MipsISelLowering.cpp revision 97a62bf2a4a2d141aad8af3531c3b69934f134c1
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include "MipsISelLowering.h"
16#include "InstPrinter/MipsInstPrinter.h"
17#include "MCTargetDesc/MipsBaseInfo.h"
18#include "MipsMachineFunction.h"
19#include "MipsSubtarget.h"
20#include "MipsTargetMachine.h"
21#include "MipsTargetObjectFile.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37
38using namespace llvm;
39
40STATISTIC(NumTailCalls, "Number of tail calls");
41
42static cl::opt<bool>
43LargeGOT("mxgot", cl::Hidden,
44         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
45
46static const uint16_t O32IntRegs[4] = {
47  Mips::A0, Mips::A1, Mips::A2, Mips::A3
48};
49
50static const uint16_t Mips64IntRegs[8] = {
51  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
52  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
53};
54
55static const uint16_t Mips64DPRegs[8] = {
56  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
57  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
58};
59
60// If I is a shifted mask, set the size (Size) and the first bit of the
61// mask (Pos), and return true.
62// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
63static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
64  if (!isShiftedMask_64(I))
65     return false;
66
67  Size = CountPopulation_64(I);
68  Pos = CountTrailingZeros_64(I);
69  return true;
70}
71
72SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
73  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
74  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
75}
76
77static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
78  EVT Ty = Op.getValueType();
79
80  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
81    return DAG.getTargetGlobalAddress(N->getGlobal(), Op.getDebugLoc(), Ty, 0,
82                                      Flag);
83  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
84    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
85  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
86    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
87  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
88    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
89  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
90    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
91                                     N->getOffset(), Flag);
92
93  llvm_unreachable("Unexpected node type.");
94  return SDValue();
95}
96
97static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
98  DebugLoc DL = Op.getDebugLoc();
99  EVT Ty = Op.getValueType();
100  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
101  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
102  return DAG.getNode(ISD::ADD, DL, Ty,
103                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
104                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
105}
106
107SDValue MipsTargetLowering::getAddrLocal(SDValue Op, SelectionDAG &DAG,
108                                         bool HasMips64) const {
109  DebugLoc DL = Op.getDebugLoc();
110  EVT Ty = Op.getValueType();
111  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
112  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
113                            getTargetNode(Op, DAG, GOTFlag));
114  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
115                             MachinePointerInfo::getGOT(), false, false, false,
116                             0);
117  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
118  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
119  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
120}
121
122SDValue MipsTargetLowering::getAddrGlobal(SDValue Op, SelectionDAG &DAG,
123                                          unsigned Flag) const {
124  DebugLoc DL = Op.getDebugLoc();
125  EVT Ty = Op.getValueType();
126  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
127                            getTargetNode(Op, DAG, Flag));
128  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
129                     MachinePointerInfo::getGOT(), false, false, false, 0);
130}
131
132SDValue MipsTargetLowering::getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
133                                                  unsigned HiFlag,
134                                                  unsigned LoFlag) const {
135  DebugLoc DL = Op.getDebugLoc();
136  EVT Ty = Op.getValueType();
137  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
138  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
139  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
140                                getTargetNode(Op, DAG, LoFlag));
141  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
142                     MachinePointerInfo::getGOT(), false, false, false, 0);
143}
144
145const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
146  switch (Opcode) {
147  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
148  case MipsISD::TailCall:          return "MipsISD::TailCall";
149  case MipsISD::Hi:                return "MipsISD::Hi";
150  case MipsISD::Lo:                return "MipsISD::Lo";
151  case MipsISD::GPRel:             return "MipsISD::GPRel";
152  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
153  case MipsISD::Ret:               return "MipsISD::Ret";
154  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
155  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
156  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
157  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
158  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
159  case MipsISD::FPRound:           return "MipsISD::FPRound";
160  case MipsISD::ExtractLOHI:       return "MipsISD::ExtractLOHI";
161  case MipsISD::InsertLOHI:        return "MipsISD::InsertLOHI";
162  case MipsISD::Mult:              return "MipsISD::Mult";
163  case MipsISD::Multu:             return "MipsISD::Multu";
164  case MipsISD::MAdd:              return "MipsISD::MAdd";
165  case MipsISD::MAddu:             return "MipsISD::MAddu";
166  case MipsISD::MSub:              return "MipsISD::MSub";
167  case MipsISD::MSubu:             return "MipsISD::MSubu";
168  case MipsISD::DivRem:            return "MipsISD::DivRem";
169  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
170  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
171  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
172  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
173  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
174  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
175  case MipsISD::Sync:              return "MipsISD::Sync";
176  case MipsISD::Ext:               return "MipsISD::Ext";
177  case MipsISD::Ins:               return "MipsISD::Ins";
178  case MipsISD::LWL:               return "MipsISD::LWL";
179  case MipsISD::LWR:               return "MipsISD::LWR";
180  case MipsISD::SWL:               return "MipsISD::SWL";
181  case MipsISD::SWR:               return "MipsISD::SWR";
182  case MipsISD::LDL:               return "MipsISD::LDL";
183  case MipsISD::LDR:               return "MipsISD::LDR";
184  case MipsISD::SDL:               return "MipsISD::SDL";
185  case MipsISD::SDR:               return "MipsISD::SDR";
186  case MipsISD::EXTP:              return "MipsISD::EXTP";
187  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
188  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
189  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
190  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
191  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
192  case MipsISD::SHILO:             return "MipsISD::SHILO";
193  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
194  case MipsISD::MULT:              return "MipsISD::MULT";
195  case MipsISD::MULTU:             return "MipsISD::MULTU";
196  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
197  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
198  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
199  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
200  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
201  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
202  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
203  default:                         return NULL;
204  }
205}
206
207MipsTargetLowering::
208MipsTargetLowering(MipsTargetMachine &TM)
209  : TargetLowering(TM, new MipsTargetObjectFile()),
210    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
211    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
212    IsO32(Subtarget->isABI_O32()) {
213  // Mips does not have i1 type, so use i32 for
214  // setcc operations results (slt, sgt, ...).
215  setBooleanContents(ZeroOrOneBooleanContent);
216  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
217
218  // Load extented operations for i1 types must be promoted
219  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
220  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
221  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
222
223  // MIPS doesn't have extending float->double load/store
224  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
225  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
226
227  // Used by legalize types to correctly generate the setcc result.
228  // Without this, every float setcc comes with a AND/OR with the result,
229  // we don't want this, since the fpcmp result goes to a flag register,
230  // which is used implicitly by brcond and select operations.
231  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
232
233  // Mips Custom Operations
234  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
235  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
236  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
237  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
238  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
239  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
240  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
241  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
242  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
243  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
244  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
245  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
246  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
247  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
248  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
249  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
250  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
251
252  if (!TM.Options.NoNaNsFPMath) {
253    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
254    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
255  }
256
257  if (HasMips64) {
258    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
259    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
260    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
261    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
262    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
263    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
264    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
265    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
266  }
267
268  if (!HasMips64) {
269    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
270    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
271    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
272  }
273
274  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
275  if (HasMips64)
276    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
277
278  setOperationAction(ISD::SDIV, MVT::i32, Expand);
279  setOperationAction(ISD::SREM, MVT::i32, Expand);
280  setOperationAction(ISD::UDIV, MVT::i32, Expand);
281  setOperationAction(ISD::UREM, MVT::i32, Expand);
282  setOperationAction(ISD::SDIV, MVT::i64, Expand);
283  setOperationAction(ISD::SREM, MVT::i64, Expand);
284  setOperationAction(ISD::UDIV, MVT::i64, Expand);
285  setOperationAction(ISD::UREM, MVT::i64, Expand);
286
287  // Operations not directly supported by Mips.
288  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
289  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
290  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
291  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
292  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
293  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
294  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
295  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
296  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
297  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
298  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
299  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
300  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
301  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
302  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
303  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
304  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
305  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
306  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
307  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
308  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
309  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
310
311  if (!Subtarget->hasMips32r2())
312    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
313
314  if (!Subtarget->hasMips64r2())
315    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
316
317  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
318  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
319  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
320  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
321  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
322  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
323  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
324  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
325  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
326  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
327  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
328  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
329  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
330  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
331  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
332  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
333  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
334
335  if (!TM.Options.NoNaNsFPMath) {
336    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
337    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
338  }
339
340  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
341  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
342  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
343  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
344
345  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
346
347  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
348  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
349  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
350
351  // Use the default for now
352  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
353  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
354
355  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
356  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
357  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
358  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
359
360  setInsertFencesForAtomic(true);
361
362  if (!Subtarget->hasSEInReg()) {
363    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
364    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
365  }
366
367  if (!Subtarget->hasBitCount()) {
368    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
369    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
370  }
371
372  if (!Subtarget->hasSwap()) {
373    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
374    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
375  }
376
377  if (HasMips64) {
378    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
379    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
380    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
381    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
382  }
383
384  setTargetDAGCombine(ISD::SDIVREM);
385  setTargetDAGCombine(ISD::UDIVREM);
386  setTargetDAGCombine(ISD::SELECT);
387  setTargetDAGCombine(ISD::AND);
388  setTargetDAGCombine(ISD::OR);
389  setTargetDAGCombine(ISD::ADD);
390
391  setMinFunctionAlignment(HasMips64 ? 3 : 2);
392
393  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
394
395  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
396  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
397
398  MaxStoresPerMemcpy = 16;
399}
400
401const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
402  if (TM.getSubtargetImpl()->inMips16Mode())
403    return llvm::createMips16TargetLowering(TM);
404
405  return llvm::createMipsSETargetLowering(TM);
406}
407
408EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
409  if (!VT.isVector())
410    return MVT::i32;
411  return VT.changeVectorElementTypeToInteger();
412}
413
414static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
415                                    TargetLowering::DAGCombinerInfo &DCI,
416                                    const MipsSubtarget *Subtarget) {
417  if (DCI.isBeforeLegalizeOps())
418    return SDValue();
419
420  EVT Ty = N->getValueType(0);
421  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
422  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
423  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
424                                                  MipsISD::DivRemU16;
425  DebugLoc DL = N->getDebugLoc();
426
427  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
428                               N->getOperand(0), N->getOperand(1));
429  SDValue InChain = DAG.getEntryNode();
430  SDValue InGlue = DivRem;
431
432  // insert MFLO
433  if (N->hasAnyUseOfValue(0)) {
434    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
435                                            InGlue);
436    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
437    InChain = CopyFromLo.getValue(1);
438    InGlue = CopyFromLo.getValue(2);
439  }
440
441  // insert MFHI
442  if (N->hasAnyUseOfValue(1)) {
443    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
444                                            HI, Ty, InGlue);
445    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
446  }
447
448  return SDValue();
449}
450
451static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
452  switch (CC) {
453  default: llvm_unreachable("Unknown fp condition code!");
454  case ISD::SETEQ:
455  case ISD::SETOEQ: return Mips::FCOND_OEQ;
456  case ISD::SETUNE: return Mips::FCOND_UNE;
457  case ISD::SETLT:
458  case ISD::SETOLT: return Mips::FCOND_OLT;
459  case ISD::SETGT:
460  case ISD::SETOGT: return Mips::FCOND_OGT;
461  case ISD::SETLE:
462  case ISD::SETOLE: return Mips::FCOND_OLE;
463  case ISD::SETGE:
464  case ISD::SETOGE: return Mips::FCOND_OGE;
465  case ISD::SETULT: return Mips::FCOND_ULT;
466  case ISD::SETULE: return Mips::FCOND_ULE;
467  case ISD::SETUGT: return Mips::FCOND_UGT;
468  case ISD::SETUGE: return Mips::FCOND_UGE;
469  case ISD::SETUO:  return Mips::FCOND_UN;
470  case ISD::SETO:   return Mips::FCOND_OR;
471  case ISD::SETNE:
472  case ISD::SETONE: return Mips::FCOND_ONE;
473  case ISD::SETUEQ: return Mips::FCOND_UEQ;
474  }
475}
476
477
478/// This function returns true if the floating point conditional branches and
479/// conditional moves which use condition code CC should be inverted.
480static bool invertFPCondCodeUser(Mips::CondCode CC) {
481  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
482    return false;
483
484  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
485         "Illegal Condition Code");
486
487  return true;
488}
489
490// Creates and returns an FPCmp node from a setcc node.
491// Returns Op if setcc is not a floating point comparison.
