380  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1381  unsigned Mask = RegInfo.createVirtualRegister(RC);
1382  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1383  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1384  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1385  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1386  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1387  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1388  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1389  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1390  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1391  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1392  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1393  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1394  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1395  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1396  unsigned Success = RegInfo.createVirtualRegister(RC);
1397
1398  // insert new blocks after the current block
1399  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1400  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1401  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1402  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1403  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1404  MachineFunction::iterator It = BB;
1405  ++It;
1406  MF->insert(It, loop1MBB);
1407  MF->insert(It, loop2MBB);
1408  MF->insert(It, sinkMBB);
1409  MF->insert(It, exitMBB);
1410
1411  // Transfer the remainder of BB and its successor edges to exitMBB.
1412  exitMBB->splice(exitMBB->begin(), BB,
1413                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1414  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1415
1416  BB->addSuccessor(loop1MBB);
1417  loop1MBB->addSuccessor(sinkMBB);
1418  loop1MBB->addSuccessor(loop2MBB);
1419  loop2MBB->addSuccessor(loop1MBB);
1420  loop2MBB->addSuccessor(sinkMBB);
1421  sinkMBB->addSuccessor(exitMBB);
1422
1423  // FIXME: computation of newval2 can be moved to loop2MBB.
1424  //  thisMBB:
1425  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1426  //    and     alignedaddr,ptr,masklsb2
1427  //    andi    ptrlsb2,ptr,3
1428  //    sll     shiftamt,ptrlsb2,3
1429  //    ori     maskupper,$0,255               # 0xff
1430  //    sll     mask,maskupper,shiftamt
1431  //    nor     mask2,$0,mask
1432  //    andi    maskedcmpval,cmpval,255
1433  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1434  //    andi    maskednewval,newval,255
1435  //    sll     shiftednewval,maskednewval,shiftamt
1436  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1437  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1438    .addReg(Mips::ZERO).addImm(-4);
1439  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1440    .addReg(Ptr).addReg(MaskLSB2);
1441  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1442  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1443  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1444    .addReg(Mips::ZERO).addImm(MaskImm);
1445  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1446    .addReg(ShiftAmt).addReg(MaskUpper);
1447  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1448  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1449    .addReg(CmpVal).addImm(MaskImm);
1450  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1451    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1452  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1453    .addReg(NewVal).addImm(MaskImm);
1454  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1455    .addReg(ShiftAmt).addReg(MaskedNewVal);
1456
1457  //  loop1MBB:
1458  //    ll      oldval,0(alginedaddr)
1459  //    and     maskedoldval0,oldval,mask
1460  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1461  BB = loop1MBB;
1462  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1463  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1464    .addReg(OldVal).addReg(Mask);
1465  BuildMI(BB, dl, TII->get(Mips::BNE))
1466    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1467
1468  //  loop2MBB:
1469  //    and     maskedoldval1,oldval,mask2
1470  //    or      storeval,maskedoldval1,shiftednewval
1471  //    sc      success,storeval,0(alignedaddr)
1472  //    beq     success,$0,loop1MBB
1473  BB = loop2MBB;
1474  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1475    .addReg(OldVal).addReg(Mask2);
1476  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1477    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1478  BuildMI(BB, dl, TII->get(SC), Success)
1479      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1480  BuildMI(BB, dl, TII->get(Mips::BEQ))
1481      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1482
1483  //  sinkMBB:
1484  //    srl     srlres,maskedoldval0,shiftamt
1485  //    sll     sllres,srlres,24
1486  //    sra     dest,sllres,24
1487  BB = sinkMBB;
1488  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1489
1490  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1491      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1492  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1493      .addReg(SrlRes).addImm(ShiftImm);
1494  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1495      .addReg(SllRes).addImm(ShiftImm);
1496
1497  MI->eraseFromParent();   // The instruction is gone now.
1498
1499  return exitMBB;
1500}
1501
1502//===----------------------------------------------------------------------===//
1503//  Misc Lower Operation implementation
1504//===----------------------------------------------------------------------===//
1505SDValue MipsTargetLowering::
1506LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
1507{
1508  MachineFunction &MF = DAG.getMachineFunction();
1509  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1510  unsigned SP = IsN64 ? Mips::SP_64 : Mips::SP;
1511
1512  assert(getTargetMachine().getFrameLowering()->getStackAlignment() >=
1513         cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue() &&
1514         "Cannot lower if the alignment of the allocated space is larger than \
1515          that of the stack.");
1516
1517  SDValue Chain = Op.getOperand(0);
1518  SDValue Size = Op.getOperand(1);
1519  DebugLoc dl = Op.getDebugLoc();
1520
1521  // Get a reference from Mips stack pointer
1522  SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SP, getPointerTy());
1523
1524  // Subtract the dynamic size from the actual stack size to
1525  // obtain the new stack size.
1526  SDValue Sub = DAG.getNode(ISD::SUB, dl, getPointerTy(), StackPointer, Size);
1527
1528  // The Sub result contains the new stack start address, so it
1529  // must be placed in the stack pointer register.
1530  Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, SP, Sub, SDValue());
1531
1532  // This node always has two return values: a new stack pointer
1533  // value and a chain
1534  SDVTList VTLs = DAG.getVTList(getPointerTy(), MVT::Other);
1535  SDValue Ptr = DAG.getFrameIndex(MipsFI->getDynAllocFI(), getPointerTy());
1536  SDValue Ops[] = { Chain, Ptr, Chain.getValue(1) };
1537
1538  return DAG.getNode(MipsISD::DynAlloc, dl, VTLs, Ops, 3);
1539}
1540
1541SDValue MipsTargetLowering::
1542LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1543{
1544  // The first operand is the chain, the second is the condition, the third is
1545  // the block to branch to if the condition is true.
1546  SDValue Chain = Op.getOperand(0);
1547  SDValue Dest = Op.getOperand(2);
1548  DebugLoc dl = Op.getDebugLoc();
1549
1550  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
1551
1552  // Return if flag is not set by a floating point comparison.
1553  if (CondRes.getOpcode() != MipsISD::FPCmp)
1554    return Op;
1555
1556  SDValue CCNode  = CondRes.getOperand(2);
1557  Mips::CondCode CC =
1558    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1559  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
1560
1561  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
1562                     Dest, CondRes);
1563}
1564
1565SDValue MipsTargetLowering::
1566LowerSELECT(SDValue Op, SelectionDAG &DAG) const
1567{
1568  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
1569
1570  // Return if flag is not set by a floating point comparison.
1571  if (Cond.getOpcode() != MipsISD::FPCmp)
1572    return Op;
1573
1574  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1575                      Op.getDebugLoc());
1576}
1577
1578SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1579  SDValue Cond = CreateFPCmp(DAG, Op);
1580
1581  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1582         "Floating point operand expected.");
1583
1584  SDValue True  = DAG.getConstant(1, MVT::i32);
1585  SDValue False = DAG.getConstant(0, MVT::i32);
1586
1587  return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1588}
1589
1590SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
1591                                               SelectionDAG &DAG) const {
1592  // FIXME there isn't actually debug info here
1593  DebugLoc dl = Op.getDebugLoc();
1594  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1595
1596  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1597    SDVTList VTs = DAG.getVTList(MVT::i32);
1598
1599    MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering();
1600
1601    // %gp_rel relocation
1602    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1603      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1604                                              MipsII::MO_GPREL);
1605      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
1606      SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1607      return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
1608    }
1609    // %hi/%lo relocation
1610    SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1611                                              MipsII::MO_ABS_HI);
1612    SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1613                                              MipsII::MO_ABS_LO);
1614    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1);
1615    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
1616    return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1617  }
1618
1619  EVT ValTy = Op.getValueType();
1620  bool HasGotOfst = (GV->hasInternalLinkage() ||
1621                     (GV->hasLocalLinkage() && !isa<Function>(GV)));
1622  unsigned GotFlag = HasMips64 ?
1623                     (HasGotOfst ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT_DISP) :
1624                     (HasGotOfst ? MipsII::MO_GOT : MipsII::MO_GOT16);
1625  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0, GotFlag);
1626  GA = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), GA);
1627  SDValue ResNode = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), GA,
1628                                MachinePointerInfo(), false, false, false, 0);
1629  // On functions and global targets not internal linked only
1630  // a load from got/GP is necessary for PIC to work.
1631  if (!HasGotOfst)
1632    return ResNode;
1633  SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0,
1634                                            HasMips64 ? MipsII::MO_GOT_OFST :
1635                                                        MipsII::MO_ABS_LO);
1636  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, GALo);
1637  return DAG.getNode(ISD::ADD, dl, ValTy, ResNode, Lo);
1638}
1639
1640SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
1641                                              SelectionDAG &DAG) const {
1642  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1643  // FIXME there isn't actually debug info here
1644  DebugLoc dl = Op.getDebugLoc();
1645
1646  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1647    // %hi/%lo relocation
1648    SDValue BAHi = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_HI);
1649    SDValue BALo = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_LO);
1650    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi);
1651    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo);
1652    return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
1653  }
1654
1655  EVT ValTy = Op.getValueType();
1656  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1657  unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1658  SDValue BAGOTOffset = DAG.getBlockAddress(BA, ValTy, true, GOTFlag);
1659  BAGOTOffset = DAG.getNode(MipsISD::Wrapper, dl, ValTy,
1660                            GetGlobalReg(DAG, ValTy), BAGOTOffset);
1661  SDValue BALOOffset = DAG.getBlockAddress(BA, ValTy, true, OFSTFlag);
1662  SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), BAGOTOffset,
1663                             MachinePointerInfo(), false, false, false, 0);
1664  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, BALOOffset);
1665  return DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1666}
1667
1668SDValue MipsTargetLowering::
1669LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1670{
1671  // If the relocation model is PIC, use the General Dynamic TLS Model or
1672  // Local Dynamic TLS model, otherwise use the Initial Exec or
1673  // Local Exec TLS Model.
