MipsISelLowering.cpp revision ae7e7cb3d3ec657b7e6dd94cf036cdc65c182f59
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include "MipsISelLowering.h"
16#include "InstPrinter/MipsInstPrinter.h"
17#include "MCTargetDesc/MipsBaseInfo.h"
18#include "MipsMachineFunction.h"
19#include "MipsSubtarget.h"
20#include "MipsTargetMachine.h"
21#include "MipsTargetObjectFile.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37
38using namespace llvm;
39
40STATISTIC(NumTailCalls, "Number of tail calls");
41
42static cl::opt<bool>
43LargeGOT("mxgot", cl::Hidden,
44         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
45
46static const uint16_t O32IntRegs[4] = {
47  Mips::A0, Mips::A1, Mips::A2, Mips::A3
48};
49
50static const uint16_t Mips64IntRegs[8] = {
51  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
52  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
53};
54
55static const uint16_t Mips64DPRegs[8] = {
56  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
57  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
58};
59
60// If I is a shifted mask, set the size (Size) and the first bit of the
61// mask (Pos), and return true.
62// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
63static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
64  if (!isShiftedMask_64(I))
65     return false;
66
67  Size = CountPopulation_64(I);
68  Pos = CountTrailingZeros_64(I);
69  return true;
70}
71
72SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
73  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
74  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
75}
76
77static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
78  EVT Ty = Op.getValueType();
79
80  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
81    return DAG.getTargetGlobalAddress(N->getGlobal(), Op.getDebugLoc(), Ty, 0,
82                                      Flag);
83  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
84    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
85  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
86    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
87  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
88    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
89  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
90    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
91                                     N->getOffset(), Flag);
92
93  llvm_unreachable("Unexpected node type.");
94  return SDValue();
95}
96
97static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
98  DebugLoc DL = Op.getDebugLoc();
99  EVT Ty = Op.getValueType();
100  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
101  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
102  return DAG.getNode(ISD::ADD, DL, Ty,
103                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
104                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
105}
106
107SDValue MipsTargetLowering::getAddrLocal(SDValue Op, SelectionDAG &DAG,
108                                         bool HasMips64) const {
109  DebugLoc DL = Op.getDebugLoc();
110  EVT Ty = Op.getValueType();
111  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
112  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
113                            getTargetNode(Op, DAG, GOTFlag));
114  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
115                             MachinePointerInfo::getGOT(), false, false, false,
116                             0);
117  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
118  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
119  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
120}
121
122SDValue MipsTargetLowering::getAddrGlobal(SDValue Op, SelectionDAG &DAG,
123                                          unsigned Flag) const {
124  DebugLoc DL = Op.getDebugLoc();
125  EVT Ty = Op.getValueType();
126  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
127                            getTargetNode(Op, DAG, Flag));
128  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
129                     MachinePointerInfo::getGOT(), false, false, false, 0);
130}
131
132SDValue MipsTargetLowering::getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
133                                                  unsigned HiFlag,
134                                                  unsigned LoFlag) const {
135  DebugLoc DL = Op.getDebugLoc();
136  EVT Ty = Op.getValueType();
137  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
138  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
139  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
140                                getTargetNode(Op, DAG, LoFlag));
141  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
142                     MachinePointerInfo::getGOT(), false, false, false, 0);
143}
144
145const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
146  switch (Opcode) {
147  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
148  case MipsISD::TailCall:          return "MipsISD::TailCall";
149  case MipsISD::Hi:                return "MipsISD::Hi";
150  case MipsISD::Lo:                return "MipsISD::Lo";
151  case MipsISD::GPRel:             return "MipsISD::GPRel";
152  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
153  case MipsISD::Ret:               return "MipsISD::Ret";
154  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
155  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
156  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
157  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
158  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
159  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
160  case MipsISD::ExtractLOHI:       return "MipsISD::ExtractLOHI";
161  case MipsISD::InsertLOHI:        return "MipsISD::InsertLOHI";
162  case MipsISD::Mult:              return "MipsISD::Mult";
163  case MipsISD::Multu:             return "MipsISD::Multu";
164  case MipsISD::MAdd:              return "MipsISD::MAdd";
165  case MipsISD::MAddu:             return "MipsISD::MAddu";
166  case MipsISD::MSub:              return "MipsISD::MSub";
167  case MipsISD::MSubu:             return "MipsISD::MSubu";
168  case MipsISD::DivRem:            return "MipsISD::DivRem";
169  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
170  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
171  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
172  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
173  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
174  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
175  case MipsISD::Sync:              return "MipsISD::Sync";
176  case MipsISD::Ext:               return "MipsISD::Ext";
177  case MipsISD::Ins:               return "MipsISD::Ins";
178  case MipsISD::LWL:               return "MipsISD::LWL";
179  case MipsISD::LWR:               return "MipsISD::LWR";
180  case MipsISD::SWL:               return "MipsISD::SWL";
181  case MipsISD::SWR:               return "MipsISD::SWR";
182  case MipsISD::LDL:               return "MipsISD::LDL";
183  case MipsISD::LDR:               return "MipsISD::LDR";
184  case MipsISD::SDL:               return "MipsISD::SDL";
185  case MipsISD::SDR:               return "MipsISD::SDR";
186  case MipsISD::EXTP:              return "MipsISD::EXTP";
187  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
188  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
189  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
190  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
191  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
192  case MipsISD::SHILO:             return "MipsISD::SHILO";
193  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
194  case MipsISD::MULT:              return "MipsISD::MULT";
195  case MipsISD::MULTU:             return "MipsISD::MULTU";
196  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
197  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
198  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
199  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
200  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
201  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
202  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
203  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
204  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
205  default:                         return NULL;
206  }
207}
208
209MipsTargetLowering::
210MipsTargetLowering(MipsTargetMachine &TM)
211  : TargetLowering(TM, new MipsTargetObjectFile()),
212    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
213    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
214    IsO32(Subtarget->isABI_O32()) {
215  // Mips does not have i1 type, so use i32 for
216  // setcc operations results (slt, sgt, ...).
217  setBooleanContents(ZeroOrOneBooleanContent);
218  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
219
220  // Load extented operations for i1 types must be promoted
221  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
222  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
223  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
224
225  // MIPS doesn't have extending float->double load/store
226  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
227  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
228
229  // Used by legalize types to correctly generate the setcc result.
230  // Without this, every float setcc comes with a AND/OR with the result,
231  // we don't want this, since the fpcmp result goes to a flag register,
232  // which is used implicitly by brcond and select operations.
233  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
234
235  // Mips Custom Operations
236  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
237  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
238  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
239  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
240  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
241  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
242  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
243  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
244  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
245  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
246  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
247  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
248  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
249  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
250  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
251  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
252  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
253  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
254
255  if (!TM.Options.NoNaNsFPMath) {
256    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
257    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
258  }
259
260  if (HasMips64) {
261    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
262    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
263    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
264    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
265    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
266    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
267    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
268    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
269    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
270  }
271
272  if (!HasMips64) {
273    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
274    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
275    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
276  }
277
278  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
279  if (HasMips64)
280    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
281
282  setOperationAction(ISD::SDIV, MVT::i32, Expand);
283  setOperationAction(ISD::SREM, MVT::i32, Expand);
284  setOperationAction(ISD::UDIV, MVT::i32, Expand);
285  setOperationAction(ISD::UREM, MVT::i32, Expand);
286  setOperationAction(ISD::SDIV, MVT::i64, Expand);
287  setOperationAction(ISD::SREM, MVT::i64, Expand);
288  setOperationAction(ISD::UDIV, MVT::i64, Expand);
289  setOperationAction(ISD::UREM, MVT::i64, Expand);
290
291  // Operations not directly supported by Mips.
292  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
293  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
294  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
295  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
296  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
297  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
298  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
299  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
300  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
301  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
302  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
303  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
304  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
305  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
306  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
307  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
308  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
309  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
310  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
311  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
312  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
313  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
314
315  if (!Subtarget->hasMips32r2())
316    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
317
318  if (!Subtarget->hasMips64r2())
319    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
320
321  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
322  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
323  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
324  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
325  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
326  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
327  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
328  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
329  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
330  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
331  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
332  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
333  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
334  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
335  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
336  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
337  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
338
339  if (!TM.Options.NoNaNsFPMath) {
340    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
341    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
342  }
343
344  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
345  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
346  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
347  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
348
349  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
350
351  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
352  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
353  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
354
355  // Use the default for now
356  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
357  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
358
359  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
360  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
361  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
362  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
363
364  setInsertFencesForAtomic(true);
365
366  if (!Subtarget->hasSEInReg()) {
367    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
368    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
369  }
370
371  if (!Subtarget->hasBitCount()) {
372    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
373    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
374  }
375
376  if (!Subtarget->hasSwap()) {
377    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
378    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
379  }
380
381  if (HasMips64) {
382    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
383    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
384    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
385    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
386  }
387
388  setTargetDAGCombine(ISD::SDIVREM);
389  setTargetDAGCombine(ISD::UDIVREM);
390  setTargetDAGCombine(ISD::SELECT);
391  setTargetDAGCombine(ISD::AND);
392  setTargetDAGCombine(ISD::OR);
393  setTargetDAGCombine(ISD::ADD);
394
395  setMinFunctionAlignment(HasMips64 ? 3 : 2);
396
397  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
398
399  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
400  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
401
402  MaxStoresPerMemcpy = 16;
403}
404
405const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
406  if (TM.getSubtargetImpl()->inMips16Mode())
407    return llvm::createMips16TargetLowering(TM);
408
409  return llvm::createMipsSETargetLowering(TM);
410}
411
412EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
413  if (!VT.isVector())
414    return MVT::i32;
415  return VT.changeVectorElementTypeToInteger();
416}
417
418static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
419                                    TargetLowering::DAGCombinerInfo &DCI,
420                                    const MipsSubtarget *Subtarget) {
421  if (DCI.isBeforeLegalizeOps())
422    return SDValue();
423
424  EVT Ty = N->getValueType(0);
425  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
426  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
427  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
428                                                  MipsISD::DivRemU16;
429  DebugLoc DL = N->getDebugLoc();
430
431  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
432                               N->getOperand(0), N->getOperand(1));
433  SDValue InChain = DAG.getEntryNode();
434  SDValue InGlue = DivRem;
435
436  // insert MFLO
437  if (N->hasAnyUseOfValue(0)) {
438    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
439                                            InGlue);
440    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
441    InChain = CopyFromLo.getValue(1);
442    InGlue = CopyFromLo.getValue(2);
443  }
444
445  // insert MFHI
446  if (N->hasAnyUseOfValue(1)) {
447    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
448                                            HI, Ty, InGlue);
449    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
450  }
451
452  return SDValue();
453}
454
455static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
456  switch (CC) {
457  default: llvm_unreachable("Unknown fp condition code!");
458  case ISD::SETEQ:
459  case ISD::SETOEQ: return Mips::FCOND_OEQ;
460  case ISD::SETUNE: return Mips::FCOND_UNE;
461  case ISD::SETLT:
462  case ISD::SETOLT: return Mips::FCOND_OLT;
463  case ISD::SETGT:
464  case ISD::SETOGT: return Mips::FCOND_OGT;
465  case ISD::SETLE:
466  case ISD::SETOLE: return Mips::FCOND_OLE;
467  case ISD::SETGE:
468  case ISD::SETOGE: return Mips::FCOND_OGE;
469  case ISD::SETULT: return Mips::FCOND_ULT;
470  case ISD::SETULE: return Mips::FCOND_ULE;
471  case ISD::SETUGT: return Mips::FCOND_UGT;
472  case ISD::SETUGE: return Mips::FCOND_UGE;
473  case ISD::SETUO:  return Mips::FCOND_UN;
474  case ISD::SETO:   return Mips::FCOND_OR;
475  case ISD::SETNE:
476  case ISD::SETONE: return Mips::FCOND_ONE;
477  case ISD::SETUEQ: return Mips::FCOND_UEQ;
478  }
479}
480
481
482/// This function returns true if the floating point conditional branches and
483/// conditional moves which use condition code CC should be inverted.
484static bool invertFPCondCodeUser(Mips::CondCode CC) {
485  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
486    return false;
487
488  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
489         "Illegal Condition Code");
490
491  return true;
492}
493
494// Creates and returns an FPCmp node from a setcc node.
495// Returns Op if setcc is not a floating point comparison.
496static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
497  // must be a SETCC node
498  if (Op.getOpcode() != ISD::SETCC)
499    return Op;
500
501  SDValue LHS = Op.getOperand(0);
502
503  if (!LHS.getValueType().isFloatingPoint())
504    return Op;
505
506  SDValue RHS = Op.getOperand(1);
507  DebugLoc DL = Op.getDebugLoc();
508
509  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
510  // node if necessary.