492static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
493  // must be a SETCC node
494  if (Op.getOpcode() != ISD::SETCC)
495    return Op;
496
497  SDValue LHS = Op.getOperand(0);
498
499  if (!LHS.getValueType().isFloatingPoint())
500    return Op;
501
502  SDValue RHS = Op.getOperand(1);
503  DebugLoc DL = Op.getDebugLoc();
504
505  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
506  // node if necessary.
507  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
508
509  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
510                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
511}
512
513// Creates and returns a CMovFPT/F node.
514static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
515                            SDValue False, DebugLoc DL) {
516  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
517  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
518
519  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
520                     True.getValueType(), True, False, Cond);
521}
522
523static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
524                                    TargetLowering::DAGCombinerInfo &DCI,
525                                    const MipsSubtarget *Subtarget) {
526  if (DCI.isBeforeLegalizeOps())
527    return SDValue();
528
529  SDValue SetCC = N->getOperand(0);
530
531  if ((SetCC.getOpcode() != ISD::SETCC) ||
532      !SetCC.getOperand(0).getValueType().isInteger())
533    return SDValue();
534
535  SDValue False = N->getOperand(2);
536  EVT FalseTy = False.getValueType();
537
538  if (!FalseTy.isInteger())
539    return SDValue();
540
541  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
542
543  if (!CN || CN->getZExtValue())
544    return SDValue();
545
546  const DebugLoc DL = N->getDebugLoc();
547  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
548  SDValue True = N->getOperand(1);
549
550  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
551                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
552
553  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
554}
555
556static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
557                                 TargetLowering::DAGCombinerInfo &DCI,
558                                 const MipsSubtarget *Subtarget) {
559  // Pattern match EXT.
560  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
561  //  => ext $dst, $src, size, pos
562  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
563    return SDValue();
564
565  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
566  unsigned ShiftRightOpc = ShiftRight.getOpcode();
567
568  // Op's first operand must be a shift right.
569  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
570    return SDValue();
571
572  // The second operand of the shift must be an immediate.
573  ConstantSDNode *CN;
574  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
575    return SDValue();
576
577  uint64_t Pos = CN->getZExtValue();
578  uint64_t SMPos, SMSize;
579
580  // Op's second operand must be a shifted mask.
581  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
582      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
583    return SDValue();
584
585  // Return if the shifted mask does not start at bit 0 or the sum of its size
586  // and Pos exceeds the word's size.
587  EVT ValTy = N->getValueType(0);
588  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
589    return SDValue();
590
591  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
592                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
593                     DAG.getConstant(SMSize, MVT::i32));
594}
595
596static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
597                                TargetLowering::DAGCombinerInfo &DCI,
598                                const MipsSubtarget *Subtarget) {
599  // Pattern match INS.
600  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
601  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
602  //  => ins $dst, $src, size, pos, $src1
603  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
604    return SDValue();
605
606  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
607  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
608  ConstantSDNode *CN;
609
610  // See if Op's first operand matches (and $src1 , mask0).
611  if (And0.getOpcode() != ISD::AND)
612    return SDValue();
613
614  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
615      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
616    return SDValue();
617
618  // See if Op's second operand matches (and (shl $src, pos), mask1).
619  if (And1.getOpcode() != ISD::AND)
620    return SDValue();
621
622  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
623      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
624    return SDValue();
625
626  // The shift masks must have the same position and size.
627  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
628    return SDValue();
629
630  SDValue Shl = And1.getOperand(0);
631  if (Shl.getOpcode() != ISD::SHL)
632    return SDValue();
633
634  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
635    return SDValue();
636
637  unsigned Shamt = CN->getZExtValue();
638
639  // Return if the shift amount and the first bit position of mask are not the
640  // same.
641  EVT ValTy = N->getValueType(0);
642  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
643    return SDValue();
644
645  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
646                     DAG.getConstant(SMPos0, MVT::i32),
647                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
648}
649
650static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
651                                 TargetLowering::DAGCombinerInfo &DCI,
652                                 const MipsSubtarget *Subtarget) {
653  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
654
655  if (DCI.isBeforeLegalizeOps())
656    return SDValue();
657
658  SDValue Add = N->getOperand(1);
659
660  if (Add.getOpcode() != ISD::ADD)
661    return SDValue();
662
663  SDValue Lo = Add.getOperand(1);
664
665  if ((Lo.getOpcode() != MipsISD::Lo) ||
666      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
667    return SDValue();
668
669  EVT ValTy = N->getValueType(0);
670  DebugLoc DL = N->getDebugLoc();
671
672  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
673                             Add.getOperand(0));
674  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
675}
676
677SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
678  const {
679  SelectionDAG &DAG = DCI.DAG;
680  unsigned Opc = N->getOpcode();
681
682  switch (Opc) {
683  default: break;
684  case ISD::SDIVREM:
685  case ISD::UDIVREM:
686    return performDivRemCombine(N, DAG, DCI, Subtarget);
687  case ISD::SELECT:
688    return performSELECTCombine(N, DAG, DCI, Subtarget);
689  case ISD::AND:
690    return performANDCombine(N, DAG, DCI, Subtarget);
691  case ISD::OR:
692    return performORCombine(N, DAG, DCI, Subtarget);
693  case ISD::ADD:
694    return performADDCombine(N, DAG, DCI, Subtarget);
695  }
696
697  return SDValue();
698}
699
700void
701MipsTargetLowering::LowerOperationWrapper(SDNode *N,
702                                          SmallVectorImpl<SDValue> &Results,
703                                          SelectionDAG &DAG) const {
704  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
705
706  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
707    Results.push_back(Res.getValue(I));
708}
709
710void
711MipsTargetLowering::ReplaceNodeResults(SDNode *N,
712                                       SmallVectorImpl<SDValue> &Results,
713                                       SelectionDAG &DAG) const {
714  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
715
716  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
717    Results.push_back(Res.getValue(I));
718}
719
720SDValue MipsTargetLowering::
721LowerOperation(SDValue Op, SelectionDAG &DAG) const
722{
723  switch (Op.getOpcode())
724  {
725  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
726  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
727  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
728  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
729  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
730  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
731  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
732  case ISD::SELECT:             return lowerSELECT(Op, DAG);
733  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
734  case ISD::SETCC:              return lowerSETCC(Op, DAG);
735  case ISD::VASTART:            return lowerVASTART(Op, DAG);
736  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
737  case ISD::FABS:               return lowerFABS(Op, DAG);
738  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
739  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
740  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
741  case ISD::MEMBARRIER:         return lowerMEMBARRIER(Op, DAG);
742  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
743  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
744  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
745  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
746  case ISD::LOAD:               return lowerLOAD(Op, DAG);
747  case ISD::STORE:              return lowerSTORE(Op, DAG);
748  case ISD::ADD:                return lowerADD(Op, DAG);
749  }
750  return SDValue();
751}
752
753//===----------------------------------------------------------------------===//
754//  Lower helper functions
755//===----------------------------------------------------------------------===//
756
757// addLiveIn - This helper function adds the specified physical register to the
758// MachineFunction as a live in value.  It also creates a corresponding
759// virtual register for it.
760static unsigned
761addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
762{
763  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
764  MF.getRegInfo().addLiveIn(PReg, VReg);
765  return VReg;
766}
767
768MachineBasicBlock *
769MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
770                                                MachineBasicBlock *BB) const {
771  switch (MI->getOpcode()) {
772  default:
773    llvm_unreachable("Unexpected instr type to insert");
774  case Mips::ATOMIC_LOAD_ADD_I8:
775  case Mips::ATOMIC_LOAD_ADD_I8_P8:
776    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
777  case Mips::ATOMIC_LOAD_ADD_I16:
778  case Mips::ATOMIC_LOAD_ADD_I16_P8:
779    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
780  case Mips::ATOMIC_LOAD_ADD_I32:
781  case Mips::ATOMIC_LOAD_ADD_I32_P8:
782    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
783  case Mips::ATOMIC_LOAD_ADD_I64:
784  case Mips::ATOMIC_LOAD_ADD_I64_P8:
785    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
786
787  case Mips::ATOMIC_LOAD_AND_I8:
788  case Mips::ATOMIC_LOAD_AND_I8_P8:
789    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
790  case Mips::ATOMIC_LOAD_AND_I16:
791  case Mips::ATOMIC_LOAD_AND_I16_P8:
792    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
793  case Mips::ATOMIC_LOAD_AND_I32:
794  case Mips::ATOMIC_LOAD_AND_I32_P8:
795    return emitAtomicBinary(MI, BB, 4, Mips::AND);
796  case Mips::ATOMIC_LOAD_AND_I64:
797  case Mips::ATOMIC_LOAD_AND_I64_P8:
798    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
799
800  case Mips::ATOMIC_LOAD_OR_I8:
801  case Mips::ATOMIC_LOAD_OR_I8_P8:
802    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
803  case Mips::ATOMIC_LOAD_OR_I16:
804  case Mips::ATOMIC_LOAD_OR_I16_P8:
805    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
806  case Mips::ATOMIC_LOAD_OR_I32:
807  case Mips::ATOMIC_LOAD_OR_I32_P8:
808    return emitAtomicBinary(MI, BB, 4, Mips::OR);
809  case Mips::ATOMIC_LOAD_OR_I64:
810  case Mips::ATOMIC_LOAD_OR_I64_P8:
811    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
812
813  case Mips::ATOMIC_LOAD_XOR_I8:
814  case Mips::ATOMIC_LOAD_XOR_I8_P8:
815    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
816  case Mips::ATOMIC_LOAD_XOR_I16:
817  case Mips::ATOMIC_LOAD_XOR_I16_P8:
818    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
819  case Mips::ATOMIC_LOAD_XOR_I32:
820  case Mips::ATOMIC_LOAD_XOR_I32_P8:
821    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
822  case Mips::ATOMIC_LOAD_XOR_I64:
823  case Mips::ATOMIC_LOAD_XOR_I64_P8:
824    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
825
826  case Mips::ATOMIC_LOAD_NAND_I8:
827  case Mips::ATOMIC_LOAD_NAND_I8_P8:
828    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
829  case Mips::ATOMIC_LOAD_NAND_I16:
830  case Mips::ATOMIC_LOAD_NAND_I16_P8:
831    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
832  case Mips::ATOMIC_LOAD_NAND_I32:
833  case Mips::ATOMIC_LOAD_NAND_I32_P8:
834    return emitAtomicBinary(MI, BB, 4, 0, true);
835  case Mips::ATOMIC_LOAD_NAND_I64:
836  case Mips::ATOMIC_LOAD_NAND_I64_P8:
837    return emitAtomicBinary(MI, BB, 8, 0, true);
838
839  case Mips::ATOMIC_LOAD_SUB_I8:
840  case Mips::ATOMIC_LOAD_SUB_I8_P8:
841    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
842  case Mips::ATOMIC_LOAD_SUB_I16:
843  case Mips::ATOMIC_LOAD_SUB_I16_P8:
844    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
845  case Mips::ATOMIC_LOAD_SUB_I32:
846  case Mips::ATOMIC_LOAD_SUB_I32_P8:
847    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
848  case Mips::ATOMIC_LOAD_SUB_I64:
849  case Mips::ATOMIC_LOAD_SUB_I64_P8:
850    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
851
852  case Mips::ATOMIC_SWAP_I8:
853  case Mips::ATOMIC_SWAP_I8_P8:
854    return emitAtomicBinaryPartword(MI, BB, 1, 0);
855  case Mips::ATOMIC_SWAP_I16:
856  case Mips::ATOMIC_SWAP_I16_P8:
857    return emitAtomicBinaryPartword(MI, BB, 2, 0);
858  case Mips::ATOMIC_SWAP_I32:
859  case Mips::ATOMIC_SWAP_I32_P8:
860    return emitAtomicBinary(MI, BB, 4, 0);
861  case Mips::ATOMIC_SWAP_I64:
862  case Mips::ATOMIC_SWAP_I64_P8:
863    return emitAtomicBinary(MI, BB, 8, 0);
864
865  case Mips::ATOMIC_CMP_SWAP_I8:
866  case Mips::ATOMIC_CMP_SWAP_I8_P8:
867    return emitAtomicCmpSwapPartword(MI, BB, 1);
868  case Mips::ATOMIC_CMP_SWAP_I16:
869  case Mips::ATOMIC_CMP_SWAP_I16_P8:
870    return emitAtomicCmpSwapPartword(MI, BB, 2);
871  case Mips::ATOMIC_CMP_SWAP_I32:
872  case Mips::ATOMIC_CMP_SWAP_I32_P8:
873    return emitAtomicCmpSwap(MI, BB, 4);
874  case Mips::ATOMIC_CMP_SWAP_I64:
875  case Mips::ATOMIC_CMP_SWAP_I64_P8:
876    return emitAtomicCmpSwap(MI, BB, 8);
877  }
878}
879
880// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
881// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
882MachineBasicBlock *
883MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
884                                     unsigned Size, unsigned BinOpcode,
885                                     bool Nand) const {
886  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
887
888  MachineFunction *MF = BB->getParent();
889  MachineRegisterInfo &RegInfo = MF->getRegInfo();
890  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
891  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
892  DebugLoc DL = MI->getDebugLoc();
893  unsigned LL, SC, AND, NOR, ZERO, BEQ;
894
895  if (Size == 4) {
896    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
897    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
898    AND = Mips::AND;
899    NOR = Mips::NOR;
900    ZERO = Mips::ZERO;
901    BEQ = Mips::BEQ;
902  }
903  else {
904    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
905    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
906    AND = Mips::AND64;
907    NOR = Mips::NOR64;
908    ZERO = Mips::ZERO_64;
909    BEQ = Mips::BEQ64;
910  }
911
912  unsigned OldVal = MI->getOperand(0).getReg();
913  unsigned Ptr = MI->getOperand(1).getReg();
914  unsigned Incr = MI->getOperand(2).getReg();
915
916  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
917  unsigned AndRes = RegInfo.createVirtualRegister(RC);
918  unsigned Success = RegInfo.createVirtualRegister(RC);
919
920  // insert new blocks after the current block
921  const BasicBlock *LLVM_BB = BB->getBasicBlock();
922  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
923  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
924  MachineFunction::iterator It = BB;
925  ++It;
926  MF->insert(It, loopMBB);
927  MF->insert(It, exitMBB);
928
929  // Transfer the remainder of BB and its successor edges to exitMBB.
