MipsISelLowering.cpp revision b430cecc0eeaa3f916b396b9f5fdee04cf306658
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "mips-lower"
16#include "MipsISelLowering.h"
17#include "MipsMachineFunction.h"
18#include "MipsTargetMachine.h"
19#include "MipsTargetObjectFile.h"
20#include "MipsSubtarget.h"
21#include "InstPrinter/MipsInstPrinter.h"
22#include "MCTargetDesc/MipsBaseInfo.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/CallingConv.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38
39using namespace llvm;
40
41// If I is a shifted mask, set the size (Size) and the first bit of the
42// mask (Pos), and return true.
43// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
44static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
45  if (!isShiftedMask_64(I))
46     return false;
47
48  Size = CountPopulation_64(I);
49  Pos = CountTrailingZeros_64(I);
50  return true;
51}
52
53static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
54  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
55  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
56}
57
58const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
59  switch (Opcode) {
60  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
61  case MipsISD::Hi:                return "MipsISD::Hi";
62  case MipsISD::Lo:                return "MipsISD::Lo";
63  case MipsISD::GPRel:             return "MipsISD::GPRel";
64  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
65  case MipsISD::Ret:               return "MipsISD::Ret";
66  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
67  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
68  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
69  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
70  case MipsISD::FPRound:           return "MipsISD::FPRound";
71  case MipsISD::MAdd:              return "MipsISD::MAdd";
72  case MipsISD::MAddu:             return "MipsISD::MAddu";
73  case MipsISD::MSub:              return "MipsISD::MSub";
74  case MipsISD::MSubu:             return "MipsISD::MSubu";
75  case MipsISD::DivRem:            return "MipsISD::DivRem";
76  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
77  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
78  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
79  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
80  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
81  case MipsISD::Sync:              return "MipsISD::Sync";
82  case MipsISD::Ext:               return "MipsISD::Ext";
83  case MipsISD::Ins:               return "MipsISD::Ins";
84  case MipsISD::LWL:               return "MipsISD::LWL";
85  case MipsISD::LWR:               return "MipsISD::LWR";
86  case MipsISD::SWL:               return "MipsISD::SWL";
87  case MipsISD::SWR:               return "MipsISD::SWR";
88  case MipsISD::LDL:               return "MipsISD::LDL";
89  case MipsISD::LDR:               return "MipsISD::LDR";
90  case MipsISD::SDL:               return "MipsISD::SDL";
91  case MipsISD::SDR:               return "MipsISD::SDR";
92  case MipsISD::EXTP:              return "MipsISD::EXTP";
93  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
94  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
95  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
96  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
97  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
98  case MipsISD::SHILO:             return "MipsISD::SHILO";
99  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
100  case MipsISD::MULT:              return "MipsISD::MULT";
101  case MipsISD::MULTU:             return "MipsISD::MULTU";
102  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSPDSP";
103  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
104  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
105  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
106  default:                         return NULL;
107  }
108}
109
110MipsTargetLowering::
111MipsTargetLowering(MipsTargetMachine &TM)
112  : TargetLowering(TM, new MipsTargetObjectFile()),
113    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
114    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
115    IsO32(Subtarget->isABI_O32()) {
116
117  // Mips does not have i1 type, so use i32 for
118  // setcc operations results (slt, sgt, ...).
119  setBooleanContents(ZeroOrOneBooleanContent);
120  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
121
122  // Set up the register classes
123  addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
124
125  if (HasMips64)
126    addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
127
128  if (Subtarget->inMips16Mode()) {
129    addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
130  }
131
132  if (Subtarget->hasDSP()) {
133    MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
134
135    for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
136      addRegisterClass(VecTys[i], &Mips::DSPRegsRegClass);
137
138      // Expand all builtin opcodes.
139      for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
140        setOperationAction(Opc, VecTys[i], Expand);
141
142      setOperationAction(ISD::LOAD, VecTys[i], Legal);
143      setOperationAction(ISD::STORE, VecTys[i], Legal);
144      setOperationAction(ISD::BITCAST, VecTys[i], Legal);
145    }
146  }
147
148  if (!TM.Options.UseSoftFloat) {
149    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
150
151    // When dealing with single precision only, use libcalls
152    if (!Subtarget->isSingleFloat()) {
153      if (HasMips64)
154        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
155      else
156        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
157    }
158  }
159
160  // Load extented operations for i1 types must be promoted
161  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
162  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
163  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
164
165  // MIPS doesn't have extending float->double load/store
166  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
167  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
168
169  // Used by legalize types to correctly generate the setcc result.
170  // Without this, every float setcc comes with a AND/OR with the result,
171  // we don't want this, since the fpcmp result goes to a flag register,
172  // which is used implicitly by brcond and select operations.
173  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
174
175  // Mips Custom Operations
176  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
177  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
178  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
179  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
180  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
181  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
182  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
183  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
184  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
185  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
186  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
187  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
188  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
189  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
190  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
191  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
192  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
193  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
194  if (!Subtarget->inMips16Mode()) {
195    setOperationAction(ISD::LOAD,               MVT::i32, Custom);
196    setOperationAction(ISD::STORE,              MVT::i32, Custom);
197  }
198
199  if (!TM.Options.NoNaNsFPMath) {
200    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
201    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
202  }
203
204  if (HasMips64) {
205    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
206    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
207    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
208    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
209    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
210    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
211    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
212    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
213  }
214
215  if (!HasMips64) {
216    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
217    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
218    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
219  }
220
221  setOperationAction(ISD::SDIV, MVT::i32, Expand);
222  setOperationAction(ISD::SREM, MVT::i32, Expand);
223  setOperationAction(ISD::UDIV, MVT::i32, Expand);
224  setOperationAction(ISD::UREM, MVT::i32, Expand);
225  setOperationAction(ISD::SDIV, MVT::i64, Expand);
226  setOperationAction(ISD::SREM, MVT::i64, Expand);
227  setOperationAction(ISD::UDIV, MVT::i64, Expand);
228  setOperationAction(ISD::UREM, MVT::i64, Expand);
229
230  // Operations not directly supported by Mips.
231  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
232  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
233  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
234  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
235  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
236  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
237  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
238  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
239  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
240  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
241  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
242  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
243  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
244  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
245  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
246  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
247  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
248  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
249  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
250  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
251
252  if (!Subtarget->hasMips32r2())
253    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
254
255  if (!Subtarget->hasMips64r2())
256    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
257
258  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
259  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
260  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
261  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
262  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
263  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
264  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
265  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
266  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
267  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
268  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
269  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
270  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
271  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
272  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
273
274  if (!TM.Options.NoNaNsFPMath) {
275    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
276    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
277  }
278
279  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
280  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
281  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
282  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
283
284  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
285  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
286  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
287
288  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
289  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
290
291  // Use the default for now
292  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
293  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
294
295  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
296  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
297  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
298  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
299
300  setInsertFencesForAtomic(true);
301
302  if (!Subtarget->hasSEInReg()) {
303    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
304    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
305  }
306
307  if (!Subtarget->hasBitCount()) {
308    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
309    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
310  }
311
312  if (!Subtarget->hasSwap()) {
313    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
314    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
315  }
316
317  if (HasMips64) {
318    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
319    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
320    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
321    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
322  }
323
324  setTargetDAGCombine(ISD::ADDE);
325  setTargetDAGCombine(ISD::SUBE);
326  setTargetDAGCombine(ISD::SDIVREM);
327  setTargetDAGCombine(ISD::UDIVREM);
328  setTargetDAGCombine(ISD::SELECT);
329  setTargetDAGCombine(ISD::AND);
330  setTargetDAGCombine(ISD::OR);
331  setTargetDAGCombine(ISD::ADD);
332
333  setMinFunctionAlignment(HasMips64 ? 3 : 2);
334
335  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
336  computeRegisterProperties();
337
338  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
339  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
340
341  maxStoresPerMemcpy = 16;
342}
343
344bool MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
345  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
346
347  if (Subtarget->inMips16Mode())
348    return false;
349
350  switch (SVT) {
351  case MVT::i64:
352  case MVT::i32:
353    return true;
354  default:
355    return false;
356  }
357}
358
359EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
360  return MVT::i32;
361}
362
363// SelectMadd -
364// Transforms a subgraph in CurDAG if the following pattern is found:
365//  (addc multLo, Lo0), (adde multHi, Hi0),
366// where,
367//  multHi/Lo: product of multiplication
368//  Lo0: initial value of Lo register
369//  Hi0: initial value of Hi register
370// Return true if pattern matching was successful.
371static bool SelectMadd(SDNode *ADDENode, SelectionDAG *CurDAG) {
372  // ADDENode's second operand must be a flag output of an ADDC node in order
373  // for the matching to be successful.
374  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
375
376  if (ADDCNode->getOpcode() != ISD::ADDC)
377    return false;
378
379  SDValue MultHi = ADDENode->getOperand(0);
380  SDValue MultLo = ADDCNode->getOperand(0);
381  SDNode *MultNode = MultHi.getNode();
382  unsigned MultOpc = MultHi.getOpcode();
383
384  // MultHi and MultLo must be generated by the same node,
385  if (MultLo.getNode() != MultNode)
386    return false;
387
388  // and it must be a multiplication.
389  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
390    return false;
391
392  // MultLo amd MultHi must be the first and second output of MultNode
393  // respectively.
394  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
395    return false;
396
397  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
398  // of the values of MultNode, in which case MultNode will be removed in later
399  // phases.
400  // If there exist users other than ADDENode or ADDCNode, this function returns
401  // here, which will result in MultNode being mapped to a single MULT
402  // instruction node rather than a pair of MULT and MADD instructions being
403  // produced.
404  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
405    return false;
406
407  SDValue Chain = CurDAG->getEntryNode();
408  DebugLoc dl = ADDENode->getDebugLoc();
409
410  // create MipsMAdd(u) node
411  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
412
413  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
414                                 MultNode->getOperand(0),// Factor 0
415                                 MultNode->getOperand(1),// Factor 1
416                                 ADDCNode->getOperand(1),// Lo0
417                                 ADDENode->getOperand(1));// Hi0
418
419  // create CopyFromReg nodes
420  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
421                                              MAdd);
422  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
423                                              Mips::HI, MVT::i32,
424                                              CopyFromLo.getValue(2));
425
426  // replace uses of adde and addc here
427  if (!SDValue(ADDCNode, 0).use_empty())
428    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
429
430  if (!SDValue(ADDENode, 0).use_empty())
431    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
432
433  return true;
434}
435
436// SelectMsub -
437// Transforms a subgraph in CurDAG if the following pattern is found:
438//  (addc Lo0, multLo), (sube Hi0, multHi),
439// where,
440//  multHi/Lo: product of multiplication
441//  Lo0: initial value of Lo register
442//  Hi0: initial value of Hi register
443// Return true if pattern matching was successful.
444static bool SelectMsub(SDNode *SUBENode, SelectionDAG *CurDAG) {
445  // SUBENode's second operand must be a flag output of an SUBC node in order
446  // for the matching to be successful.
447  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
448
449  if (SUBCNode->getOpcode() != ISD::SUBC)
450    return false;
451
452  SDValue MultHi = SUBENode->getOperand(1);
453  SDValue MultLo = SUBCNode->getOperand(1);
454  SDNode *MultNode = MultHi.getNode();
455  unsigned MultOpc = MultHi.getOpcode();
456
457  // MultHi and MultLo must be generated by the same node,
458  if (MultLo.getNode() != MultNode)
459    return false;
460
461  // and it must be a multiplication.
462  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
463    return false;
464
465  // MultLo amd MultHi must be the first and second output of MultNode
466  // respectively.