1674
1675  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1676  DebugLoc dl = GA->getDebugLoc();
1677  const GlobalValue *GV = GA->getGlobal();
1678  EVT PtrVT = getPointerTy();
1679
1680  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1681
1682  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1683    // General Dynamic and Local Dynamic TLS Model.
1684    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1685                                                      : MipsII::MO_TLSGD;
1686
1687    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
1688    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
1689                                   GetGlobalReg(DAG, PtrVT), TGA);
1690    unsigned PtrSize = PtrVT.getSizeInBits();
1691    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1692
1693    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1694
1695    ArgListTy Args;
1696    ArgListEntry Entry;
1697    Entry.Node = Argument;
1698    Entry.Ty = PtrTy;
1699    Args.push_back(Entry);
1700
1701    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1702                  false, false, false, false, 0, CallingConv::C,
1703                  /*isTailCall=*/false, /*doesNotRet=*/false,
1704                  /*isReturnValueUsed=*/true,
1705                  TlsGetAddr, Args, DAG, dl);
1706    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1707
1708    SDValue Ret = CallResult.first;
1709
1710    if (model != TLSModel::LocalDynamic)
1711      return Ret;
1712
1713    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1714                                               MipsII::MO_DTPREL_HI);
1715    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1716    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1717                                               MipsII::MO_DTPREL_LO);
1718    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1719    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
1720    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
1721  }
1722
1723  SDValue Offset;
1724  if (model == TLSModel::InitialExec) {
1725    // Initial Exec TLS Model
1726    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1727                                             MipsII::MO_GOTTPREL);
1728    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1729                      TGA);
1730    Offset = DAG.getLoad(PtrVT, dl,
1731                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1732                         false, false, false, 0);
1733  } else {
1734    // Local Exec TLS Model
1735    assert(model == TLSModel::LocalExec);
1736    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1737                                               MipsII::MO_TPREL_HI);
1738    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1739                                               MipsII::MO_TPREL_LO);
1740    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1741    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1742    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1743  }
1744
1745  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
1746  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1747}
1748
1749SDValue MipsTargetLowering::
1750LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1751{
1752  SDValue HiPart, JTI, JTILo;
1753  // FIXME there isn't actually debug info here
1754  DebugLoc dl = Op.getDebugLoc();
1755  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1756  EVT PtrVT = Op.getValueType();
1757  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1758
1759  if (!IsPIC && !IsN64) {
1760    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_HI);
1761    HiPart = DAG.getNode(MipsISD::Hi, dl, PtrVT, JTI);
1762    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_LO);
1763  } else {// Emit Load from Global Pointer
1764    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1765    unsigned OfstFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1766    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, GOTFlag);
1767    JTI = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1768                      JTI);
1769    HiPart = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), JTI,
1770                         MachinePointerInfo(), false, false, false, 0);
1771    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OfstFlag);
1772  }
1773
1774  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, JTILo);
1775  return DAG.getNode(ISD::ADD, dl, PtrVT, HiPart, Lo);
1776}
1777
1778SDValue MipsTargetLowering::
1779LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1780{
1781  SDValue ResNode;
1782  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1783  const Constant *C = N->getConstVal();
1784  // FIXME there isn't actually debug info here
1785  DebugLoc dl = Op.getDebugLoc();
1786
1787  // gp_rel relocation
1788  // FIXME: we should reference the constant pool using small data sections,
1789  // but the asm printer currently doesn't support this feature without
1790  // hacking it. This feature should come soon so we can uncomment the
1791  // stuff below.
1792  //if (IsInSmallSection(C->getType())) {
1793  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1794  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1795  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1796
1797  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1798    SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1799                                             N->getOffset(), MipsII::MO_ABS_HI);
1800    SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1801                                             N->getOffset(), MipsII::MO_ABS_LO);
1802    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi);
1803    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
1804    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1805  } else {
1806    EVT ValTy = Op.getValueType();
1807    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1808    unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1809    SDValue CP = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1810                                           N->getOffset(), GOTFlag);
1811    CP = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), CP);
1812    SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), CP,
1813                               MachinePointerInfo::getConstantPool(), false,
1814                               false, false, 0);
1815    SDValue CPLo = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1816                                             N->getOffset(), OFSTFlag);
1817    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, CPLo);
1818    ResNode = DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1819  }
1820
1821  return ResNode;
1822}
1823
1824SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1825  MachineFunction &MF = DAG.getMachineFunction();
1826  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1827
1828  DebugLoc dl = Op.getDebugLoc();
1829  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1830                                 getPointerTy());
1831
1832  // vastart just stores the address of the VarArgsFrameIndex slot into the
1833  // memory location argument.
1834  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1835  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
1836                      MachinePointerInfo(SV), false, false, 0);
1837}
1838
1839static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1840  EVT TyX = Op.getOperand(0).getValueType();
1841  EVT TyY = Op.getOperand(1).getValueType();
1842  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1843  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1844  DebugLoc DL = Op.getDebugLoc();
1845  SDValue Res;
1846
1847  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1848  // to i32.
1849  SDValue X = (TyX == MVT::f32) ?
1850    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1851    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1852                Const1);
1853  SDValue Y = (TyY == MVT::f32) ?
1854    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1855    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1856                Const1);
1857
1858  if (HasR2) {
1859    // ext  E, Y, 31, 1  ; extract bit31 of Y
1860    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1861    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1862    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1863  } else {
1864    // sll SllX, X, 1
1865    // srl SrlX, SllX, 1
1866    // srl SrlY, Y, 31
1867    // sll SllY, SrlX, 31
1868    // or  Or, SrlX, SllY
1869    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1870    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1871    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1872    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1873    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1874  }
1875
1876  if (TyX == MVT::f32)
1877    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1878
1879  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1880                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1881  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1882}
1883
1884static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1885  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1886  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1887  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1888  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1889  DebugLoc DL = Op.getDebugLoc();
1890
1891  // Bitcast to integer nodes.
1892  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1893  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1894
1895  if (HasR2) {
1896    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1897    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1898    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1899                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1900
1901    if (WidthX > WidthY)
1902      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1903    else if (WidthY > WidthX)
1904      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1905
1906    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1907                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1908    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1909  }
1910
1911  // (d)sll SllX, X, 1
1912  // (d)srl SrlX, SllX, 1
1913  // (d)srl SrlY, Y, width(Y)-1
1914  // (d)sll SllY, SrlX, width(Y)-1
1915  // or     Or, SrlX, SllY
1916  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1917  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1918  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1919                             DAG.getConstant(WidthY - 1, MVT::i32));
1920
1921  if (WidthX > WidthY)
1922    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1923  else if (WidthY > WidthX)
1924    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1925
1926  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1927                             DAG.getConstant(WidthX - 1, MVT::i32));
1928  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1929  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1930}
1931
1932SDValue
1933MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1934  if (Subtarget->hasMips64())
1935    return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1936
1937  return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1938}
1939
1940static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1941  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1942  DebugLoc DL = Op.getDebugLoc();
1943
1944  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1945  // to i32.
1946  SDValue X = (Op.getValueType() == MVT::f32) ?
1947    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1948    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1949                Const1);
1950
1951  // Clear MSB.
1952  if (HasR2)
1953    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1954                      DAG.getRegister(Mips::ZERO, MVT::i32),
1955                      DAG.getConstant(31, MVT::i32), Const1, X);
1956  else {
1957    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1958    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1959  }
1960
1961  if (Op.getValueType() == MVT::f32)
1962    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1963
1964  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1965                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1966  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1967}
1968
1969static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1970  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1971  DebugLoc DL = Op.getDebugLoc();
1972
1973  // Bitcast to integer node.
1974  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1975
1976  // Clear MSB.
1977  if (HasR2)
1978    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1979                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1980                      DAG.getConstant(63, MVT::i32), Const1, X);
1981  else {
1982    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1983    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1984  }
1985
1986  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1987}
1988
1989SDValue
1990MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
1991  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1992    return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1993
1994  return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1995}
1996
1997SDValue MipsTargetLowering::
1998LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1999  // check the depth
2000  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2001         "Frame address can only be determined for current frame.");
2002
2003  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2004  MFI->setFrameAddressIsTaken(true);
2005  EVT VT = Op.getValueType();
2006  DebugLoc dl = Op.getDebugLoc();
2007  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2008                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
2009  return FrameAddr;
2010}
2011
2012// TODO: set SType according to the desired memory barrier behavior.