930  exitMBB->splice(exitMBB->begin(), BB,
931                  llvm::next(MachineBasicBlock::iterator(MI)),
932                  BB->end());
933  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
934
935  //  thisMBB:
936  //    ...
937  //    fallthrough --> loopMBB
938  BB->addSuccessor(loopMBB);
939  loopMBB->addSuccessor(loopMBB);
940  loopMBB->addSuccessor(exitMBB);
941
942  //  loopMBB:
943  //    ll oldval, 0(ptr)
944  //    <binop> storeval, oldval, incr
945  //    sc success, storeval, 0(ptr)
946  //    beq success, $0, loopMBB
947  BB = loopMBB;
948  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
949  if (Nand) {
950    //  and andres, oldval, incr
951    //  nor storeval, $0, andres
952    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
953    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
954  } else if (BinOpcode) {
955    //  <binop> storeval, oldval, incr
956    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
957  } else {
958    StoreVal = Incr;
959  }
960  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
961  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
962
963  MI->eraseFromParent();   // The instruction is gone now.
964
965  return exitMBB;
966}
967
968MachineBasicBlock *
969MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
970                                             MachineBasicBlock *BB,
971                                             unsigned Size, unsigned BinOpcode,
972                                             bool Nand) const {
973  assert((Size == 1 || Size == 2) &&
974      "Unsupported size for EmitAtomicBinaryPartial.");
975
976  MachineFunction *MF = BB->getParent();
977  MachineRegisterInfo &RegInfo = MF->getRegInfo();
978  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
979  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
980  DebugLoc DL = MI->getDebugLoc();
981  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
982  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
983
984  unsigned Dest = MI->getOperand(0).getReg();
985  unsigned Ptr = MI->getOperand(1).getReg();
986  unsigned Incr = MI->getOperand(2).getReg();
987
988  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
989  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
990  unsigned Mask = RegInfo.createVirtualRegister(RC);
991  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
992  unsigned NewVal = RegInfo.createVirtualRegister(RC);
993  unsigned OldVal = RegInfo.createVirtualRegister(RC);
994  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
995  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
996  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
997  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
998  unsigned AndRes = RegInfo.createVirtualRegister(RC);
999  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1000  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1001  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1002  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1003  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1004  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1005  unsigned Success = RegInfo.createVirtualRegister(RC);
1006
1007  // insert new blocks after the current block
1008  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1009  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1010  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1011  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1012  MachineFunction::iterator It = BB;
1013  ++It;
1014  MF->insert(It, loopMBB);
1015  MF->insert(It, sinkMBB);
1016  MF->insert(It, exitMBB);
1017
1018  // Transfer the remainder of BB and its successor edges to exitMBB.
1019  exitMBB->splice(exitMBB->begin(), BB,
1020                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1021  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1022
1023  BB->addSuccessor(loopMBB);
1024  loopMBB->addSuccessor(loopMBB);
1025  loopMBB->addSuccessor(sinkMBB);
1026  sinkMBB->addSuccessor(exitMBB);
1027
1028  //  thisMBB:
1029  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1030  //    and     alignedaddr,ptr,masklsb2
1031  //    andi    ptrlsb2,ptr,3
1032  //    sll     shiftamt,ptrlsb2,3
1033  //    ori     maskupper,$0,255               # 0xff
1034  //    sll     mask,maskupper,shiftamt
1035  //    nor     mask2,$0,mask
1036  //    sll     incr2,incr,shiftamt
1037
1038  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1039  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1040    .addReg(Mips::ZERO).addImm(-4);
1041  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1042    .addReg(Ptr).addReg(MaskLSB2);
1043  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1044  BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1045  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1046    .addReg(Mips::ZERO).addImm(MaskImm);
1047  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1048    .addReg(ShiftAmt).addReg(MaskUpper);
1049  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1050  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1051
1052  // atomic.load.binop
1053  // loopMBB:
1054  //   ll      oldval,0(alignedaddr)
1055  //   binop   binopres,oldval,incr2
1056  //   and     newval,binopres,mask
1057  //   and     maskedoldval0,oldval,mask2
1058  //   or      storeval,maskedoldval0,newval
1059  //   sc      success,storeval,0(alignedaddr)
1060  //   beq     success,$0,loopMBB
1061
1062  // atomic.swap
1063  // loopMBB:
1064  //   ll      oldval,0(alignedaddr)
1065  //   and     newval,incr2,mask
1066  //   and     maskedoldval0,oldval,mask2
1067  //   or      storeval,maskedoldval0,newval
1068  //   sc      success,storeval,0(alignedaddr)
1069  //   beq     success,$0,loopMBB
1070
1071  BB = loopMBB;
1072  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1073  if (Nand) {
1074    //  and andres, oldval, incr2
1075    //  nor binopres, $0, andres
1076    //  and newval, binopres, mask
1077    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1078    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1079      .addReg(Mips::ZERO).addReg(AndRes);
1080    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1081  } else if (BinOpcode) {
1082    //  <binop> binopres, oldval, incr2
1083    //  and newval, binopres, mask
1084    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1085    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1086  } else {// atomic.swap
1087    //  and newval, incr2, mask
1088    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1089  }
1090
1091  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1092    .addReg(OldVal).addReg(Mask2);
1093  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1094    .addReg(MaskedOldVal0).addReg(NewVal);
1095  BuildMI(BB, DL, TII->get(SC), Success)
1096    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1097  BuildMI(BB, DL, TII->get(Mips::BEQ))
1098    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1099
1100  //  sinkMBB:
1101  //    and     maskedoldval1,oldval,mask
1102  //    srl     srlres,maskedoldval1,shiftamt
1103  //    sll     sllres,srlres,24
1104  //    sra     dest,sllres,24
1105  BB = sinkMBB;
1106  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1107
1108  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1109    .addReg(OldVal).addReg(Mask);
1110  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1111      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1112  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1113      .addReg(SrlRes).addImm(ShiftImm);
1114  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1115      .addReg(SllRes).addImm(ShiftImm);
1116
1117  MI->eraseFromParent();   // The instruction is gone now.
1118
1119  return exitMBB;
1120}
1121
1122MachineBasicBlock *
1123MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1124                                      MachineBasicBlock *BB,
1125                                      unsigned Size) const {
1126  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1127
1128  MachineFunction *MF = BB->getParent();
1129  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1130  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1131  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1132  DebugLoc DL = MI->getDebugLoc();
1133  unsigned LL, SC, ZERO, BNE, BEQ;
1134
1135  if (Size == 4) {
1136    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1137    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1138    ZERO = Mips::ZERO;
1139    BNE = Mips::BNE;
1140    BEQ = Mips::BEQ;
1141  }
1142  else {
1143    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1144    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1145    ZERO = Mips::ZERO_64;
1146    BNE = Mips::BNE64;
1147    BEQ = Mips::BEQ64;
1148  }
1149
1150  unsigned Dest    = MI->getOperand(0).getReg();
1151  unsigned Ptr     = MI->getOperand(1).getReg();
1152  unsigned OldVal  = MI->getOperand(2).getReg();
1153  unsigned NewVal  = MI->getOperand(3).getReg();
1154
1155  unsigned Success = RegInfo.createVirtualRegister(RC);
1156
1157  // insert new blocks after the current block
1158  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1159  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1160  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1161  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1162  MachineFunction::iterator It = BB;
1163  ++It;
1164  MF->insert(It, loop1MBB);
1165  MF->insert(It, loop2MBB);
1166  MF->insert(It, exitMBB);
1167
1168  // Transfer the remainder of BB and its successor edges to exitMBB.
1169  exitMBB->splice(exitMBB->begin(), BB,
1170                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1171  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1172
1173  //  thisMBB:
1174  //    ...
1175  //    fallthrough --> loop1MBB
1176  BB->addSuccessor(loop1MBB);
1177  loop1MBB->addSuccessor(exitMBB);
1178  loop1MBB->addSuccessor(loop2MBB);
1179  loop2MBB->addSuccessor(loop1MBB);
1180  loop2MBB->addSuccessor(exitMBB);
1181
1182  // loop1MBB:
1183  //   ll dest, 0(ptr)
1184  //   bne dest, oldval, exitMBB
1185  BB = loop1MBB;
1186  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1187  BuildMI(BB, DL, TII->get(BNE))
1188    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1189
1190  // loop2MBB:
1191  //   sc success, newval, 0(ptr)
1192  //   beq success, $0, loop1MBB
1193  BB = loop2MBB;
1194  BuildMI(BB, DL, TII->get(SC), Success)
1195    .addReg(NewVal).addReg(Ptr).addImm(0);
1196  BuildMI(BB, DL, TII->get(BEQ))
1197    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1198
1199  MI->eraseFromParent();   // The instruction is gone now.
1200
1201  return exitMBB;
1202}
1203
1204MachineBasicBlock *
1205MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1206                                              MachineBasicBlock *BB,
1207                                              unsigned Size) const {
1208  assert((Size == 1 || Size == 2) &&
1209      "Unsupported size for EmitAtomicCmpSwapPartial.");
1210
1211  MachineFunction *MF = BB->getParent();
1212  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1213  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1214  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1215  DebugLoc DL = MI->getDebugLoc();
1216  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1217  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1218
1219  unsigned Dest    = MI->getOperand(0).getReg();
1220  unsigned Ptr     = MI->getOperand(1).getReg();
1221  unsigned CmpVal  = MI->getOperand(2).getReg();
1222  unsigned NewVal  = MI->getOperand(3).getReg();
1223
1224  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1225  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1226  unsigned Mask = RegInfo.createVirtualRegister(RC);
1227  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1228  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1229  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1230  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1231  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1232  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1233  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1234  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1235  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1236  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1237  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1238  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1239  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1240  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1241  unsigned Success = RegInfo.createVirtualRegister(RC);
1242
1243  // insert new blocks after the current block
1244  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1245  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1246  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1247  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1248  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1249  MachineFunction::iterator It = BB;
1250  ++It;
1251  MF->insert(It, loop1MBB);
1252  MF->insert(It, loop2MBB);
1253  MF->insert(It, sinkMBB);
1254  MF->insert(It, exitMBB);
1255
1256  // Transfer the remainder of BB and its successor edges to exitMBB.
1257  exitMBB->splice(exitMBB->begin(), BB,
1258                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1259  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1260
1261  BB->addSuccessor(loop1MBB);
1262  loop1MBB->addSuccessor(sinkMBB);
1263  loop1MBB->addSuccessor(loop2MBB);
1264  loop2MBB->addSuccessor(loop1MBB);
1265  loop2MBB->addSuccessor(sinkMBB);
1266  sinkMBB->addSuccessor(exitMBB);
1267
1268  // FIXME: computation of newval2 can be moved to loop2MBB.