467  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
468    return false;
469
470  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
471  // of the values of MultNode, in which case MultNode will be removed in later
472  // phases.
473  // If there exist users other than SUBENode or SUBCNode, this function returns
474  // here, which will result in MultNode being mapped to a single MULT
475  // instruction node rather than a pair of MULT and MSUB instructions being
476  // produced.
477  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
478    return false;
479
480  SDValue Chain = CurDAG->getEntryNode();
481  DebugLoc dl = SUBENode->getDebugLoc();
482
483  // create MipsSub(u) node
484  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
485
486  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
487                                 MultNode->getOperand(0),// Factor 0
488                                 MultNode->getOperand(1),// Factor 1
489                                 SUBCNode->getOperand(0),// Lo0
490                                 SUBENode->getOperand(0));// Hi0
491
492  // create CopyFromReg nodes
493  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
494                                              MSub);
495  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
496                                              Mips::HI, MVT::i32,
497                                              CopyFromLo.getValue(2));
498
499  // replace uses of sube and subc here
500  if (!SDValue(SUBCNode, 0).use_empty())
501    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
502
503  if (!SDValue(SUBENode, 0).use_empty())
504    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
505
506  return true;
507}
508
509static SDValue PerformADDECombine(SDNode *N, SelectionDAG &DAG,
510                                  TargetLowering::DAGCombinerInfo &DCI,
511                                  const MipsSubtarget *Subtarget) {
512  if (DCI.isBeforeLegalize())
513    return SDValue();
514
515  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
516      SelectMadd(N, &DAG))
517    return SDValue(N, 0);
518
519  return SDValue();
520}
521
522static SDValue PerformSUBECombine(SDNode *N, SelectionDAG &DAG,
523                                  TargetLowering::DAGCombinerInfo &DCI,
524                                  const MipsSubtarget *Subtarget) {
525  if (DCI.isBeforeLegalize())
526    return SDValue();
527
528  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
529      SelectMsub(N, &DAG))
530    return SDValue(N, 0);
531
532  return SDValue();
533}
534
535static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG &DAG,
536                                    TargetLowering::DAGCombinerInfo &DCI,
537                                    const MipsSubtarget *Subtarget) {
538  if (DCI.isBeforeLegalizeOps())
539    return SDValue();
540
541  EVT Ty = N->getValueType(0);
542  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
543  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
544  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
545                                                  MipsISD::DivRemU;
546  DebugLoc dl = N->getDebugLoc();
547
548  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
549                               N->getOperand(0), N->getOperand(1));
550  SDValue InChain = DAG.getEntryNode();
551  SDValue InGlue = DivRem;
552
553  // insert MFLO
554  if (N->hasAnyUseOfValue(0)) {
555    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
556                                            InGlue);
557    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
558    InChain = CopyFromLo.getValue(1);
559    InGlue = CopyFromLo.getValue(2);
560  }
561
562  // insert MFHI
563  if (N->hasAnyUseOfValue(1)) {
564    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
565                                            HI, Ty, InGlue);
566    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
567  }
568
569  return SDValue();
570}
571
572static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
573  switch (CC) {
574  default: llvm_unreachable("Unknown fp condition code!");
575  case ISD::SETEQ:
576  case ISD::SETOEQ: return Mips::FCOND_OEQ;
577  case ISD::SETUNE: return Mips::FCOND_UNE;
578  case ISD::SETLT:
579  case ISD::SETOLT: return Mips::FCOND_OLT;
580  case ISD::SETGT:
581  case ISD::SETOGT: return Mips::FCOND_OGT;
582  case ISD::SETLE:
583  case ISD::SETOLE: return Mips::FCOND_OLE;
584  case ISD::SETGE:
585  case ISD::SETOGE: return Mips::FCOND_OGE;
586  case ISD::SETULT: return Mips::FCOND_ULT;
587  case ISD::SETULE: return Mips::FCOND_ULE;
588  case ISD::SETUGT: return Mips::FCOND_UGT;
589  case ISD::SETUGE: return Mips::FCOND_UGE;
590  case ISD::SETUO:  return Mips::FCOND_UN;
591  case ISD::SETO:   return Mips::FCOND_OR;
592  case ISD::SETNE:
593  case ISD::SETONE: return Mips::FCOND_ONE;
594  case ISD::SETUEQ: return Mips::FCOND_UEQ;
595  }
596}
597
598
599// Returns true if condition code has to be inverted.
600static bool InvertFPCondCode(Mips::CondCode CC) {
601  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
602    return false;
603
604  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
605         "Illegal Condition Code");
606
607  return true;
608}
609
610// Creates and returns an FPCmp node from a setcc node.
611// Returns Op if setcc is not a floating point comparison.
612static SDValue CreateFPCmp(SelectionDAG &DAG, const SDValue &Op) {
613  // must be a SETCC node
614  if (Op.getOpcode() != ISD::SETCC)
615    return Op;
616
617  SDValue LHS = Op.getOperand(0);
618
619  if (!LHS.getValueType().isFloatingPoint())
620    return Op;
621
622  SDValue RHS = Op.getOperand(1);
623  DebugLoc dl = Op.getDebugLoc();
624
625  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
626  // node if necessary.
627  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
628
629  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
630                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
631}
632
633// Creates and returns a CMovFPT/F node.
634static SDValue CreateCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
635                            SDValue False, DebugLoc DL) {
636  bool invert = InvertFPCondCode((Mips::CondCode)
637                                 cast<ConstantSDNode>(Cond.getOperand(2))
638                                 ->getSExtValue());
639
640  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
641                     True.getValueType(), True, False, Cond);
642}
643
644static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
645                                    TargetLowering::DAGCombinerInfo &DCI,
646                                    const MipsSubtarget *Subtarget) {
647  if (DCI.isBeforeLegalizeOps())
648    return SDValue();
649
650  SDValue SetCC = N->getOperand(0);
651
652  if ((SetCC.getOpcode() != ISD::SETCC) ||
653      !SetCC.getOperand(0).getValueType().isInteger())
654    return SDValue();
655
656  SDValue False = N->getOperand(2);
657  EVT FalseTy = False.getValueType();
658
659  if (!FalseTy.isInteger())
660    return SDValue();
661
662  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
663
664  if (!CN || CN->getZExtValue())
665    return SDValue();
666
667  const DebugLoc DL = N->getDebugLoc();
668  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
669  SDValue True = N->getOperand(1);
670
671  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
672                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
673
674  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
675}
676
677static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
678                                 TargetLowering::DAGCombinerInfo &DCI,
679                                 const MipsSubtarget *Subtarget) {
680  // Pattern match EXT.
681  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
682  //  => ext $dst, $src, size, pos
683  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
684    return SDValue();
685
686  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
687  unsigned ShiftRightOpc = ShiftRight.getOpcode();
688
689  // Op's first operand must be a shift right.
690  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
691    return SDValue();
692
693  // The second operand of the shift must be an immediate.
694  ConstantSDNode *CN;
695  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
696    return SDValue();
697
698  uint64_t Pos = CN->getZExtValue();
699  uint64_t SMPos, SMSize;
700
701  // Op's second operand must be a shifted mask.
702  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
703      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
704    return SDValue();
705
706  // Return if the shifted mask does not start at bit 0 or the sum of its size
707  // and Pos exceeds the word's size.
708  EVT ValTy = N->getValueType(0);
709  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
710    return SDValue();
711
712  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
713                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
714                     DAG.getConstant(SMSize, MVT::i32));
715}
716
717static SDValue PerformORCombine(SDNode *N, SelectionDAG &DAG,
718                                TargetLowering::DAGCombinerInfo &DCI,
719                                const MipsSubtarget *Subtarget) {
720  // Pattern match INS.
721  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
722  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
723  //  => ins $dst, $src, size, pos, $src1
724  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
725    return SDValue();
726
727  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
728  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
729  ConstantSDNode *CN;
730
731  // See if Op's first operand matches (and $src1 , mask0).
732  if (And0.getOpcode() != ISD::AND)
733    return SDValue();
734
735  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
736      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
737    return SDValue();
738
739  // See if Op's second operand matches (and (shl $src, pos), mask1).
740  if (And1.getOpcode() != ISD::AND)
741    return SDValue();
742
743  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
744      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
745    return SDValue();
746
747  // The shift masks must have the same position and size.
748  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
749    return SDValue();
750
751  SDValue Shl = And1.getOperand(0);
752  if (Shl.getOpcode() != ISD::SHL)
753    return SDValue();
754
755  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
756    return SDValue();
757
758  unsigned Shamt = CN->getZExtValue();
759
760  // Return if the shift amount and the first bit position of mask are not the
761  // same.
762  EVT ValTy = N->getValueType(0);
763  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
764    return SDValue();
765
766  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
767                     DAG.getConstant(SMPos0, MVT::i32),
768                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
769}
770
771static SDValue PerformADDCombine(SDNode *N, SelectionDAG &DAG,
772                                 TargetLowering::DAGCombinerInfo &DCI,
773                                 const MipsSubtarget *Subtarget) {
774  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
775
776  if (DCI.isBeforeLegalizeOps())
777    return SDValue();
778
779  SDValue Add = N->getOperand(1);
780
781  if (Add.getOpcode() != ISD::ADD)
782    return SDValue();
783
784  SDValue Lo = Add.getOperand(1);
785
786  if ((Lo.getOpcode() != MipsISD::Lo) ||
787      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
788    return SDValue();
789
790  EVT ValTy = N->getValueType(0);
791  DebugLoc DL = N->getDebugLoc();
792
793  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
794                             Add.getOperand(0));
795  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
796}
797
798SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
799  const {
800  SelectionDAG &DAG = DCI.DAG;
801  unsigned opc = N->getOpcode();
802
803  switch (opc) {
804  default: break;
805  case ISD::ADDE:
806    return PerformADDECombine(N, DAG, DCI, Subtarget);
807  case ISD::SUBE:
808    return PerformSUBECombine(N, DAG, DCI, Subtarget);
809  case ISD::SDIVREM:
810  case ISD::UDIVREM:
811    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
812  case ISD::SELECT:
813    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
814  case ISD::AND:
815    return PerformANDCombine(N, DAG, DCI, Subtarget);
816  case ISD::OR:
817    return PerformORCombine(N, DAG, DCI, Subtarget);
818  case ISD::ADD:
819    return PerformADDCombine(N, DAG, DCI, Subtarget);
820  }
821
822  return SDValue();
823}
824
825void
826MipsTargetLowering::LowerOperationWrapper(SDNode *N,
827                                          SmallVectorImpl<SDValue> &Results,
828                                          SelectionDAG &DAG) const {
829  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
830
831  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
832    Results.push_back(Res.getValue(I));
833}
834
835void
836MipsTargetLowering::ReplaceNodeResults(SDNode *N,
837                                       SmallVectorImpl<SDValue> &Results,
838                                       SelectionDAG &DAG) const {
839  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
840
841  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
842    Results.push_back(Res.getValue(I));
843}
844
845SDValue MipsTargetLowering::
846LowerOperation(SDValue Op, SelectionDAG &DAG) const
847{
848  switch (Op.getOpcode())
849  {
850    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
851    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
852    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
853    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
854    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
855    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
856    case ISD::SELECT:             return LowerSELECT(Op, DAG);
857    case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
858    case ISD::SETCC:              return LowerSETCC(Op, DAG);
859    case ISD::VASTART:            return LowerVASTART(Op, DAG);
860    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
861    case ISD::FABS:               return LowerFABS(Op, DAG);
862    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
863    case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
864    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
865    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
866    case ISD::SHL_PARTS:          return LowerShiftLeftParts(Op, DAG);
867    case ISD::SRA_PARTS:          return LowerShiftRightParts(Op, DAG, true);
868    case ISD::SRL_PARTS:          return LowerShiftRightParts(Op, DAG, false);
869    case ISD::LOAD:               return LowerLOAD(Op, DAG);
870    case ISD::STORE:              return LowerSTORE(Op, DAG);
871  }
872  return SDValue();
873}
874
875//===----------------------------------------------------------------------===//
876//  Lower helper functions
877//===----------------------------------------------------------------------===//
878
879// AddLiveIn - This helper function adds the specified physical register to the
880// MachineFunction as a live in value.  It also creates a corresponding
881// virtual register for it.