511  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
512
513  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
514                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
515}
516
517// Creates and returns a CMovFPT/F node.
518static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
519                            SDValue False, DebugLoc DL) {
520  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
521  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
522
523  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
524                     True.getValueType(), True, False, Cond);
525}
526
527static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
528                                    TargetLowering::DAGCombinerInfo &DCI,
529                                    const MipsSubtarget *Subtarget) {
530  if (DCI.isBeforeLegalizeOps())
531    return SDValue();
532
533  SDValue SetCC = N->getOperand(0);
534
535  if ((SetCC.getOpcode() != ISD::SETCC) ||
536      !SetCC.getOperand(0).getValueType().isInteger())
537    return SDValue();
538
539  SDValue False = N->getOperand(2);
540  EVT FalseTy = False.getValueType();
541
542  if (!FalseTy.isInteger())
543    return SDValue();
544
545  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
546
547  if (!CN || CN->getZExtValue())
548    return SDValue();
549
550  const DebugLoc DL = N->getDebugLoc();
551  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
552  SDValue True = N->getOperand(1);
553
554  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
555                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
556
557  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
558}
559
560static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
561                                 TargetLowering::DAGCombinerInfo &DCI,
562                                 const MipsSubtarget *Subtarget) {
563  // Pattern match EXT.
564  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
565  //  => ext $dst, $src, size, pos
566  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
567    return SDValue();
568
569  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
570  unsigned ShiftRightOpc = ShiftRight.getOpcode();
571
572  // Op's first operand must be a shift right.
573  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
574    return SDValue();
575
576  // The second operand of the shift must be an immediate.
577  ConstantSDNode *CN;
578  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
579    return SDValue();
580
581  uint64_t Pos = CN->getZExtValue();
582  uint64_t SMPos, SMSize;
583
584  // Op's second operand must be a shifted mask.
585  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
586      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
587    return SDValue();
588
589  // Return if the shifted mask does not start at bit 0 or the sum of its size
590  // and Pos exceeds the word's size.
591  EVT ValTy = N->getValueType(0);
592  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
593    return SDValue();
594
595  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
596                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
597                     DAG.getConstant(SMSize, MVT::i32));
598}
599
600static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
601                                TargetLowering::DAGCombinerInfo &DCI,
602                                const MipsSubtarget *Subtarget) {
603  // Pattern match INS.
604  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
605  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
606  //  => ins $dst, $src, size, pos, $src1
607  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
608    return SDValue();
609
610  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
611  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
612  ConstantSDNode *CN;
613
614  // See if Op's first operand matches (and $src1 , mask0).
615  if (And0.getOpcode() != ISD::AND)
616    return SDValue();
617
618  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
619      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
620    return SDValue();
621
622  // See if Op's second operand matches (and (shl $src, pos), mask1).
623  if (And1.getOpcode() != ISD::AND)
624    return SDValue();
625
626  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
627      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
628    return SDValue();
629
630  // The shift masks must have the same position and size.
631  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
632    return SDValue();
633
634  SDValue Shl = And1.getOperand(0);
635  if (Shl.getOpcode() != ISD::SHL)
636    return SDValue();
637
638  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
639    return SDValue();
640
641  unsigned Shamt = CN->getZExtValue();
642
643  // Return if the shift amount and the first bit position of mask are not the
644  // same.
645  EVT ValTy = N->getValueType(0);
646  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
647    return SDValue();
648
649  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
650                     DAG.getConstant(SMPos0, MVT::i32),
651                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
652}
653
654static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
655                                 TargetLowering::DAGCombinerInfo &DCI,
656                                 const MipsSubtarget *Subtarget) {
657  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
658
659  if (DCI.isBeforeLegalizeOps())
660    return SDValue();
661
662  SDValue Add = N->getOperand(1);
663
664  if (Add.getOpcode() != ISD::ADD)
665    return SDValue();
666
667  SDValue Lo = Add.getOperand(1);
668
669  if ((Lo.getOpcode() != MipsISD::Lo) ||
670      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
671    return SDValue();
672
673  EVT ValTy = N->getValueType(0);
674  DebugLoc DL = N->getDebugLoc();
675
676  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
677                             Add.getOperand(0));
678  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
679}
680
681SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
682  const {
683  SelectionDAG &DAG = DCI.DAG;
684  unsigned Opc = N->getOpcode();
685
686  switch (Opc) {
687  default: break;
688  case ISD::SDIVREM:
689  case ISD::UDIVREM:
690    return performDivRemCombine(N, DAG, DCI, Subtarget);
691  case ISD::SELECT:
692    return performSELECTCombine(N, DAG, DCI, Subtarget);
693  case ISD::AND:
694    return performANDCombine(N, DAG, DCI, Subtarget);
695  case ISD::OR:
696    return performORCombine(N, DAG, DCI, Subtarget);
697  case ISD::ADD:
698    return performADDCombine(N, DAG, DCI, Subtarget);
699  }
700
701  return SDValue();
702}
703
704void
705MipsTargetLowering::LowerOperationWrapper(SDNode *N,
706                                          SmallVectorImpl<SDValue> &Results,
707                                          SelectionDAG &DAG) const {
708  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
709
710  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
711    Results.push_back(Res.getValue(I));
712}
713
714void
715MipsTargetLowering::ReplaceNodeResults(SDNode *N,
716                                       SmallVectorImpl<SDValue> &Results,
717                                       SelectionDAG &DAG) const {
718  return LowerOperationWrapper(N, Results, DAG);
719}
720
721SDValue MipsTargetLowering::
722LowerOperation(SDValue Op, SelectionDAG &DAG) const
723{
724  switch (Op.getOpcode())
725  {
726  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
727  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
728  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
729  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
730  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
731  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
732  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
733  case ISD::SELECT:             return lowerSELECT(Op, DAG);
734  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
735  case ISD::SETCC:              return lowerSETCC(Op, DAG);
736  case ISD::VASTART:            return lowerVASTART(Op, DAG);
737  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
738  case ISD::FABS:               return lowerFABS(Op, DAG);
739  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
740  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
741  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
742  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
743  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
744  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
745  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
746  case ISD::LOAD:               return lowerLOAD(Op, DAG);
747  case ISD::STORE:              return lowerSTORE(Op, DAG);
748  case ISD::ADD:                return lowerADD(Op, DAG);
749  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
750  }
751  return SDValue();
752}
753
754//===----------------------------------------------------------------------===//
755//  Lower helper functions
756//===----------------------------------------------------------------------===//
757
758// addLiveIn - This helper function adds the specified physical register to the
759// MachineFunction as a live in value.  It also creates a corresponding
760// virtual register for it.
761static unsigned
762addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
763{
764  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
765  MF.getRegInfo().addLiveIn(PReg, VReg);
766  return VReg;
767}
768
769MachineBasicBlock *
770MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
771                                                MachineBasicBlock *BB) const {
772  switch (MI->getOpcode()) {
773  default:
774    llvm_unreachable("Unexpected instr type to insert");
775  case Mips::ATOMIC_LOAD_ADD_I8:
776  case Mips::ATOMIC_LOAD_ADD_I8_P8:
777    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
778  case Mips::ATOMIC_LOAD_ADD_I16:
779  case Mips::ATOMIC_LOAD_ADD_I16_P8:
780    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
781  case Mips::ATOMIC_LOAD_ADD_I32:
782  case Mips::ATOMIC_LOAD_ADD_I32_P8:
783    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
784  case Mips::ATOMIC_LOAD_ADD_I64:
785  case Mips::ATOMIC_LOAD_ADD_I64_P8:
786    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
787
788  case Mips::ATOMIC_LOAD_AND_I8:
789  case Mips::ATOMIC_LOAD_AND_I8_P8:
790    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
791  case Mips::ATOMIC_LOAD_AND_I16:
792  case Mips::ATOMIC_LOAD_AND_I16_P8:
793    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
794  case Mips::ATOMIC_LOAD_AND_I32:
795  case Mips::ATOMIC_LOAD_AND_I32_P8:
796    return emitAtomicBinary(MI, BB, 4, Mips::AND);
797  case Mips::ATOMIC_LOAD_AND_I64:
798  case Mips::ATOMIC_LOAD_AND_I64_P8:
799    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
800
801  case Mips::ATOMIC_LOAD_OR_I8:
802  case Mips::ATOMIC_LOAD_OR_I8_P8:
803    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
804  case Mips::ATOMIC_LOAD_OR_I16:
805  case Mips::ATOMIC_LOAD_OR_I16_P8:
806    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
807  case Mips::ATOMIC_LOAD_OR_I32:
808  case Mips::ATOMIC_LOAD_OR_I32_P8:
809    return emitAtomicBinary(MI, BB, 4, Mips::OR);
810  case Mips::ATOMIC_LOAD_OR_I64:
811  case Mips::ATOMIC_LOAD_OR_I64_P8:
812    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
813
814  case Mips::ATOMIC_LOAD_XOR_I8:
815  case Mips::ATOMIC_LOAD_XOR_I8_P8:
816    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
817  case Mips::ATOMIC_LOAD_XOR_I16:
818  case Mips::ATOMIC_LOAD_XOR_I16_P8:
819    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
820  case Mips::ATOMIC_LOAD_XOR_I32:
821  case Mips::ATOMIC_LOAD_XOR_I32_P8:
822    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
823  case Mips::ATOMIC_LOAD_XOR_I64:
824  case Mips::ATOMIC_LOAD_XOR_I64_P8:
825    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
826
827  case Mips::ATOMIC_LOAD_NAND_I8:
828  case Mips::ATOMIC_LOAD_NAND_I8_P8:
829    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
830  case Mips::ATOMIC_LOAD_NAND_I16:
831  case Mips::ATOMIC_LOAD_NAND_I16_P8:
832    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
833  case Mips::ATOMIC_LOAD_NAND_I32:
834  case Mips::ATOMIC_LOAD_NAND_I32_P8:
835    return emitAtomicBinary(MI, BB, 4, 0, true);
836  case Mips::ATOMIC_LOAD_NAND_I64:
837  case Mips::ATOMIC_LOAD_NAND_I64_P8:
838    return emitAtomicBinary(MI, BB, 8, 0, true);
839
840  case Mips::ATOMIC_LOAD_SUB_I8:
841  case Mips::ATOMIC_LOAD_SUB_I8_P8:
842    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
843  case Mips::ATOMIC_LOAD_SUB_I16:
844  case Mips::ATOMIC_LOAD_SUB_I16_P8:
845    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
846  case Mips::ATOMIC_LOAD_SUB_I32:
847  case Mips::ATOMIC_LOAD_SUB_I32_P8:
848    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
849  case Mips::ATOMIC_LOAD_SUB_I64:
850  case Mips::ATOMIC_LOAD_SUB_I64_P8:
851    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
852
853  case Mips::ATOMIC_SWAP_I8:
854  case Mips::ATOMIC_SWAP_I8_P8:
855    return emitAtomicBinaryPartword(MI, BB, 1, 0);
856  case Mips::ATOMIC_SWAP_I16:
857  case Mips::ATOMIC_SWAP_I16_P8:
858    return emitAtomicBinaryPartword(MI, BB, 2, 0);
859  case Mips::ATOMIC_SWAP_I32:
860  case Mips::ATOMIC_SWAP_I32_P8:
861    return emitAtomicBinary(MI, BB, 4, 0);
862  case Mips::ATOMIC_SWAP_I64:
863  case Mips::ATOMIC_SWAP_I64_P8:
864    return emitAtomicBinary(MI, BB, 8, 0);
865
866  case Mips::ATOMIC_CMP_SWAP_I8:
867  case Mips::ATOMIC_CMP_SWAP_I8_P8:
868    return emitAtomicCmpSwapPartword(MI, BB, 1);
869  case Mips::ATOMIC_CMP_SWAP_I16:
870  case Mips::ATOMIC_CMP_SWAP_I16_P8:
871    return emitAtomicCmpSwapPartword(MI, BB, 2);
872  case Mips::ATOMIC_CMP_SWAP_I32:
873  case Mips::ATOMIC_CMP_SWAP_I32_P8:
874    return emitAtomicCmpSwap(MI, BB, 4);
875  case Mips::ATOMIC_CMP_SWAP_I64:
876  case Mips::ATOMIC_CMP_SWAP_I64_P8:
877    return emitAtomicCmpSwap(MI, BB, 8);
878  }
879}
880
881// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
882// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
883MachineBasicBlock *
884MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
885                                     unsigned Size, unsigned BinOpcode,
886                                     bool Nand) const {
887  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
888
889  MachineFunction *MF = BB->getParent();
890  MachineRegisterInfo &RegInfo = MF->getRegInfo();
891  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
892  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
893  DebugLoc DL = MI->getDebugLoc();
894  unsigned LL, SC, AND, NOR, ZERO, BEQ;
895
896  if (Size == 4) {
897    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
898    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
899    AND = Mips::AND;
900    NOR = Mips::NOR;
901    ZERO = Mips::ZERO;
902    BEQ = Mips::BEQ;
903  }
904  else {
905    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
906    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
907    AND = Mips::AND64;
908    NOR = Mips::NOR64;
909    ZERO = Mips::ZERO_64;
910    BEQ = Mips::BEQ64;
911  }
912
913  unsigned OldVal = MI->getOperand(0).getReg();
914  unsigned Ptr = MI->getOperand(1).getReg();
915  unsigned Incr = MI->getOperand(2).getReg();
916
917  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
918  unsigned AndRes = RegInfo.createVirtualRegister(RC);
919  unsigned Success = RegInfo.createVirtualRegister(RC);
920
921  // insert new blocks after the current block
922  const BasicBlock *LLVM_BB = BB->getBasicBlock();
923  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
924  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
925  MachineFunction::iterator It = BB;
926  ++It;
927  MF->insert(It, loopMBB);
928  MF->insert(It, exitMBB);
929
930  // Transfer the remainder of BB and its successor edges to exitMBB.