2013SDValue
2014MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
2015  unsigned SType = 0;
2016  DebugLoc dl = Op.getDebugLoc();
2017  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2018                     DAG.getConstant(SType, MVT::i32));
2019}
2020
2021SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
2022                                              SelectionDAG &DAG) const {
2023  // FIXME: Need pseudo-fence for 'singlethread' fences
2024  // FIXME: Set SType for weaker fences where supported/appropriate.
2025  unsigned SType = 0;
2026  DebugLoc dl = Op.getDebugLoc();
2027  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2028                     DAG.getConstant(SType, MVT::i32));
2029}
2030
2031SDValue MipsTargetLowering::LowerShiftLeftParts(SDValue Op,
2032                                                SelectionDAG &DAG) const {
2033  DebugLoc DL = Op.getDebugLoc();
2034  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2035  SDValue Shamt = Op.getOperand(2);
2036
2037  // if shamt < 32:
2038  //  lo = (shl lo, shamt)
2039  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2040  // else:
2041  //  lo = 0
2042  //  hi = (shl lo, shamt[4:0])
2043  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2044                            DAG.getConstant(-1, MVT::i32));
2045  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
2046                                      DAG.getConstant(1, MVT::i32));
2047  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
2048                                     Not);
2049  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
2050  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2051  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
2052  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2053                             DAG.getConstant(0x20, MVT::i32));
2054  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2055                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
2056  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
2057
2058  SDValue Ops[2] = {Lo, Hi};
2059  return DAG.getMergeValues(Ops, 2, DL);
2060}
2061
2062SDValue MipsTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2063                                                 bool IsSRA) const {
2064  DebugLoc DL = Op.getDebugLoc();
2065  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2066  SDValue Shamt = Op.getOperand(2);
2067
2068  // if shamt < 32:
2069  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2070  //  if isSRA:
2071  //    hi = (sra hi, shamt)
2072  //  else:
2073  //    hi = (srl hi, shamt)
2074  // else:
2075  //  if isSRA:
2076  //   lo = (sra hi, shamt[4:0])
2077  //   hi = (sra hi, 31)
2078  //  else:
2079  //   lo = (srl hi, shamt[4:0])
2080  //   hi = 0
2081  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2082                            DAG.getConstant(-1, MVT::i32));
2083  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
2084                                     DAG.getConstant(1, MVT::i32));
2085  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
2086  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
2087  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2088  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2089                                     Hi, Shamt);
2090  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2091                             DAG.getConstant(0x20, MVT::i32));
2092  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
2093                                DAG.getConstant(31, MVT::i32));
2094  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
2095  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2096                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2097                   ShiftRightHi);
2098
2099  SDValue Ops[2] = {Lo, Hi};
2100  return DAG.getMergeValues(Ops, 2, DL);
2101}
2102
2103static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2104                            SDValue Chain, SDValue Src, unsigned Offset) {
2105  SDValue Ptr = LD->getBasePtr();
2106  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2107  EVT BasePtrVT = Ptr.getValueType();
2108  DebugLoc DL = LD->getDebugLoc();
2109  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2110
2111  if (Offset)
2112    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2113                      DAG.getConstant(Offset, BasePtrVT));
2114
2115  SDValue Ops[] = { Chain, Ptr, Src };
2116  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2117                                 LD->getMemOperand());
2118}
2119
2120// Expand an unaligned 32 or 64-bit integer load node.
2121SDValue MipsTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2122  LoadSDNode *LD = cast<LoadSDNode>(Op);
2123  EVT MemVT = LD->getMemoryVT();
2124
2125  // Return if load is aligned or if MemVT is neither i32 nor i64.
2126  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2127      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2128    return SDValue();
2129
2130  bool IsLittle = Subtarget->isLittle();
2131  EVT VT = Op.getValueType();
2132  ISD::LoadExtType ExtType = LD->getExtensionType();
2133  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2134
2135  assert((VT == MVT::i32) || (VT == MVT::i64));
2136
2137  // Expand
2138  //  (set dst, (i64 (load baseptr)))
2139  // to
2140  //  (set tmp, (ldl (add baseptr, 7), undef))
2141  //  (set dst, (ldr baseptr, tmp))
2142  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2143    SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2144                               IsLittle ? 7 : 0);
2145    return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2146                        IsLittle ? 0 : 7);
2147  }
2148
2149  SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2150                             IsLittle ? 3 : 0);
2151  SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2152                             IsLittle ? 0 : 3);
2153
2154  // Expand
2155  //  (set dst, (i32 (load baseptr))) or
2156  //  (set dst, (i64 (sextload baseptr))) or
2157  //  (set dst, (i64 (extload baseptr)))
2158  // to
2159  //  (set tmp, (lwl (add baseptr, 3), undef))
2160  //  (set dst, (lwr baseptr, tmp))
2161  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2162      (ExtType == ISD::EXTLOAD))
2163    return LWR;
2164
2165  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2166
2167  // Expand
2168  //  (set dst, (i64 (zextload baseptr)))
2169  // to
2170  //  (set tmp0, (lwl (add baseptr, 3), undef))
2171  //  (set tmp1, (lwr baseptr, tmp0))
2172  //  (set tmp2, (shl tmp1, 32))
2173  //  (set dst, (srl tmp2, 32))
2174  DebugLoc DL = LD->getDebugLoc();
2175  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2176  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2177  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2178  SDValue Ops[] = { SRL, LWR.getValue(1) };
2179  return DAG.getMergeValues(Ops, 2, DL);
2180}
2181
2182static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2183                             SDValue Chain, unsigned Offset) {
2184  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2185  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2186  DebugLoc DL = SD->getDebugLoc();
2187  SDVTList VTList = DAG.getVTList(MVT::Other);
2188
2189  if (Offset)
2190    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2191                      DAG.getConstant(Offset, BasePtrVT));
2192
2193  SDValue Ops[] = { Chain, Value, Ptr };
2194  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2195                                 SD->getMemOperand());
2196}
2197
2198// Expand an unaligned 32 or 64-bit integer store node.
2199SDValue MipsTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2200  StoreSDNode *SD = cast<StoreSDNode>(Op);
2201  EVT MemVT = SD->getMemoryVT();
2202
2203  // Return if store is aligned or if MemVT is neither i32 nor i64.
2204  if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2205      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2206    return SDValue();
2207
2208  bool IsLittle = Subtarget->isLittle();
2209  SDValue Value = SD->getValue(), Chain = SD->getChain();
2210  EVT VT = Value.getValueType();
2211
2212  // Expand
2213  //  (store val, baseptr) or
2214  //  (truncstore val, baseptr)
2215  // to
2216  //  (swl val, (add baseptr, 3))
2217  //  (swr val, baseptr)
2218  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2219    SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
2220                                IsLittle ? 3 : 0);
2221    return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2222  }
2223
2224  assert(VT == MVT::i64);
2225
2226  // Expand
2227  //  (store val, baseptr)
2228  // to
2229  //  (sdl val, (add baseptr, 7))
2230  //  (sdr val, baseptr)
2231  SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2232  return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2233}
2234
2235//===----------------------------------------------------------------------===//
2236//                      Calling Convention Implementation
2237//===----------------------------------------------------------------------===//
2238
2239//===----------------------------------------------------------------------===//
2240// TODO: Implement a generic logic using tblgen that can support this.
2241// Mips O32 ABI rules:
2242// ---
2243// i32 - Passed in A0, A1, A2, A3 and stack
2244// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2245//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2246// f64 - Only passed in two aliased f32 registers if no int reg has been used
2247//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2248//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2249//       go to stack.
2250//
2251//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2252//===----------------------------------------------------------------------===//
2253
2254static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2255                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2256                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2257
2258  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2259
2260  static const uint16_t IntRegs[] = {
2261      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2262  };
2263  static const uint16_t F32Regs[] = {
2264      Mips::F12, Mips::F14
2265  };
2266  static const uint16_t F64Regs[] = {
2267      Mips::D6, Mips::D7
2268  };
2269
2270  // ByVal Args
2271  if (ArgFlags.isByVal()) {
2272    State.HandleByVal(ValNo, ValVT, LocVT, LocInfo,
2273                      1 /*MinSize*/, 4 /*MinAlign*/, ArgFlags);
2274    unsigned NextReg = (State.getNextStackOffset() + 3) / 4;
2275    for (unsigned r = State.getFirstUnallocated(IntRegs, IntRegsSize);
2276         r < std::min(IntRegsSize, NextReg); ++r)
2277      State.AllocateReg(IntRegs[r]);
2278    return false;
2279  }
2280
2281  // Promote i8 and i16
2282  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2283    LocVT = MVT::i32;
2284    if (ArgFlags.isSExt())
2285      LocInfo = CCValAssign::SExt;
2286    else if (ArgFlags.isZExt())
2287      LocInfo = CCValAssign::ZExt;
2288    else
2289      LocInfo = CCValAssign::AExt;
2290  }
2291
2292  unsigned Reg;
2293
2294  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2295  // is true: function is vararg, argument is 3rd or higher, there is previous
2296  // argument which is not f32 or f64.