882static unsigned
883AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
884{
885  assert(RC->contains(PReg) && "Not the correct regclass!");
886  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
887  MF.getRegInfo().addLiveIn(PReg, VReg);
888  return VReg;
889}
890
891// Get fp branch code (not opcode) from condition code.
892static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
893  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
894    return Mips::BRANCH_T;
895
896  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
897         "Invalid CondCode.");
898
899  return Mips::BRANCH_F;
900}
901
902/*
903static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
904                                        DebugLoc dl,
905                                        const MipsSubtarget *Subtarget,
906                                        const TargetInstrInfo *TII,
907                                        bool isFPCmp, unsigned Opc) {
908  // There is no need to expand CMov instructions if target has
909  // conditional moves.
910  if (Subtarget->hasCondMov())
911    return BB;
912
913  // To "insert" a SELECT_CC instruction, we actually have to insert the
914  // diamond control-flow pattern.  The incoming instruction knows the
915  // destination vreg to set, the condition code register to branch on, the
916  // true/false values to select between, and a branch opcode to use.
917  const BasicBlock *LLVM_BB = BB->getBasicBlock();
918  MachineFunction::iterator It = BB;
919  ++It;
920
921  //  thisMBB:
922  //  ...
923  //   TrueVal = ...
924  //   setcc r1, r2, r3
925  //   bNE   r1, r0, copy1MBB
926  //   fallthrough --> copy0MBB
927  MachineBasicBlock *thisMBB  = BB;
928  MachineFunction *F = BB->getParent();
929  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
930  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
931  F->insert(It, copy0MBB);
932  F->insert(It, sinkMBB);
933
934  // Transfer the remainder of BB and its successor edges to sinkMBB.
935  sinkMBB->splice(sinkMBB->begin(), BB,
936                  llvm::next(MachineBasicBlock::iterator(MI)),
937                  BB->end());
938  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
939
940  // Next, add the true and fallthrough blocks as its successors.
941  BB->addSuccessor(copy0MBB);
942  BB->addSuccessor(sinkMBB);
943
944  // Emit the right instruction according to the type of the operands compared
945  if (isFPCmp)
946    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
947  else
948    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
949      .addReg(Mips::ZERO).addMBB(sinkMBB);
950
951  //  copy0MBB:
952  //   %FalseValue = ...
953  //   # fallthrough to sinkMBB
954  BB = copy0MBB;
955
956  // Update machine-CFG edges
957  BB->addSuccessor(sinkMBB);
958
959  //  sinkMBB:
960  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
961  //  ...
962  BB = sinkMBB;
963
964  if (isFPCmp)
965    BuildMI(*BB, BB->begin(), dl,
966            TII->get(Mips::PHI), MI->getOperand(0).getReg())
967      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
968      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
969  else
970    BuildMI(*BB, BB->begin(), dl,
971            TII->get(Mips::PHI), MI->getOperand(0).getReg())
972      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
973      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
974
975  MI->eraseFromParent();   // The pseudo instruction is gone now.
976  return BB;
977}
978*/
979MachineBasicBlock *
980MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
981                                                MachineBasicBlock *BB) const {
982  switch (MI->getOpcode()) {
983  default: llvm_unreachable("Unexpected instr type to insert");
984  case Mips::ATOMIC_LOAD_ADD_I8:
985  case Mips::ATOMIC_LOAD_ADD_I8_P8:
986    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
987  case Mips::ATOMIC_LOAD_ADD_I16:
988  case Mips::ATOMIC_LOAD_ADD_I16_P8:
989    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
990  case Mips::ATOMIC_LOAD_ADD_I32:
991  case Mips::ATOMIC_LOAD_ADD_I32_P8:
992    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
993  case Mips::ATOMIC_LOAD_ADD_I64:
994  case Mips::ATOMIC_LOAD_ADD_I64_P8:
995    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
996
997  case Mips::ATOMIC_LOAD_AND_I8:
998  case Mips::ATOMIC_LOAD_AND_I8_P8:
999    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
1000  case Mips::ATOMIC_LOAD_AND_I16:
1001  case Mips::ATOMIC_LOAD_AND_I16_P8:
1002    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
1003  case Mips::ATOMIC_LOAD_AND_I32:
1004  case Mips::ATOMIC_LOAD_AND_I32_P8:
1005    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
1006  case Mips::ATOMIC_LOAD_AND_I64:
1007  case Mips::ATOMIC_LOAD_AND_I64_P8:
1008    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
1009
1010  case Mips::ATOMIC_LOAD_OR_I8:
1011  case Mips::ATOMIC_LOAD_OR_I8_P8:
1012    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
1013  case Mips::ATOMIC_LOAD_OR_I16:
1014  case Mips::ATOMIC_LOAD_OR_I16_P8:
1015    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
1016  case Mips::ATOMIC_LOAD_OR_I32:
1017  case Mips::ATOMIC_LOAD_OR_I32_P8:
1018    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
1019  case Mips::ATOMIC_LOAD_OR_I64:
1020  case Mips::ATOMIC_LOAD_OR_I64_P8:
1021    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
1022
1023  case Mips::ATOMIC_LOAD_XOR_I8:
1024  case Mips::ATOMIC_LOAD_XOR_I8_P8:
1025    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
1026  case Mips::ATOMIC_LOAD_XOR_I16:
1027  case Mips::ATOMIC_LOAD_XOR_I16_P8:
1028    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
1029  case Mips::ATOMIC_LOAD_XOR_I32:
1030  case Mips::ATOMIC_LOAD_XOR_I32_P8:
1031    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
1032  case Mips::ATOMIC_LOAD_XOR_I64:
1033  case Mips::ATOMIC_LOAD_XOR_I64_P8:
1034    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
1035
1036  case Mips::ATOMIC_LOAD_NAND_I8:
1037  case Mips::ATOMIC_LOAD_NAND_I8_P8:
1038    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
1039  case Mips::ATOMIC_LOAD_NAND_I16:
1040  case Mips::ATOMIC_LOAD_NAND_I16_P8:
1041    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
1042  case Mips::ATOMIC_LOAD_NAND_I32:
1043  case Mips::ATOMIC_LOAD_NAND_I32_P8:
1044    return EmitAtomicBinary(MI, BB, 4, 0, true);
1045  case Mips::ATOMIC_LOAD_NAND_I64:
1046  case Mips::ATOMIC_LOAD_NAND_I64_P8:
1047    return EmitAtomicBinary(MI, BB, 8, 0, true);
1048
1049  case Mips::ATOMIC_LOAD_SUB_I8:
1050  case Mips::ATOMIC_LOAD_SUB_I8_P8:
1051    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
1052  case Mips::ATOMIC_LOAD_SUB_I16:
1053  case Mips::ATOMIC_LOAD_SUB_I16_P8:
1054    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
1055  case Mips::ATOMIC_LOAD_SUB_I32:
1056  case Mips::ATOMIC_LOAD_SUB_I32_P8:
1057    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
1058  case Mips::ATOMIC_LOAD_SUB_I64:
1059  case Mips::ATOMIC_LOAD_SUB_I64_P8:
1060    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
1061
1062  case Mips::ATOMIC_SWAP_I8:
1063  case Mips::ATOMIC_SWAP_I8_P8:
1064    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
1065  case Mips::ATOMIC_SWAP_I16:
1066  case Mips::ATOMIC_SWAP_I16_P8:
1067    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
1068  case Mips::ATOMIC_SWAP_I32:
1069  case Mips::ATOMIC_SWAP_I32_P8:
1070    return EmitAtomicBinary(MI, BB, 4, 0);
1071  case Mips::ATOMIC_SWAP_I64:
1072  case Mips::ATOMIC_SWAP_I64_P8:
1073    return EmitAtomicBinary(MI, BB, 8, 0);
1074
1075  case Mips::ATOMIC_CMP_SWAP_I8:
1076  case Mips::ATOMIC_CMP_SWAP_I8_P8:
1077    return EmitAtomicCmpSwapPartword(MI, BB, 1);
1078  case Mips::ATOMIC_CMP_SWAP_I16:
1079  case Mips::ATOMIC_CMP_SWAP_I16_P8:
1080    return EmitAtomicCmpSwapPartword(MI, BB, 2);
1081  case Mips::ATOMIC_CMP_SWAP_I32:
1082  case Mips::ATOMIC_CMP_SWAP_I32_P8:
1083    return EmitAtomicCmpSwap(MI, BB, 4);
1084  case Mips::ATOMIC_CMP_SWAP_I64:
1085  case Mips::ATOMIC_CMP_SWAP_I64_P8:
1086    return EmitAtomicCmpSwap(MI, BB, 8);
1087  }
1088}
1089
1090// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1091// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1092MachineBasicBlock *
1093MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1094                                     unsigned Size, unsigned BinOpcode,
1095                                     bool Nand) const {
1096  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1097
1098  MachineFunction *MF = BB->getParent();
1099  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1100  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1101  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1102  DebugLoc dl = MI->getDebugLoc();
1103  unsigned LL, SC, AND, NOR, ZERO, BEQ;
1104
1105  if (Size == 4) {
1106    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1107    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1108    AND = Mips::AND;
1109    NOR = Mips::NOR;
1110    ZERO = Mips::ZERO;
1111    BEQ = Mips::BEQ;
1112  }
1113  else {
1114    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1115    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1116    AND = Mips::AND64;
1117    NOR = Mips::NOR64;
1118    ZERO = Mips::ZERO_64;
1119    BEQ = Mips::BEQ64;
1120  }
1121
1122  unsigned OldVal = MI->getOperand(0).getReg();
1123  unsigned Ptr = MI->getOperand(1).getReg();
1124  unsigned Incr = MI->getOperand(2).getReg();
1125
1126  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1127  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1128  unsigned Success = RegInfo.createVirtualRegister(RC);
1129
1130  // insert new blocks after the current block
1131  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1132  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1133  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1134  MachineFunction::iterator It = BB;
1135  ++It;
1136  MF->insert(It, loopMBB);
1137  MF->insert(It, exitMBB);
1138
1139  // Transfer the remainder of BB and its successor edges to exitMBB.
1140  exitMBB->splice(exitMBB->begin(), BB,
1141                  llvm::next(MachineBasicBlock::iterator(MI)),
1142                  BB->end());
1143  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1144
1145  //  thisMBB:
1146  //    ...