1269  //  thisMBB:
1270  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1271  //    and     alignedaddr,ptr,masklsb2
1272  //    andi    ptrlsb2,ptr,3
1273  //    sll     shiftamt,ptrlsb2,3
1274  //    ori     maskupper,$0,255               # 0xff
1275  //    sll     mask,maskupper,shiftamt
1276  //    nor     mask2,$0,mask
1277  //    andi    maskedcmpval,cmpval,255
1278  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1279  //    andi    maskednewval,newval,255
1280  //    sll     shiftednewval,maskednewval,shiftamt
1281  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1282  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1283    .addReg(Mips::ZERO).addImm(-4);
1284  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1285    .addReg(Ptr).addReg(MaskLSB2);
1286  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1287  BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1288  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1289    .addReg(Mips::ZERO).addImm(MaskImm);
1290  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1291    .addReg(ShiftAmt).addReg(MaskUpper);
1292  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1293  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1294    .addReg(CmpVal).addImm(MaskImm);
1295  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1296    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1297  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1298    .addReg(NewVal).addImm(MaskImm);
1299  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1300    .addReg(ShiftAmt).addReg(MaskedNewVal);
1301
1302  //  loop1MBB:
1303  //    ll      oldval,0(alginedaddr)
1304  //    and     maskedoldval0,oldval,mask
1305  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1306  BB = loop1MBB;
1307  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1308  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1309    .addReg(OldVal).addReg(Mask);
1310  BuildMI(BB, DL, TII->get(Mips::BNE))
1311    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1312
1313  //  loop2MBB:
1314  //    and     maskedoldval1,oldval,mask2
1315  //    or      storeval,maskedoldval1,shiftednewval
1316  //    sc      success,storeval,0(alignedaddr)
1317  //    beq     success,$0,loop1MBB
1318  BB = loop2MBB;
1319  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1320    .addReg(OldVal).addReg(Mask2);
1321  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1322    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1323  BuildMI(BB, DL, TII->get(SC), Success)
1324      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1325  BuildMI(BB, DL, TII->get(Mips::BEQ))
1326      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1327
1328  //  sinkMBB:
1329  //    srl     srlres,maskedoldval0,shiftamt
1330  //    sll     sllres,srlres,24
1331  //    sra     dest,sllres,24
1332  BB = sinkMBB;
1333  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1334
1335  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1336      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1337  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1338      .addReg(SrlRes).addImm(ShiftImm);
1339  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1340      .addReg(SllRes).addImm(ShiftImm);
1341
1342  MI->eraseFromParent();   // The instruction is gone now.
1343
1344  return exitMBB;
1345}
1346
1347//===----------------------------------------------------------------------===//
1348//  Misc Lower Operation implementation
1349//===----------------------------------------------------------------------===//
1350SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1351  SDValue Chain = Op.getOperand(0);
1352  SDValue Table = Op.getOperand(1);
1353  SDValue Index = Op.getOperand(2);
1354  DebugLoc DL = Op.getDebugLoc();
1355  EVT PTy = getPointerTy();
1356  unsigned EntrySize =
1357    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1358
1359  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1360                      DAG.getConstant(EntrySize, PTy));
1361  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1362
1363  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1364  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1365                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1366                        0);
1367  Chain = Addr.getValue(1);
1368
1369  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
1370    // For PIC, the sequence is:
1371    // BRIND(load(Jumptable + index) + RelocBase)
1372    // RelocBase can be JumpTable, GOT or some sort of global base.
1373    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1374                       getPICJumpTableRelocBase(Table, DAG));
1375  }
1376
1377  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1378}
1379
1380SDValue MipsTargetLowering::
1381lowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1382{
1383  // The first operand is the chain, the second is the condition, the third is
1384  // the block to branch to if the condition is true.
1385  SDValue Chain = Op.getOperand(0);
1386  SDValue Dest = Op.getOperand(2);
1387  DebugLoc DL = Op.getDebugLoc();
1388
1389  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1390
1391  // Return if flag is not set by a floating point comparison.
1392  if (CondRes.getOpcode() != MipsISD::FPCmp)
1393    return Op;
1394
1395  SDValue CCNode  = CondRes.getOperand(2);
1396  Mips::CondCode CC =
1397    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1398  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1399  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1400  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1401                     Dest, CondRes);
1402}
1403
1404SDValue MipsTargetLowering::
1405lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1406{
1407  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1408
1409  // Return if flag is not set by a floating point comparison.
1410  if (Cond.getOpcode() != MipsISD::FPCmp)
1411    return Op;
1412
1413  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1414                      Op.getDebugLoc());
1415}
1416
1417SDValue MipsTargetLowering::
1418lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1419{
1420  DebugLoc DL = Op.getDebugLoc();
1421  EVT Ty = Op.getOperand(0).getValueType();
1422  SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
1423                             Op.getOperand(0), Op.getOperand(1),
1424                             Op.getOperand(4));
1425
1426  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1427                     Op.getOperand(3));
1428}
1429
1430SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1431  SDValue Cond = createFPCmp(DAG, Op);
1432
1433  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1434         "Floating point operand expected.");
1435
1436  SDValue True  = DAG.getConstant(1, MVT::i32);
1437  SDValue False = DAG.getConstant(0, MVT::i32);
1438
1439  return createCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1440}
1441
1442SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1443                                               SelectionDAG &DAG) const {
1444  // FIXME there isn't actually debug info here
1445  DebugLoc DL = Op.getDebugLoc();
1446  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1447
1448  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1449    const MipsTargetObjectFile &TLOF =
1450      (const MipsTargetObjectFile&)getObjFileLowering();
1451
1452    // %gp_rel relocation
1453    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1454      SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1455                                              MipsII::MO_GPREL);
1456      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1457                                      DAG.getVTList(MVT::i32), &GA, 1);
1458      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1459      return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1460    }
1461
1462    // %hi/%lo relocation
1463    return getAddrNonPIC(Op, DAG);
1464  }
1465
1466  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1467    return getAddrLocal(Op, DAG, HasMips64);
1468
1469  if (LargeGOT)
1470    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
1471                                 MipsII::MO_GOT_LO16);
1472
1473  return getAddrGlobal(Op, DAG,
1474                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1475}
1476
1477SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1478                                              SelectionDAG &DAG) const {
1479  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1480    return getAddrNonPIC(Op, DAG);
1481
1482  return getAddrLocal(Op, DAG, HasMips64);
1483}
1484
1485SDValue MipsTargetLowering::
1486lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1487{
1488  // If the relocation model is PIC, use the General Dynamic TLS Model or
1489  // Local Dynamic TLS model, otherwise use the Initial Exec or
1490  // Local Exec TLS Model.
1491
1492  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1493  DebugLoc DL = GA->getDebugLoc();
1494  const GlobalValue *GV = GA->getGlobal();
1495  EVT PtrVT = getPointerTy();
1496
1497  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1498
1499  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1500    // General Dynamic and Local Dynamic TLS Model.
1501    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1502                                                      : MipsII::MO_TLSGD;
1503
1504    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1505    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1506                                   getGlobalReg(DAG, PtrVT), TGA);
1507    unsigned PtrSize = PtrVT.getSizeInBits();
1508    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1509
1510    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1511
1512    ArgListTy Args;
1513    ArgListEntry Entry;
1514    Entry.Node = Argument;
1515    Entry.Ty = PtrTy;
1516    Args.push_back(Entry);
1517
1518    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1519                  false, false, false, false, 0, CallingConv::C,
1520                  /*IsTailCall=*/false, /*doesNotRet=*/false,
1521                  /*isReturnValueUsed=*/true,
1522                  TlsGetAddr, Args, DAG, DL);
1523    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1524
1525    SDValue Ret = CallResult.first;
1526
1527    if (model != TLSModel::LocalDynamic)
1528      return Ret;
1529
1530    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1531                                               MipsII::MO_DTPREL_HI);
1532    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1533    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1534                                               MipsII::MO_DTPREL_LO);
1535    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1536    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1537    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1538  }
1539
1540  SDValue Offset;
1541  if (model == TLSModel::InitialExec) {
1542    // Initial Exec TLS Model
1543    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1544                                             MipsII::MO_GOTTPREL);
1545    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1546                      TGA);
1547    Offset = DAG.getLoad(PtrVT, DL,
1548                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1549                         false, false, false, 0);
1550  } else {
1551    // Local Exec TLS Model
1552    assert(model == TLSModel::LocalExec);
1553    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1554                                               MipsII::MO_TPREL_HI);
1555    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1556                                               MipsII::MO_TPREL_LO);
1557    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1558    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1559    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1560  }
1561
1562  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1563  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1564}
1565
1566SDValue MipsTargetLowering::
1567lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1568{
1569  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1570    return getAddrNonPIC(Op, DAG);
1571
1572  return getAddrLocal(Op, DAG, HasMips64);
1573}
1574
1575SDValue MipsTargetLowering::
1576lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1577{
1578  // gp_rel relocation
1579  // FIXME: we should reference the constant pool using small data sections,
1580  // but the asm printer currently doesn't support this feature without
1581  // hacking it. This feature should come soon so we can uncomment the
1582  // stuff below.
1583  //if (IsInSmallSection(C->getType())) {
1584  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1585  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1586  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1587
1588  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1589    return getAddrNonPIC(Op, DAG);
1590
1591  return getAddrLocal(Op, DAG, HasMips64);
1592}
1593
1594SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1595  MachineFunction &MF = DAG.getMachineFunction();
1596  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1597
1598  DebugLoc DL = Op.getDebugLoc();
1599  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1600                                 getPointerTy());
1601
1602  // vastart just stores the address of the VarArgsFrameIndex slot into the
1603  // memory location argument.
1604  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1605  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1606                      MachinePointerInfo(SV), false, false, 0);
1607}
1608
1609static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1610  EVT TyX = Op.getOperand(0).getValueType();
1611  EVT TyY = Op.getOperand(1).getValueType();
1612  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1613  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1614  DebugLoc DL = Op.getDebugLoc();
1615  SDValue Res;
1616
1617  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1618  // to i32.
1619  SDValue X = (TyX == MVT::f32) ?
1620    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1621    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1622                Const1);
1623  SDValue Y = (TyY == MVT::f32) ?
1624    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1625    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1626                Const1);
1627
1628  if (HasR2) {
1629    // ext  E, Y, 31, 1  ; extract bit31 of Y
1630    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1631    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1632    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1633  } else {
1634    // sll SllX, X, 1
1635    // srl SrlX, SllX, 1
1636    // srl SrlY, Y, 31
1637    // sll SllY, SrlX, 31
1638    // or  Or, SrlX, SllY
1639    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1640    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1641    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1642    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1643    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1644  }
1645
1646  if (TyX == MVT::f32)
1647    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1648
1649  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1650                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1651  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1652}
1653
1654static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1655  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1656  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1657  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1658  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1659  DebugLoc DL = Op.getDebugLoc();
1660
1661  // Bitcast to integer nodes.
1662  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1663  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1664
1665  if (HasR2) {
1666    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1667    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1668    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1669                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1670
1671    if (WidthX > WidthY)
1672      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1673    else if (WidthY > WidthX)
1674      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1675
1676    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1677                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1678    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1679  }
1680
1681  // (d)sll SllX, X, 1
1682  // (d)srl SrlX, SllX, 1
1683  // (d)srl SrlY, Y, width(Y)-1
1684  // (d)sll SllY, SrlX, width(Y)-1
1685  // or     Or, SrlX, SllY
1686  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1687  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1688  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1689                             DAG.getConstant(WidthY - 1, MVT::i32));
1690
1691  if (WidthX > WidthY)
1692    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1693  else if (WidthY > WidthX)
1694    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1695
1696  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1697                             DAG.getConstant(WidthX - 1, MVT::i32));
1698  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1699  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1700}
1701
1702SDValue
1703MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1704  if (Subtarget->hasMips64())
1705    return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1706
1707  return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1708}
1709
1710static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1711  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1712  DebugLoc DL = Op.getDebugLoc();
1713
1714  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1715  // to i32.
1716  SDValue X = (Op.getValueType() == MVT::f32) ?
1717    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1718    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1719                Const1);
1720
1721  // Clear MSB.
1722  if (HasR2)
1723    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1724                      DAG.getRegister(Mips::ZERO, MVT::i32),
1725                      DAG.getConstant(31, MVT::i32), Const1, X);
1726  else {
1727    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1728    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1729  }
1730
1731  if (Op.getValueType() == MVT::f32)
1732    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1733
1734  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1735                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1736  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1737}
1738
1739static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1740  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1741  DebugLoc DL = Op.getDebugLoc();
1742
1743  // Bitcast to integer node.