2297  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2298      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2299  unsigned OrigAlign = ArgFlags.getOrigAlign();
2300  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2301
2302  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2303    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2304    // If this is the first part of an i64 arg,
2305    // the allocated register must be either A0 or A2.
2306    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2307      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2308    LocVT = MVT::i32;
2309  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2310    // Allocate int register and shadow next int register. If first
2311    // available register is Mips::A1 or Mips::A3, shadow it too.
2312    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2313    if (Reg == Mips::A1 || Reg == Mips::A3)
2314      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2315    State.AllocateReg(IntRegs, IntRegsSize);
2316    LocVT = MVT::i32;
2317  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2318    // we are guaranteed to find an available float register
2319    if (ValVT == MVT::f32) {
2320      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2321      // Shadow int register
2322      State.AllocateReg(IntRegs, IntRegsSize);
2323    } else {
2324      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2325      // Shadow int registers
2326      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2327      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2328        State.AllocateReg(IntRegs, IntRegsSize);
2329      State.AllocateReg(IntRegs, IntRegsSize);
2330    }
2331  } else
2332    llvm_unreachable("Cannot handle this ValVT.");
2333
2334  unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
2335  unsigned Offset = State.AllocateStack(SizeInBytes, OrigAlign);
2336
2337  if (!Reg)
2338    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2339  else
2340    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2341
2342  return false; // CC must always match
2343}
2344
2345static const uint16_t Mips64IntRegs[8] =
2346  {Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
2347   Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64};
2348static const uint16_t Mips64DPRegs[8] =
2349  {Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
2350   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64};
2351
2352static bool CC_Mips64Byval(unsigned ValNo, MVT ValVT, MVT LocVT,
2353                           CCValAssign::LocInfo LocInfo,
2354                           ISD::ArgFlagsTy ArgFlags, CCState &State) {
2355  unsigned Align = std::max(ArgFlags.getByValAlign(), (unsigned)8);
2356  unsigned Size  = (ArgFlags.getByValSize() + 7) / 8 * 8;
2357  unsigned FirstIdx = State.getFirstUnallocated(Mips64IntRegs, 8);
2358
2359  assert(Align <= 16 && "Cannot handle alignments larger than 16.");
2360
2361  // If byval is 16-byte aligned, the first arg register must be even.
2362  if ((Align == 16) && (FirstIdx % 2)) {
2363    State.AllocateReg(Mips64IntRegs[FirstIdx], Mips64DPRegs[FirstIdx]);
2364    ++FirstIdx;
2365  }
2366
2367  // Mark the registers allocated.
2368  for (unsigned I = FirstIdx; Size && (I < 8); Size -= 8, ++I)
2369    State.AllocateReg(Mips64IntRegs[I], Mips64DPRegs[I]);
2370
2371  // Allocate space on caller's stack.
2372  unsigned Offset = State.AllocateStack(Size, Align);
2373
2374  if (FirstIdx < 8)
2375    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Mips64IntRegs[FirstIdx],
2376                                     LocVT, LocInfo));
2377  else
2378    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2379
2380  return true;
2381}
2382
2383#include "MipsGenCallingConv.inc"
2384
2385static void
2386AnalyzeMips64CallOperands(CCState &CCInfo,
2387                          const SmallVectorImpl<ISD::OutputArg> &Outs) {
2388  unsigned NumOps = Outs.size();
2389  for (unsigned i = 0; i != NumOps; ++i) {
2390    MVT ArgVT = Outs[i].VT;
2391    ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2392    bool R;
2393
2394    if (Outs[i].IsFixed)
2395      R = CC_MipsN(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2396    else
2397      R = CC_MipsN_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2398
2399    if (R) {
2400#ifndef NDEBUG
2401      dbgs() << "Call operand #" << i << " has unhandled type "
2402             << EVT(ArgVT).getEVTString();
2403#endif
2404      llvm_unreachable(0);
2405    }
2406  }
2407}
2408
2409//===----------------------------------------------------------------------===//
2410//                  Call Calling Convention Implementation
2411//===----------------------------------------------------------------------===//
2412
2413static const unsigned O32IntRegsSize = 4;
2414
2415static const uint16_t O32IntRegs[] = {
2416  Mips::A0, Mips::A1, Mips::A2, Mips::A3
2417};
2418
2419// Return next O32 integer argument register.
2420static unsigned getNextIntArgReg(unsigned Reg) {
2421  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2422  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2423}
2424
2425// Write ByVal Arg to arg registers and stack.
2426static void
2427WriteByValArg(SDValue& ByValChain, SDValue Chain, DebugLoc dl,
2428              SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
2429              SmallVector<SDValue, 8> &MemOpChains, int &LastFI,
2430              MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2431              const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2432              MVT PtrType, bool isLittle) {
2433  unsigned LocMemOffset = VA.getLocMemOffset();
2434  unsigned Offset = 0;
2435  uint32_t RemainingSize = Flags.getByValSize();
2436  unsigned ByValAlign = Flags.getByValAlign();
2437
2438  // Copy the first 4 words of byval arg to registers A0 - A3.
2439  // FIXME: Use a stricter alignment if it enables better optimization in passes
2440  //        run later.
2441  for (; RemainingSize >= 4 && LocMemOffset < 4 * 4;
2442       Offset += 4, RemainingSize -= 4, LocMemOffset += 4) {
2443    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2444                                  DAG.getConstant(Offset, MVT::i32));
2445    SDValue LoadVal = DAG.getLoad(MVT::i32, dl, Chain, LoadPtr,
2446                                  MachinePointerInfo(), false, false, false,
2447                                  std::min(ByValAlign, (unsigned )4));
2448    MemOpChains.push_back(LoadVal.getValue(1));
2449    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2450    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2451  }
2452
2453  if (RemainingSize == 0)
2454    return;
2455
2456  // If there still is a register available for argument passing, write the
2457  // remaining part of the structure to it using subword loads and shifts.
2458  if (LocMemOffset < 4 * 4) {
2459    assert(RemainingSize <= 3 && RemainingSize >= 1 &&
2460           "There must be one to three bytes remaining.");
2461    unsigned LoadSize = (RemainingSize == 3 ? 2 : RemainingSize);
2462    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2463                                  DAG.getConstant(Offset, MVT::i32));
2464    unsigned Alignment = std::min(ByValAlign, (unsigned )4);
2465    SDValue LoadVal = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2466                                     LoadPtr, MachinePointerInfo(),
2467                                     MVT::getIntegerVT(LoadSize * 8), false,
2468                                     false, Alignment);
2469    MemOpChains.push_back(LoadVal.getValue(1));
2470
2471    // If target is big endian, shift it to the most significant half-word or
2472    // byte.
2473    if (!isLittle)
2474      LoadVal = DAG.getNode(ISD::SHL, dl, MVT::i32, LoadVal,
2475                            DAG.getConstant(32 - LoadSize * 8, MVT::i32));
2476
2477    Offset += LoadSize;
2478    RemainingSize -= LoadSize;
2479
2480    // Read second subword if necessary.
2481    if (RemainingSize != 0)  {
2482      assert(RemainingSize == 1 && "There must be one byte remaining.");
2483      LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2484                            DAG.getConstant(Offset, MVT::i32));
2485      unsigned Alignment = std::min(ByValAlign, (unsigned )2);
2486      SDValue Subword = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2487                                       LoadPtr, MachinePointerInfo(),
2488                                       MVT::i8, false, false, Alignment);
2489      MemOpChains.push_back(Subword.getValue(1));
2490      // Insert the loaded byte to LoadVal.
2491      // FIXME: Use INS if supported by target.
2492      unsigned ShiftAmt = isLittle ? 16 : 8;
2493      SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i32, Subword,
2494                                  DAG.getConstant(ShiftAmt, MVT::i32));
2495      LoadVal = DAG.getNode(ISD::OR, dl, MVT::i32, LoadVal, Shift);
2496    }
2497
2498    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2499    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2500    return;
2501  }
2502
2503  // Create a fixed object on stack at offset LocMemOffset and copy
2504  // remaining part of byval arg to it using memcpy.
2505  SDValue Src = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2506                            DAG.getConstant(Offset, MVT::i32));
2507  LastFI = MFI->CreateFixedObject(RemainingSize, LocMemOffset, true);
2508  SDValue Dst = DAG.getFrameIndex(LastFI, PtrType);
2509  ByValChain = DAG.getMemcpy(ByValChain, dl, Dst, Src,
2510                             DAG.getConstant(RemainingSize, MVT::i32),
2511                             std::min(ByValAlign, (unsigned)4),
2512                             /*isVolatile=*/false, /*AlwaysInline=*/false,
2513                             MachinePointerInfo(0), MachinePointerInfo(0));
2514}
2515
2516// Copy Mips64 byVal arg to registers and stack.