1147  //    fallthrough --> loopMBB
1148  BB->addSuccessor(loopMBB);
1149  loopMBB->addSuccessor(loopMBB);
1150  loopMBB->addSuccessor(exitMBB);
1151
1152  //  loopMBB:
1153  //    ll oldval, 0(ptr)
1154  //    <binop> storeval, oldval, incr
1155  //    sc success, storeval, 0(ptr)
1156  //    beq success, $0, loopMBB
1157  BB = loopMBB;
1158  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1159  if (Nand) {
1160    //  and andres, oldval, incr
1161    //  nor storeval, $0, andres
1162    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1163    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1164  } else if (BinOpcode) {
1165    //  <binop> storeval, oldval, incr
1166    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1167  } else {
1168    StoreVal = Incr;
1169  }
1170  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1171  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1172
1173  MI->eraseFromParent();   // The instruction is gone now.
1174
1175  return exitMBB;
1176}
1177
1178MachineBasicBlock *
1179MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1180                                             MachineBasicBlock *BB,
1181                                             unsigned Size, unsigned BinOpcode,
1182                                             bool Nand) const {
1183  assert((Size == 1 || Size == 2) &&
1184      "Unsupported size for EmitAtomicBinaryPartial.");
1185
1186  MachineFunction *MF = BB->getParent();
1187  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1188  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1189  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1190  DebugLoc dl = MI->getDebugLoc();
1191  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1192  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1193
1194  unsigned Dest = MI->getOperand(0).getReg();
1195  unsigned Ptr = MI->getOperand(1).getReg();
1196  unsigned Incr = MI->getOperand(2).getReg();
1197
1198  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1199  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1200  unsigned Mask = RegInfo.createVirtualRegister(RC);
1201  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1202  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1203  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1204  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1205  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1206  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1207  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1208  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1209  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1210  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1211  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1212  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1213  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1214  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1215  unsigned Success = RegInfo.createVirtualRegister(RC);
1216
1217  // insert new blocks after the current block
1218  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1219  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1220  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1221  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1222  MachineFunction::iterator It = BB;
1223  ++It;
1224  MF->insert(It, loopMBB);
1225  MF->insert(It, sinkMBB);
1226  MF->insert(It, exitMBB);
1227
1228  // Transfer the remainder of BB and its successor edges to exitMBB.
1229  exitMBB->splice(exitMBB->begin(), BB,
1230                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1231  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1232
1233  BB->addSuccessor(loopMBB);
1234  loopMBB->addSuccessor(loopMBB);
1235  loopMBB->addSuccessor(sinkMBB);
1236  sinkMBB->addSuccessor(exitMBB);
1237
1238  //  thisMBB:
1239  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1240  //    and     alignedaddr,ptr,masklsb2
1241  //    andi    ptrlsb2,ptr,3
1242  //    sll     shiftamt,ptrlsb2,3
1243  //    ori     maskupper,$0,255               # 0xff
1244  //    sll     mask,maskupper,shiftamt
1245  //    nor     mask2,$0,mask
1246  //    sll     incr2,incr,shiftamt
1247
1248  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1249  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1250    .addReg(Mips::ZERO).addImm(-4);
1251  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1252    .addReg(Ptr).addReg(MaskLSB2);
1253  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1254  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1255  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1256    .addReg(Mips::ZERO).addImm(MaskImm);
1257  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1258    .addReg(ShiftAmt).addReg(MaskUpper);
1259  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1260  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1261
1262  // atomic.load.binop
1263  // loopMBB:
1264  //   ll      oldval,0(alignedaddr)
1265  //   binop   binopres,oldval,incr2
1266  //   and     newval,binopres,mask
1267  //   and     maskedoldval0,oldval,mask2
1268  //   or      storeval,maskedoldval0,newval
1269  //   sc      success,storeval,0(alignedaddr)
1270  //   beq     success,$0,loopMBB
1271
1272  // atomic.swap
1273  // loopMBB:
1274  //   ll      oldval,0(alignedaddr)
1275  //   and     newval,incr2,mask
1276  //   and     maskedoldval0,oldval,mask2
1277  //   or      storeval,maskedoldval0,newval
1278  //   sc      success,storeval,0(alignedaddr)
1279  //   beq     success,$0,loopMBB
1280
1281  BB = loopMBB;
1282  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1283  if (Nand) {
1284    //  and andres, oldval, incr2
1285    //  nor binopres, $0, andres
1286    //  and newval, binopres, mask
1287    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1288    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1289      .addReg(Mips::ZERO).addReg(AndRes);
1290    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1291  } else if (BinOpcode) {
1292    //  <binop> binopres, oldval, incr2
1293    //  and newval, binopres, mask
1294    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1295    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1296  } else {// atomic.swap
1297    //  and newval, incr2, mask
1298    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1299  }
1300
1301  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1302    .addReg(OldVal).addReg(Mask2);
1303  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1304    .addReg(MaskedOldVal0).addReg(NewVal);
1305  BuildMI(BB, dl, TII->get(SC), Success)
1306    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1307  BuildMI(BB, dl, TII->get(Mips::BEQ))
1308    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1309
1310  //  sinkMBB:
1311  //    and     maskedoldval1,oldval,mask
1312  //    srl     srlres,maskedoldval1,shiftamt
1313  //    sll     sllres,srlres,24
1314  //    sra     dest,sllres,24
1315  BB = sinkMBB;
1316  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1317
1318  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1319    .addReg(OldVal).addReg(Mask);
1320  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1321      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1322  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1323      .addReg(SrlRes).addImm(ShiftImm);
1324  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1325      .addReg(SllRes).addImm(ShiftImm);
1326
1327  MI->eraseFromParent();   // The instruction is gone now.
1328
1329  return exitMBB;
1330}
1331
1332MachineBasicBlock *
1333MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1334                                      MachineBasicBlock *BB,
1335                                      unsigned Size) const {
1336  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1337
1338  MachineFunction *MF = BB->getParent();
1339  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1340  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1341  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1342  DebugLoc dl = MI->getDebugLoc();
1343  unsigned LL, SC, ZERO, BNE, BEQ;
1344
1345  if (Size == 4) {
1346    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1347    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1348    ZERO = Mips::ZERO;
1349    BNE = Mips::BNE;
1350    BEQ = Mips::BEQ;
1351  }
1352  else {
1353    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1354    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1355    ZERO = Mips::ZERO_64;
1356    BNE = Mips::BNE64;
1357    BEQ = Mips::BEQ64;
1358  }
1359
1360  unsigned Dest    = MI->getOperand(0).getReg();
1361  unsigned Ptr     = MI->getOperand(1).getReg();
1362  unsigned OldVal  = MI->getOperand(2).getReg();
1363  unsigned NewVal  = MI->getOperand(3).getReg();
1364
1365  unsigned Success = RegInfo.createVirtualRegister(RC);
1366
1367  // insert new blocks after the current block
1368  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1369  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1370  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1371  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1372  MachineFunction::iterator It = BB;
1373  ++It;
1374  MF->insert(It, loop1MBB);
1375  MF->insert(It, loop2MBB);
1376  MF->insert(It, exitMBB);
1377
1378  // Transfer the remainder of BB and its successor edges to exitMBB.
1379  exitMBB->splice(exitMBB->begin(), BB,
1380                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1381  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1382
1383  //  thisMBB:
1384  //    ...
1385  //    fallthrough --> loop1MBB
1386  BB->addSuccessor(loop1MBB);
1387  loop1MBB->addSuccessor(exitMBB);
1388  loop1MBB->addSuccessor(loop2MBB);
1389  loop2MBB->addSuccessor(loop1MBB);
1390  loop2MBB->addSuccessor(exitMBB);
1391
1392  // loop1MBB:
1393  //   ll dest, 0(ptr)
1394  //   bne dest, oldval, exitMBB
1395  BB = loop1MBB;
1396  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1397  BuildMI(BB, dl, TII->get(BNE))
1398    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1399
1400  // loop2MBB:
1401  //   sc success, newval, 0(ptr)
1402  //   beq success, $0, loop1MBB
1403  BB = loop2MBB;
1404  BuildMI(BB, dl, TII->get(SC), Success)
1405    .addReg(NewVal).addReg(Ptr).addImm(0);
1406  BuildMI(BB, dl, TII->get(BEQ))
1407    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1408
1409  MI->eraseFromParent();   // The instruction is gone now.
1410
1411  return exitMBB;
1412}
1413
1414MachineBasicBlock *
1415MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1416                                              MachineBasicBlock *BB,
1417                                              unsigned Size) const {
1418  assert((Size == 1 || Size == 2) &&
1419      "Unsupported size for EmitAtomicCmpSwapPartial.");
1420
1421  MachineFunction *MF = BB->getParent();
1422  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1423  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1424  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1425  DebugLoc dl = MI->getDebugLoc();
1426  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1427  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1428
1429  unsigned Dest    = MI->getOperand(0).getReg();
1430  unsigned Ptr     = MI->getOperand(1).getReg();
1431  unsigned CmpVal  = MI->getOperand(2).getReg();
1432  unsigned NewVal  = MI->getOperand(3).getReg();
1433
1434  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1435  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1436  unsigned Mask = RegInfo.createVirtualRegister(RC);
1437  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1438  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1439  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1440  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1441  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1442  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1443  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1444  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1445  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1446  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1447  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1448  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1449  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1450  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1451  unsigned Success = RegInfo.createVirtualRegister(RC);
1452
1453  // insert new blocks after the current block
1454  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1455  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1456  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1457  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1458  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1459  MachineFunction::iterator It = BB;
1460  ++It;
1461  MF->insert(It, loop1MBB);
1462  MF->insert(It, loop2MBB);
1463  MF->insert(It, sinkMBB);
1464  MF->insert(It, exitMBB);
1465
1466  // Transfer the remainder of BB and its successor edges to exitMBB.
1467  exitMBB->splice(exitMBB->begin(), BB,
1468                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1469  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1470
1471  BB->addSuccessor(loop1MBB);
1472  loop1MBB->addSuccessor(sinkMBB);
1473  loop1MBB->addSuccessor(loop2MBB);
1474  loop2MBB->addSuccessor(loop1MBB);
1475  loop2MBB->addSuccessor(sinkMBB);
1476  sinkMBB->addSuccessor(exitMBB);
1477
1478  // FIXME: computation of newval2 can be moved to loop2MBB.
1479  //  thisMBB:
1480  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1481  //    and     alignedaddr,ptr,masklsb2
1482  //    andi    ptrlsb2,ptr,3
1483  //    sll     shiftamt,ptrlsb2,3
1484  //    ori     maskupper,$0,255               # 0xff
1485  //    sll     mask,maskupper,shiftamt
1486  //    nor     mask2,$0,mask
1487  //    andi    maskedcmpval,cmpval,255
1488  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1489  //    andi    maskednewval,newval,255
1490  //    sll     shiftednewval,maskednewval,shiftamt
1491  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1492  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1493    .addReg(Mips::ZERO).addImm(-4);
1494  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1495    .addReg(Ptr).addReg(MaskLSB2);
1496  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1497  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1498  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1499    .addReg(Mips::ZERO).addImm(MaskImm);
1500  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1501    .addReg(ShiftAmt).addReg(MaskUpper);
1502  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1503  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1504    .addReg(CmpVal).addImm(MaskImm);
1505  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1506    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1507  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1508    .addReg(NewVal).addImm(MaskImm);
1509  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1510    .addReg(ShiftAmt).addReg(MaskedNewVal);
1511
1512  //  loop1MBB:
1513  //    ll      oldval,0(alginedaddr)
1514  //    and     maskedoldval0,oldval,mask
1515  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1516  BB = loop1MBB;
1517  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1518  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1519    .addReg(OldVal).addReg(Mask);
1520  BuildMI(BB, dl, TII->get(Mips::BNE))
1521    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1522
1523  //  loop2MBB:
1524  //    and     maskedoldval1,oldval,mask2
1525  //    or      storeval,maskedoldval1,shiftednewval
1526  //    sc      success,storeval,0(alignedaddr)
1527  //    beq     success,$0,loop1MBB
1528  BB = loop2MBB;
1529  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1530    .addReg(OldVal).addReg(Mask2);
1531  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1532    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1533  BuildMI(BB, dl, TII->get(SC), Success)
1534      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1535  BuildMI(BB, dl, TII->get(Mips::BEQ))
1536      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1537
1538  //  sinkMBB:
1539  //    srl     srlres,maskedoldval0,shiftamt
1540  //    sll     sllres,srlres,24
1541  //    sra     dest,sllres,24
1542  BB = sinkMBB;
1543  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1544
1545  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1546      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1547  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1548      .addReg(SrlRes).addImm(ShiftImm);
1549  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1550      .addReg(SllRes).addImm(ShiftImm);
1551
1552  MI->eraseFromParent();   // The instruction is gone now.
1553
1554  return exitMBB;
1555}
1556
1557//===----------------------------------------------------------------------===//
1558//  Misc Lower Operation implementation
1559//===----------------------------------------------------------------------===//
1560SDValue MipsTargetLowering::
1561LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1562{
1563  // The first operand is the chain, the second is the condition, the third is
1564  // the block to branch to if the condition is true.