931  exitMBB->splice(exitMBB->begin(), BB,
932                  llvm::next(MachineBasicBlock::iterator(MI)),
933                  BB->end());
934  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
935
936  //  thisMBB:
937  //    ...
938  //    fallthrough --> loopMBB
939  BB->addSuccessor(loopMBB);
940  loopMBB->addSuccessor(loopMBB);
941  loopMBB->addSuccessor(exitMBB);
942
943  //  loopMBB:
944  //    ll oldval, 0(ptr)
945  //    <binop> storeval, oldval, incr
946  //    sc success, storeval, 0(ptr)
947  //    beq success, $0, loopMBB
948  BB = loopMBB;
949  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
950  if (Nand) {
951    //  and andres, oldval, incr
952    //  nor storeval, $0, andres
953    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
954    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
955  } else if (BinOpcode) {
956    //  <binop> storeval, oldval, incr
957    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
958  } else {
959    StoreVal = Incr;
960  }
961  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
962  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
963
964  MI->eraseFromParent();   // The instruction is gone now.
965
966  return exitMBB;
967}
968
969MachineBasicBlock *
970MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
971                                             MachineBasicBlock *BB,
972                                             unsigned Size, unsigned BinOpcode,
973                                             bool Nand) const {
974  assert((Size == 1 || Size == 2) &&
975      "Unsupported size for EmitAtomicBinaryPartial.");
976
977  MachineFunction *MF = BB->getParent();
978  MachineRegisterInfo &RegInfo = MF->getRegInfo();
979  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
980  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
981  DebugLoc DL = MI->getDebugLoc();
982  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
983  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
984
985  unsigned Dest = MI->getOperand(0).getReg();
986  unsigned Ptr = MI->getOperand(1).getReg();
987  unsigned Incr = MI->getOperand(2).getReg();
988
989  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
990  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
991  unsigned Mask = RegInfo.createVirtualRegister(RC);
992  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
993  unsigned NewVal = RegInfo.createVirtualRegister(RC);
994  unsigned OldVal = RegInfo.createVirtualRegister(RC);
995  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
996  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
997  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
998  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
999  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1000  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1001  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1002  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1003  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1004  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1005  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1006  unsigned Success = RegInfo.createVirtualRegister(RC);
1007
1008  // insert new blocks after the current block
1009  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1010  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1011  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1012  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1013  MachineFunction::iterator It = BB;
1014  ++It;
1015  MF->insert(It, loopMBB);
1016  MF->insert(It, sinkMBB);
1017  MF->insert(It, exitMBB);
1018
1019  // Transfer the remainder of BB and its successor edges to exitMBB.
1020  exitMBB->splice(exitMBB->begin(), BB,
1021                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1022  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1023
1024  BB->addSuccessor(loopMBB);
1025  loopMBB->addSuccessor(loopMBB);
1026  loopMBB->addSuccessor(sinkMBB);
1027  sinkMBB->addSuccessor(exitMBB);
1028
1029  //  thisMBB:
1030  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1031  //    and     alignedaddr,ptr,masklsb2
1032  //    andi    ptrlsb2,ptr,3
1033  //    sll     shiftamt,ptrlsb2,3
1034  //    ori     maskupper,$0,255               # 0xff
1035  //    sll     mask,maskupper,shiftamt
1036  //    nor     mask2,$0,mask
1037  //    sll     incr2,incr,shiftamt
1038
1039  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1040  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1041    .addReg(Mips::ZERO).addImm(-4);
1042  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1043    .addReg(Ptr).addReg(MaskLSB2);
1044  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1045  BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1046  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1047    .addReg(Mips::ZERO).addImm(MaskImm);
1048  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1049    .addReg(ShiftAmt).addReg(MaskUpper);
1050  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1051  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1052
1053  // atomic.load.binop
1054  // loopMBB:
1055  //   ll      oldval,0(alignedaddr)
1056  //   binop   binopres,oldval,incr2
1057  //   and     newval,binopres,mask
1058  //   and     maskedoldval0,oldval,mask2
1059  //   or      storeval,maskedoldval0,newval
1060  //   sc      success,storeval,0(alignedaddr)
1061  //   beq     success,$0,loopMBB
1062
1063  // atomic.swap
1064  // loopMBB:
1065  //   ll      oldval,0(alignedaddr)
1066  //   and     newval,incr2,mask
1067  //   and     maskedoldval0,oldval,mask2
1068  //   or      storeval,maskedoldval0,newval
1069  //   sc      success,storeval,0(alignedaddr)
1070  //   beq     success,$0,loopMBB
1071
1072  BB = loopMBB;
1073  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1074  if (Nand) {
1075    //  and andres, oldval, incr2
1076    //  nor binopres, $0, andres
1077    //  and newval, binopres, mask
1078    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1079    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1080      .addReg(Mips::ZERO).addReg(AndRes);
1081    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1082  } else if (BinOpcode) {
1083    //  <binop> binopres, oldval, incr2
1084    //  and newval, binopres, mask
1085    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1086    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1087  } else {// atomic.swap
1088    //  and newval, incr2, mask
1089    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1090  }
1091
1092  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1093    .addReg(OldVal).addReg(Mask2);
1094  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1095    .addReg(MaskedOldVal0).addReg(NewVal);
1096  BuildMI(BB, DL, TII->get(SC), Success)
1097    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1098  BuildMI(BB, DL, TII->get(Mips::BEQ))
1099    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1100
1101  //  sinkMBB:
1102  //    and     maskedoldval1,oldval,mask
1103  //    srl     srlres,maskedoldval1,shiftamt
1104  //    sll     sllres,srlres,24
1105  //    sra     dest,sllres,24
1106  BB = sinkMBB;
1107  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1108
1109  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1110    .addReg(OldVal).addReg(Mask);
1111  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1112      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1113  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1114      .addReg(SrlRes).addImm(ShiftImm);
1115  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1116      .addReg(SllRes).addImm(ShiftImm);
1117
1118  MI->eraseFromParent();   // The instruction is gone now.
1119
1120  return exitMBB;
1121}
1122
1123MachineBasicBlock *
1124MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1125                                      MachineBasicBlock *BB,
1126                                      unsigned Size) const {
1127  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1128
1129  MachineFunction *MF = BB->getParent();
1130  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1131  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1132  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1133  DebugLoc DL = MI->getDebugLoc();
1134  unsigned LL, SC, ZERO, BNE, BEQ;
1135
1136  if (Size == 4) {
1137    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1138    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1139    ZERO = Mips::ZERO;
1140    BNE = Mips::BNE;
1141    BEQ = Mips::BEQ;
1142  }
1143  else {
1144    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1145    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1146    ZERO = Mips::ZERO_64;
1147    BNE = Mips::BNE64;
1148    BEQ = Mips::BEQ64;
1149  }
1150
1151  unsigned Dest    = MI->getOperand(0).getReg();
1152  unsigned Ptr     = MI->getOperand(1).getReg();
1153  unsigned OldVal  = MI->getOperand(2).getReg();
1154  unsigned NewVal  = MI->getOperand(3).getReg();
1155
1156  unsigned Success = RegInfo.createVirtualRegister(RC);
1157
1158  // insert new blocks after the current block
1159  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1160  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1161  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1162  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1163  MachineFunction::iterator It = BB;
1164  ++It;
1165  MF->insert(It, loop1MBB);
1166  MF->insert(It, loop2MBB);
1167  MF->insert(It, exitMBB);
1168
1169  // Transfer the remainder of BB and its successor edges to exitMBB.
1170  exitMBB->splice(exitMBB->begin(), BB,
1171                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1172  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1173
1174  //  thisMBB:
1175  //    ...
1176  //    fallthrough --> loop1MBB
1177  BB->addSuccessor(loop1MBB);
1178  loop1MBB->addSuccessor(exitMBB);
1179  loop1MBB->addSuccessor(loop2MBB);
1180  loop2MBB->addSuccessor(loop1MBB);
1181  loop2MBB->addSuccessor(exitMBB);
1182
1183  // loop1MBB:
1184  //   ll dest, 0(ptr)
1185  //   bne dest, oldval, exitMBB
1186  BB = loop1MBB;
1187  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1188  BuildMI(BB, DL, TII->get(BNE))
1189    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1190
1191  // loop2MBB:
1192  //   sc success, newval, 0(ptr)
1193  //   beq success, $0, loop1MBB
1194  BB = loop2MBB;
1195  BuildMI(BB, DL, TII->get(SC), Success)
1196    .addReg(NewVal).addReg(Ptr).addImm(0);
1197  BuildMI(BB, DL, TII->get(BEQ))
1198    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1199
1200  MI->eraseFromParent();   // The instruction is gone now.
1201
1202  return exitMBB;
1203}
1204
1205MachineBasicBlock *
1206MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1207                                              MachineBasicBlock *BB,
1208                                              unsigned Size) const {
1209  assert((Size == 1 || Size == 2) &&
1210      "Unsupported size for EmitAtomicCmpSwapPartial.");
1211
1212  MachineFunction *MF = BB->getParent();
1213  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1214  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1215  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1216  DebugLoc DL = MI->getDebugLoc();
1217  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1218  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1219
1220  unsigned Dest    = MI->getOperand(0).getReg();
1221  unsigned Ptr     = MI->getOperand(1).getReg();
1222  unsigned CmpVal  = MI->getOperand(2).getReg();
1223  unsigned NewVal  = MI->getOperand(3).getReg();
1224
1225  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1226  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1227  unsigned Mask = RegInfo.createVirtualRegister(RC);
1228  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1229  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1230  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1231  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1232  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1233  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1234  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1235  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1236  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1237  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1238  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1239  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1240  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1241  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1242  unsigned Success = RegInfo.createVirtualRegister(RC);
1243
1244  // insert new blocks after the current block
1245  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1246  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1247  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1248  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1249  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1250  MachineFunction::iterator It = BB;
1251  ++It;
1252  MF->insert(It, loop1MBB);
1253  MF->insert(It, loop2MBB);
1254  MF->insert(It, sinkMBB);
1255  MF->insert(It, exitMBB);
1256
1257  // Transfer the remainder of BB and its successor edges to exitMBB.
1258  exitMBB->splice(exitMBB->begin(), BB,
1259                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1260  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1261
1262  BB->addSuccessor(loop1MBB);
1263  loop1MBB->addSuccessor(sinkMBB);
1264  loop1MBB->addSuccessor(loop2MBB);
1265  loop2MBB->addSuccessor(loop1MBB);
1266  loop2MBB->addSuccessor(sinkMBB);
1267  sinkMBB->addSuccessor(exitMBB);
1268
1269  // FIXME: computation of newval2 can be moved to loop2MBB.