2517void static
2518PassByValArg64(SDValue& ByValChain, SDValue Chain, DebugLoc dl,
2519               SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
2520               SmallVector<SDValue, 8> &MemOpChains, int &LastFI,
2521               MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2522               const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2523               EVT PtrTy, bool isLittle) {
2524  unsigned ByValSize = Flags.getByValSize();
2525  unsigned Alignment = std::min(Flags.getByValAlign(), (unsigned)8);
2526  bool IsRegLoc = VA.isRegLoc();
2527  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
2528  unsigned LocMemOffset = 0;
2529  unsigned MemCpySize = ByValSize;
2530
2531  if (!IsRegLoc)
2532    LocMemOffset = VA.getLocMemOffset();
2533  else {
2534    const uint16_t *Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8,
2535                                    VA.getLocReg());
2536    const uint16_t *RegEnd = Mips64IntRegs + 8;
2537
2538    // Copy double words to registers.
2539    for (; (Reg != RegEnd) && (ByValSize >= Offset + 8); ++Reg, Offset += 8) {
2540      SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2541                                    DAG.getConstant(Offset, PtrTy));
2542      SDValue LoadVal = DAG.getLoad(MVT::i64, dl, Chain, LoadPtr,
2543                                    MachinePointerInfo(), false, false, false,
2544                                    Alignment);
2545      MemOpChains.push_back(LoadVal.getValue(1));
2546      RegsToPass.push_back(std::make_pair(*Reg, LoadVal));
2547    }
2548
2549    // Return if the struct has been fully copied.
2550    if (!(MemCpySize = ByValSize - Offset))
2551      return;
2552
2553    // If there is an argument register available, copy the remainder of the
2554    // byval argument with sub-doubleword loads and shifts.
2555    if (Reg != RegEnd) {
2556      assert((ByValSize < Offset + 8) &&
2557             "Size of the remainder should be smaller than 8-byte.");
2558      SDValue Val;
2559      for (unsigned LoadSize = 4; Offset < ByValSize; LoadSize /= 2) {
2560        unsigned RemSize = ByValSize - Offset;
2561
2562        if (RemSize < LoadSize)
2563          continue;
2564
2565        SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2566                                      DAG.getConstant(Offset, PtrTy));
2567        SDValue LoadVal =
2568          DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i64, Chain, LoadPtr,
2569                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
2570                         false, false, Alignment);
2571        MemOpChains.push_back(LoadVal.getValue(1));
2572
2573        // Offset in number of bits from double word boundary.
2574        unsigned OffsetDW = (Offset % 8) * 8;
2575        unsigned Shamt = isLittle ? OffsetDW : 64 - (OffsetDW + LoadSize * 8);
2576        SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i64, LoadVal,
2577                                    DAG.getConstant(Shamt, MVT::i32));
2578
2579        Val = Val.getNode() ? DAG.getNode(ISD::OR, dl, MVT::i64, Val, Shift) :
2580                              Shift;
2581        Offset += LoadSize;
2582        Alignment = std::min(Alignment, LoadSize);
2583      }
2584
2585      RegsToPass.push_back(std::make_pair(*Reg, Val));
2586      return;
2587    }
2588  }
2589
2590  assert(MemCpySize && "MemCpySize must not be zero.");
2591
2592  // Create a fixed object on stack at offset LocMemOffset and copy
2593  // remainder of byval arg to it with memcpy.
2594  SDValue Src = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2595                            DAG.getConstant(Offset, PtrTy));
2596  LastFI = MFI->CreateFixedObject(MemCpySize, LocMemOffset, true);
2597  SDValue Dst = DAG.getFrameIndex(LastFI, PtrTy);
2598  ByValChain = DAG.getMemcpy(ByValChain, dl, Dst, Src,
2599                             DAG.getConstant(MemCpySize, PtrTy), Alignment,
2600                             /*isVolatile=*/false, /*AlwaysInline=*/false,
2601                             MachinePointerInfo(0), MachinePointerInfo(0));
2602}
2603
2604/// LowerCall - functions arguments are copied from virtual regs to
2605/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2606/// TODO: isTailCall.
2607SDValue
2608MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2609                              SmallVectorImpl<SDValue> &InVals) const {
2610  SelectionDAG &DAG                     = CLI.DAG;
2611  DebugLoc &dl                          = CLI.DL;
2612  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2613  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2614  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2615  SDValue InChain                       = CLI.Chain;
2616  SDValue Callee                        = CLI.Callee;
2617  bool &isTailCall                      = CLI.IsTailCall;
2618  CallingConv::ID CallConv              = CLI.CallConv;
2619  bool isVarArg                         = CLI.IsVarArg;
2620
2621  // MIPs target does not yet support tail call optimization.
2622  isTailCall = false;
2623
2624  MachineFunction &MF = DAG.getMachineFunction();
2625  MachineFrameInfo *MFI = MF.getFrameInfo();
2626  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2627  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2628  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2629
2630  // Analyze operands of the call, assigning locations to each operand.
2631  SmallVector<CCValAssign, 16> ArgLocs;
2632  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2633                 getTargetMachine(), ArgLocs, *DAG.getContext());
2634
2635  if (CallConv == CallingConv::Fast)
2636    CCInfo.AnalyzeCallOperands(Outs, CC_Mips_FastCC);
2637  else if (IsO32)
2638    CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32);
2639  else if (HasMips64)
2640    AnalyzeMips64CallOperands(CCInfo, Outs);
2641  else
2642    CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
2643
2644  // Get a count of how many bytes are to be pushed on the stack.
2645  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2646
2647  // Chain is the output chain of the last Load/Store or CopyToReg node.
2648  // ByValChain is the output chain of the last Memcpy node created for copying
2649  // byval arguments to the stack.
2650  SDValue Chain, CallSeqStart, ByValChain;
2651  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2652  Chain = CallSeqStart = DAG.getCALLSEQ_START(InChain, NextStackOffsetVal);
2653  ByValChain = InChain;
2654
2655  // Get the frame index of the stack frame object that points to the location
2656  // of dynamically allocated area on the stack.
2657  int DynAllocFI = MipsFI->getDynAllocFI();
2658
2659  // Update size of the maximum argument space.
2660  // For O32, a minimum of four words (16 bytes) of argument space is
2661  // allocated.
2662  if (IsO32 && (CallConv != CallingConv::Fast))
2663    NextStackOffset = std::max(NextStackOffset, (unsigned)16);
2664
2665  unsigned MaxCallFrameSize = MipsFI->getMaxCallFrameSize();
2666
2667  if (MaxCallFrameSize < NextStackOffset) {
2668    MipsFI->setMaxCallFrameSize(NextStackOffset);
2669
2670    // Set the offsets relative to $sp of the $gp restore slot and dynamically
2671    // allocated stack space. These offsets must be aligned to a boundary
2672    // determined by the stack alignment of the ABI.
2673    unsigned StackAlignment = TFL->getStackAlignment();
2674    NextStackOffset = (NextStackOffset + StackAlignment - 1) /
2675                      StackAlignment * StackAlignment;
2676
2677    MFI->setObjectOffset(DynAllocFI, NextStackOffset);
2678  }
2679
2680  // With EABI is it possible to have 16 args on registers.
2681  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
2682  SmallVector<SDValue, 8> MemOpChains;
2683
2684  int FirstFI = -MFI->getNumFixedObjects() - 1, LastFI = 0;
2685
2686  // Walk the register/memloc assignments, inserting copies/loads.
2687  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2688    SDValue Arg = OutVals[i];
2689    CCValAssign &VA = ArgLocs[i];
2690    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2691    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2692
2693    // ByVal Arg.
2694    if (Flags.isByVal()) {
2695      assert(Flags.getByValSize() &&
2696             "ByVal args of size 0 should have been ignored by front-end.");
2697      if (IsO32)
2698        WriteByValArg(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI,
2699                      MFI, DAG, Arg, VA, Flags, getPointerTy(),
2700                      Subtarget->isLittle());
2701      else
2702        PassByValArg64(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI,
2703                       MFI, DAG, Arg, VA, Flags, getPointerTy(),
2704                       Subtarget->isLittle());
2705      continue;
2706    }
2707
2708    // Promote the value if needed.
2709    switch (VA.getLocInfo()) {
2710    default: llvm_unreachable("Unknown loc info!");
2711    case CCValAssign::Full:
2712      if (VA.isRegLoc()) {
2713        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2714            (ValVT == MVT::f64 && LocVT == MVT::i64))
2715          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
2716        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2717          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2718                                   Arg, DAG.getConstant(0, MVT::i32));
2719          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2720                                   Arg, DAG.getConstant(1, MVT::i32));
2721          if (!Subtarget->isLittle())
2722            std::swap(Lo, Hi);
2723          unsigned LocRegLo = VA.getLocReg();
2724          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2725          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2726          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2727          continue;
2728        }
2729      }
2730      break;
2731    case CCValAssign::SExt:
2732      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
2733      break;
2734    case CCValAssign::ZExt:
2735      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
2736      break;
2737    case CCValAssign::AExt:
2738      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
2739      break;
2740    }
2741
2742    // Arguments that can be passed on register must be kept at
2743    // RegsToPass vector
2744    if (VA.isRegLoc()) {
2745      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2746      continue;
2747    }
2748
2749    // Register can't get to this point...