1744  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1745
1746  // Clear MSB.
1747  if (HasR2)
1748    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1749                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1750                      DAG.getConstant(63, MVT::i32), Const1, X);
1751  else {
1752    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1753    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1754  }
1755
1756  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1757}
1758
1759SDValue
1760MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
1761  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1762    return lowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1763
1764  return lowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1765}
1766
1767SDValue MipsTargetLowering::
1768lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1769  // check the depth
1770  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1771         "Frame address can only be determined for current frame.");
1772
1773  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1774  MFI->setFrameAddressIsTaken(true);
1775  EVT VT = Op.getValueType();
1776  DebugLoc DL = Op.getDebugLoc();
1777  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1778                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1779  return FrameAddr;
1780}
1781
1782SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1783                                            SelectionDAG &DAG) const {
1784  // check the depth
1785  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1786         "Return address can be determined only for current frame.");
1787
1788  MachineFunction &MF = DAG.getMachineFunction();
1789  MachineFrameInfo *MFI = MF.getFrameInfo();
1790  MVT VT = Op.getSimpleValueType();
1791  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1792  MFI->setReturnAddressIsTaken(true);
1793
1794  // Return RA, which contains the return address. Mark it an implicit live-in.
1795  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1796  return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
1797}
1798
1799// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1800// generated from __builtin_eh_return (offset, handler)
1801// The effect of this is to adjust the stack pointer by "offset"
1802// and then branch to "handler".
1803SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1804                                                                     const {
1805  MachineFunction &MF = DAG.getMachineFunction();
1806  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1807
1808  MipsFI->setCallsEhReturn();
1809  SDValue Chain     = Op.getOperand(0);
1810  SDValue Offset    = Op.getOperand(1);
1811  SDValue Handler   = Op.getOperand(2);
1812  DebugLoc DL       = Op.getDebugLoc();
1813  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
1814
1815  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1816  // EH_RETURN nodes, so that instructions are emitted back-to-back.
1817  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
1818  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
1819  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1820  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1821  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1822                     DAG.getRegister(OffsetReg, Ty),
1823                     DAG.getRegister(AddrReg, getPointerTy()),
1824                     Chain.getValue(1));
1825}
1826
1827// TODO: set SType according to the desired memory barrier behavior.
1828SDValue
1829MipsTargetLowering::lowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
1830  unsigned SType = 0;
1831  DebugLoc DL = Op.getDebugLoc();
1832  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1833                     DAG.getConstant(SType, MVT::i32));
1834}
1835
1836SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1837                                              SelectionDAG &DAG) const {
1838  // FIXME: Need pseudo-fence for 'singlethread' fences
1839  // FIXME: Set SType for weaker fences where supported/appropriate.
1840  unsigned SType = 0;
1841  DebugLoc DL = Op.getDebugLoc();
1842  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1843                     DAG.getConstant(SType, MVT::i32));
1844}
1845
1846SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1847                                                SelectionDAG &DAG) const {
1848  DebugLoc DL = Op.getDebugLoc();
1849  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1850  SDValue Shamt = Op.getOperand(2);
1851
1852  // if shamt < 32:
1853  //  lo = (shl lo, shamt)
1854  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1855  // else:
1856  //  lo = 0
1857  //  hi = (shl lo, shamt[4:0])
1858  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1859                            DAG.getConstant(-1, MVT::i32));
1860  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1861                                      DAG.getConstant(1, MVT::i32));
1862  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1863                                     Not);
1864  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1865  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1866  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1867  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1868                             DAG.getConstant(0x20, MVT::i32));
1869  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1870                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1871  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1872
1873  SDValue Ops[2] = {Lo, Hi};
1874  return DAG.getMergeValues(Ops, 2, DL);
1875}
1876
1877SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1878                                                 bool IsSRA) const {
1879  DebugLoc DL = Op.getDebugLoc();
1880  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1881  SDValue Shamt = Op.getOperand(2);
1882
1883  // if shamt < 32:
1884  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1885  //  if isSRA:
1886  //    hi = (sra hi, shamt)
1887  //  else:
1888  //    hi = (srl hi, shamt)
1889  // else:
1890  //  if isSRA:
1891  //   lo = (sra hi, shamt[4:0])
1892  //   hi = (sra hi, 31)
1893  //  else:
1894  //   lo = (srl hi, shamt[4:0])
1895  //   hi = 0
1896  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1897                            DAG.getConstant(-1, MVT::i32));
1898  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1899                                     DAG.getConstant(1, MVT::i32));
1900  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1901  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1902  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1903  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1904                                     Hi, Shamt);
1905  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1906                             DAG.getConstant(0x20, MVT::i32));
1907  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1908                                DAG.getConstant(31, MVT::i32));
1909  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1910  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1911                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
1912                   ShiftRightHi);
1913
1914  SDValue Ops[2] = {Lo, Hi};
1915  return DAG.getMergeValues(Ops, 2, DL);
1916}
1917
1918static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
1919                            SDValue Chain, SDValue Src, unsigned Offset) {
1920  SDValue Ptr = LD->getBasePtr();
1921  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
1922  EVT BasePtrVT = Ptr.getValueType();
1923  DebugLoc DL = LD->getDebugLoc();
1924  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1925
1926  if (Offset)
1927    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1928                      DAG.getConstant(Offset, BasePtrVT));
1929
1930  SDValue Ops[] = { Chain, Ptr, Src };
1931  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
1932                                 LD->getMemOperand());
1933}
1934
1935// Expand an unaligned 32 or 64-bit integer load node.
1936SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1937  LoadSDNode *LD = cast<LoadSDNode>(Op);
1938  EVT MemVT = LD->getMemoryVT();
1939
1940  // Return if load is aligned or if MemVT is neither i32 nor i64.
1941  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
1942      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
1943    return SDValue();
1944
1945  bool IsLittle = Subtarget->isLittle();
1946  EVT VT = Op.getValueType();
1947  ISD::LoadExtType ExtType = LD->getExtensionType();
1948  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
1949
1950  assert((VT == MVT::i32) || (VT == MVT::i64));
1951
1952  // Expand
1953  //  (set dst, (i64 (load baseptr)))
1954  // to
1955  //  (set tmp, (ldl (add baseptr, 7), undef))
1956  //  (set dst, (ldr baseptr, tmp))
1957  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
1958    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
1959                               IsLittle ? 7 : 0);
1960    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
1961                        IsLittle ? 0 : 7);
1962  }
1963
1964  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
1965                             IsLittle ? 3 : 0);
1966  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
1967                             IsLittle ? 0 : 3);
1968
1969  // Expand
1970  //  (set dst, (i32 (load baseptr))) or
1971  //  (set dst, (i64 (sextload baseptr))) or
1972  //  (set dst, (i64 (extload baseptr)))
1973  // to
1974  //  (set tmp, (lwl (add baseptr, 3), undef))
1975  //  (set dst, (lwr baseptr, tmp))
1976  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
1977      (ExtType == ISD::EXTLOAD))
1978    return LWR;
1979
1980  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
1981
1982  // Expand
1983  //  (set dst, (i64 (zextload baseptr)))
1984  // to
1985  //  (set tmp0, (lwl (add baseptr, 3), undef))
1986  //  (set tmp1, (lwr baseptr, tmp0))
1987  //  (set tmp2, (shl tmp1, 32))
1988  //  (set dst, (srl tmp2, 32))
1989  DebugLoc DL = LD->getDebugLoc();
1990  SDValue Const32 = DAG.getConstant(32, MVT::i32);
1991  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
1992  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
1993  SDValue Ops[] = { SRL, LWR.getValue(1) };
1994  return DAG.getMergeValues(Ops, 2, DL);
1995}
1996
1997static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
1998                             SDValue Chain, unsigned Offset) {
1999  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2000  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2001  DebugLoc DL = SD->getDebugLoc();
2002  SDVTList VTList = DAG.getVTList(MVT::Other);
2003
2004  if (Offset)
2005    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2006                      DAG.getConstant(Offset, BasePtrVT));
2007
2008  SDValue Ops[] = { Chain, Value, Ptr };
2009  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2010                                 SD->getMemOperand());
2011}
2012
2013// Expand an unaligned 32 or 64-bit integer store node.
2014SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2015  StoreSDNode *SD = cast<StoreSDNode>(Op);
2016  EVT MemVT = SD->getMemoryVT();
2017
2018  // Return if store is aligned or if MemVT is neither i32 nor i64.
2019  if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2020      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2021    return SDValue();
2022
2023  bool IsLittle = Subtarget->isLittle();
2024  SDValue Value = SD->getValue(), Chain = SD->getChain();
2025  EVT VT = Value.getValueType();
2026
2027  // Expand
2028  //  (store val, baseptr) or
2029  //  (truncstore val, baseptr)
2030  // to
2031  //  (swl val, (add baseptr, 3))
2032  //  (swr val, baseptr)
2033  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2034    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2035                                IsLittle ? 3 : 0);
2036    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2037  }
2038
2039  assert(VT == MVT::i64);
2040
2041  // Expand
2042  //  (store val, baseptr)
2043  // to
2044  //  (sdl val, (add baseptr, 7))
2045  //  (sdr val, baseptr)
2046  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2047  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2048}
2049
2050SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2051  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2052      || cast<ConstantSDNode>
2053        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2054      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2055    return SDValue();
2056
2057  // The pattern
2058  //   (add (frameaddr 0), (frame_to_args_offset))
2059  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2060  //   (add FrameObject, 0)
2061  // where FrameObject is a fixed StackObject with offset 0 which points to
2062  // the old stack pointer.
2063  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2064  EVT ValTy = Op->getValueType(0);
2065  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2066  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2067  return DAG.getNode(ISD::ADD, Op->getDebugLoc(), ValTy, InArgsAddr,
2068                     DAG.getConstant(0, ValTy));
2069}
2070
2071//===----------------------------------------------------------------------===//
2072//                      Calling Convention Implementation
2073//===----------------------------------------------------------------------===//
2074
2075//===----------------------------------------------------------------------===//
2076// TODO: Implement a generic logic using tblgen that can support this.
2077// Mips O32 ABI rules:
2078// ---
2079// i32 - Passed in A0, A1, A2, A3 and stack
2080// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2081//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2082// f64 - Only passed in two aliased f32 registers if no int reg has been used
2083//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2084//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2085//       go to stack.
2086//
2087//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2088//===----------------------------------------------------------------------===//
2089
2090static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2091                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2092                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2093
2094  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2095
2096  static const uint16_t IntRegs[] = {
2097      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2098  };
2099  static const uint16_t F32Regs[] = {
2100      Mips::F12, Mips::F14
2101  };
2102  static const uint16_t F64Regs[] = {
2103      Mips::D6, Mips::D7
2104  };
2105
2106  // Do not process byval args here.
2107  if (ArgFlags.isByVal())
2108    return true;
2109
2110  // Promote i8 and i16
2111  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2112    LocVT = MVT::i32;
2113    if (ArgFlags.isSExt())
2114      LocInfo = CCValAssign::SExt;
2115    else if (ArgFlags.isZExt())
2116      LocInfo = CCValAssign::ZExt;
2117    else
2118      LocInfo = CCValAssign::AExt;
2119  }
2120
2121  unsigned Reg;
2122
2123  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2124  // is true: function is vararg, argument is 3rd or higher, there is previous
2125  // argument which is not f32 or f64.
2126  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2127      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2128  unsigned OrigAlign = ArgFlags.getOrigAlign();
2129  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2130
2131  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2132    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2133    // If this is the first part of an i64 arg,
2134    // the allocated register must be either A0 or A2.
2135    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2136      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2137    LocVT = MVT::i32;
2138  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2139    // Allocate int register and shadow next int register. If first
2140    // available register is Mips::A1 or Mips::A3, shadow it too.
2141    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2142    if (Reg == Mips::A1 || Reg == Mips::A3)
2143      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2144    State.AllocateReg(IntRegs, IntRegsSize);
2145    LocVT = MVT::i32;
2146  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2147    // we are guaranteed to find an available float register
2148    if (ValVT == MVT::f32) {
2149      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2150      // Shadow int register
2151      State.AllocateReg(IntRegs, IntRegsSize);
2152    } else {
2153      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2154      // Shadow int registers
2155      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2156      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2157        State.AllocateReg(IntRegs, IntRegsSize);
2158      State.AllocateReg(IntRegs, IntRegsSize);
2159    }
2160  } else
2161    llvm_unreachable("Cannot handle this ValVT.");
2162
2163  if (!Reg) {
2164    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2165                                          OrigAlign);
2166    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2167  } else
2168    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2169
2170  return false;
2171}
2172
2173#include "MipsGenCallingConv.inc"
2174
2175//===----------------------------------------------------------------------===//
2176//                  Call Calling Convention Implementation
2177//===----------------------------------------------------------------------===//
2178
2179static const unsigned O32IntRegsSize = 4;
2180
2181// Return next O32 integer argument register.