1270  //  thisMBB:
1271  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1272  //    and     alignedaddr,ptr,masklsb2
1273  //    andi    ptrlsb2,ptr,3
1274  //    sll     shiftamt,ptrlsb2,3
1275  //    ori     maskupper,$0,255               # 0xff
1276  //    sll     mask,maskupper,shiftamt
1277  //    nor     mask2,$0,mask
1278  //    andi    maskedcmpval,cmpval,255
1279  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1280  //    andi    maskednewval,newval,255
1281  //    sll     shiftednewval,maskednewval,shiftamt
1282  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1283  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1284    .addReg(Mips::ZERO).addImm(-4);
1285  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1286    .addReg(Ptr).addReg(MaskLSB2);
1287  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1288  BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1289  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1290    .addReg(Mips::ZERO).addImm(MaskImm);
1291  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1292    .addReg(ShiftAmt).addReg(MaskUpper);
1293  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1294  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1295    .addReg(CmpVal).addImm(MaskImm);
1296  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1297    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1298  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1299    .addReg(NewVal).addImm(MaskImm);
1300  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1301    .addReg(ShiftAmt).addReg(MaskedNewVal);
1302
1303  //  loop1MBB:
1304  //    ll      oldval,0(alginedaddr)
1305  //    and     maskedoldval0,oldval,mask
1306  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1307  BB = loop1MBB;
1308  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1309  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1310    .addReg(OldVal).addReg(Mask);
1311  BuildMI(BB, DL, TII->get(Mips::BNE))
1312    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1313
1314  //  loop2MBB:
1315  //    and     maskedoldval1,oldval,mask2
1316  //    or      storeval,maskedoldval1,shiftednewval
1317  //    sc      success,storeval,0(alignedaddr)
1318  //    beq     success,$0,loop1MBB
1319  BB = loop2MBB;
1320  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1321    .addReg(OldVal).addReg(Mask2);
1322  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1323    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1324  BuildMI(BB, DL, TII->get(SC), Success)
1325      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1326  BuildMI(BB, DL, TII->get(Mips::BEQ))
1327      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1328
1329  //  sinkMBB:
1330  //    srl     srlres,maskedoldval0,shiftamt
1331  //    sll     sllres,srlres,24
1332  //    sra     dest,sllres,24
1333  BB = sinkMBB;
1334  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1335
1336  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1337      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1338  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1339      .addReg(SrlRes).addImm(ShiftImm);
1340  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1341      .addReg(SllRes).addImm(ShiftImm);
1342
1343  MI->eraseFromParent();   // The instruction is gone now.
1344
1345  return exitMBB;
1346}
1347
1348//===----------------------------------------------------------------------===//
1349//  Misc Lower Operation implementation
1350//===----------------------------------------------------------------------===//
1351SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1352  SDValue Chain = Op.getOperand(0);
1353  SDValue Table = Op.getOperand(1);
1354  SDValue Index = Op.getOperand(2);
1355  DebugLoc DL = Op.getDebugLoc();
1356  EVT PTy = getPointerTy();
1357  unsigned EntrySize =
1358    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1359
1360  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1361                      DAG.getConstant(EntrySize, PTy));
1362  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1363
1364  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1365  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1366                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1367                        0);
1368  Chain = Addr.getValue(1);
1369
1370  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
1371    // For PIC, the sequence is:
1372    // BRIND(load(Jumptable + index) + RelocBase)
1373    // RelocBase can be JumpTable, GOT or some sort of global base.
1374    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1375                       getPICJumpTableRelocBase(Table, DAG));
1376  }
1377
1378  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1379}
1380
1381SDValue MipsTargetLowering::
1382lowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1383{
1384  // The first operand is the chain, the second is the condition, the third is
1385  // the block to branch to if the condition is true.
1386  SDValue Chain = Op.getOperand(0);
1387  SDValue Dest = Op.getOperand(2);
1388  DebugLoc DL = Op.getDebugLoc();
1389
1390  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1391
1392  // Return if flag is not set by a floating point comparison.
1393  if (CondRes.getOpcode() != MipsISD::FPCmp)
1394    return Op;
1395
1396  SDValue CCNode  = CondRes.getOperand(2);
1397  Mips::CondCode CC =
1398    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1399  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1400  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1401  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1402                     Dest, CondRes);
1403}
1404
1405SDValue MipsTargetLowering::
1406lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1407{
1408  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1409
1410  // Return if flag is not set by a floating point comparison.
1411  if (Cond.getOpcode() != MipsISD::FPCmp)
1412    return Op;
1413
1414  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1415                      Op.getDebugLoc());
1416}
1417
1418SDValue MipsTargetLowering::
1419lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1420{
1421  DebugLoc DL = Op.getDebugLoc();
1422  EVT Ty = Op.getOperand(0).getValueType();
1423  SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
1424                             Op.getOperand(0), Op.getOperand(1),
1425                             Op.getOperand(4));
1426
1427  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1428                     Op.getOperand(3));
1429}
1430
1431SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1432  SDValue Cond = createFPCmp(DAG, Op);
1433
1434  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1435         "Floating point operand expected.");
1436
1437  SDValue True  = DAG.getConstant(1, MVT::i32);
1438  SDValue False = DAG.getConstant(0, MVT::i32);
1439
1440  return createCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1441}
1442
1443SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1444                                               SelectionDAG &DAG) const {
1445  // FIXME there isn't actually debug info here
1446  DebugLoc DL = Op.getDebugLoc();
1447  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1448
1449  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1450    const MipsTargetObjectFile &TLOF =
1451      (const MipsTargetObjectFile&)getObjFileLowering();
1452
1453    // %gp_rel relocation
1454    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1455      SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1456                                              MipsII::MO_GPREL);
1457      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1458                                      DAG.getVTList(MVT::i32), &GA, 1);
1459      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1460      return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1461    }
1462
1463    // %hi/%lo relocation
1464    return getAddrNonPIC(Op, DAG);
1465  }
1466
1467  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1468    return getAddrLocal(Op, DAG, HasMips64);
1469
1470  if (LargeGOT)
1471    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
1472                                 MipsII::MO_GOT_LO16);
1473
1474  return getAddrGlobal(Op, DAG,
1475                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1476}
1477
1478SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1479                                              SelectionDAG &DAG) const {
1480  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1481    return getAddrNonPIC(Op, DAG);
1482
1483  return getAddrLocal(Op, DAG, HasMips64);
1484}
1485
1486SDValue MipsTargetLowering::
1487lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1488{
1489  // If the relocation model is PIC, use the General Dynamic TLS Model or
1490  // Local Dynamic TLS model, otherwise use the Initial Exec or
1491  // Local Exec TLS Model.
1492
1493  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1494  DebugLoc DL = GA->getDebugLoc();
1495  const GlobalValue *GV = GA->getGlobal();
1496  EVT PtrVT = getPointerTy();
1497
1498  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1499
1500  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1501    // General Dynamic and Local Dynamic TLS Model.
1502    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1503                                                      : MipsII::MO_TLSGD;
1504
1505    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1506    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1507                                   getGlobalReg(DAG, PtrVT), TGA);
1508    unsigned PtrSize = PtrVT.getSizeInBits();
1509    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1510
1511    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1512
1513    ArgListTy Args;
1514    ArgListEntry Entry;
1515    Entry.Node = Argument;
1516    Entry.Ty = PtrTy;
1517    Args.push_back(Entry);
1518
1519    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1520                  false, false, false, false, 0, CallingConv::C,
1521                  /*IsTailCall=*/false, /*doesNotRet=*/false,
1522                  /*isReturnValueUsed=*/true,
1523                  TlsGetAddr, Args, DAG, DL);
1524    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1525
1526    SDValue Ret = CallResult.first;
1527
1528    if (model != TLSModel::LocalDynamic)
1529      return Ret;
1530
1531    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1532                                               MipsII::MO_DTPREL_HI);
1533    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1534    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1535                                               MipsII::MO_DTPREL_LO);
1536    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1537    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1538    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1539  }
1540
1541  SDValue Offset;
1542  if (model == TLSModel::InitialExec) {
1543    // Initial Exec TLS Model
1544    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1545                                             MipsII::MO_GOTTPREL);
1546    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1547                      TGA);
1548    Offset = DAG.getLoad(PtrVT, DL,
1549                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1550                         false, false, false, 0);
1551  } else {
1552    // Local Exec TLS Model
1553    assert(model == TLSModel::LocalExec);
1554    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1555                                               MipsII::MO_TPREL_HI);
1556    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1557                                               MipsII::MO_TPREL_LO);
1558    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1559    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1560    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1561  }
1562
1563  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1564  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1565}
1566
1567SDValue MipsTargetLowering::
1568lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1569{
1570  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1571    return getAddrNonPIC(Op, DAG);
1572
1573  return getAddrLocal(Op, DAG, HasMips64);
1574}
1575
1576SDValue MipsTargetLowering::
1577lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1578{
1579  // gp_rel relocation
1580  // FIXME: we should reference the constant pool using small data sections,
1581  // but the asm printer currently doesn't support this feature without
1582  // hacking it. This feature should come soon so we can uncomment the
1583  // stuff below.
1584  //if (IsInSmallSection(C->getType())) {
1585  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1586  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1587  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1588
1589  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1590    return getAddrNonPIC(Op, DAG);
1591
1592  return getAddrLocal(Op, DAG, HasMips64);
1593}
1594
1595SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1596  MachineFunction &MF = DAG.getMachineFunction();
1597  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1598
1599  DebugLoc DL = Op.getDebugLoc();
1600  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1601                                 getPointerTy());
1602
1603  // vastart just stores the address of the VarArgsFrameIndex slot into the
1604  // memory location argument.
1605  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1606  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1607                      MachinePointerInfo(SV), false, false, 0);
1608}
1609
1610static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1611  EVT TyX = Op.getOperand(0).getValueType();
1612  EVT TyY = Op.getOperand(1).getValueType();
1613  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1614  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1615  DebugLoc DL = Op.getDebugLoc();
1616  SDValue Res;
1617
1618  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1619  // to i32.
1620  SDValue X = (TyX == MVT::f32) ?
1621    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1622    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1623                Const1);
1624  SDValue Y = (TyY == MVT::f32) ?
1625    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1626    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1627                Const1);
1628
1629  if (HasR2) {
1630    // ext  E, Y, 31, 1  ; extract bit31 of Y
1631    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1632    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1633    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1634  } else {
1635    // sll SllX, X, 1
1636    // srl SrlX, SllX, 1
1637    // srl SrlY, Y, 31
1638    // sll SllY, SrlX, 31
1639    // or  Or, SrlX, SllY
1640    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1641    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1642    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1643    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1644    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1645  }
1646
1647  if (TyX == MVT::f32)
1648    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1649
1650  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1651                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1652  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1653}
1654
1655static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1656  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1657  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1658  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1659  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1660  DebugLoc DL = Op.getDebugLoc();
1661
1662  // Bitcast to integer nodes.
1663  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1664  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1665
1666  if (HasR2) {
1667    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1668    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1669    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1670                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1671
1672    if (WidthX > WidthY)
1673      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1674    else if (WidthY > WidthX)
1675      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1676
1677    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1678                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1679    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1680  }
1681
1682  // (d)sll SllX, X, 1
1683  // (d)srl SrlX, SllX, 1
1684  // (d)srl SrlY, Y, width(Y)-1
1685  // (d)sll SllY, SrlX, width(Y)-1
1686  // or     Or, SrlX, SllY
1687  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1688  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1689  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1690                             DAG.getConstant(WidthY - 1, MVT::i32));
1691
1692  if (WidthX > WidthY)
1693    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1694  else if (WidthY > WidthX)
1695    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1696
1697  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1698                             DAG.getConstant(WidthX - 1, MVT::i32));
1699  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1700  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1701}
1702
1703SDValue
1704MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1705  if (Subtarget->hasMips64())
1706    return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1707
1708  return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1709}
1710
1711static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1712  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1713  DebugLoc DL = Op.getDebugLoc();
1714
1715  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1716  // to i32.
1717  SDValue X = (Op.getValueType() == MVT::f32) ?
1718    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1719    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1720                Const1);
1721
1722  // Clear MSB.
1723  if (HasR2)
1724    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1725                      DAG.getRegister(Mips::ZERO, MVT::i32),
1726                      DAG.getConstant(31, MVT::i32), Const1, X);
1727  else {
1728    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1729    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1730  }
1731
1732  if (Op.getValueType() == MVT::f32)
1733    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1734
1735  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1736                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1737  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1738}
1739
1740static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1741  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1742  DebugLoc DL = Op.getDebugLoc();
1743
1744  // Bitcast to integer node.
1745  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1746
1747  // Clear MSB.
1748  if (HasR2)
1749    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1750                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1751                      DAG.getConstant(63, MVT::i32), Const1, X);
1752  else {
1753    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1754    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1755  }
1756
1757  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1758}
1759
1760SDValue
1761MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
1762  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1763    return lowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1764
1765  return lowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1766}
1767
1768SDValue MipsTargetLowering::
1769lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1770  // check the depth
1771  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1772         "Frame address can only be determined for current frame.");
1773
1774  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1775  MFI->setFrameAddressIsTaken(true);
1776  EVT VT = Op.getValueType();
1777  DebugLoc DL = Op.getDebugLoc();
1778  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1779                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1780  return FrameAddr;
1781}
1782
1783SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1784                                            SelectionDAG &DAG) const {
1785  // check the depth
1786  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1787         "Return address can be determined only for current frame.");
1788
1789  MachineFunction &MF = DAG.getMachineFunction();
1790  MachineFrameInfo *MFI = MF.getFrameInfo();
1791  MVT VT = Op.getSimpleValueType();
1792  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1793  MFI->setReturnAddressIsTaken(true);
1794
1795  // Return RA, which contains the return address. Mark it an implicit live-in.