2750    assert(VA.isMemLoc());
2751
2752    // Create the frame index object for this incoming parameter
2753    LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2754                                    VA.getLocMemOffset(), true);
2755    SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
2756
2757    // emit ISD::STORE whichs stores the
2758    // parameter value to a stack Location
2759    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2760                                       MachinePointerInfo(), false, false, 0));
2761  }
2762
2763  // Extend range of indices of frame objects for outgoing arguments that were
2764  // created during this function call. Skip this step if no such objects were
2765  // created.
2766  if (LastFI)
2767    MipsFI->extendOutArgFIRange(FirstFI, LastFI);
2768
2769  // If a memcpy has been created to copy a byval arg to a stack, replace the
2770  // chain input of CallSeqStart with ByValChain.
2771  if (InChain != ByValChain)
2772    DAG.UpdateNodeOperands(CallSeqStart.getNode(), ByValChain,
2773                           NextStackOffsetVal);
2774
2775  // Transform all store nodes into one single node because all store
2776  // nodes are independent of each other.
2777  if (!MemOpChains.empty())
2778    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2779                        &MemOpChains[0], MemOpChains.size());
2780
2781  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2782  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2783  // node so that legalize doesn't hack it.
2784  unsigned char OpFlag;
2785  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2786  bool GlobalOrExternal = false;
2787  SDValue CalleeLo;
2788
2789  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2790    if (IsPICCall && G->getGlobal()->hasInternalLinkage()) {
2791      OpFlag = IsO32 ? MipsII::MO_GOT : MipsII::MO_GOT_PAGE;
2792      unsigned char LoFlag = IsO32 ? MipsII::MO_ABS_LO : MipsII::MO_GOT_OFST;
2793      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
2794                                          OpFlag);
2795      CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(),
2796                                            0, LoFlag);
2797    } else {
2798      OpFlag = IsPICCall ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
2799      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2800                                          getPointerTy(), 0, OpFlag);
2801    }
2802
2803    GlobalOrExternal = true;
2804  }
2805  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2806    if (IsN64 || (!IsO32 && IsPIC))
2807      OpFlag = MipsII::MO_GOT_DISP;
2808    else if (!IsPIC) // !N64 && static
2809      OpFlag = MipsII::MO_NO_FLAG;
2810    else // O32 & PIC
2811      OpFlag = MipsII::MO_GOT_CALL;
2812    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2813                                         OpFlag);
2814    GlobalOrExternal = true;
2815  }
2816
2817  SDValue InFlag;
2818
2819  // Create nodes that load address of callee and copy it to T9
2820  if (IsPICCall) {
2821    if (GlobalOrExternal) {
2822      // Load callee address
2823      Callee = DAG.getNode(MipsISD::Wrapper, dl, getPointerTy(),
2824                           GetGlobalReg(DAG, getPointerTy()), Callee);
2825      SDValue LoadValue = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
2826                                      Callee, MachinePointerInfo::getGOT(),
2827                                      false, false, false, 0);
2828
2829      // Use GOT+LO if callee has internal linkage.
2830      if (CalleeLo.getNode()) {
2831        SDValue Lo = DAG.getNode(MipsISD::Lo, dl, getPointerTy(), CalleeLo);
2832        Callee = DAG.getNode(ISD::ADD, dl, getPointerTy(), LoadValue, Lo);
2833      } else
2834        Callee = LoadValue;
2835    }
2836  }
2837
2838  // T9 should contain the address of the callee function if
2839  // -reloction-model=pic or it is an indirect call.
2840  if (IsPICCall || !GlobalOrExternal) {
2841    // copy to T9
2842    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
2843    Chain = DAG.getCopyToReg(Chain, dl, T9Reg, Callee, SDValue(0, 0));
2844    InFlag = Chain.getValue(1);
2845    Callee = DAG.getRegister(T9Reg, getPointerTy());
2846  }
2847
2848  // Insert node "GP copy globalreg" before call to function.
2849  // Lazy-binding stubs require GP to point to the GOT.
2850  if (IsPICCall) {
2851    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2852    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2853    RegsToPass.push_back(std::make_pair(GPReg, GetGlobalReg(DAG, Ty)));
2854  }
2855
2856  // Build a sequence of copy-to-reg nodes chained together with token
2857  // chain and flag operands which copy the outgoing args into registers.
2858  // The InFlag in necessary since all emitted instructions must be
2859  // stuck together.
2860  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2861    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2862                             RegsToPass[i].second, InFlag);
2863    InFlag = Chain.getValue(1);
2864  }
2865
2866  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
2867  //             = Chain, Callee, Reg#1, Reg#2, ...
2868  //
2869  // Returns a chain & a flag for retval copy to use.
2870  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2871  SmallVector<SDValue, 8> Ops;
2872  Ops.push_back(Chain);
2873  Ops.push_back(Callee);
2874
2875  // Add argument registers to the end of the list so that they are
2876  // known live into the call.
2877  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2878    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2879                                  RegsToPass[i].second.getValueType()));
2880
2881  // Add a register mask operand representing the call-preserved registers.
2882  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2883  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2884  assert(Mask && "Missing call preserved mask for calling convention");
2885  Ops.push_back(DAG.getRegisterMask(Mask));
2886
2887  if (InFlag.getNode())
2888    Ops.push_back(InFlag);
2889
2890  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
2891  InFlag = Chain.getValue(1);
2892
2893  // Create the CALLSEQ_END node.
2894  Chain = DAG.getCALLSEQ_END(Chain,
2895                             DAG.getIntPtrConstant(NextStackOffset, true),
2896                             DAG.getIntPtrConstant(0, true), InFlag);
2897  InFlag = Chain.getValue(1);
2898
2899  // Handle result values, copying them out of physregs into vregs that we
2900  // return.
2901  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2902                         Ins, dl, DAG, InVals);
2903}
2904
2905/// LowerCallResult - Lower the result values of a call into the
2906/// appropriate copies out of appropriate physical registers.
2907SDValue
2908MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2909                                    CallingConv::ID CallConv, bool isVarArg,
2910                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2911                                    DebugLoc dl, SelectionDAG &DAG,
2912                                    SmallVectorImpl<SDValue> &InVals) const {
2913  // Assign locations to each value returned by this call.
2914  SmallVector<CCValAssign, 16> RVLocs;
2915  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2916                 getTargetMachine(), RVLocs, *DAG.getContext());
2917
2918  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
2919
2920  // Copy all of the result registers out of their specified physreg.
2921  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2922    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
2923                               RVLocs[i].getValVT(), InFlag).getValue(1);
2924    InFlag = Chain.getValue(2);
2925    InVals.push_back(Chain.getValue(0));
2926  }
2927
2928  return Chain;
2929}
2930
2931//===----------------------------------------------------------------------===//
2932//             Formal Arguments Calling Convention Implementation
2933//===----------------------------------------------------------------------===//
2934static void ReadByValArg(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2935                         std::vector<SDValue> &OutChains,
2936                         SelectionDAG &DAG, unsigned NumWords, SDValue FIN,
2937                         const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2938                         const Argument *FuncArg) {
2939  unsigned LocMem = VA.getLocMemOffset();
2940  unsigned FirstWord = LocMem / 4;
2941
2942  // copy register A0 - A3 to frame object
2943  for (unsigned i = 0; i < NumWords; ++i) {
2944    unsigned CurWord = FirstWord + i;
2945    if (CurWord >= O32IntRegsSize)
2946      break;
2947
2948    unsigned SrcReg = O32IntRegs[CurWord];
2949    unsigned Reg = AddLiveIn(MF, SrcReg, &Mips::CPURegsRegClass);
2950    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN,
2951                                   DAG.getConstant(i * 4, MVT::i32));
2952    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(Reg, MVT::i32),
2953                                 StorePtr, MachinePointerInfo(FuncArg, i * 4),
2954                                 false, false, 0);
2955    OutChains.push_back(Store);
2956  }
2957}
2958
2959// Create frame object on stack and copy registers used for byval passing to it.
2960static unsigned
2961CopyMips64ByValRegs(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2962                    std::vector<SDValue> &OutChains, SelectionDAG &DAG,
2963                    const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2964                    MachineFrameInfo *MFI, bool IsRegLoc,
2965                    SmallVectorImpl<SDValue> &InVals, MipsFunctionInfo *MipsFI,
2966                    EVT PtrTy, const Argument *FuncArg) {
2967  const uint16_t *Reg = Mips64IntRegs + 8;
2968  int FOOffset; // Frame object offset from virtual frame pointer.
2969
2970  if (IsRegLoc) {
2971    Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8, VA.getLocReg());
2972    FOOffset = (Reg - Mips64IntRegs) * 8 - 8 * 8;
2973  }
2974  else
2975    FOOffset = VA.getLocMemOffset();
2976
2977  // Create frame object.
2978  unsigned NumRegs = (Flags.getByValSize() + 7) / 8;
2979  unsigned LastFI = MFI->CreateFixedObject(NumRegs * 8, FOOffset, true);
2980  SDValue FIN = DAG.getFrameIndex(LastFI, PtrTy);
2981  InVals.push_back(FIN);
2982
2983  // Copy arg registers.