2182static unsigned getNextIntArgReg(unsigned Reg) {
2183  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2184  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2185}
2186
2187SDValue
2188MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2189                                   SDValue Chain, SDValue Arg, DebugLoc DL,
2190                                   bool IsTailCall, SelectionDAG &DAG) const {
2191  if (!IsTailCall) {
2192    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2193                                 DAG.getIntPtrConstant(Offset));
2194    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2195                        false, 0);
2196  }
2197
2198  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2199  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2200  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2201  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2202                      /*isVolatile=*/ true, false, 0);
2203}
2204
2205void MipsTargetLowering::
2206getOpndList(SmallVectorImpl<SDValue> &Ops,
2207            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2208            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2209            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2210  // Insert node "GP copy globalreg" before call to function.
2211  //
2212  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2213  // in PIC mode) allow symbols to be resolved via lazy binding.
2214  // The lazy binding stub requires GP to point to the GOT.
2215  if (IsPICCall && !InternalLinkage) {
2216    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2217    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2218    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2219  }
2220
2221  // Build a sequence of copy-to-reg nodes chained together with token
2222  // chain and flag operands which copy the outgoing args into registers.
2223  // The InFlag in necessary since all emitted instructions must be
2224  // stuck together.
2225  SDValue InFlag;
2226
2227  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2228    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2229                                 RegsToPass[i].second, InFlag);
2230    InFlag = Chain.getValue(1);
2231  }
2232
2233  // Add argument registers to the end of the list so that they are
2234  // known live into the call.
2235  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2236    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2237                                      RegsToPass[i].second.getValueType()));
2238
2239  // Add a register mask operand representing the call-preserved registers.
2240  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2241  const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2242  assert(Mask && "Missing call preserved mask for calling convention");
2243  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2244
2245  if (InFlag.getNode())
2246    Ops.push_back(InFlag);
2247}
2248
2249/// LowerCall - functions arguments are copied from virtual regs to
2250/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2251SDValue
2252MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2253                              SmallVectorImpl<SDValue> &InVals) const {
2254  SelectionDAG &DAG                     = CLI.DAG;
2255  DebugLoc &DL                          = CLI.DL;
2256  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2257  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2258  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2259  SDValue Chain                         = CLI.Chain;
2260  SDValue Callee                        = CLI.Callee;
2261  bool &IsTailCall                      = CLI.IsTailCall;
2262  CallingConv::ID CallConv              = CLI.CallConv;
2263  bool IsVarArg                         = CLI.IsVarArg;
2264
2265  MachineFunction &MF = DAG.getMachineFunction();
2266  MachineFrameInfo *MFI = MF.getFrameInfo();
2267  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2268  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2269
2270  // Analyze operands of the call, assigning locations to each operand.
2271  SmallVector<CCValAssign, 16> ArgLocs;
2272  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2273                 getTargetMachine(), ArgLocs, *DAG.getContext());
2274  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2275
2276  MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2277                                 getTargetMachine().Options.UseSoftFloat,
2278                                 Callee.getNode(), CLI.Args);
2279
2280  // Get a count of how many bytes are to be pushed on the stack.
2281  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2282
2283  // Check if it's really possible to do a tail call.
2284  if (IsTailCall)
2285    IsTailCall =
2286      isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2287                                        *MF.getInfo<MipsFunctionInfo>());
2288
2289  if (IsTailCall)
2290    ++NumTailCalls;
2291
2292  // Chain is the output chain of the last Load/Store or CopyToReg node.
2293  // ByValChain is the output chain of the last Memcpy node created for copying
2294  // byval arguments to the stack.
2295  unsigned StackAlignment = TFL->getStackAlignment();
2296  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2297  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2298
2299  if (!IsTailCall)
2300    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
2301
2302  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
2303                                        IsN64 ? Mips::SP_64 : Mips::SP,
2304                                        getPointerTy());
2305
2306  // With EABI is it possible to have 16 args on registers.
2307  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2308  SmallVector<SDValue, 8> MemOpChains;
2309  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2310
2311  // Walk the register/memloc assignments, inserting copies/loads.
2312  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2313    SDValue Arg = OutVals[i];
2314    CCValAssign &VA = ArgLocs[i];
2315    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2316    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2317
2318    // ByVal Arg.
2319    if (Flags.isByVal()) {
2320      assert(Flags.getByValSize() &&
2321             "ByVal args of size 0 should have been ignored by front-end.");
2322      assert(ByValArg != MipsCCInfo.byval_end());
2323      assert(!IsTailCall &&
2324             "Do not tail-call optimize if there is a byval argument.");
2325      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2326                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2327      ++ByValArg;
2328      continue;
2329    }
2330
2331    // Promote the value if needed.
2332    switch (VA.getLocInfo()) {
2333    default: llvm_unreachable("Unknown loc info!");
2334    case CCValAssign::Full:
2335      if (VA.isRegLoc()) {
2336        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2337            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2338            (ValVT == MVT::i64 && LocVT == MVT::f64))
2339          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2340        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2341          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2342                                   Arg, DAG.getConstant(0, MVT::i32));
2343          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2344                                   Arg, DAG.getConstant(1, MVT::i32));
2345          if (!Subtarget->isLittle())
2346            std::swap(Lo, Hi);
2347          unsigned LocRegLo = VA.getLocReg();
2348          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2349          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2350          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2351          continue;
2352        }
2353      }
2354      break;
2355    case CCValAssign::SExt:
2356      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2357      break;
2358    case CCValAssign::ZExt:
2359      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2360      break;
2361    case CCValAssign::AExt:
2362      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2363      break;
2364    }
2365
2366    // Arguments that can be passed on register must be kept at
2367    // RegsToPass vector
2368    if (VA.isRegLoc()) {
2369      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2370      continue;
2371    }
2372
2373    // Register can't get to this point...
2374    assert(VA.isMemLoc());
2375
2376    // emit ISD::STORE whichs stores the
2377    // parameter value to a stack Location
2378    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2379                                         Chain, Arg, DL, IsTailCall, DAG));
2380  }
2381
2382  // Transform all store nodes into one single node because all store
2383  // nodes are independent of each other.
2384  if (!MemOpChains.empty())
2385    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2386                        &MemOpChains[0], MemOpChains.size());
2387
2388  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2389  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2390  // node so that legalize doesn't hack it.
2391  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2392  bool GlobalOrExternal = false, InternalLinkage = false;
2393  SDValue CalleeLo;
2394
2395  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2396    if (IsPICCall) {
2397      InternalLinkage = G->getGlobal()->hasInternalLinkage();
2398
2399      if (InternalLinkage)
2400        Callee = getAddrLocal(Callee, DAG, HasMips64);
2401      else if (LargeGOT)
2402        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2403                                       MipsII::MO_CALL_LO16);
2404      else
2405        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2406    } else
2407      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2408                                          MipsII::MO_NO_FLAG);
2409    GlobalOrExternal = true;
2410  }
2411  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2412    if (!IsN64 && !IsPIC) // !N64 && static
2413      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2414                                            MipsII::MO_NO_FLAG);
2415    else if (LargeGOT)
2416      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2417                                     MipsII::MO_CALL_LO16);
2418    else // N64 || PIC
2419      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2420
2421    GlobalOrExternal = true;
2422  }
2423
2424  SmallVector<SDValue, 8> Ops(1, Chain);
2425  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2426
2427  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2428              CLI, Callee, Chain);
2429
2430  if (IsTailCall)
2431    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
2432
2433  Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
2434  SDValue InFlag = Chain.getValue(1);
2435
2436  // Create the CALLSEQ_END node.
2437  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2438                             DAG.getIntPtrConstant(0, true), InFlag);
2439  InFlag = Chain.getValue(1);
2440
2441  // Handle result values, copying them out of physregs into vregs that we
2442  // return.
2443  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2444                         Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2445}
2446
2447/// LowerCallResult - Lower the result values of a call into the
2448/// appropriate copies out of appropriate physical registers.
2449SDValue
2450MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2451                                    CallingConv::ID CallConv, bool IsVarArg,
2452                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2453                                    DebugLoc DL, SelectionDAG &DAG,
2454                                    SmallVectorImpl<SDValue> &InVals,
2455                                    const SDNode *CallNode,
2456                                    const Type *RetTy) const {
2457  // Assign locations to each value returned by this call.
2458  SmallVector<CCValAssign, 16> RVLocs;
2459  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2460                 getTargetMachine(), RVLocs, *DAG.getContext());
2461  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2462
2463  MipsCCInfo.analyzeCallResult(Ins, getTargetMachine().Options.UseSoftFloat,
2464                               CallNode, RetTy);
2465
2466  // Copy all of the result registers out of their specified physreg.
2467  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2468    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2469                                     RVLocs[i].getLocVT(), InFlag);
2470    Chain = Val.getValue(1);
2471    InFlag = Val.getValue(2);
2472
2473    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2474      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2475
2476    InVals.push_back(Val);
2477  }
2478
2479  return Chain;
2480}
2481
2482//===----------------------------------------------------------------------===//
2483//             Formal Arguments Calling Convention Implementation
2484//===----------------------------------------------------------------------===//
2485/// LowerFormalArguments - transform physical registers into virtual registers
2486/// and generate load operations for arguments places on the stack.
2487SDValue
2488MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2489                                         CallingConv::ID CallConv,
2490                                         bool IsVarArg,
2491                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2492                                         DebugLoc DL, SelectionDAG &DAG,
2493                                         SmallVectorImpl<SDValue> &InVals)
2494                                          const {
2495  MachineFunction &MF = DAG.getMachineFunction();
2496  MachineFrameInfo *MFI = MF.getFrameInfo();
2497  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2498
2499  MipsFI->setVarArgsFrameIndex(0);
2500
2501  // Used with vargs to acumulate store chains.
2502  std::vector<SDValue> OutChains;
2503
2504  // Assign locations to all of the incoming arguments.
2505  SmallVector<CCValAssign, 16> ArgLocs;
2506  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2507                 getTargetMachine(), ArgLocs, *DAG.getContext());
2508  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2509  Function::const_arg_iterator FuncArg =
2510    DAG.getMachineFunction().getFunction()->arg_begin();
2511  bool UseSoftFloat = getTargetMachine().Options.UseSoftFloat;
2512
2513  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2514  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2515                           MipsCCInfo.hasByValArg());
2516
2517  unsigned CurArgIdx = 0;
2518  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2519
2520  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2521    CCValAssign &VA = ArgLocs[i];
2522    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2523    CurArgIdx = Ins[i].OrigArgIndex;
2524    EVT ValVT = VA.getValVT();
2525    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2526    bool IsRegLoc = VA.isRegLoc();
2527
2528    if (Flags.isByVal()) {
2529      assert(Flags.getByValSize() &&
2530             "ByVal args of size 0 should have been ignored by front-end.");
2531      assert(ByValArg != MipsCCInfo.byval_end());
2532      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2533                    MipsCCInfo, *ByValArg);
2534      ++ByValArg;
2535      continue;
2536    }
2537
2538    // Arguments stored on registers
2539    if (IsRegLoc) {
2540      EVT RegVT = VA.getLocVT();
2541      unsigned ArgReg = VA.getLocReg();
2542      const TargetRegisterClass *RC;
2543
2544      if (RegVT == MVT::i32)
2545        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
2546                                        &Mips::CPURegsRegClass;
2547      else if (RegVT == MVT::i64)
2548        RC = &Mips::CPU64RegsRegClass;
2549      else if (RegVT == MVT::f32)
2550        RC = &Mips::FGR32RegClass;
2551      else if (RegVT == MVT::f64)
2552        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
2553      else
2554        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2555
2556      // Transform the arguments stored on
2557      // physical registers into virtual ones
2558      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2559      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2560
2561      // If this is an 8 or 16-bit value, it has been passed promoted
2562      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2563      // truncate to the right size.
2564      if (VA.getLocInfo() != CCValAssign::Full) {
2565        unsigned Opcode = 0;
2566        if (VA.getLocInfo() == CCValAssign::SExt)
2567          Opcode = ISD::AssertSext;
2568        else if (VA.getLocInfo() == CCValAssign::ZExt)
2569          Opcode = ISD::AssertZext;
2570        if (Opcode)
2571          ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2572                                 DAG.getValueType(ValVT));
2573        ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2574      }
2575
2576      // Handle floating point arguments passed in integer registers and
2577      // long double arguments passed in floating point registers.