1565  SDValue Chain = Op.getOperand(0);
1566  SDValue Dest = Op.getOperand(2);
1567  DebugLoc dl = Op.getDebugLoc();
1568
1569  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
1570
1571  // Return if flag is not set by a floating point comparison.
1572  if (CondRes.getOpcode() != MipsISD::FPCmp)
1573    return Op;
1574
1575  SDValue CCNode  = CondRes.getOperand(2);
1576  Mips::CondCode CC =
1577    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1578  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
1579
1580  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
1581                     Dest, CondRes);
1582}
1583
1584SDValue MipsTargetLowering::
1585LowerSELECT(SDValue Op, SelectionDAG &DAG) const
1586{
1587  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
1588
1589  // Return if flag is not set by a floating point comparison.
1590  if (Cond.getOpcode() != MipsISD::FPCmp)
1591    return Op;
1592
1593  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1594                      Op.getDebugLoc());
1595}
1596
1597SDValue MipsTargetLowering::
1598LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1599{
1600  DebugLoc DL = Op.getDebugLoc();
1601  EVT Ty = Op.getOperand(0).getValueType();
1602  SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
1603                             Op.getOperand(0), Op.getOperand(1),
1604                             Op.getOperand(4));
1605
1606  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1607                     Op.getOperand(3));
1608}
1609
1610SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1611  SDValue Cond = CreateFPCmp(DAG, Op);
1612
1613  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1614         "Floating point operand expected.");
1615
1616  SDValue True  = DAG.getConstant(1, MVT::i32);
1617  SDValue False = DAG.getConstant(0, MVT::i32);
1618
1619  return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1620}
1621
1622SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
1623                                               SelectionDAG &DAG) const {
1624  // FIXME there isn't actually debug info here
1625  DebugLoc dl = Op.getDebugLoc();
1626  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1627
1628  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1629    SDVTList VTs = DAG.getVTList(MVT::i32);
1630
1631    const MipsTargetObjectFile &TLOF =
1632      (const MipsTargetObjectFile&)getObjFileLowering();
1633
1634    // %gp_rel relocation
1635    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1636      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1637                                              MipsII::MO_GPREL);
1638      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
1639      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1640      return DAG.getNode(ISD::ADD, dl, MVT::i32, GPReg, GPRelNode);
1641    }
1642    // %hi/%lo relocation
1643    SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1644                                              MipsII::MO_ABS_HI);
1645    SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1646                                              MipsII::MO_ABS_LO);
1647    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1);
1648    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
1649    return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1650  }
1651
1652  EVT ValTy = Op.getValueType();
1653  bool HasGotOfst = (GV->hasInternalLinkage() ||
1654                     (GV->hasLocalLinkage() && !isa<Function>(GV)));
1655  unsigned GotFlag = HasMips64 ?
1656                     (HasGotOfst ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT_DISP) :
1657                     (HasGotOfst ? MipsII::MO_GOT : MipsII::MO_GOT16);
1658  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0, GotFlag);
1659  GA = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), GA);
1660  SDValue ResNode = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), GA,
1661                                MachinePointerInfo(), false, false, false, 0);
1662  // On functions and global targets not internal linked only
1663  // a load from got/GP is necessary for PIC to work.
1664  if (!HasGotOfst)
1665    return ResNode;
1666  SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0,
1667                                            HasMips64 ? MipsII::MO_GOT_OFST :
1668                                                        MipsII::MO_ABS_LO);
1669  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, GALo);
1670  return DAG.getNode(ISD::ADD, dl, ValTy, ResNode, Lo);
1671}
1672
1673SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
1674                                              SelectionDAG &DAG) const {
1675  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1676  // FIXME there isn't actually debug info here
1677  DebugLoc dl = Op.getDebugLoc();
1678
1679  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1680    // %hi/%lo relocation
1681    SDValue BAHi = DAG.getTargetBlockAddress(BA, MVT::i32, 0, MipsII::MO_ABS_HI);
1682    SDValue BALo = DAG.getTargetBlockAddress(BA, MVT::i32, 0, MipsII::MO_ABS_LO);
1683    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi);
1684    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo);
1685    return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
1686  }
1687
1688  EVT ValTy = Op.getValueType();
1689  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1690  unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1691  SDValue BAGOTOffset = DAG.getTargetBlockAddress(BA, ValTy, 0, GOTFlag);
1692  BAGOTOffset = DAG.getNode(MipsISD::Wrapper, dl, ValTy,
1693                            GetGlobalReg(DAG, ValTy), BAGOTOffset);
1694  SDValue BALOOffset = DAG.getTargetBlockAddress(BA, ValTy, 0, OFSTFlag);
1695  SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), BAGOTOffset,
1696                             MachinePointerInfo(), false, false, false, 0);
1697  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, BALOOffset);
1698  return DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1699}
1700
1701SDValue MipsTargetLowering::
1702LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1703{
1704  // If the relocation model is PIC, use the General Dynamic TLS Model or
1705  // Local Dynamic TLS model, otherwise use the Initial Exec or
1706  // Local Exec TLS Model.
1707
1708  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1709  DebugLoc dl = GA->getDebugLoc();
1710  const GlobalValue *GV = GA->getGlobal();
1711  EVT PtrVT = getPointerTy();
1712
1713  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1714
1715  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1716    // General Dynamic and Local Dynamic TLS Model.
1717    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1718                                                      : MipsII::MO_TLSGD;
1719
1720    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
1721    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
1722                                   GetGlobalReg(DAG, PtrVT), TGA);
1723    unsigned PtrSize = PtrVT.getSizeInBits();
1724    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1725
1726    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1727
1728    ArgListTy Args;
1729    ArgListEntry Entry;
1730    Entry.Node = Argument;
1731    Entry.Ty = PtrTy;
1732    Args.push_back(Entry);
1733
1734    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1735                  false, false, false, false, 0, CallingConv::C,
1736                  /*isTailCall=*/false, /*doesNotRet=*/false,
1737                  /*isReturnValueUsed=*/true,
1738                  TlsGetAddr, Args, DAG, dl);
1739    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1740
1741    SDValue Ret = CallResult.first;
1742
1743    if (model != TLSModel::LocalDynamic)
1744      return Ret;
1745
1746    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1747                                               MipsII::MO_DTPREL_HI);
1748    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1749    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1750                                               MipsII::MO_DTPREL_LO);
1751    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1752    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
1753    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
1754  }
1755
1756  SDValue Offset;
1757  if (model == TLSModel::InitialExec) {
1758    // Initial Exec TLS Model
1759    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1760                                             MipsII::MO_GOTTPREL);
1761    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1762                      TGA);
1763    Offset = DAG.getLoad(PtrVT, dl,
1764                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1765                         false, false, false, 0);
1766  } else {
1767    // Local Exec TLS Model
1768    assert(model == TLSModel::LocalExec);
1769    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1770                                               MipsII::MO_TPREL_HI);
1771    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1772                                               MipsII::MO_TPREL_LO);
1773    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1774    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1775    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1776  }
1777
1778  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
1779  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1780}
1781
1782SDValue MipsTargetLowering::
1783LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1784{
1785  SDValue HiPart, JTI, JTILo;
1786  // FIXME there isn't actually debug info here
1787  DebugLoc dl = Op.getDebugLoc();
1788  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1789  EVT PtrVT = Op.getValueType();
1790  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1791
1792  if (!IsPIC && !IsN64) {
1793    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_HI);
1794    HiPart = DAG.getNode(MipsISD::Hi, dl, PtrVT, JTI);
1795    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_LO);
1796  } else {// Emit Load from Global Pointer
1797    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1798    unsigned OfstFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1799    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, GOTFlag);
1800    JTI = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1801                      JTI);
1802    HiPart = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), JTI,
1803                         MachinePointerInfo(), false, false, false, 0);
1804    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OfstFlag);
1805  }
1806
1807  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, JTILo);
1808  return DAG.getNode(ISD::ADD, dl, PtrVT, HiPart, Lo);
1809}
1810
1811SDValue MipsTargetLowering::
1812LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1813{
1814  SDValue ResNode;
1815  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1816  const Constant *C = N->getConstVal();
1817  // FIXME there isn't actually debug info here
1818  DebugLoc dl = Op.getDebugLoc();
1819
1820  // gp_rel relocation
1821  // FIXME: we should reference the constant pool using small data sections,
1822  // but the asm printer currently doesn't support this feature without
1823  // hacking it. This feature should come soon so we can uncomment the
1824  // stuff below.
1825  //if (IsInSmallSection(C->getType())) {
1826  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1827  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1828  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1829
1830  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1831    SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1832                                             N->getOffset(), MipsII::MO_ABS_HI);
1833    SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1834                                             N->getOffset(), MipsII::MO_ABS_LO);
1835    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi);
1836    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
1837    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1838  } else {
1839    EVT ValTy = Op.getValueType();
1840    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1841    unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1842    SDValue CP = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1843                                           N->getOffset(), GOTFlag);
1844    CP = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), CP);
1845    SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), CP,
1846                               MachinePointerInfo::getConstantPool(), false,
1847                               false, false, 0);
1848    SDValue CPLo = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1849                                             N->getOffset(), OFSTFlag);
1850    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, CPLo);
1851    ResNode = DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1852  }
1853
1854  return ResNode;
1855}
1856
1857SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1858  MachineFunction &MF = DAG.getMachineFunction();
1859  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1860
1861  DebugLoc dl = Op.getDebugLoc();
1862  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1863                                 getPointerTy());
1864
1865  // vastart just stores the address of the VarArgsFrameIndex slot into the
1866  // memory location argument.
1867  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1868  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
1869                      MachinePointerInfo(SV), false, false, 0);
1870}
1871
1872static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1873  EVT TyX = Op.getOperand(0).getValueType();
1874  EVT TyY = Op.getOperand(1).getValueType();
1875  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1876  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1877  DebugLoc DL = Op.getDebugLoc();
1878  SDValue Res;
1879
1880  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1881  // to i32.
1882  SDValue X = (TyX == MVT::f32) ?
1883    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1884    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1885                Const1);
1886  SDValue Y = (TyY == MVT::f32) ?
1887    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1888    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1889                Const1);
1890
1891  if (HasR2) {
1892    // ext  E, Y, 31, 1  ; extract bit31 of Y
1893    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1894    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1895    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1896  } else {
1897    // sll SllX, X, 1
1898    // srl SrlX, SllX, 1
1899    // srl SrlY, Y, 31
1900    // sll SllY, SrlX, 31
1901    // or  Or, SrlX, SllY
1902    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1903    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1904    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1905    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1906    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1907  }
1908
1909  if (TyX == MVT::f32)
1910    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1911
1912  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1913                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1914  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1915}
1916
1917static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1918  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1919  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1920  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1921  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1922  DebugLoc DL = Op.getDebugLoc();
1923
1924  // Bitcast to integer nodes.