2984  for (unsigned I = 0; (Reg != Mips64IntRegs + 8) && (I < NumRegs);
2985       ++Reg, ++I) {
2986    unsigned VReg = AddLiveIn(MF, *Reg, &Mips::CPU64RegsRegClass);
2987    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, PtrTy, FIN,
2988                                   DAG.getConstant(I * 8, PtrTy));
2989    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(VReg, MVT::i64),
2990                                 StorePtr, MachinePointerInfo(FuncArg, I * 8),
2991                                 false, false, 0);
2992    OutChains.push_back(Store);
2993  }
2994
2995  return LastFI;
2996}
2997
2998/// LowerFormalArguments - transform physical registers into virtual registers
2999/// and generate load operations for arguments places on the stack.
3000SDValue
3001MipsTargetLowering::LowerFormalArguments(SDValue Chain,
3002                                         CallingConv::ID CallConv,
3003                                         bool isVarArg,
3004                                      const SmallVectorImpl<ISD::InputArg> &Ins,
3005                                         DebugLoc dl, SelectionDAG &DAG,
3006                                         SmallVectorImpl<SDValue> &InVals)
3007                                          const {
3008  MachineFunction &MF = DAG.getMachineFunction();
3009  MachineFrameInfo *MFI = MF.getFrameInfo();
3010  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3011
3012  MipsFI->setVarArgsFrameIndex(0);
3013
3014  // Used with vargs to acumulate store chains.
3015  std::vector<SDValue> OutChains;
3016
3017  // Assign locations to all of the incoming arguments.
3018  SmallVector<CCValAssign, 16> ArgLocs;
3019  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3020                 getTargetMachine(), ArgLocs, *DAG.getContext());
3021
3022  if (CallConv == CallingConv::Fast)
3023    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FastCC);
3024  else if (IsO32)
3025    CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32);
3026  else
3027    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
3028
3029  Function::const_arg_iterator FuncArg =
3030    DAG.getMachineFunction().getFunction()->arg_begin();
3031  int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function.
3032
3033  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++FuncArg) {
3034    CCValAssign &VA = ArgLocs[i];
3035    EVT ValVT = VA.getValVT();
3036    ISD::ArgFlagsTy Flags = Ins[i].Flags;
3037    bool IsRegLoc = VA.isRegLoc();
3038
3039    if (Flags.isByVal()) {
3040      assert(Flags.getByValSize() &&
3041             "ByVal args of size 0 should have been ignored by front-end.");
3042      if (IsO32) {
3043        unsigned NumWords = (Flags.getByValSize() + 3) / 4;
3044        LastFI = MFI->CreateFixedObject(NumWords * 4, VA.getLocMemOffset(),
3045                                        true);
3046        SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3047        InVals.push_back(FIN);
3048        ReadByValArg(MF, Chain, dl, OutChains, DAG, NumWords, FIN, VA, Flags,
3049                     &*FuncArg);
3050      } else // N32/64
3051        LastFI = CopyMips64ByValRegs(MF, Chain, dl, OutChains, DAG, VA, Flags,
3052                                     MFI, IsRegLoc, InVals, MipsFI,
3053                                     getPointerTy(), &*FuncArg);
3054      continue;
3055    }
3056
3057    // Arguments stored on registers
3058    if (IsRegLoc) {
3059      EVT RegVT = VA.getLocVT();
3060      unsigned ArgReg = VA.getLocReg();
3061      const TargetRegisterClass *RC;
3062
3063      if (RegVT == MVT::i32)
3064        RC = &Mips::CPURegsRegClass;
3065      else if (RegVT == MVT::i64)
3066        RC = &Mips::CPU64RegsRegClass;
3067      else if (RegVT == MVT::f32)
3068        RC = &Mips::FGR32RegClass;
3069      else if (RegVT == MVT::f64)
3070        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
3071      else
3072        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
3073
3074      // Transform the arguments stored on
3075      // physical registers into virtual ones
3076      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3077      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3078
3079      // If this is an 8 or 16-bit value, it has been passed promoted
3080      // to 32 bits.  Insert an assert[sz]ext to capture this, then
3081      // truncate to the right size.
3082      if (VA.getLocInfo() != CCValAssign::Full) {
3083        unsigned Opcode = 0;
3084        if (VA.getLocInfo() == CCValAssign::SExt)
3085          Opcode = ISD::AssertSext;
3086        else if (VA.getLocInfo() == CCValAssign::ZExt)
3087          Opcode = ISD::AssertZext;
3088        if (Opcode)
3089          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
3090                                 DAG.getValueType(ValVT));
3091        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
3092      }
3093
3094      // Handle floating point arguments passed in integer registers.
3095      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3096          (RegVT == MVT::i64 && ValVT == MVT::f64))
3097        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
3098      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
3099        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
3100                                  getNextIntArgReg(ArgReg), RC);
3101        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
3102        if (!Subtarget->isLittle())
3103          std::swap(ArgValue, ArgValue2);
3104        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
3105                               ArgValue, ArgValue2);
3106      }
3107
3108      InVals.push_back(ArgValue);
3109    } else { // VA.isRegLoc()
3110
3111      // sanity check
3112      assert(VA.isMemLoc());
3113
3114      // The stack pointer offset is relative to the caller stack frame.
3115      LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
3116                                      VA.getLocMemOffset(), true);
3117
3118      // Create load nodes to retrieve arguments from the stack
3119      SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3120      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
3121                                   MachinePointerInfo::getFixedStack(LastFI),
3122                                   false, false, false, 0));
3123    }
3124  }
3125
3126  // The mips ABIs for returning structs by value requires that we copy
3127  // the sret argument into $v0 for the return. Save the argument into
3128  // a virtual register so that we can access it from the return points.
3129  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3130    unsigned Reg = MipsFI->getSRetReturnReg();
3131    if (!Reg) {
3132      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
3133      MipsFI->setSRetReturnReg(Reg);
3134    }
3135    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
3136    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
3137  }
3138
3139  if (isVarArg) {
3140    unsigned NumOfRegs = IsO32 ? 4 : 8;
3141    const uint16_t *ArgRegs = IsO32 ? O32IntRegs : Mips64IntRegs;
3142    unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumOfRegs);
3143    int FirstRegSlotOffset = IsO32 ? 0 : -64 ; // offset of $a0's slot.
3144    const TargetRegisterClass *RC = IsO32 ?
3145      (const TargetRegisterClass*)&Mips::CPURegsRegClass :
3146      (const TargetRegisterClass*)&Mips::CPU64RegsRegClass;
3147    unsigned RegSize = RC->getSize();
3148    int RegSlotOffset = FirstRegSlotOffset + Idx * RegSize;
3149
3150    // Offset of the first variable argument from stack pointer.
3151    int FirstVaArgOffset;
3152
3153    if (IsO32 || (Idx == NumOfRegs)) {
3154      FirstVaArgOffset =
3155        (CCInfo.getNextStackOffset() + RegSize - 1) / RegSize * RegSize;
3156    } else
3157      FirstVaArgOffset = RegSlotOffset;
3158
3159    // Record the frame index of the first variable argument
3160    // which is a value necessary to VASTART.
3161    LastFI = MFI->CreateFixedObject(RegSize, FirstVaArgOffset, true);
3162    MipsFI->setVarArgsFrameIndex(LastFI);
3163
3164    // Copy the integer registers that have not been used for argument passing
3165    // to the argument register save area. For O32, the save area is allocated
3166    // in the caller's stack frame, while for N32/64, it is allocated in the
3167    // callee's stack frame.
3168    for (int StackOffset = RegSlotOffset;
3169         Idx < NumOfRegs; ++Idx, StackOffset += RegSize) {
3170      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegs[Idx], RC);
3171      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3172                                            MVT::getIntegerVT(RegSize * 8));
3173      LastFI = MFI->CreateFixedObject(RegSize, StackOffset, true);
3174      SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
3175      OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
3176                                       MachinePointerInfo(), false, false, 0));
3177    }
3178  }
3179
3180  MipsFI->setLastInArgFI(LastFI);
3181
3182  // All stores are grouped in one node to allow the matching between
3183  // the size of Ins and InVals. This only happens when on varg functions
3184  if (!OutChains.empty()) {
3185    OutChains.push_back(Chain);
3186    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3187                        &OutChains[0], OutChains.size());
3188  }
3189
3190  return Chain;
3191}
3192
3193//===----------------------------------------------------------------------===//
3194//               Return Value Calling Convention Implementation
3195//===----------------------------------------------------------------------===//
3196
3197SDValue
3198MipsTargetLowering::LowerReturn(SDValue Chain,
3199                                CallingConv::ID CallConv, bool isVarArg,
3200                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3201                                const SmallVectorImpl<SDValue> &OutVals,
3202                                DebugLoc dl, SelectionDAG &DAG) const {
3203
3204  // CCValAssign - represent the assignment of
3205  // the return value to a location
3206  SmallVector<CCValAssign, 16> RVLocs;
3207
3208  // CCState - Info about the registers and stack slot.
3209  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3210                 getTargetMachine(), RVLocs, *DAG.getContext());
3211
3212  // Analize return values.
3213  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3214
3215  // If this is the first return lowered for this function, add
3216  // the regs to the liveout set for the function.
3217  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3218    for (unsigned i = 0; i != RVLocs.size(); ++i)
3219      if (RVLocs[i].isRegLoc())
3220        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3221  }
3222
3223  SDValue Flag;
3224
3225  // Copy the result values into the output registers.