2578      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2579          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2580          (RegVT == MVT::f64 && ValVT == MVT::i64))
2581        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2582      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2583        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2584                                  getNextIntArgReg(ArgReg), RC);
2585        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2586        if (!Subtarget->isLittle())
2587          std::swap(ArgValue, ArgValue2);
2588        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2589                               ArgValue, ArgValue2);
2590      }
2591
2592      InVals.push_back(ArgValue);
2593    } else { // VA.isRegLoc()
2594
2595      // sanity check
2596      assert(VA.isMemLoc());
2597
2598      // The stack pointer offset is relative to the caller stack frame.
2599      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2600                                      VA.getLocMemOffset(), true);
2601
2602      // Create load nodes to retrieve arguments from the stack
2603      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2604      InVals.push_back(DAG.getLoad(ValVT, DL, Chain, FIN,
2605                                   MachinePointerInfo::getFixedStack(FI),
2606                                   false, false, false, 0));
2607    }
2608  }
2609
2610  // The mips ABIs for returning structs by value requires that we copy
2611  // the sret argument into $v0 for the return. Save the argument into
2612  // a virtual register so that we can access it from the return points.
2613  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2614    unsigned Reg = MipsFI->getSRetReturnReg();
2615    if (!Reg) {
2616      Reg = MF.getRegInfo().
2617        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
2618      MipsFI->setSRetReturnReg(Reg);
2619    }
2620    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
2621    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2622  }
2623
2624  if (IsVarArg)
2625    writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2626
2627  // All stores are grouped in one node to allow the matching between
2628  // the size of Ins and InVals. This only happens when on varg functions
2629  if (!OutChains.empty()) {
2630    OutChains.push_back(Chain);
2631    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2632                        &OutChains[0], OutChains.size());
2633  }
2634
2635  return Chain;
2636}
2637
2638//===----------------------------------------------------------------------===//
2639//               Return Value Calling Convention Implementation
2640//===----------------------------------------------------------------------===//
2641
2642bool
2643MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2644                                   MachineFunction &MF, bool IsVarArg,
2645                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2646                                   LLVMContext &Context) const {
2647  SmallVector<CCValAssign, 16> RVLocs;
2648  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2649                 RVLocs, Context);
2650  return CCInfo.CheckReturn(Outs, RetCC_Mips);
2651}
2652
2653SDValue
2654MipsTargetLowering::LowerReturn(SDValue Chain,
2655                                CallingConv::ID CallConv, bool IsVarArg,
2656                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2657                                const SmallVectorImpl<SDValue> &OutVals,
2658                                DebugLoc DL, SelectionDAG &DAG) const {
2659  // CCValAssign - represent the assignment of
2660  // the return value to a location
2661  SmallVector<CCValAssign, 16> RVLocs;
2662  MachineFunction &MF = DAG.getMachineFunction();
2663
2664  // CCState - Info about the registers and stack slot.
2665  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2666                 *DAG.getContext());
2667  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2668
2669  // Analyze return values.
2670  MipsCCInfo.analyzeReturn(Outs, getTargetMachine().Options.UseSoftFloat,
2671                           MF.getFunction()->getReturnType());
2672
2673  SDValue Flag;
2674  SmallVector<SDValue, 4> RetOps(1, Chain);
2675
2676  // Copy the result values into the output registers.
2677  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2678    SDValue Val = OutVals[i];
2679    CCValAssign &VA = RVLocs[i];
2680    assert(VA.isRegLoc() && "Can only return in registers!");
2681
2682    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2683      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2684
2685    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2686
2687    // Guarantee that all emitted copies are stuck together with flags.
2688    Flag = Chain.getValue(1);
2689    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2690  }
2691
2692  // The mips ABIs for returning structs by value requires that we copy
2693  // the sret argument into $v0 for the return. We saved the argument into
2694  // a virtual register in the entry block, so now we copy the value out
2695  // and into $v0.
2696  if (MF.getFunction()->hasStructRetAttr()) {
2697    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2698    unsigned Reg = MipsFI->getSRetReturnReg();
2699
2700    if (!Reg)
2701      llvm_unreachable("sret virtual register not created in the entry block");
2702    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2703    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
2704
2705    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2706    Flag = Chain.getValue(1);
2707    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2708  }
2709
2710  RetOps[0] = Chain;  // Update chain.
2711
2712  // Add the flag if we have it.
2713  if (Flag.getNode())
2714    RetOps.push_back(Flag);
2715
2716  // Return on Mips is always a "jr $ra"
2717  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
2718}
2719
2720//===----------------------------------------------------------------------===//
2721//                           Mips Inline Assembly Support
2722//===----------------------------------------------------------------------===//
2723
2724/// getConstraintType - Given a constraint letter, return the type of
2725/// constraint it is for this target.
2726MipsTargetLowering::ConstraintType MipsTargetLowering::
2727getConstraintType(const std::string &Constraint) const
2728{
2729  // Mips specific constrainy
2730  // GCC config/mips/constraints.md
2731  //
2732  // 'd' : An address register. Equivalent to r
2733  //       unless generating MIPS16 code.
2734  // 'y' : Equivalent to r; retained for
2735  //       backwards compatibility.
2736  // 'c' : A register suitable for use in an indirect
2737  //       jump. This will always be $25 for -mabicalls.
2738  // 'l' : The lo register. 1 word storage.
2739  // 'x' : The hilo register pair. Double word storage.
2740  if (Constraint.size() == 1) {
2741    switch (Constraint[0]) {
2742      default : break;
2743      case 'd':
2744      case 'y':
2745      case 'f':
2746      case 'c':
2747      case 'l':
2748      case 'x':
2749        return C_RegisterClass;
2750      case 'R':
2751        return C_Memory;
2752    }
2753  }
2754  return TargetLowering::getConstraintType(Constraint);
2755}
2756
2757/// Examine constraint type and operand type and determine a weight value.
2758/// This object must already have been set up with the operand type
2759/// and the current alternative constraint selected.
2760TargetLowering::ConstraintWeight
2761MipsTargetLowering::getSingleConstraintMatchWeight(
2762    AsmOperandInfo &info, const char *constraint) const {
2763  ConstraintWeight weight = CW_Invalid;
2764  Value *CallOperandVal = info.CallOperandVal;
2765    // If we don't have a value, we can't do a match,
2766    // but allow it at the lowest weight.
2767  if (CallOperandVal == NULL)
2768    return CW_Default;
2769  Type *type = CallOperandVal->getType();
2770  // Look at the constraint type.
2771  switch (*constraint) {
2772  default:
2773    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2774    break;
2775  case 'd':
2776  case 'y':
2777    if (type->isIntegerTy())
2778      weight = CW_Register;
2779    break;
2780  case 'f':
2781    if (type->isFloatTy())
2782      weight = CW_Register;
2783    break;
2784  case 'c': // $25 for indirect jumps
2785  case 'l': // lo register
2786  case 'x': // hilo register pair
2787      if (type->isIntegerTy())
2788      weight = CW_SpecificReg;
2789      break;
2790  case 'I': // signed 16 bit immediate
2791  case 'J': // integer zero
2792  case 'K': // unsigned 16 bit immediate
2793  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2794  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2795  case 'O': // signed 15 bit immediate (+- 16383)
2796  case 'P': // immediate in the range of 65535 to 1 (inclusive)
2797    if (isa<ConstantInt>(CallOperandVal))
2798      weight = CW_Constant;
2799    break;
2800  case 'R':
2801    weight = CW_Memory;
2802    break;
2803  }
2804  return weight;
2805}
2806
2807/// Given a register class constraint, like 'r', if this corresponds directly
2808/// to an LLVM register class, return a register of 0 and the register class
2809/// pointer.
2810std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2811getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
2812{
2813  if (Constraint.size() == 1) {
2814    switch (Constraint[0]) {
2815    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2816    case 'y': // Same as 'r'. Exists for compatibility.
2817    case 'r':
2818      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
2819        if (Subtarget->inMips16Mode())
2820          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
2821        return std::make_pair(0U, &Mips::CPURegsRegClass);
2822      }
2823      if (VT == MVT::i64 && !HasMips64)
2824        return std::make_pair(0U, &Mips::CPURegsRegClass);
2825      if (VT == MVT::i64 && HasMips64)
2826        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
2827      // This will generate an error message
2828      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2829    case 'f':
2830      if (VT == MVT::f32)
2831        return std::make_pair(0U, &Mips::FGR32RegClass);
2832      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2833        if (Subtarget->isFP64bit())
2834          return std::make_pair(0U, &Mips::FGR64RegClass);
2835        return std::make_pair(0U, &Mips::AFGR64RegClass);
2836      }
2837      break;
2838    case 'c': // register suitable for indirect jump
2839      if (VT == MVT::i32)
2840        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
2841      assert(VT == MVT::i64 && "Unexpected type.");
2842      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
2843    case 'l': // register suitable for indirect jump
2844      if (VT == MVT::i32)
2845        return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
2846      return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
2847    case 'x': // register suitable for indirect jump
2848      // Fixme: Not triggering the use of both hi and low
2849      // This will generate an error message
2850      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2851    }
2852  }
2853  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2854}
2855
2856/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2857/// vector.  If it is invalid, don't add anything to Ops.
2858void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2859                                                     std::string &Constraint,
2860                                                     std::vector<SDValue>&Ops,
2861                                                     SelectionDAG &DAG) const {
2862  SDValue Result(0, 0);
2863
2864  // Only support length 1 constraints for now.
2865  if (Constraint.length() > 1) return;
2866
2867  char ConstraintLetter = Constraint[0];
2868  switch (ConstraintLetter) {
2869  default: break; // This will fall through to the generic implementation
2870  case 'I': // Signed 16 bit constant
2871    // If this fails, the parent routine will give an error
2872    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2873      EVT Type = Op.getValueType();
2874      int64_t Val = C->getSExtValue();
2875      if (isInt<16>(Val)) {
2876        Result = DAG.getTargetConstant(Val, Type);
2877        break;
2878      }
2879    }
2880    return;
2881  case 'J': // integer zero
2882    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2883      EVT Type = Op.getValueType();
2884      int64_t Val = C->getZExtValue();
2885      if (Val == 0) {
2886        Result = DAG.getTargetConstant(0, Type);
2887        break;
2888      }
2889    }
2890    return;
2891  case 'K': // unsigned 16 bit immediate
2892    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2893      EVT Type = Op.getValueType();
2894      uint64_t Val = (uint64_t)C->getZExtValue();
2895      if (isUInt<16>(Val)) {
2896        Result = DAG.getTargetConstant(Val, Type);
2897        break;
2898      }
2899    }
2900    return;
2901  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2902    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2903      EVT Type = Op.getValueType();
2904      int64_t Val = C->getSExtValue();
2905      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
2906        Result = DAG.getTargetConstant(Val, Type);
2907        break;
2908      }
2909    }
2910    return;
2911  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2912    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2913      EVT Type = Op.getValueType();
2914      int64_t Val = C->getSExtValue();
2915      if ((Val >= -65535) && (Val <= -1)) {
2916        Result = DAG.getTargetConstant(Val, Type);
2917        break;
2918      }
2919    }
2920    return;
2921  case 'O': // signed 15 bit immediate
2922    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2923      EVT Type = Op.getValueType();
2924      int64_t Val = C->getSExtValue();
2925      if ((isInt<15>(Val))) {
2926        Result = DAG.getTargetConstant(Val, Type);
2927        break;
2928      }
2929    }
2930    return;
2931  case 'P': // immediate in the range of 1 to 65535 (inclusive)
2932    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2933      EVT Type = Op.getValueType();
2934      int64_t Val = C->getSExtValue();
2935      if ((Val <= 65535) && (Val >= 1)) {
2936        Result = DAG.getTargetConstant(Val, Type);
2937        break;
2938      }
2939    }
2940    return;
2941  }
2942
2943  if (Result.getNode()) {
2944    Ops.push_back(Result);
2945    return;
2946  }
2947
2948  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2949}
2950
2951bool
2952MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
2953  // No global is ever allowed as a base.
2954  if (AM.BaseGV)
2955    return false;
2956
2957  switch (AM.Scale) {
2958  case 0: // "r+i" or just "i", depending on HasBaseReg.
2959    break;
2960  case 1:
2961    if (!AM.HasBaseReg) // allow "r+i".