1925  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1926  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1927
1928  if (HasR2) {
1929    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1930    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1931    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1932                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1933
1934    if (WidthX > WidthY)
1935      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1936    else if (WidthY > WidthX)
1937      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1938
1939    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1940                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1941    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1942  }
1943
1944  // (d)sll SllX, X, 1
1945  // (d)srl SrlX, SllX, 1
1946  // (d)srl SrlY, Y, width(Y)-1
1947  // (d)sll SllY, SrlX, width(Y)-1
1948  // or     Or, SrlX, SllY
1949  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1950  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1951  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1952                             DAG.getConstant(WidthY - 1, MVT::i32));
1953
1954  if (WidthX > WidthY)
1955    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1956  else if (WidthY > WidthX)
1957    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1958
1959  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1960                             DAG.getConstant(WidthX - 1, MVT::i32));
1961  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1962  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1963}
1964
1965SDValue
1966MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1967  if (Subtarget->hasMips64())
1968    return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1969
1970  return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1971}
1972
1973static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1974  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1975  DebugLoc DL = Op.getDebugLoc();
1976
1977  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1978  // to i32.
1979  SDValue X = (Op.getValueType() == MVT::f32) ?
1980    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1981    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1982                Const1);
1983
1984  // Clear MSB.
1985  if (HasR2)
1986    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1987                      DAG.getRegister(Mips::ZERO, MVT::i32),
1988                      DAG.getConstant(31, MVT::i32), Const1, X);
1989  else {
1990    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1991    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1992  }
1993
1994  if (Op.getValueType() == MVT::f32)
1995    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1996
1997  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1998                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1999  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2000}
2001
2002static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2003  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2004  DebugLoc DL = Op.getDebugLoc();
2005
2006  // Bitcast to integer node.
2007  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2008
2009  // Clear MSB.
2010  if (HasR2)
2011    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2012                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
2013                      DAG.getConstant(63, MVT::i32), Const1, X);
2014  else {
2015    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2016    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2017  }
2018
2019  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2020}
2021
2022SDValue
2023MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
2024  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
2025    return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
2026
2027  return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
2028}
2029
2030SDValue MipsTargetLowering::
2031LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2032  // check the depth
2033  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2034         "Frame address can only be determined for current frame.");
2035
2036  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2037  MFI->setFrameAddressIsTaken(true);
2038  EVT VT = Op.getValueType();
2039  DebugLoc dl = Op.getDebugLoc();
2040  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2041                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
2042  return FrameAddr;
2043}
2044
2045SDValue MipsTargetLowering::LowerRETURNADDR(SDValue Op,
2046                                            SelectionDAG &DAG) const {
2047  // check the depth
2048  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2049         "Return address can be determined only for current frame.");
2050
2051  MachineFunction &MF = DAG.getMachineFunction();
2052  MachineFrameInfo *MFI = MF.getFrameInfo();
2053  EVT VT = Op.getValueType();
2054  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
2055  MFI->setReturnAddressIsTaken(true);
2056
2057  // Return RA, which contains the return address. Mark it an implicit live-in.
2058  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2059  return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
2060}
2061
2062// TODO: set SType according to the desired memory barrier behavior.
2063SDValue
2064MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
2065  unsigned SType = 0;
2066  DebugLoc dl = Op.getDebugLoc();
2067  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2068                     DAG.getConstant(SType, MVT::i32));
2069}
2070
2071SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
2072                                              SelectionDAG &DAG) const {
2073  // FIXME: Need pseudo-fence for 'singlethread' fences
2074  // FIXME: Set SType for weaker fences where supported/appropriate.
2075  unsigned SType = 0;
2076  DebugLoc dl = Op.getDebugLoc();
2077  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2078                     DAG.getConstant(SType, MVT::i32));
2079}
2080
2081SDValue MipsTargetLowering::LowerShiftLeftParts(SDValue Op,
2082                                                SelectionDAG &DAG) const {
2083  DebugLoc DL = Op.getDebugLoc();
2084  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2085  SDValue Shamt = Op.getOperand(2);
2086
2087  // if shamt < 32:
2088  //  lo = (shl lo, shamt)
2089  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2090  // else:
2091  //  lo = 0
2092  //  hi = (shl lo, shamt[4:0])
2093  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2094                            DAG.getConstant(-1, MVT::i32));
2095  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
2096                                      DAG.getConstant(1, MVT::i32));
2097  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
2098                                     Not);
2099  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
2100  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2101  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
2102  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2103                             DAG.getConstant(0x20, MVT::i32));
2104  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2105                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
2106  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
2107
2108  SDValue Ops[2] = {Lo, Hi};
2109  return DAG.getMergeValues(Ops, 2, DL);
2110}
2111
2112SDValue MipsTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2113                                                 bool IsSRA) const {
2114  DebugLoc DL = Op.getDebugLoc();
2115  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2116  SDValue Shamt = Op.getOperand(2);
2117
2118  // if shamt < 32:
2119  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2120  //  if isSRA:
2121  //    hi = (sra hi, shamt)
2122  //  else:
2123  //    hi = (srl hi, shamt)
2124  // else:
2125  //  if isSRA:
2126  //   lo = (sra hi, shamt[4:0])
2127  //   hi = (sra hi, 31)
2128  //  else:
2129  //   lo = (srl hi, shamt[4:0])
2130  //   hi = 0
2131  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2132                            DAG.getConstant(-1, MVT::i32));
2133  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
2134                                     DAG.getConstant(1, MVT::i32));
2135  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
2136  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
2137  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2138  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2139                                     Hi, Shamt);
2140  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2141                             DAG.getConstant(0x20, MVT::i32));
2142  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
2143                                DAG.getConstant(31, MVT::i32));
2144  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
2145  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2146                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2147                   ShiftRightHi);
2148
2149  SDValue Ops[2] = {Lo, Hi};
2150  return DAG.getMergeValues(Ops, 2, DL);
2151}
2152
2153static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2154                            SDValue Chain, SDValue Src, unsigned Offset) {
2155  SDValue Ptr = LD->getBasePtr();
2156  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2157  EVT BasePtrVT = Ptr.getValueType();
2158  DebugLoc DL = LD->getDebugLoc();
2159  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2160
2161  if (Offset)
2162    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2163                      DAG.getConstant(Offset, BasePtrVT));
2164
2165  SDValue Ops[] = { Chain, Ptr, Src };
2166  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2167                                 LD->getMemOperand());
2168}
2169
2170// Expand an unaligned 32 or 64-bit integer load node.
2171SDValue MipsTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2172  LoadSDNode *LD = cast<LoadSDNode>(Op);
2173  EVT MemVT = LD->getMemoryVT();
2174
2175  // Return if load is aligned or if MemVT is neither i32 nor i64.
2176  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2177      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2178    return SDValue();
2179
2180  bool IsLittle = Subtarget->isLittle();
2181  EVT VT = Op.getValueType();
2182  ISD::LoadExtType ExtType = LD->getExtensionType();
2183  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2184
2185  assert((VT == MVT::i32) || (VT == MVT::i64));
2186
2187  // Expand
2188  //  (set dst, (i64 (load baseptr)))
2189  // to
2190  //  (set tmp, (ldl (add baseptr, 7), undef))
2191  //  (set dst, (ldr baseptr, tmp))
2192  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2193    SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2194                               IsLittle ? 7 : 0);
2195    return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2196                        IsLittle ? 0 : 7);
2197  }
2198
2199  SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2200                             IsLittle ? 3 : 0);
2201  SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2202                             IsLittle ? 0 : 3);
2203
2204  // Expand
2205  //  (set dst, (i32 (load baseptr))) or
2206  //  (set dst, (i64 (sextload baseptr))) or
2207  //  (set dst, (i64 (extload baseptr)))
2208  // to
2209  //  (set tmp, (lwl (add baseptr, 3), undef))
2210  //  (set dst, (lwr baseptr, tmp))
2211  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2212      (ExtType == ISD::EXTLOAD))
2213    return LWR;
2214
2215  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2216
2217  // Expand
2218  //  (set dst, (i64 (zextload baseptr)))
2219  // to
2220  //  (set tmp0, (lwl (add baseptr, 3), undef))
2221  //  (set tmp1, (lwr baseptr, tmp0))
2222  //  (set tmp2, (shl tmp1, 32))
2223  //  (set dst, (srl tmp2, 32))
2224  DebugLoc DL = LD->getDebugLoc();
2225  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2226  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2227  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2228  SDValue Ops[] = { SRL, LWR.getValue(1) };
2229  return DAG.getMergeValues(Ops, 2, DL);
2230}
2231
2232static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2233                             SDValue Chain, unsigned Offset) {
2234  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2235  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2236  DebugLoc DL = SD->getDebugLoc();
2237  SDVTList VTList = DAG.getVTList(MVT::Other);
2238
2239  if (Offset)
2240    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2241                      DAG.getConstant(Offset, BasePtrVT));
2242
2243  SDValue Ops[] = { Chain, Value, Ptr };
2244  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2245                                 SD->getMemOperand());
2246}
2247
2248// Expand an unaligned 32 or 64-bit integer store node.
2249SDValue MipsTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2250  StoreSDNode *SD = cast<StoreSDNode>(Op);
2251  EVT MemVT = SD->getMemoryVT();
2252
2253  // Return if store is aligned or if MemVT is neither i32 nor i64.
2254  if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2255      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2256    return SDValue();
2257
2258  bool IsLittle = Subtarget->isLittle();
2259  SDValue Value = SD->getValue(), Chain = SD->getChain();
2260  EVT VT = Value.getValueType();
2261
2262  // Expand
2263  //  (store val, baseptr) or
2264  //  (truncstore val, baseptr)
2265  // to
2266  //  (swl val, (add baseptr, 3))
2267  //  (swr val, baseptr)
2268  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2269    SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
2270                                IsLittle ? 3 : 0);
2271    return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2272  }
2273
2274  assert(VT == MVT::i64);
2275
2276  // Expand
2277  //  (store val, baseptr)
2278  // to
2279  //  (sdl val, (add baseptr, 7))
2280  //  (sdr val, baseptr)
2281  SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2282  return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2283}
2284
2285//===----------------------------------------------------------------------===//
2286//                      Calling Convention Implementation
2287//===----------------------------------------------------------------------===//
2288
2289//===----------------------------------------------------------------------===//
2290// TODO: Implement a generic logic using tblgen that can support this.
2291// Mips O32 ABI rules:
2292// ---
2293// i32 - Passed in A0, A1, A2, A3 and stack
2294// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2295//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2296// f64 - Only passed in two aliased f32 registers if no int reg has been used
2297//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2298//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2299//       go to stack.
2300//
2301//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2302//===----------------------------------------------------------------------===//
2303
2304static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2305                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2306                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2307
2308  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2309
2310  static const uint16_t IntRegs[] = {
2311      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2312  };
2313  static const uint16_t F32Regs[] = {
2314      Mips::F12, Mips::F14
2315  };
2316  static const uint16_t F64Regs[] = {
2317      Mips::D6, Mips::D7
2318  };
2319
2320  // ByVal Args
2321  if (ArgFlags.isByVal()) {
2322    State.HandleByVal(ValNo, ValVT, LocVT, LocInfo,
2323                      1 /*MinSize*/, 4 /*MinAlign*/, ArgFlags);
2324    unsigned NextReg = (State.getNextStackOffset() + 3) / 4;
2325    for (unsigned r = State.getFirstUnallocated(IntRegs, IntRegsSize);
2326         r < std::min(IntRegsSize, NextReg); ++r)
2327      State.AllocateReg(IntRegs[r]);
2328    return false;
2329  }
2330
2331  // Promote i8 and i16
2332  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2333    LocVT = MVT::i32;
2334    if (ArgFlags.isSExt())
2335      LocInfo = CCValAssign::SExt;
2336    else if (ArgFlags.isZExt())
2337      LocInfo = CCValAssign::ZExt;
2338    else
2339      LocInfo = CCValAssign::AExt;
2340  }
2341
2342  unsigned Reg;
2343
2344  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2345  // is true: function is vararg, argument is 3rd or higher, there is previous
2346  // argument which is not f32 or f64.