1796  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1797  return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
1798}
1799
1800// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1801// generated from __builtin_eh_return (offset, handler)
1802// The effect of this is to adjust the stack pointer by "offset"
1803// and then branch to "handler".
1804SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1805                                                                     const {
1806  MachineFunction &MF = DAG.getMachineFunction();
1807  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1808
1809  MipsFI->setCallsEhReturn();
1810  SDValue Chain     = Op.getOperand(0);
1811  SDValue Offset    = Op.getOperand(1);
1812  SDValue Handler   = Op.getOperand(2);
1813  DebugLoc DL       = Op.getDebugLoc();
1814  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
1815
1816  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1817  // EH_RETURN nodes, so that instructions are emitted back-to-back.
1818  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
1819  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
1820  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1821  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1822  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1823                     DAG.getRegister(OffsetReg, Ty),
1824                     DAG.getRegister(AddrReg, getPointerTy()),
1825                     Chain.getValue(1));
1826}
1827
1828SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1829                                              SelectionDAG &DAG) const {
1830  // FIXME: Need pseudo-fence for 'singlethread' fences
1831  // FIXME: Set SType for weaker fences where supported/appropriate.
1832  unsigned SType = 0;
1833  DebugLoc DL = Op.getDebugLoc();
1834  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1835                     DAG.getConstant(SType, MVT::i32));
1836}
1837
1838SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1839                                                SelectionDAG &DAG) const {
1840  DebugLoc DL = Op.getDebugLoc();
1841  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1842  SDValue Shamt = Op.getOperand(2);
1843
1844  // if shamt < 32:
1845  //  lo = (shl lo, shamt)
1846  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1847  // else:
1848  //  lo = 0
1849  //  hi = (shl lo, shamt[4:0])
1850  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1851                            DAG.getConstant(-1, MVT::i32));
1852  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1853                                      DAG.getConstant(1, MVT::i32));
1854  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1855                                     Not);
1856  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1857  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1858  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1859  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1860                             DAG.getConstant(0x20, MVT::i32));
1861  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1862                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1863  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1864
1865  SDValue Ops[2] = {Lo, Hi};
1866  return DAG.getMergeValues(Ops, 2, DL);
1867}
1868
1869SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1870                                                 bool IsSRA) const {
1871  DebugLoc DL = Op.getDebugLoc();
1872  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1873  SDValue Shamt = Op.getOperand(2);
1874
1875  // if shamt < 32:
1876  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1877  //  if isSRA:
1878  //    hi = (sra hi, shamt)
1879  //  else:
1880  //    hi = (srl hi, shamt)
1881  // else:
1882  //  if isSRA:
1883  //   lo = (sra hi, shamt[4:0])
1884  //   hi = (sra hi, 31)
1885  //  else:
1886  //   lo = (srl hi, shamt[4:0])
1887  //   hi = 0
1888  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1889                            DAG.getConstant(-1, MVT::i32));
1890  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1891                                     DAG.getConstant(1, MVT::i32));
1892  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1893  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1894  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1895  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1896                                     Hi, Shamt);
1897  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1898                             DAG.getConstant(0x20, MVT::i32));
1899  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1900                                DAG.getConstant(31, MVT::i32));
1901  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1902  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1903                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
1904                   ShiftRightHi);
1905
1906  SDValue Ops[2] = {Lo, Hi};
1907  return DAG.getMergeValues(Ops, 2, DL);
1908}
1909
1910static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
1911                            SDValue Chain, SDValue Src, unsigned Offset) {
1912  SDValue Ptr = LD->getBasePtr();
1913  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
1914  EVT BasePtrVT = Ptr.getValueType();
1915  DebugLoc DL = LD->getDebugLoc();
1916  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1917
1918  if (Offset)
1919    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1920                      DAG.getConstant(Offset, BasePtrVT));
1921
1922  SDValue Ops[] = { Chain, Ptr, Src };
1923  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
1924                                 LD->getMemOperand());
1925}
1926
1927// Expand an unaligned 32 or 64-bit integer load node.
1928SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1929  LoadSDNode *LD = cast<LoadSDNode>(Op);
1930  EVT MemVT = LD->getMemoryVT();
1931
1932  // Return if load is aligned or if MemVT is neither i32 nor i64.
1933  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
1934      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
1935    return SDValue();
1936
1937  bool IsLittle = Subtarget->isLittle();
1938  EVT VT = Op.getValueType();
1939  ISD::LoadExtType ExtType = LD->getExtensionType();
1940  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
1941
1942  assert((VT == MVT::i32) || (VT == MVT::i64));
1943
1944  // Expand
1945  //  (set dst, (i64 (load baseptr)))
1946  // to
1947  //  (set tmp, (ldl (add baseptr, 7), undef))
1948  //  (set dst, (ldr baseptr, tmp))
1949  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
1950    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
1951                               IsLittle ? 7 : 0);
1952    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
1953                        IsLittle ? 0 : 7);
1954  }
1955
1956  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
1957                             IsLittle ? 3 : 0);
1958  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
1959                             IsLittle ? 0 : 3);
1960
1961  // Expand
1962  //  (set dst, (i32 (load baseptr))) or
1963  //  (set dst, (i64 (sextload baseptr))) or
1964  //  (set dst, (i64 (extload baseptr)))
1965  // to
1966  //  (set tmp, (lwl (add baseptr, 3), undef))
1967  //  (set dst, (lwr baseptr, tmp))
1968  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
1969      (ExtType == ISD::EXTLOAD))
1970    return LWR;
1971
1972  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
1973
1974  // Expand
1975  //  (set dst, (i64 (zextload baseptr)))
1976  // to
1977  //  (set tmp0, (lwl (add baseptr, 3), undef))
1978  //  (set tmp1, (lwr baseptr, tmp0))
1979  //  (set tmp2, (shl tmp1, 32))
1980  //  (set dst, (srl tmp2, 32))
1981  DebugLoc DL = LD->getDebugLoc();
1982  SDValue Const32 = DAG.getConstant(32, MVT::i32);
1983  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
1984  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
1985  SDValue Ops[] = { SRL, LWR.getValue(1) };
1986  return DAG.getMergeValues(Ops, 2, DL);
1987}
1988
1989static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
1990                             SDValue Chain, unsigned Offset) {
1991  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
1992  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
1993  DebugLoc DL = SD->getDebugLoc();
1994  SDVTList VTList = DAG.getVTList(MVT::Other);
1995
1996  if (Offset)
1997    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1998                      DAG.getConstant(Offset, BasePtrVT));
1999
2000  SDValue Ops[] = { Chain, Value, Ptr };
2001  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2002                                 SD->getMemOperand());
2003}
2004
2005// Expand an unaligned 32 or 64-bit integer store node.
2006static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2007                                      bool IsLittle) {
2008  SDValue Value = SD->getValue(), Chain = SD->getChain();
2009  EVT VT = Value.getValueType();
2010
2011  // Expand
2012  //  (store val, baseptr) or
2013  //  (truncstore val, baseptr)
2014  // to
2015  //  (swl val, (add baseptr, 3))
2016  //  (swr val, baseptr)
2017  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2018    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2019                                IsLittle ? 3 : 0);
2020    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2021  }
2022
2023  assert(VT == MVT::i64);
2024
2025  // Expand
2026  //  (store val, baseptr)
2027  // to
2028  //  (sdl val, (add baseptr, 7))
2029  //  (sdr val, baseptr)
2030  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2031  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2032}
2033
2034// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2035static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2036  SDValue Val = SD->getValue();
2037
2038  if (Val.getOpcode() != ISD::FP_TO_SINT)
2039    return SDValue();
2040
2041  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2042  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, Val.getDebugLoc(), FPTy,
2043                           Val.getOperand(0));
2044
2045  return DAG.getStore(SD->getChain(), SD->getDebugLoc(), Tr, SD->getBasePtr(),
2046                      SD->getPointerInfo(), SD->isVolatile(),
2047                      SD->isNonTemporal(), SD->getAlignment());
2048}
2049
2050SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2051  StoreSDNode *SD = cast<StoreSDNode>(Op);
2052  EVT MemVT = SD->getMemoryVT();
2053
2054  // Lower unaligned integer stores.
2055  if ((SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2056      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2057    return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
2058
2059  return lowerFP_TO_SINT_STORE(SD, DAG);
2060}
2061
2062SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2063  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2064      || cast<ConstantSDNode>
2065        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2066      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2067    return SDValue();
2068
2069  // The pattern
2070  //   (add (frameaddr 0), (frame_to_args_offset))
2071  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2072  //   (add FrameObject, 0)
2073  // where FrameObject is a fixed StackObject with offset 0 which points to
2074  // the old stack pointer.
2075  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2076  EVT ValTy = Op->getValueType(0);
2077  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2078  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2079  return DAG.getNode(ISD::ADD, Op->getDebugLoc(), ValTy, InArgsAddr,
2080                     DAG.getConstant(0, ValTy));
2081}
2082
2083SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2084                                            SelectionDAG &DAG) const {
2085  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2086  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, Op.getDebugLoc(), FPTy,
2087                              Op.getOperand(0));
2088  return DAG.getNode(ISD::BITCAST, Op.getDebugLoc(), Op.getValueType(), Trunc);
2089}
2090
2091//===----------------------------------------------------------------------===//
2092//                      Calling Convention Implementation
2093//===----------------------------------------------------------------------===//
2094
2095//===----------------------------------------------------------------------===//
2096// TODO: Implement a generic logic using tblgen that can support this.
2097// Mips O32 ABI rules:
2098// ---
2099// i32 - Passed in A0, A1, A2, A3 and stack
2100// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2101//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2102// f64 - Only passed in two aliased f32 registers if no int reg has been used
2103//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2104//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2105//       go to stack.
2106//
2107//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2108//===----------------------------------------------------------------------===//
2109
2110static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2111                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2112                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2113
2114  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2115
2116  static const uint16_t IntRegs[] = {
2117      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2118  };
2119  static const uint16_t F32Regs[] = {
2120      Mips::F12, Mips::F14
2121  };
2122  static const uint16_t F64Regs[] = {
2123      Mips::D6, Mips::D7
2124  };
2125
2126  // Do not process byval args here.
2127  if (ArgFlags.isByVal())
2128    return true;
2129
2130  // Promote i8 and i16
2131  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2132    LocVT = MVT::i32;
2133    if (ArgFlags.isSExt())
2134      LocInfo = CCValAssign::SExt;
2135    else if (ArgFlags.isZExt())
2136      LocInfo = CCValAssign::ZExt;
2137    else
2138      LocInfo = CCValAssign::AExt;
2139  }
2140
2141  unsigned Reg;
2142
2143  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2144  // is true: function is vararg, argument is 3rd or higher, there is previous
2145  // argument which is not f32 or f64.
2146  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2147      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2148  unsigned OrigAlign = ArgFlags.getOrigAlign();
2149  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2150
2151  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2152    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2153    // If this is the first part of an i64 arg,
2154    // the allocated register must be either A0 or A2.
2155    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2156      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2157    LocVT = MVT::i32;
2158  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2159    // Allocate int register and shadow next int register. If first
2160    // available register is Mips::A1 or Mips::A3, shadow it too.
2161    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2162    if (Reg == Mips::A1 || Reg == Mips::A3)
2163      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2164    State.AllocateReg(IntRegs, IntRegsSize);
2165    LocVT = MVT::i32;
2166  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2167    // we are guaranteed to find an available float register
2168    if (ValVT == MVT::f32) {
2169      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2170      // Shadow int register
2171      State.AllocateReg(IntRegs, IntRegsSize);
2172    } else {
2173      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2174      // Shadow int registers
2175      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2176      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2177        State.AllocateReg(IntRegs, IntRegsSize);
2178      State.AllocateReg(IntRegs, IntRegsSize);
2179    }
2180  } else
2181    llvm_unreachable("Cannot handle this ValVT.");
2182
2183  if (!Reg) {
2184    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2185                                          OrigAlign);
2186    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2187  } else
2188    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2189
2190  return false;
2191}
2192
2193#include "MipsGenCallingConv.inc"
2194
2195//===----------------------------------------------------------------------===//
2196//                  Call Calling Convention Implementation
2197//===----------------------------------------------------------------------===//
2198
2199static const unsigned O32IntRegsSize = 4;
2200
2201// Return next O32 integer argument register.
2202static unsigned getNextIntArgReg(unsigned Reg) {
2203  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2204  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2205}
2206
2207SDValue
2208MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2209                                   SDValue Chain, SDValue Arg, DebugLoc DL,
2210                                   bool IsTailCall, SelectionDAG &DAG) const {
2211  if (!IsTailCall) {
2212    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2213                                 DAG.getIntPtrConstant(Offset));
2214    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2215                        false, 0);
2216  }
2217
2218  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2219  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2220  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2221  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2222                      /*isVolatile=*/ true, false, 0);
2223}
2224
2225void MipsTargetLowering::
2226getOpndList(SmallVectorImpl<SDValue> &Ops,
2227            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2228            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2229            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2230  // Insert node "GP copy globalreg" before call to function.