2962      break;
2963    return false; // disallow "r+r" or "r+r+i".
2964  default:
2965    return false;
2966  }
2967
2968  return true;
2969}
2970
2971bool
2972MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
2973  // The Mips target isn't yet aware of offsets.
2974  return false;
2975}
2976
2977EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
2978                                            unsigned SrcAlign,
2979                                            bool IsMemset, bool ZeroMemset,
2980                                            bool MemcpyStrSrc,
2981                                            MachineFunction &MF) const {
2982  if (Subtarget->hasMips64())
2983    return MVT::i64;
2984
2985  return MVT::i32;
2986}
2987
2988bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2989  if (VT != MVT::f32 && VT != MVT::f64)
2990    return false;
2991  if (Imm.isNegZero())
2992    return false;
2993  return Imm.isZero();
2994}
2995
2996unsigned MipsTargetLowering::getJumpTableEncoding() const {
2997  if (IsN64)
2998    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
2999
3000  return TargetLowering::getJumpTableEncoding();
3001}
3002
3003/// This function returns true if CallSym is a long double emulation routine.
3004static bool isF128SoftLibCall(const char *CallSym) {
3005  const char *const LibCalls[] =
3006    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3007     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3008     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3009     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3010     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3011     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3012     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3013     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3014     "truncl"};
3015
3016  const char * const *End = LibCalls + array_lengthof(LibCalls);
3017
3018  // Check that LibCalls is sorted alphabetically.
3019  MipsTargetLowering::LTStr Comp;
3020
3021#ifndef NDEBUG
3022  for (const char * const *I = LibCalls; I < End - 1; ++I)
3023    assert(Comp(*I, *(I + 1)));
3024#endif
3025
3026  return std::binary_search(LibCalls, End, CallSym, Comp);
3027}
3028
3029/// This function returns true if Ty is fp128 or i128 which was originally a
3030/// fp128.
3031static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3032  if (Ty->isFP128Ty())
3033    return true;
3034
3035  const ExternalSymbolSDNode *ES =
3036    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3037
3038  // If the Ty is i128 and the function being called is a long double emulation
3039  // routine, then the original type is f128.
3040  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3041}
3042
3043MipsTargetLowering::MipsCC::MipsCC(CallingConv::ID CC, bool IsO32_,
3044                                   CCState &Info)
3045  : CCInfo(Info), CallConv(CC), IsO32(IsO32_) {
3046  // Pre-allocate reserved argument area.
3047  CCInfo.AllocateStack(reservedArgArea(), 1);
3048}
3049
3050void MipsTargetLowering::MipsCC::
3051analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3052                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3053                    std::vector<ArgListEntry> &FuncArgs) {
3054  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3055         "CallingConv::Fast shouldn't be used for vararg functions.");
3056
3057  unsigned NumOpnds = Args.size();
3058  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3059
3060  for (unsigned I = 0; I != NumOpnds; ++I) {
3061    MVT ArgVT = Args[I].VT;
3062    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3063    bool R;
3064
3065    if (ArgFlags.isByVal()) {
3066      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3067      continue;
3068    }
3069
3070    if (IsVarArg && !Args[I].IsFixed)
3071      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3072    else {
3073      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3074                           IsSoftFloat);
3075      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3076    }
3077
3078    if (R) {
3079#ifndef NDEBUG
3080      dbgs() << "Call operand #" << I << " has unhandled type "
3081             << EVT(ArgVT).getEVTString();
3082#endif
3083      llvm_unreachable(0);
3084    }
3085  }
3086}
3087
3088void MipsTargetLowering::MipsCC::
3089analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3090                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3091  unsigned NumArgs = Args.size();
3092  llvm::CCAssignFn *FixedFn = fixedArgFn();
3093  unsigned CurArgIdx = 0;
3094
3095  for (unsigned I = 0; I != NumArgs; ++I) {
3096    MVT ArgVT = Args[I].VT;
3097    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3098    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3099    CurArgIdx = Args[I].OrigArgIndex;
3100
3101    if (ArgFlags.isByVal()) {
3102      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3103      continue;
3104    }
3105
3106    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
3107
3108    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3109      continue;
3110
3111#ifndef NDEBUG
3112    dbgs() << "Formal Arg #" << I << " has unhandled type "
3113           << EVT(ArgVT).getEVTString();
3114#endif
3115    llvm_unreachable(0);
3116  }
3117}
3118
3119template<typename Ty>
3120void MipsTargetLowering::MipsCC::
3121analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3122              const SDNode *CallNode, const Type *RetTy) const {
3123  CCAssignFn *Fn;
3124
3125  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3126    Fn = RetCC_F128Soft;
3127  else
3128    Fn = RetCC_Mips;
3129
3130  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3131    MVT VT = RetVals[I].VT;
3132    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3133    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3134
3135    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3136#ifndef NDEBUG
3137      dbgs() << "Call result #" << I << " has unhandled type "
3138             << EVT(VT).getEVTString() << '\n';
3139#endif
3140      llvm_unreachable(0);
3141    }
3142  }
3143}
3144
3145void MipsTargetLowering::MipsCC::
3146analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3147                  const SDNode *CallNode, const Type *RetTy) const {
3148  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3149}
3150
3151void MipsTargetLowering::MipsCC::
3152analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3153              const Type *RetTy) const {
3154  analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
3155}
3156
3157void
3158MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3159                                           MVT LocVT,
3160                                           CCValAssign::LocInfo LocInfo,
3161                                           ISD::ArgFlagsTy ArgFlags) {
3162  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3163
3164  struct ByValArgInfo ByVal;
3165  unsigned RegSize = regSize();
3166  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3167  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3168                            RegSize * 2);
3169
3170  if (useRegsForByval())
3171    allocateRegs(ByVal, ByValSize, Align);
3172
3173  // Allocate space on caller's stack.
3174  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3175                                       Align);
3176  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3177                                    LocInfo));
3178  ByValArgs.push_back(ByVal);
3179}
3180
3181unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3182  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3183}
3184
3185unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3186  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3187}
3188
3189const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
3190  return IsO32 ? O32IntRegs : Mips64IntRegs;
3191}
3192
3193llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3194  if (CallConv == CallingConv::Fast)
3195    return CC_Mips_FastCC;
3196
3197  return IsO32 ? CC_MipsO32 : CC_MipsN;
3198}
3199
3200llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3201  return IsO32 ? CC_MipsO32 : CC_MipsN_VarArg;
3202}
3203
3204const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
3205  return IsO32 ? O32IntRegs : Mips64DPRegs;
3206}
3207
3208void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3209                                              unsigned ByValSize,
3210                                              unsigned Align) {
3211  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3212  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3213  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3214         "Byval argument's size and alignment should be a multiple of"
3215         "RegSize.");
3216
3217  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3218
3219  // If Align > RegSize, the first arg register must be even.
3220  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3221    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3222    ++ByVal.FirstIdx;
3223  }
3224
3225  // Mark the registers allocated.
3226  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3227       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3228    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3229}
3230
3231MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3232                                         const SDNode *CallNode,
3233                                         bool IsSoftFloat) const {
3234  if (IsSoftFloat || IsO32)
3235    return VT;
3236
3237  // Check if the original type was fp128.
3238  if (originalTypeIsF128(OrigTy, CallNode)) {
3239    assert(VT == MVT::i64);
3240    return MVT::f64;
3241  }
3242
3243  return VT;
3244}
3245
3246void MipsTargetLowering::
3247copyByValRegs(SDValue Chain, DebugLoc DL, std::vector<SDValue> &OutChains,
3248              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3249              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3250              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3251  MachineFunction &MF = DAG.getMachineFunction();
3252  MachineFrameInfo *MFI = MF.getFrameInfo();
3253  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3254  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3255  int FrameObjOffset;
3256
3257  if (RegAreaSize)
3258    FrameObjOffset = (int)CC.reservedArgArea() -
3259      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3260  else
3261    FrameObjOffset = ByVal.Address;
3262
3263  // Create frame object.
3264  EVT PtrTy = getPointerTy();
3265  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3266  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3267  InVals.push_back(FIN);
3268
3269  if (!ByVal.NumRegs)
3270    return;
3271
3272  // Copy arg registers.
3273  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3274  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3275
3276  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3277    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3278    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3279    unsigned Offset = I * CC.regSize();
3280    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3281                                   DAG.getConstant(Offset, PtrTy));
3282    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3283                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3284                                 false, false, 0);
3285    OutChains.push_back(Store);
3286  }
3287}
3288
3289// Copy byVal arg to registers and stack.
3290void MipsTargetLowering::
3291passByValArg(SDValue Chain, DebugLoc DL,
3292             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3293             SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
3294             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3295             const MipsCC &CC, const ByValArgInfo &ByVal,
3296             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3297  unsigned ByValSize = Flags.getByValSize();
3298  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3299  unsigned RegSize = CC.regSize();
3300  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3301  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3302
3303  if (ByVal.NumRegs) {
3304    const uint16_t *ArgRegs = CC.intArgRegs();
3305    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3306    unsigned I = 0;
3307
3308    // Copy words to registers.
3309    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3310      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3311                                    DAG.getConstant(Offset, PtrTy));
3312      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3313                                    MachinePointerInfo(), false, false, false,
3314                                    Alignment);
3315      MemOpChains.push_back(LoadVal.getValue(1));
3316      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3317      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3318    }
3319
3320    // Return if the struct has been fully copied.
3321    if (ByValSize == Offset)
3322      return;
3323
3324    // Copy the remainder of the byval argument with sub-word loads and shifts.
3325    if (LeftoverBytes) {
3326      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3327             "Size of the remainder should be smaller than RegSize.");
3328      SDValue Val;
3329
3330      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3331           Offset < ByValSize; LoadSize /= 2) {
3332        unsigned RemSize = ByValSize - Offset;
3333
3334        if (RemSize < LoadSize)
3335          continue;
3336
3337        // Load subword.
3338        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3339                                      DAG.getConstant(Offset, PtrTy));
3340        SDValue LoadVal =
3341          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3342                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3343                         false, false, Alignment);
3344        MemOpChains.push_back(LoadVal.getValue(1));
3345
3346        // Shift the loaded value.
3347        unsigned Shamt;
3348
3349        if (isLittle)
3350          Shamt = TotalSizeLoaded;
3351        else
3352          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3353
3354        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3355                                    DAG.getConstant(Shamt, MVT::i32));
3356
3357        if (Val.getNode())
3358          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3359        else
3360          Val = Shift;
3361
3362        Offset += LoadSize;
3363        TotalSizeLoaded += LoadSize;
3364        Alignment = std::min(Alignment, LoadSize);
3365      }
3366
3367      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3368      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3369      return;
3370    }
3371  }
3372
3373  // Copy remainder of byval arg to it with memcpy.
3374  unsigned MemCpySize = ByValSize - Offset;
3375  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3376                            DAG.getConstant(Offset, PtrTy));
3377  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3378                            DAG.getIntPtrConstant(ByVal.Address));
3379  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
3380                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
3381                        /*isVolatile=*/false, /*AlwaysInline=*/false,
3382                        MachinePointerInfo(0), MachinePointerInfo(0));
3383  MemOpChains.push_back(Chain);
3384}
3385
3386void
3387MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3388                                    const MipsCC &CC, SDValue Chain,
3389                                    DebugLoc DL, SelectionDAG &DAG) const {
3390  unsigned NumRegs = CC.numIntArgRegs();
3391  const uint16_t *ArgRegs = CC.intArgRegs();
3392  const CCState &CCInfo = CC.getCCInfo();
3393  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3394  unsigned RegSize = CC.regSize();
3395  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3396  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3397  MachineFunction &MF = DAG.getMachineFunction();
3398  MachineFrameInfo *MFI = MF.getFrameInfo();
3399  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3400
3401  // Offset of the first variable argument from stack pointer.
3402  int VaArgOffset;
3403
3404  if (NumRegs == Idx)
3405    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3406  else
3407    VaArgOffset =
3408      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3409
3410  // Record the frame index of the first variable argument
3411  // which is a value necessary to VASTART.
3412  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3413  MipsFI->setVarArgsFrameIndex(FI);
3414
3415  // Copy the integer registers that have not been used for argument passing
3416  // to the argument register save area. For O32, the save area is allocated
3417  // in the caller's stack frame, while for N32/64, it is allocated in the
3418  // callee's stack frame.
3419  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3420    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3421    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3422    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3423    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3424    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3425                                 MachinePointerInfo(), false, false, 0);
3426    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3427    OutChains.push_back(Store);
3428  }
3429}
3430