2347  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2348      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2349  unsigned OrigAlign = ArgFlags.getOrigAlign();
2350  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2351
2352  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2353    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2354    // If this is the first part of an i64 arg,
2355    // the allocated register must be either A0 or A2.
2356    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2357      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2358    LocVT = MVT::i32;
2359  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2360    // Allocate int register and shadow next int register. If first
2361    // available register is Mips::A1 or Mips::A3, shadow it too.
2362    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2363    if (Reg == Mips::A1 || Reg == Mips::A3)
2364      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2365    State.AllocateReg(IntRegs, IntRegsSize);
2366    LocVT = MVT::i32;
2367  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2368    // we are guaranteed to find an available float register
2369    if (ValVT == MVT::f32) {
2370      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2371      // Shadow int register
2372      State.AllocateReg(IntRegs, IntRegsSize);
2373    } else {
2374      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2375      // Shadow int registers
2376      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2377      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2378        State.AllocateReg(IntRegs, IntRegsSize);
2379      State.AllocateReg(IntRegs, IntRegsSize);
2380    }
2381  } else
2382    llvm_unreachable("Cannot handle this ValVT.");
2383
2384  unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
2385  unsigned Offset = State.AllocateStack(SizeInBytes, OrigAlign);
2386
2387  if (!Reg)
2388    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2389  else
2390    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2391
2392  return false; // CC must always match
2393}
2394
2395static const uint16_t Mips64IntRegs[8] =
2396  {Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
2397   Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64};
2398static const uint16_t Mips64DPRegs[8] =
2399  {Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
2400   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64};
2401
2402static bool CC_Mips64Byval(unsigned ValNo, MVT ValVT, MVT LocVT,
2403                           CCValAssign::LocInfo LocInfo,
2404                           ISD::ArgFlagsTy ArgFlags, CCState &State) {
2405  unsigned Align = std::max(ArgFlags.getByValAlign(), (unsigned)8);
2406  unsigned Size  = (ArgFlags.getByValSize() + 7) / 8 * 8;
2407  unsigned FirstIdx = State.getFirstUnallocated(Mips64IntRegs, 8);
2408
2409  assert(Align <= 16 && "Cannot handle alignments larger than 16.");
2410
2411  // If byval is 16-byte aligned, the first arg register must be even.
2412  if ((Align == 16) && (FirstIdx % 2)) {
2413    State.AllocateReg(Mips64IntRegs[FirstIdx], Mips64DPRegs[FirstIdx]);
2414    ++FirstIdx;
2415  }
2416
2417  // Mark the registers allocated.
2418  for (unsigned I = FirstIdx; Size && (I < 8); Size -= 8, ++I)
2419    State.AllocateReg(Mips64IntRegs[I], Mips64DPRegs[I]);
2420
2421  // Allocate space on caller's stack.
2422  unsigned Offset = State.AllocateStack(Size, Align);
2423
2424  if (FirstIdx < 8)
2425    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Mips64IntRegs[FirstIdx],
2426                                     LocVT, LocInfo));
2427  else
2428    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2429
2430  return true;
2431}
2432
2433#include "MipsGenCallingConv.inc"
2434
2435static void
2436AnalyzeMips64CallOperands(CCState &CCInfo,
2437                          const SmallVectorImpl<ISD::OutputArg> &Outs) {
2438  unsigned NumOps = Outs.size();
2439  for (unsigned i = 0; i != NumOps; ++i) {
2440    MVT ArgVT = Outs[i].VT;
2441    ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2442    bool R;
2443
2444    if (Outs[i].IsFixed)
2445      R = CC_MipsN(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2446    else
2447      R = CC_MipsN_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2448
2449    if (R) {
2450#ifndef NDEBUG
2451      dbgs() << "Call operand #" << i << " has unhandled type "
2452             << EVT(ArgVT).getEVTString();
2453#endif
2454      llvm_unreachable(0);
2455    }
2456  }
2457}
2458
2459//===----------------------------------------------------------------------===//
2460//                  Call Calling Convention Implementation
2461//===----------------------------------------------------------------------===//
2462
2463static const unsigned O32IntRegsSize = 4;
2464
2465static const uint16_t O32IntRegs[] = {
2466  Mips::A0, Mips::A1, Mips::A2, Mips::A3
2467};
2468
2469// Return next O32 integer argument register.
2470static unsigned getNextIntArgReg(unsigned Reg) {
2471  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2472  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2473}
2474
2475// Write ByVal Arg to arg registers and stack.
2476static void
2477WriteByValArg(SDValue Chain, DebugLoc dl,
2478              SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
2479              SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
2480              MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2481              const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2482              MVT PtrType, bool isLittle) {
2483  unsigned LocMemOffset = VA.getLocMemOffset();
2484  unsigned Offset = 0;
2485  uint32_t RemainingSize = Flags.getByValSize();
2486  unsigned ByValAlign = Flags.getByValAlign();
2487
2488  // Copy the first 4 words of byval arg to registers A0 - A3.
2489  // FIXME: Use a stricter alignment if it enables better optimization in passes
2490  //        run later.
2491  for (; RemainingSize >= 4 && LocMemOffset < 4 * 4;
2492       Offset += 4, RemainingSize -= 4, LocMemOffset += 4) {
2493    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2494                                  DAG.getConstant(Offset, MVT::i32));
2495    SDValue LoadVal = DAG.getLoad(MVT::i32, dl, Chain, LoadPtr,
2496                                  MachinePointerInfo(), false, false, false,
2497                                  std::min(ByValAlign, (unsigned )4));
2498    MemOpChains.push_back(LoadVal.getValue(1));
2499    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2500    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2501  }
2502
2503  if (RemainingSize == 0)
2504    return;
2505
2506  // If there still is a register available for argument passing, write the
2507  // remaining part of the structure to it using subword loads and shifts.
2508  if (LocMemOffset < 4 * 4) {
2509    assert(RemainingSize <= 3 && RemainingSize >= 1 &&
2510           "There must be one to three bytes remaining.");
2511    unsigned LoadSize = (RemainingSize == 3 ? 2 : RemainingSize);
2512    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2513                                  DAG.getConstant(Offset, MVT::i32));
2514    unsigned Alignment = std::min(ByValAlign, (unsigned )4);
2515    SDValue LoadVal = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2516                                     LoadPtr, MachinePointerInfo(),
2517                                     MVT::getIntegerVT(LoadSize * 8), false,
2518                                     false, Alignment);
2519    MemOpChains.push_back(LoadVal.getValue(1));
2520
2521    // If target is big endian, shift it to the most significant half-word or
2522    // byte.
2523    if (!isLittle)
2524      LoadVal = DAG.getNode(ISD::SHL, dl, MVT::i32, LoadVal,
2525                            DAG.getConstant(32 - LoadSize * 8, MVT::i32));
2526
2527    Offset += LoadSize;
2528    RemainingSize -= LoadSize;
2529
2530    // Read second subword if necessary.
2531    if (RemainingSize != 0)  {
2532      assert(RemainingSize == 1 && "There must be one byte remaining.");
2533      LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2534                            DAG.getConstant(Offset, MVT::i32));
2535      unsigned Alignment = std::min(ByValAlign, (unsigned )2);
2536      SDValue Subword = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2537                                       LoadPtr, MachinePointerInfo(),
2538                                       MVT::i8, false, false, Alignment);
2539      MemOpChains.push_back(Subword.getValue(1));
2540      // Insert the loaded byte to LoadVal.
2541      // FIXME: Use INS if supported by target.
2542      unsigned ShiftAmt = isLittle ? 16 : 8;
2543      SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i32, Subword,
2544                                  DAG.getConstant(ShiftAmt, MVT::i32));
2545      LoadVal = DAG.getNode(ISD::OR, dl, MVT::i32, LoadVal, Shift);
2546    }
2547
2548    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2549    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2550    return;
2551  }
2552
2553  // Copy remaining part of byval arg using memcpy.
2554  SDValue Src = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2555                            DAG.getConstant(Offset, MVT::i32));
2556  SDValue Dst = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr,
2557                            DAG.getIntPtrConstant(LocMemOffset));
2558  Chain = DAG.getMemcpy(Chain, dl, Dst, Src,
2559                        DAG.getConstant(RemainingSize, MVT::i32),
2560                        std::min(ByValAlign, (unsigned)4),
2561                        /*isVolatile=*/false, /*AlwaysInline=*/false,
2562                        MachinePointerInfo(0), MachinePointerInfo(0));
2563  MemOpChains.push_back(Chain);
2564}
2565
2566// Copy Mips64 byVal arg to registers and stack.
2567void static
2568PassByValArg64(SDValue Chain, DebugLoc dl,
2569               SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
2570               SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
2571               MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2572               const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2573               EVT PtrTy, bool isLittle) {
2574  unsigned ByValSize = Flags.getByValSize();
2575  unsigned Alignment = std::min(Flags.getByValAlign(), (unsigned)8);
2576  bool IsRegLoc = VA.isRegLoc();
2577  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
2578  unsigned LocMemOffset = 0;
2579  unsigned MemCpySize = ByValSize;
2580
2581  if (!IsRegLoc)
2582    LocMemOffset = VA.getLocMemOffset();
2583  else {
2584    const uint16_t *Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8,
2585                                    VA.getLocReg());
2586    const uint16_t *RegEnd = Mips64IntRegs + 8;
2587
2588    // Copy double words to registers.
2589    for (; (Reg != RegEnd) && (ByValSize >= Offset + 8); ++Reg, Offset += 8) {
2590      SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2591                                    DAG.getConstant(Offset, PtrTy));
2592      SDValue LoadVal = DAG.getLoad(MVT::i64, dl, Chain, LoadPtr,
2593                                    MachinePointerInfo(), false, false, false,
2594                                    Alignment);
2595      MemOpChains.push_back(LoadVal.getValue(1));
2596      RegsToPass.push_back(std::make_pair(*Reg, LoadVal));
2597    }
2598
2599    // Return if the struct has been fully copied.
2600    if (!(MemCpySize = ByValSize - Offset))
2601      return;
2602
2603    // If there is an argument register available, copy the remainder of the
2604    // byval argument with sub-doubleword loads and shifts.
2605    if (Reg != RegEnd) {
2606      assert((ByValSize < Offset + 8) &&
2607             "Size of the remainder should be smaller than 8-byte.");
2608      SDValue Val;
2609      for (unsigned LoadSize = 4; Offset < ByValSize; LoadSize /= 2) {
2610        unsigned RemSize = ByValSize - Offset;
2611
2612        if (RemSize < LoadSize)
2613          continue;
2614
2615        SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2616                                      DAG.getConstant(Offset, PtrTy));
2617        SDValue LoadVal =
2618          DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i64, Chain, LoadPtr,
2619                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
2620                         false, false, Alignment);
2621        MemOpChains.push_back(LoadVal.getValue(1));
2622
2623        // Offset in number of bits from double word boundary.