2231  //
2232  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2233  // in PIC mode) allow symbols to be resolved via lazy binding.
2234  // The lazy binding stub requires GP to point to the GOT.
2235  if (IsPICCall && !InternalLinkage) {
2236    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2237    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2238    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2239  }
2240
2241  // Build a sequence of copy-to-reg nodes chained together with token
2242  // chain and flag operands which copy the outgoing args into registers.
2243  // The InFlag in necessary since all emitted instructions must be
2244  // stuck together.
2245  SDValue InFlag;
2246
2247  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2248    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2249                                 RegsToPass[i].second, InFlag);
2250    InFlag = Chain.getValue(1);
2251  }
2252
2253  // Add argument registers to the end of the list so that they are
2254  // known live into the call.
2255  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2256    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2257                                      RegsToPass[i].second.getValueType()));
2258
2259  // Add a register mask operand representing the call-preserved registers.
2260  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2261  const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2262  assert(Mask && "Missing call preserved mask for calling convention");
2263  if (Subtarget->inMips16HardFloat()) {
2264    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2265      llvm::StringRef Sym = G->getGlobal()->getName();
2266      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2267      if (F->hasFnAttribute("__Mips16RetHelper")) {
2268        Mask = MipsRegisterInfo::getMips16RetHelperMask();
2269      }
2270    }
2271  }
2272  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2273
2274  if (InFlag.getNode())
2275    Ops.push_back(InFlag);
2276}
2277
2278/// LowerCall - functions arguments are copied from virtual regs to
2279/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2280SDValue
2281MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2282                              SmallVectorImpl<SDValue> &InVals) const {
2283  SelectionDAG &DAG                     = CLI.DAG;
2284  DebugLoc &DL                          = CLI.DL;
2285  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2286  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2287  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2288  SDValue Chain                         = CLI.Chain;
2289  SDValue Callee                        = CLI.Callee;
2290  bool &IsTailCall                      = CLI.IsTailCall;
2291  CallingConv::ID CallConv              = CLI.CallConv;
2292  bool IsVarArg                         = CLI.IsVarArg;
2293
2294  MachineFunction &MF = DAG.getMachineFunction();
2295  MachineFrameInfo *MFI = MF.getFrameInfo();
2296  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2297  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2298
2299  // Analyze operands of the call, assigning locations to each operand.
2300  SmallVector<CCValAssign, 16> ArgLocs;
2301  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2302                 getTargetMachine(), ArgLocs, *DAG.getContext());
2303  MipsCC::SpecialCallingConvType SpecialCallingConv =
2304    getSpecialCallingConv(Callee);
2305  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo, SpecialCallingConv);
2306
2307  MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2308                                 getTargetMachine().Options.UseSoftFloat,
2309                                 Callee.getNode(), CLI.Args);
2310
2311  // Get a count of how many bytes are to be pushed on the stack.
2312  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2313
2314  // Check if it's really possible to do a tail call.
2315  if (IsTailCall)
2316    IsTailCall =
2317      isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2318                                        *MF.getInfo<MipsFunctionInfo>());
2319
2320  if (IsTailCall)
2321    ++NumTailCalls;
2322
2323  // Chain is the output chain of the last Load/Store or CopyToReg node.
2324  // ByValChain is the output chain of the last Memcpy node created for copying
2325  // byval arguments to the stack.
2326  unsigned StackAlignment = TFL->getStackAlignment();
2327  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2328  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2329
2330  if (!IsTailCall)
2331    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
2332
2333  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
2334                                        IsN64 ? Mips::SP_64 : Mips::SP,
2335                                        getPointerTy());
2336
2337  // With EABI is it possible to have 16 args on registers.
2338  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2339  SmallVector<SDValue, 8> MemOpChains;
2340  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2341
2342  // Walk the register/memloc assignments, inserting copies/loads.
2343  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2344    SDValue Arg = OutVals[i];
2345    CCValAssign &VA = ArgLocs[i];
2346    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2347    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2348
2349    // ByVal Arg.
2350    if (Flags.isByVal()) {
2351      assert(Flags.getByValSize() &&
2352             "ByVal args of size 0 should have been ignored by front-end.");
2353      assert(ByValArg != MipsCCInfo.byval_end());
2354      assert(!IsTailCall &&
2355             "Do not tail-call optimize if there is a byval argument.");
2356      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2357                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2358      ++ByValArg;
2359      continue;
2360    }
2361
2362    // Promote the value if needed.
2363    switch (VA.getLocInfo()) {
2364    default: llvm_unreachable("Unknown loc info!");
2365    case CCValAssign::Full:
2366      if (VA.isRegLoc()) {
2367        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2368            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2369            (ValVT == MVT::i64 && LocVT == MVT::f64))
2370          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2371        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2372          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2373                                   Arg, DAG.getConstant(0, MVT::i32));
2374          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2375                                   Arg, DAG.getConstant(1, MVT::i32));
2376          if (!Subtarget->isLittle())
2377            std::swap(Lo, Hi);
2378          unsigned LocRegLo = VA.getLocReg();
2379          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2380          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2381          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2382          continue;
2383        }
2384      }
2385      break;
2386    case CCValAssign::SExt:
2387      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2388      break;
2389    case CCValAssign::ZExt:
2390      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2391      break;
2392    case CCValAssign::AExt:
2393      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2394      break;
2395    }
2396
2397    // Arguments that can be passed on register must be kept at
2398    // RegsToPass vector
2399    if (VA.isRegLoc()) {
2400      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2401      continue;
2402    }
2403
2404    // Register can't get to this point...
2405    assert(VA.isMemLoc());
2406
2407    // emit ISD::STORE whichs stores the
2408    // parameter value to a stack Location
2409    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2410                                         Chain, Arg, DL, IsTailCall, DAG));
2411  }
2412
2413  // Transform all store nodes into one single node because all store
2414  // nodes are independent of each other.
2415  if (!MemOpChains.empty())
2416    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2417                        &MemOpChains[0], MemOpChains.size());
2418
2419  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2420  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2421  // node so that legalize doesn't hack it.
2422  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2423  bool GlobalOrExternal = false, InternalLinkage = false;
2424  SDValue CalleeLo;
2425
2426  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2427    if (IsPICCall) {
2428      InternalLinkage = G->getGlobal()->hasInternalLinkage();
2429
2430      if (InternalLinkage)
2431        Callee = getAddrLocal(Callee, DAG, HasMips64);
2432      else if (LargeGOT)
2433        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2434                                       MipsII::MO_CALL_LO16);
2435      else
2436        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2437    } else
2438      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2439                                          MipsII::MO_NO_FLAG);
2440    GlobalOrExternal = true;
2441  }
2442  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2443    if (!IsN64 && !IsPIC) // !N64 && static
2444      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2445                                            MipsII::MO_NO_FLAG);
2446    else if (LargeGOT)
2447      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2448                                     MipsII::MO_CALL_LO16);
2449    else // N64 || PIC
2450      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2451
2452    GlobalOrExternal = true;
2453  }
2454
2455  SmallVector<SDValue, 8> Ops(1, Chain);
2456  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2457
2458  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2459              CLI, Callee, Chain);
2460
2461  if (IsTailCall)
2462    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
2463
2464  Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
2465  SDValue InFlag = Chain.getValue(1);
2466
2467  // Create the CALLSEQ_END node.
2468  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2469                             DAG.getIntPtrConstant(0, true), InFlag);
2470  InFlag = Chain.getValue(1);
2471
2472  // Handle result values, copying them out of physregs into vregs that we
2473  // return.
2474  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2475                         Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2476}
2477
2478/// LowerCallResult - Lower the result values of a call into the
2479/// appropriate copies out of appropriate physical registers.
2480SDValue
2481MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2482                                    CallingConv::ID CallConv, bool IsVarArg,
2483                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2484                                    DebugLoc DL, SelectionDAG &DAG,
2485                                    SmallVectorImpl<SDValue> &InVals,
2486                                    const SDNode *CallNode,
2487                                    const Type *RetTy) const {
2488  // Assign locations to each value returned by this call.
2489  SmallVector<CCValAssign, 16> RVLocs;
2490  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2491                 getTargetMachine(), RVLocs, *DAG.getContext());
2492  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2493
2494  MipsCCInfo.analyzeCallResult(Ins, getTargetMachine().Options.UseSoftFloat,
2495                               CallNode, RetTy);
2496
2497  // Copy all of the result registers out of their specified physreg.
2498  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2499    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2500                                     RVLocs[i].getLocVT(), InFlag);
2501    Chain = Val.getValue(1);
2502    InFlag = Val.getValue(2);
2503
2504    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2505      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2506
2507    InVals.push_back(Val);
2508  }
2509
2510  return Chain;
2511}
2512
2513//===----------------------------------------------------------------------===//
2514//             Formal Arguments Calling Convention Implementation
2515//===----------------------------------------------------------------------===//
2516/// LowerFormalArguments - transform physical registers into virtual registers
2517/// and generate load operations for arguments places on the stack.
2518SDValue
2519MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2520                                         CallingConv::ID CallConv,
2521                                         bool IsVarArg,
2522                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2523                                         DebugLoc DL, SelectionDAG &DAG,
2524                                         SmallVectorImpl<SDValue> &InVals)
2525                                          const {
2526  MachineFunction &MF = DAG.getMachineFunction();
2527  MachineFrameInfo *MFI = MF.getFrameInfo();
2528  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2529
2530  MipsFI->setVarArgsFrameIndex(0);
2531
2532  // Used with vargs to acumulate store chains.
2533  std::vector<SDValue> OutChains;
2534
2535  // Assign locations to all of the incoming arguments.
2536  SmallVector<CCValAssign, 16> ArgLocs;
2537  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2538                 getTargetMachine(), ArgLocs, *DAG.getContext());
2539  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2540  Function::const_arg_iterator FuncArg =
2541    DAG.getMachineFunction().getFunction()->arg_begin();
2542  bool UseSoftFloat = getTargetMachine().Options.UseSoftFloat;
2543
2544  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2545  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2546                           MipsCCInfo.hasByValArg());
2547
2548  unsigned CurArgIdx = 0;
2549  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2550
2551  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2552    CCValAssign &VA = ArgLocs[i];
2553    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2554    CurArgIdx = Ins[i].OrigArgIndex;
2555    EVT ValVT = VA.getValVT();
2556    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2557    bool IsRegLoc = VA.isRegLoc();
2558
2559    if (Flags.isByVal()) {
2560      assert(Flags.getByValSize() &&
2561             "ByVal args of size 0 should have been ignored by front-end.");
2562      assert(ByValArg != MipsCCInfo.byval_end());
2563      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2564                    MipsCCInfo, *ByValArg);
2565      ++ByValArg;
2566      continue;
2567    }
2568
2569    // Arguments stored on registers
2570    if (IsRegLoc) {
2571      EVT RegVT = VA.getLocVT();
2572      unsigned ArgReg = VA.getLocReg();
2573      const TargetRegisterClass *RC;
2574
2575      if (RegVT == MVT::i32)
2576        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
2577                                        &Mips::CPURegsRegClass;
2578      else if (RegVT == MVT::i64)
2579        RC = &Mips::CPU64RegsRegClass;
2580      else if (RegVT == MVT::f32)
2581        RC = &Mips::FGR32RegClass;
2582      else if (RegVT == MVT::f64)
2583        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
2584      else
2585        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2586
2587      // Transform the arguments stored on
2588      // physical registers into virtual ones
2589      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2590      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2591
2592      // If this is an 8 or 16-bit value, it has been passed promoted
2593      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2594      // truncate to the right size.
2595      if (VA.getLocInfo() != CCValAssign::Full) {
2596        unsigned Opcode = 0;
2597        if (VA.getLocInfo() == CCValAssign::SExt)
2598          Opcode = ISD::AssertSext;
2599        else if (VA.getLocInfo() == CCValAssign::ZExt)
2600          Opcode = ISD::AssertZext;
2601        if (Opcode)
2602          ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2603                                 DAG.getValueType(ValVT));
2604        ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2605      }
2606
2607      // Handle floating point arguments passed in integer registers and
2608      // long double arguments passed in floating point registers.
2609      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2610          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2611          (RegVT == MVT::f64 && ValVT == MVT::i64))
2612        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2613      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2614        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2615                                  getNextIntArgReg(ArgReg), RC);
2616        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2617        if (!Subtarget->isLittle())
2618          std::swap(ArgValue, ArgValue2);
2619        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2620                               ArgValue, ArgValue2);
2621      }
2622
2623      InVals.push_back(ArgValue);
2624    } else { // VA.isRegLoc()
2625
2626      // sanity check
2627      assert(VA.isMemLoc());
2628
2629      // The stack pointer offset is relative to the caller stack frame.