3226  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3227    CCValAssign &VA = RVLocs[i];
3228    assert(VA.isRegLoc() && "Can only return in registers!");
3229
3230    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
3231
3232    // guarantee that all emitted copies are
3233    // stuck together, avoiding something bad
3234    Flag = Chain.getValue(1);
3235  }
3236
3237  // The mips ABIs for returning structs by value requires that we copy
3238  // the sret argument into $v0 for the return. We saved the argument into
3239  // a virtual register in the entry block, so now we copy the value out
3240  // and into $v0.
3241  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3242    MachineFunction &MF      = DAG.getMachineFunction();
3243    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3244    unsigned Reg = MipsFI->getSRetReturnReg();
3245
3246    if (!Reg)
3247      llvm_unreachable("sret virtual register not created in the entry block");
3248    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
3249
3250    Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
3251    Flag = Chain.getValue(1);
3252  }
3253
3254  // Return on Mips is always a "jr $ra"
3255  if (Flag.getNode())
3256    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
3257                       Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag);
3258  else // Return Void
3259    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
3260                       Chain, DAG.getRegister(Mips::RA, MVT::i32));
3261}
3262
3263//===----------------------------------------------------------------------===//
3264//                           Mips Inline Assembly Support
3265//===----------------------------------------------------------------------===//
3266
3267/// getConstraintType - Given a constraint letter, return the type of
3268/// constraint it is for this target.
3269MipsTargetLowering::ConstraintType MipsTargetLowering::
3270getConstraintType(const std::string &Constraint) const
3271{
3272  // Mips specific constrainy
3273  // GCC config/mips/constraints.md
3274  //
3275  // 'd' : An address register. Equivalent to r
3276  //       unless generating MIPS16 code.
3277  // 'y' : Equivalent to r; retained for
3278  //       backwards compatibility.
3279  // 'c' : A register suitable for use in an indirect
3280  //       jump. This will always be $25 for -mabicalls.
3281  // 'l' : The lo register. 1 word storage.
3282  // 'x' : The hilo register pair. Double word storage.
3283  if (Constraint.size() == 1) {
3284    switch (Constraint[0]) {
3285      default : break;
3286      case 'd':
3287      case 'y':
3288      case 'f':
3289      case 'c':
3290      case 'l':
3291      case 'x':
3292        return C_RegisterClass;
3293    }
3294  }
3295  return TargetLowering::getConstraintType(Constraint);
3296}
3297
3298/// Examine constraint type and operand type and determine a weight value.
3299/// This object must already have been set up with the operand type
3300/// and the current alternative constraint selected.
3301TargetLowering::ConstraintWeight
3302MipsTargetLowering::getSingleConstraintMatchWeight(
3303    AsmOperandInfo &info, const char *constraint) const {
3304  ConstraintWeight weight = CW_Invalid;
3305  Value *CallOperandVal = info.CallOperandVal;
3306    // If we don't have a value, we can't do a match,
3307    // but allow it at the lowest weight.
3308  if (CallOperandVal == NULL)
3309    return CW_Default;
3310  Type *type = CallOperandVal->getType();
3311  // Look at the constraint type.
3312  switch (*constraint) {
3313  default:
3314    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3315    break;
3316  case 'd':
3317  case 'y':
3318    if (type->isIntegerTy())
3319      weight = CW_Register;
3320    break;
3321  case 'f':
3322    if (type->isFloatTy())
3323      weight = CW_Register;
3324    break;
3325  case 'c': // $25 for indirect jumps
3326  case 'l': // lo register
3327  case 'x': // hilo register pair
3328      if (type->isIntegerTy())
3329      weight = CW_SpecificReg;
3330      break;
3331  case 'I': // signed 16 bit immediate
3332  case 'J': // integer zero
3333  case 'K': // unsigned 16 bit immediate
3334  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3335  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3336  case 'O': // signed 15 bit immediate (+- 16383)
3337  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3338    if (isa<ConstantInt>(CallOperandVal))
3339      weight = CW_Constant;
3340    break;
3341  }
3342  return weight;
3343}
3344
3345/// Given a register class constraint, like 'r', if this corresponds directly
3346/// to an LLVM register class, return a register of 0 and the register class
3347/// pointer.
3348std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3349getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3350{
3351  if (Constraint.size() == 1) {
3352    switch (Constraint[0]) {
3353    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3354    case 'y': // Same as 'r'. Exists for compatibility.
3355    case 'r':
3356      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
3357        return std::make_pair(0U, &Mips::CPURegsRegClass);
3358      if (VT == MVT::i64 && HasMips64)
3359        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
3360      // This will generate an error message
3361      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3362    case 'f':
3363      if (VT == MVT::f32)
3364        return std::make_pair(0U, &Mips::FGR32RegClass);
3365      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3366        if (Subtarget->isFP64bit())
3367          return std::make_pair(0U, &Mips::FGR64RegClass);
3368        return std::make_pair(0U, &Mips::AFGR64RegClass);
3369      }
3370      break;
3371    case 'c': // register suitable for indirect jump
3372      if (VT == MVT::i32)
3373        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
3374      assert(VT == MVT::i64 && "Unexpected type.");
3375      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
3376    case 'l': // register suitable for indirect jump
3377      if (VT == MVT::i32)
3378        return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
3379      return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
3380    case 'x': // register suitable for indirect jump
3381      // Fixme: Not triggering the use of both hi and low
3382      // This will generate an error message
3383      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3384    }
3385  }
3386  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3387}
3388
3389/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3390/// vector.  If it is invalid, don't add anything to Ops.
3391void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3392                                                     std::string &Constraint,
3393                                                     std::vector<SDValue>&Ops,
3394                                                     SelectionDAG &DAG) const {
3395  SDValue Result(0, 0);
3396
3397  // Only support length 1 constraints for now.
3398  if (Constraint.length() > 1) return;
3399
3400  char ConstraintLetter = Constraint[0];
3401  switch (ConstraintLetter) {
3402  default: break; // This will fall through to the generic implementation
3403  case 'I': // Signed 16 bit constant
3404    // If this fails, the parent routine will give an error
3405    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3406      EVT Type = Op.getValueType();
3407      int64_t Val = C->getSExtValue();
3408      if (isInt<16>(Val)) {
3409        Result = DAG.getTargetConstant(Val, Type);
3410        break;
3411      }
3412    }
3413    return;
3414  case 'J': // integer zero
3415    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3416      EVT Type = Op.getValueType();
3417      int64_t Val = C->getZExtValue();
3418      if (Val == 0) {
3419        Result = DAG.getTargetConstant(0, Type);
3420        break;
3421      }
3422    }
3423    return;
3424  case 'K': // unsigned 16 bit immediate
3425    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3426      EVT Type = Op.getValueType();
3427      uint64_t Val = (uint64_t)C->getZExtValue();
3428      if (isUInt<16>(Val)) {
3429        Result = DAG.getTargetConstant(Val, Type);
3430        break;
3431      }
3432    }
3433    return;
3434  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3435    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3436      EVT Type = Op.getValueType();
3437      int64_t Val = C->getSExtValue();
3438      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3439        Result = DAG.getTargetConstant(Val, Type);
3440        break;
3441      }
3442    }
3443    return;
3444  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3445    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3446      EVT Type = Op.getValueType();
3447      int64_t Val = C->getSExtValue();
3448      if ((Val >= -65535) && (Val <= -1)) {
3449        Result = DAG.getTargetConstant(Val, Type);
3450        break;
3451      }
3452    }
3453    return;
3454  case 'O': // signed 15 bit immediate
3455    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3456      EVT Type = Op.getValueType();
3457      int64_t Val = C->getSExtValue();
3458      if ((isInt<15>(Val))) {
3459        Result = DAG.getTargetConstant(Val, Type);
3460        break;
3461      }
3462    }
3463    return;
3464  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3465    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3466      EVT Type = Op.getValueType();
3467      int64_t Val = C->getSExtValue();
3468      if ((Val <= 65535) && (Val >= 1)) {
3469        Result = DAG.getTargetConstant(Val, Type);
3470        break;
3471      }
3472    }
3473    return;
3474  }
3475
3476  if (Result.getNode()) {
3477    Ops.push_back(Result);
3478    return;
3479  }
3480
3481  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3482}
3483
3484bool
3485MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3486  // The Mips target isn't yet aware of offsets.
3487  return false;
3488}
3489
3490EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3491                                            unsigned SrcAlign, bool IsZeroVal,
3492                                            bool MemcpyStrSrc,
3493                                            MachineFunction &MF) const {
3494  if (Subtarget->hasMips64())
3495    return MVT::i64;
3496
3497  return MVT::i32;
3498}
3499
3500bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3501  if (VT != MVT::f32 && VT != MVT::f64)
3502    return false;
3503  if (Imm.isNegZero())
3504    return false;
3505  return Imm.isZero();
3506}
3507
3508unsigned MipsTargetLowering::getJumpTableEncoding() const {
3509  if (IsN64)
3510    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3511
3512  return TargetLowering::getJumpTableEncoding();
3513}
3514