2630      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2631                                      VA.getLocMemOffset(), true);
2632
2633      // Create load nodes to retrieve arguments from the stack
2634      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2635      InVals.push_back(DAG.getLoad(ValVT, DL, Chain, FIN,
2636                                   MachinePointerInfo::getFixedStack(FI),
2637                                   false, false, false, 0));
2638    }
2639  }
2640
2641  // The mips ABIs for returning structs by value requires that we copy
2642  // the sret argument into $v0 for the return. Save the argument into
2643  // a virtual register so that we can access it from the return points.
2644  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2645    unsigned Reg = MipsFI->getSRetReturnReg();
2646    if (!Reg) {
2647      Reg = MF.getRegInfo().
2648        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
2649      MipsFI->setSRetReturnReg(Reg);
2650    }
2651    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
2652    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2653  }
2654
2655  if (IsVarArg)
2656    writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2657
2658  // All stores are grouped in one node to allow the matching between
2659  // the size of Ins and InVals. This only happens when on varg functions
2660  if (!OutChains.empty()) {
2661    OutChains.push_back(Chain);
2662    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2663                        &OutChains[0], OutChains.size());
2664  }
2665
2666  return Chain;
2667}
2668
2669//===----------------------------------------------------------------------===//
2670//               Return Value Calling Convention Implementation
2671//===----------------------------------------------------------------------===//
2672
2673bool
2674MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2675                                   MachineFunction &MF, bool IsVarArg,
2676                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2677                                   LLVMContext &Context) const {
2678  SmallVector<CCValAssign, 16> RVLocs;
2679  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2680                 RVLocs, Context);
2681  return CCInfo.CheckReturn(Outs, RetCC_Mips);
2682}
2683
2684SDValue
2685MipsTargetLowering::LowerReturn(SDValue Chain,
2686                                CallingConv::ID CallConv, bool IsVarArg,
2687                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2688                                const SmallVectorImpl<SDValue> &OutVals,
2689                                DebugLoc DL, SelectionDAG &DAG) const {
2690  // CCValAssign - represent the assignment of
2691  // the return value to a location
2692  SmallVector<CCValAssign, 16> RVLocs;
2693  MachineFunction &MF = DAG.getMachineFunction();
2694
2695  // CCState - Info about the registers and stack slot.
2696  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2697                 *DAG.getContext());
2698  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2699
2700  // Analyze return values.
2701  MipsCCInfo.analyzeReturn(Outs, getTargetMachine().Options.UseSoftFloat,
2702                           MF.getFunction()->getReturnType());
2703
2704  SDValue Flag;
2705  SmallVector<SDValue, 4> RetOps(1, Chain);
2706
2707  // Copy the result values into the output registers.
2708  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2709    SDValue Val = OutVals[i];
2710    CCValAssign &VA = RVLocs[i];
2711    assert(VA.isRegLoc() && "Can only return in registers!");
2712
2713    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2714      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2715
2716    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2717
2718    // Guarantee that all emitted copies are stuck together with flags.
2719    Flag = Chain.getValue(1);
2720    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2721  }
2722
2723  // The mips ABIs for returning structs by value requires that we copy
2724  // the sret argument into $v0 for the return. We saved the argument into
2725  // a virtual register in the entry block, so now we copy the value out
2726  // and into $v0.
2727  if (MF.getFunction()->hasStructRetAttr()) {
2728    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2729    unsigned Reg = MipsFI->getSRetReturnReg();
2730
2731    if (!Reg)
2732      llvm_unreachable("sret virtual register not created in the entry block");
2733    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2734    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
2735
2736    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2737    Flag = Chain.getValue(1);
2738    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2739  }
2740
2741  RetOps[0] = Chain;  // Update chain.
2742
2743  // Add the flag if we have it.
2744  if (Flag.getNode())
2745    RetOps.push_back(Flag);
2746
2747  // Return on Mips is always a "jr $ra"
2748  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
2749}
2750
2751//===----------------------------------------------------------------------===//
2752//                           Mips Inline Assembly Support
2753//===----------------------------------------------------------------------===//
2754
2755/// getConstraintType - Given a constraint letter, return the type of
2756/// constraint it is for this target.
2757MipsTargetLowering::ConstraintType MipsTargetLowering::
2758getConstraintType(const std::string &Constraint) const
2759{
2760  // Mips specific constrainy
2761  // GCC config/mips/constraints.md
2762  //
2763  // 'd' : An address register. Equivalent to r
2764  //       unless generating MIPS16 code.
2765  // 'y' : Equivalent to r; retained for
2766  //       backwards compatibility.
2767  // 'c' : A register suitable for use in an indirect
2768  //       jump. This will always be $25 for -mabicalls.
2769  // 'l' : The lo register. 1 word storage.
2770  // 'x' : The hilo register pair. Double word storage.
2771  if (Constraint.size() == 1) {
2772    switch (Constraint[0]) {
2773      default : break;
2774      case 'd':
2775      case 'y':
2776      case 'f':
2777      case 'c':
2778      case 'l':
2779      case 'x':
2780        return C_RegisterClass;
2781      case 'R':
2782        return C_Memory;
2783    }
2784  }
2785  return TargetLowering::getConstraintType(Constraint);
2786}
2787
2788/// Examine constraint type and operand type and determine a weight value.
2789/// This object must already have been set up with the operand type
2790/// and the current alternative constraint selected.
2791TargetLowering::ConstraintWeight
2792MipsTargetLowering::getSingleConstraintMatchWeight(
2793    AsmOperandInfo &info, const char *constraint) const {
2794  ConstraintWeight weight = CW_Invalid;
2795  Value *CallOperandVal = info.CallOperandVal;
2796    // If we don't have a value, we can't do a match,
2797    // but allow it at the lowest weight.
2798  if (CallOperandVal == NULL)
2799    return CW_Default;
2800  Type *type = CallOperandVal->getType();
2801  // Look at the constraint type.
2802  switch (*constraint) {
2803  default:
2804    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2805    break;
2806  case 'd':
2807  case 'y':
2808    if (type->isIntegerTy())
2809      weight = CW_Register;
2810    break;
2811  case 'f':
2812    if (type->isFloatTy())
2813      weight = CW_Register;
2814    break;
2815  case 'c': // $25 for indirect jumps
2816  case 'l': // lo register
2817  case 'x': // hilo register pair
2818      if (type->isIntegerTy())
2819      weight = CW_SpecificReg;
2820      break;
2821  case 'I': // signed 16 bit immediate
2822  case 'J': // integer zero
2823  case 'K': // unsigned 16 bit immediate
2824  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2825  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2826  case 'O': // signed 15 bit immediate (+- 16383)
2827  case 'P': // immediate in the range of 65535 to 1 (inclusive)
2828    if (isa<ConstantInt>(CallOperandVal))
2829      weight = CW_Constant;
2830    break;
2831  case 'R':
2832    weight = CW_Memory;
2833    break;
2834  }
2835  return weight;
2836}
2837
2838/// Given a register class constraint, like 'r', if this corresponds directly
2839/// to an LLVM register class, return a register of 0 and the register class
2840/// pointer.
2841std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2842getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
2843{
2844  if (Constraint.size() == 1) {
2845    switch (Constraint[0]) {
2846    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2847    case 'y': // Same as 'r'. Exists for compatibility.
2848    case 'r':
2849      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
2850        if (Subtarget->inMips16Mode())
2851          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
2852        return std::make_pair(0U, &Mips::CPURegsRegClass);
2853      }
2854      if (VT == MVT::i64 && !HasMips64)
2855        return std::make_pair(0U, &Mips::CPURegsRegClass);
2856      if (VT == MVT::i64 && HasMips64)
2857        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
2858      // This will generate an error message
2859      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2860    case 'f':
2861      if (VT == MVT::f32)
2862        return std::make_pair(0U, &Mips::FGR32RegClass);
2863      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2864        if (Subtarget->isFP64bit())
2865          return std::make_pair(0U, &Mips::FGR64RegClass);
2866        return std::make_pair(0U, &Mips::AFGR64RegClass);
2867      }
2868      break;
2869    case 'c': // register suitable for indirect jump
2870      if (VT == MVT::i32)
2871        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
2872      assert(VT == MVT::i64 && "Unexpected type.");
2873      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
2874    case 'l': // register suitable for indirect jump
2875      if (VT == MVT::i32)
2876        return std::make_pair((unsigned)Mips::LO, &Mips::LORegsRegClass);
2877      return std::make_pair((unsigned)Mips::LO64, &Mips::LORegs64RegClass);
2878    case 'x': // register suitable for indirect jump
2879      // Fixme: Not triggering the use of both hi and low
2880      // This will generate an error message
2881      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2882    }
2883  }
2884  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2885}
2886
2887/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2888/// vector.  If it is invalid, don't add anything to Ops.
2889void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2890                                                     std::string &Constraint,
2891                                                     std::vector<SDValue>&Ops,
2892                                                     SelectionDAG &DAG) const {
2893  SDValue Result(0, 0);
2894
2895  // Only support length 1 constraints for now.
2896  if (Constraint.length() > 1) return;
2897
2898  char ConstraintLetter = Constraint[0];
2899  switch (ConstraintLetter) {
2900  default: break; // This will fall through to the generic implementation
2901  case 'I': // Signed 16 bit constant
2902    // If this fails, the parent routine will give an error
2903    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2904      EVT Type = Op.getValueType();
2905      int64_t Val = C->getSExtValue();
2906      if (isInt<16>(Val)) {
2907        Result = DAG.getTargetConstant(Val, Type);
2908        break;
2909      }
2910    }
2911    return;
2912  case 'J': // integer zero
2913    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2914      EVT Type = Op.getValueType();
2915      int64_t Val = C->getZExtValue();
2916      if (Val == 0) {
2917        Result = DAG.getTargetConstant(0, Type);
2918        break;
2919      }
2920    }
2921    return;
2922  case 'K': // unsigned 16 bit immediate
2923    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2924      EVT Type = Op.getValueType();
2925      uint64_t Val = (uint64_t)C->getZExtValue();
2926      if (isUInt<16>(Val)) {
2927        Result = DAG.getTargetConstant(Val, Type);
2928        break;
2929      }
2930    }
2931    return;
2932  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2933    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2934      EVT Type = Op.getValueType();
2935      int64_t Val = C->getSExtValue();
2936      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
2937        Result = DAG.getTargetConstant(Val, Type);
2938        break;
2939      }
2940    }
2941    return;
2942  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2943    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2944      EVT Type = Op.getValueType();
2945      int64_t Val = C->getSExtValue();
2946      if ((Val >= -65535) && (Val <= -1)) {
2947        Result = DAG.getTargetConstant(Val, Type);
2948        break;
2949      }
2950    }
2951    return;
2952  case 'O': // signed 15 bit immediate
2953    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2954      EVT Type = Op.getValueType();
2955      int64_t Val = C->getSExtValue();
2956      if ((isInt<15>(Val))) {
2957        Result = DAG.getTargetConstant(Val, Type);
2958        break;
2959      }
2960    }
2961    return;
2962  case 'P': // immediate in the range of 1 to 65535 (inclusive)
2963    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2964      EVT Type = Op.getValueType();
2965      int64_t Val = C->getSExtValue();
2966      if ((Val <= 65535) && (Val >= 1)) {
2967        Result = DAG.getTargetConstant(Val, Type);
2968        break;
2969      }
2970    }
2971    return;
2972  }
2973
2974  if (Result.getNode()) {
2975    Ops.push_back(Result);
2976    return;
2977  }
2978
2979  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2980}
2981
2982bool
2983MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
2984  // No global is ever allowed as a base.
2985  if (AM.BaseGV)
2986    return false;
2987
2988  switch (AM.Scale) {
2989  case 0: // "r+i" or just "i", depending on HasBaseReg.
2990    break;
2991  case 1:
2992    if (!AM.HasBaseReg) // allow "r+i".
2993      break;
2994    return false; // disallow "r+r" or "r+r+i".
2995  default:
2996    return false;
2997  }
2998
2999  return true;
3000}
3001
3002bool
3003MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3004  // The Mips target isn't yet aware of offsets.
3005  return false;
3006}
3007
3008EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3009                                            unsigned SrcAlign,
3010                                            bool IsMemset, bool ZeroMemset,
3011                                            bool MemcpyStrSrc,
3012                                            MachineFunction &MF) const {
3013  if (Subtarget->hasMips64())
3014    return MVT::i64;
3015
3016  return MVT::i32;
3017}
3018
3019bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3020  if (VT != MVT::f32 && VT != MVT::f64)
3021    return false;
3022  if (Imm.isNegZero())
3023    return false;
3024  return Imm.isZero();
3025}
3026
3027unsigned MipsTargetLowering::getJumpTableEncoding() const {
3028  if (IsN64)
3029    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3030
3031  return TargetLowering::getJumpTableEncoding();
3032}
3033
3034/// This function returns true if CallSym is a long double emulation routine.
3035static bool isF128SoftLibCall(const char *CallSym) {
3036  const char *const LibCalls[] =
3037    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3038     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3039     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3040     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3041     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3042     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3043     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3044     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3045     "truncl"};
3046
3047  const char * const *End = LibCalls + array_lengthof(LibCalls);
3048
3049  // Check that LibCalls is sorted alphabetically.
3050  MipsTargetLowering::LTStr Comp;
3051
3052#ifndef NDEBUG
3053  for (const char * const *I = LibCalls; I < End - 1; ++I)
3054    assert(Comp(*I, *(I + 1)));
3055#endif
3056
3057  return std::binary_search(LibCalls, End, CallSym, Comp);
3058}
3059
3060/// This function returns true if Ty is fp128 or i128 which was originally a
3061/// fp128.
3062static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3063  if (Ty->isFP128Ty())
3064    return true;
3065
3066  const ExternalSymbolSDNode *ES =
3067    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3068
3069  // If the Ty is i128 and the function being called is a long double emulation
3070  // routine, then the original type is f128.
3071  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3072}
3073
3074MipsTargetLowering::MipsCC::SpecialCallingConvType
3075  MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
3076  MipsCC::SpecialCallingConvType SpecialCallingConv =
3077    MipsCC::NoSpecialCallingConv;;
3078  if (Subtarget->inMips16HardFloat()) {
3079    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3080      llvm::StringRef Sym = G->getGlobal()->getName();
3081      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3082      if (F->hasFnAttribute("__Mips16RetHelper")) {
3083        SpecialCallingConv = MipsCC::Mips16RetHelperConv;
3084      }
3085    }
3086  }
3087  return SpecialCallingConv;
3088}
3089
3090MipsTargetLowering::MipsCC::MipsCC(
3091  CallingConv::ID CC, bool IsO32_, CCState &Info,
3092    MipsCC::SpecialCallingConvType SpecialCallingConv_)
3093  : CCInfo(Info), CallConv(CC), IsO32(IsO32_),
3094    SpecialCallingConv(SpecialCallingConv_){
3095  // Pre-allocate reserved argument area.
3096  CCInfo.AllocateStack(reservedArgArea(), 1);
3097}
3098
3099
3100void MipsTargetLowering::MipsCC::
3101analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3102                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3103                    std::vector<ArgListEntry> &FuncArgs) {
3104  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3105         "CallingConv::Fast shouldn't be used for vararg functions.");
3106
3107  unsigned NumOpnds = Args.size();
3108  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3109
3110  for (unsigned I = 0; I != NumOpnds; ++I) {
3111    MVT ArgVT = Args[I].VT;
3112    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3113    bool R;
3114
3115    if (ArgFlags.isByVal()) {
3116      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3117      continue;
3118    }
3119
3120    if (IsVarArg && !Args[I].IsFixed)
3121      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3122    else {
3123      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3124                           IsSoftFloat);
3125      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3126    }
3127
3128    if (R) {
3129#ifndef NDEBUG
3130      dbgs() << "Call operand #" << I << " has unhandled type "
3131             << EVT(ArgVT).getEVTString();
3132#endif
3133      llvm_unreachable(0);
3134    }
3135  }
3136}
3137
3138void MipsTargetLowering::MipsCC::
3139analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3140                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3141  unsigned NumArgs = Args.size();
3142  llvm::CCAssignFn *FixedFn = fixedArgFn();
3143  unsigned CurArgIdx = 0;
3144
3145  for (unsigned I = 0; I != NumArgs; ++I) {
3146    MVT ArgVT = Args[I].VT;
3147    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3148    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3149    CurArgIdx = Args[I].OrigArgIndex;
3150
3151    if (ArgFlags.isByVal()) {
3152      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3153      continue;
3154    }
3155
3156    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
3157
3158    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3159      continue;
3160
3161#ifndef NDEBUG
3162    dbgs() << "Formal Arg #" << I << " has unhandled type "
3163           << EVT(ArgVT).getEVTString();
3164#endif
3165    llvm_unreachable(0);
3166  }
3167}
3168
3169template<typename Ty>
3170void MipsTargetLowering::MipsCC::
3171analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3172              const SDNode *CallNode, const Type *RetTy) const {
3173  CCAssignFn *Fn;
3174
3175  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3176    Fn = RetCC_F128Soft;
3177  else
3178    Fn = RetCC_Mips;
3179
3180  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3181    MVT VT = RetVals[I].VT;
3182    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3183    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3184
3185    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3186#ifndef NDEBUG
3187      dbgs() << "Call result #" << I << " has unhandled type "
3188             << EVT(VT).getEVTString() << '\n';
3189#endif
3190      llvm_unreachable(0);
3191    }
3192  }
3193}
3194
3195void MipsTargetLowering::MipsCC::
3196analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3197                  const SDNode *CallNode, const Type *RetTy) const {
3198  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3199}
3200
3201void MipsTargetLowering::MipsCC::
3202analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3203              const Type *RetTy) const {
3204  analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
3205}
3206
3207void
3208MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3209                                           MVT LocVT,
3210                                           CCValAssign::LocInfo LocInfo,
3211                                           ISD::ArgFlagsTy ArgFlags) {
3212  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3213
3214  struct ByValArgInfo ByVal;
3215  unsigned RegSize = regSize();
3216  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3217  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3218                            RegSize * 2);
3219
3220  if (useRegsForByval())
3221    allocateRegs(ByVal, ByValSize, Align);
3222
3223  // Allocate space on caller's stack.
3224  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3225                                       Align);
3226  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3227                                    LocInfo));
3228  ByValArgs.push_back(ByVal);
3229}
3230
3231unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3232  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3233}
3234
3235unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3236  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3237}
3238
3239const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
3240  return IsO32 ? O32IntRegs : Mips64IntRegs;
3241}
3242
3243llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3244  if (CallConv == CallingConv::Fast)
3245    return CC_Mips_FastCC;
3246
3247  if (SpecialCallingConv == Mips16RetHelperConv)
3248    return CC_Mips16RetHelper;
3249  return IsO32 ? CC_MipsO32 : CC_MipsN;
3250}
3251
3252llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3253  return IsO32 ? CC_MipsO32 : CC_MipsN_VarArg;
3254}
3255
3256const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
3257  return IsO32 ? O32IntRegs : Mips64DPRegs;
3258}
3259
3260void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3261                                              unsigned ByValSize,
3262                                              unsigned Align) {
3263  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3264  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3265  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3266         "Byval argument's size and alignment should be a multiple of"
3267         "RegSize.");
3268
3269  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3270
3271  // If Align > RegSize, the first arg register must be even.
3272  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3273    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3274    ++ByVal.FirstIdx;
3275  }
3276
3277  // Mark the registers allocated.
3278  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3279       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3280    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3281}
3282
3283MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3284                                         const SDNode *CallNode,
3285                                         bool IsSoftFloat) const {
3286  if (IsSoftFloat || IsO32)
3287    return VT;
3288
3289  // Check if the original type was fp128.
3290  if (originalTypeIsF128(OrigTy, CallNode)) {
3291    assert(VT == MVT::i64);
3292    return MVT::f64;
3293  }
3294
3295  return VT;
3296}
3297
3298void MipsTargetLowering::
3299copyByValRegs(SDValue Chain, DebugLoc DL, std::vector<SDValue> &OutChains,
3300              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3301              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3302              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3303  MachineFunction &MF = DAG.getMachineFunction();
3304  MachineFrameInfo *MFI = MF.getFrameInfo();
3305  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3306  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3307  int FrameObjOffset;
3308
3309  if (RegAreaSize)
3310    FrameObjOffset = (int)CC.reservedArgArea() -
3311      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3312  else
3313    FrameObjOffset = ByVal.Address;
3314
3315  // Create frame object.
3316  EVT PtrTy = getPointerTy();
3317  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3318  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3319  InVals.push_back(FIN);
3320
3321  if (!ByVal.NumRegs)
3322    return;
3323
3324  // Copy arg registers.
3325  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3326  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3327
3328  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3329    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3330    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3331    unsigned Offset = I * CC.regSize();
3332    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3333                                   DAG.getConstant(Offset, PtrTy));
3334    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3335                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3336                                 false, false, 0);
3337    OutChains.push_back(Store);
3338  }
3339}
3340
3341// Copy byVal arg to registers and stack.
3342void MipsTargetLowering::
3343passByValArg(SDValue Chain, DebugLoc DL,
3344             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3345             SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
3346             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3347             const MipsCC &CC, const ByValArgInfo &ByVal,
3348             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3349  unsigned ByValSize = Flags.getByValSize();
3350  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3351  unsigned RegSize = CC.regSize();
3352  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3353  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3354
3355  if (ByVal.NumRegs) {
3356    const uint16_t *ArgRegs = CC.intArgRegs();
3357    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3358    unsigned I = 0;
3359
3360    // Copy words to registers.
3361    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3362      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3363                                    DAG.getConstant(Offset, PtrTy));
3364      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3365                                    MachinePointerInfo(), false, false, false,
3366                                    Alignment);
3367      MemOpChains.push_back(LoadVal.getValue(1));
3368      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3369      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3370    }
3371
3372    // Return if the struct has been fully copied.
3373    if (ByValSize == Offset)
3374      return;
3375
3376    // Copy the remainder of the byval argument with sub-word loads and shifts.
3377    if (LeftoverBytes) {
3378      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3379             "Size of the remainder should be smaller than RegSize.");
3380      SDValue Val;
3381
3382      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3383           Offset < ByValSize; LoadSize /= 2) {
3384        unsigned RemSize = ByValSize - Offset;
3385
3386        if (RemSize < LoadSize)
3387          continue;
3388
3389        // Load subword.
3390        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3391                                      DAG.getConstant(Offset, PtrTy));
3392        SDValue LoadVal =
3393          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3394                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3395                         false, false, Alignment);
3396        MemOpChains.push_back(LoadVal.getValue(1));
3397
3398        // Shift the loaded value.
3399        unsigned Shamt;
3400
3401        if (isLittle)
3402          Shamt = TotalSizeLoaded;
3403        else
3404          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3405
3406        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3407                                    DAG.getConstant(Shamt, MVT::i32));
3408
3409        if (Val.getNode())
3410          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3411        else
3412          Val = Shift;
3413
3414        Offset += LoadSize;
3415        TotalSizeLoaded += LoadSize;
3416        Alignment = std::min(Alignment, LoadSize);
3417      }
3418
3419      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3420      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3421      return;
3422    }
3423  }
3424
3425  // Copy remainder of byval arg to it with memcpy.
3426  unsigned MemCpySize = ByValSize - Offset;
3427  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3428                            DAG.getConstant(Offset, PtrTy));
3429  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3430                            DAG.getIntPtrConstant(ByVal.Address));
3431  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
3432                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
3433                        /*isVolatile=*/false, /*AlwaysInline=*/false,
3434                        MachinePointerInfo(0), MachinePointerInfo(0));
3435  MemOpChains.push_back(Chain);
3436}
3437
3438void
3439MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3440                                    const MipsCC &CC, SDValue Chain,
3441                                    DebugLoc DL, SelectionDAG &DAG) const {
3442  unsigned NumRegs = CC.numIntArgRegs();
3443  const uint16_t *ArgRegs = CC.intArgRegs();
3444  const CCState &CCInfo = CC.getCCInfo();
3445  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3446  unsigned RegSize = CC.regSize();
3447  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3448  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3449  MachineFunction &MF = DAG.getMachineFunction();
3450  MachineFrameInfo *MFI = MF.getFrameInfo();
3451  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3452
3453  // Offset of the first variable argument from stack pointer.
3454  int VaArgOffset;
3455
3456  if (NumRegs == Idx)
3457    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3458  else
3459    VaArgOffset =
3460      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3461
3462  // Record the frame index of the first variable argument
3463  // which is a value necessary to VASTART.
3464  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3465  MipsFI->setVarArgsFrameIndex(FI);
3466
3467  // Copy the integer registers that have not been used for argument passing
3468  // to the argument register save area. For O32, the save area is allocated
3469  // in the caller's stack frame, while for N32/64, it is allocated in the
3470  // callee's stack frame.
3471  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3472    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3473    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3474    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3475    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3476    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3477                                 MachinePointerInfo(), false, false, 0);
3478    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3479    OutChains.push_back(Store);
3480  }
3481}
3482