2624        unsigned OffsetDW = (Offset % 8) * 8;
2625        unsigned Shamt = isLittle ? OffsetDW : 64 - (OffsetDW + LoadSize * 8);
2626        SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i64, LoadVal,
2627                                    DAG.getConstant(Shamt, MVT::i32));
2628
2629        Val = Val.getNode() ? DAG.getNode(ISD::OR, dl, MVT::i64, Val, Shift) :
2630                              Shift;
2631        Offset += LoadSize;
2632        Alignment = std::min(Alignment, LoadSize);
2633      }
2634
2635      RegsToPass.push_back(std::make_pair(*Reg, Val));
2636      return;
2637    }
2638  }
2639
2640  assert(MemCpySize && "MemCpySize must not be zero.");
2641
2642  // Copy remainder of byval arg to it with memcpy.
2643  SDValue Src = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2644                            DAG.getConstant(Offset, PtrTy));
2645  SDValue Dst = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr,
2646                            DAG.getIntPtrConstant(LocMemOffset));
2647  Chain = DAG.getMemcpy(Chain, dl, Dst, Src,
2648                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
2649                        /*isVolatile=*/false, /*AlwaysInline=*/false,
2650                        MachinePointerInfo(0), MachinePointerInfo(0));
2651  MemOpChains.push_back(Chain);
2652}
2653
2654/// LowerCall - functions arguments are copied from virtual regs to
2655/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2656/// TODO: isTailCall.
2657SDValue
2658MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2659                              SmallVectorImpl<SDValue> &InVals) const {
2660  SelectionDAG &DAG                     = CLI.DAG;
2661  DebugLoc &dl                          = CLI.DL;
2662  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2663  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2664  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2665  SDValue Chain                         = CLI.Chain;
2666  SDValue Callee                        = CLI.Callee;
2667  bool &isTailCall                      = CLI.IsTailCall;
2668  CallingConv::ID CallConv              = CLI.CallConv;
2669  bool isVarArg                         = CLI.IsVarArg;
2670
2671  // MIPs target does not yet support tail call optimization.
2672  isTailCall = false;
2673
2674  MachineFunction &MF = DAG.getMachineFunction();
2675  MachineFrameInfo *MFI = MF.getFrameInfo();
2676  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2677  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2678  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2679
2680  // Analyze operands of the call, assigning locations to each operand.
2681  SmallVector<CCValAssign, 16> ArgLocs;
2682  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2683                 getTargetMachine(), ArgLocs, *DAG.getContext());
2684
2685  if (CallConv == CallingConv::Fast)
2686    CCInfo.AnalyzeCallOperands(Outs, CC_Mips_FastCC);
2687  else if (IsO32)
2688    CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32);
2689  else if (HasMips64)
2690    AnalyzeMips64CallOperands(CCInfo, Outs);
2691  else
2692    CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
2693
2694  // Get a count of how many bytes are to be pushed on the stack.
2695  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2696  unsigned StackAlignment = TFL->getStackAlignment();
2697  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2698
2699  // Update size of the maximum argument space.
2700  // For O32, a minimum of four words (16 bytes) of argument space is
2701  // allocated.
2702  if (IsO32 && (CallConv != CallingConv::Fast))
2703    NextStackOffset = std::max(NextStackOffset, (unsigned)16);
2704
2705  // Chain is the output chain of the last Load/Store or CopyToReg node.
2706  // ByValChain is the output chain of the last Memcpy node created for copying
2707  // byval arguments to the stack.
2708  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2709  Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
2710
2711  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl,
2712                                        IsN64 ? Mips::SP_64 : Mips::SP,
2713                                        getPointerTy());
2714
2715  if (MipsFI->getMaxCallFrameSize() < NextStackOffset)
2716    MipsFI->setMaxCallFrameSize(NextStackOffset);
2717
2718  // With EABI is it possible to have 16 args on registers.
2719  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
2720  SmallVector<SDValue, 8> MemOpChains;
2721
2722  // Walk the register/memloc assignments, inserting copies/loads.
2723  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2724    SDValue Arg = OutVals[i];
2725    CCValAssign &VA = ArgLocs[i];
2726    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2727    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2728
2729    // ByVal Arg.
2730    if (Flags.isByVal()) {
2731      assert(Flags.getByValSize() &&
2732             "ByVal args of size 0 should have been ignored by front-end.");
2733      if (IsO32)
2734        WriteByValArg(Chain, dl, RegsToPass, MemOpChains, StackPtr,
2735                      MFI, DAG, Arg, VA, Flags, getPointerTy(),
2736                      Subtarget->isLittle());
2737      else
2738        PassByValArg64(Chain, dl, RegsToPass, MemOpChains, StackPtr,
2739                       MFI, DAG, Arg, VA, Flags, getPointerTy(),
2740                       Subtarget->isLittle());
2741      continue;
2742    }
2743
2744    // Promote the value if needed.
2745    switch (VA.getLocInfo()) {
2746    default: llvm_unreachable("Unknown loc info!");
2747    case CCValAssign::Full:
2748      if (VA.isRegLoc()) {
2749        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2750            (ValVT == MVT::f64 && LocVT == MVT::i64))
2751          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
2752        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2753          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2754                                   Arg, DAG.getConstant(0, MVT::i32));
2755          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2756                                   Arg, DAG.getConstant(1, MVT::i32));
2757          if (!Subtarget->isLittle())
2758            std::swap(Lo, Hi);
2759          unsigned LocRegLo = VA.getLocReg();
2760          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2761          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2762          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2763          continue;
2764        }
2765      }
2766      break;
2767    case CCValAssign::SExt:
2768      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
2769      break;
2770    case CCValAssign::ZExt:
2771      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
2772      break;
2773    case CCValAssign::AExt:
2774      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
2775      break;
2776    }
2777
2778    // Arguments that can be passed on register must be kept at
2779    // RegsToPass vector
2780    if (VA.isRegLoc()) {
2781      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2782      continue;
2783    }
2784
2785    // Register can't get to this point...
2786    assert(VA.isMemLoc());
2787
2788    // emit ISD::STORE whichs stores the
2789    // parameter value to a stack Location
2790    SDValue PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
2791                                 DAG.getIntPtrConstant(VA.getLocMemOffset()));
2792    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2793                                       MachinePointerInfo(), false, false, 0));
2794  }
2795
2796  // Transform all store nodes into one single node because all store
2797  // nodes are independent of each other.
2798  if (!MemOpChains.empty())
2799    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2800                        &MemOpChains[0], MemOpChains.size());
2801
2802  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2803  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2804  // node so that legalize doesn't hack it.
2805  unsigned char OpFlag;
2806  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2807  bool GlobalOrExternal = false;
2808  SDValue CalleeLo;
2809
2810  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2811    if (IsPICCall && G->getGlobal()->hasInternalLinkage()) {
2812      OpFlag = IsO32 ? MipsII::MO_GOT : MipsII::MO_GOT_PAGE;
2813      unsigned char LoFlag = IsO32 ? MipsII::MO_ABS_LO : MipsII::MO_GOT_OFST;
2814      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
2815                                          OpFlag);
2816      CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(),
2817                                            0, LoFlag);
2818    } else {
2819      OpFlag = IsPICCall ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
2820      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2821                                          getPointerTy(), 0, OpFlag);
2822    }
2823
2824    GlobalOrExternal = true;
2825  }
2826  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2827    if (IsN64 || (!IsO32 && IsPIC))
2828      OpFlag = MipsII::MO_GOT_DISP;
2829    else if (!IsPIC) // !N64 && static
2830      OpFlag = MipsII::MO_NO_FLAG;
2831    else // O32 & PIC
2832      OpFlag = MipsII::MO_GOT_CALL;
2833    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2834                                         OpFlag);
2835    GlobalOrExternal = true;
2836  }
2837
2838  SDValue InFlag;
2839
2840  // Create nodes that load address of callee and copy it to T9
2841  if (IsPICCall) {
2842    if (GlobalOrExternal) {
2843      // Load callee address
2844      Callee = DAG.getNode(MipsISD::Wrapper, dl, getPointerTy(),
2845                           GetGlobalReg(DAG, getPointerTy()), Callee);
2846      SDValue LoadValue = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
2847                                      Callee, MachinePointerInfo::getGOT(),
2848                                      false, false, false, 0);
2849
2850      // Use GOT+LO if callee has internal linkage.
2851      if (CalleeLo.getNode()) {
2852        SDValue Lo = DAG.getNode(MipsISD::Lo, dl, getPointerTy(), CalleeLo);
2853        Callee = DAG.getNode(ISD::ADD, dl, getPointerTy(), LoadValue, Lo);
2854      } else
2855        Callee = LoadValue;
2856    }
2857  }
2858
2859  // T9 register operand.
2860  SDValue T9;
2861
2862  // T9 should contain the address of the callee function if
2863  // -reloction-model=pic or it is an indirect call.
2864  if (IsPICCall || !GlobalOrExternal) {
2865    // copy to T9
2866    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
2867    Chain = DAG.getCopyToReg(Chain, dl, T9Reg, Callee, SDValue(0, 0));
2868    InFlag = Chain.getValue(1);
2869
2870    if (Subtarget->inMips16Mode())
2871      T9 = DAG.getRegister(T9Reg, getPointerTy());
2872    else
2873      Callee = DAG.getRegister(T9Reg, getPointerTy());
2874  }
2875
2876  // Insert node "GP copy globalreg" before call to function.
2877  // Lazy-binding stubs require GP to point to the GOT.
2878  if (IsPICCall) {
2879    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2880    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2881    RegsToPass.push_back(std::make_pair(GPReg, GetGlobalReg(DAG, Ty)));
2882  }
2883
2884  // Build a sequence of copy-to-reg nodes chained together with token
2885  // chain and flag operands which copy the outgoing args into registers.
2886  // The InFlag in necessary since all emitted instructions must be
2887  // stuck together.
2888  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2889    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2890                             RegsToPass[i].second, InFlag);
2891    InFlag = Chain.getValue(1);
2892  }
2893
2894  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
2895  //             = Chain, Callee, Reg#1, Reg#2, ...
2896  //
2897  // Returns a chain & a flag for retval copy to use.
2898  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2899  SmallVector<SDValue, 8> Ops;
2900  Ops.push_back(Chain);
2901  Ops.push_back(Callee);
2902
2903  // Add argument registers to the end of the list so that they are
2904  // known live into the call.
2905  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2906    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2907                                  RegsToPass[i].second.getValueType()));
2908
2909  // Add T9 register operand.
2910  if (T9.getNode())
2911    Ops.push_back(T9);
2912
2913  // Add a register mask operand representing the call-preserved registers.
2914  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2915  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2916  assert(Mask && "Missing call preserved mask for calling convention");
2917  Ops.push_back(DAG.getRegisterMask(Mask));
2918
2919  if (InFlag.getNode())
2920    Ops.push_back(InFlag);
2921
2922  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
2923  InFlag = Chain.getValue(1);
2924
2925  // Create the CALLSEQ_END node.
2926  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2927                             DAG.getIntPtrConstant(0, true), InFlag);
2928  InFlag = Chain.getValue(1);
2929
2930  // Handle result values, copying them out of physregs into vregs that we
2931  // return.
2932  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2933                         Ins, dl, DAG, InVals);
2934}
2935
2936/// LowerCallResult - Lower the result values of a call into the
2937/// appropriate copies out of appropriate physical registers.
2938SDValue
2939MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2940                                    CallingConv::ID CallConv, bool isVarArg,
2941                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2942                                    DebugLoc dl, SelectionDAG &DAG,
2943                                    SmallVectorImpl<SDValue> &InVals) const {
2944  // Assign locations to each value returned by this call.
2945  SmallVector<CCValAssign, 16> RVLocs;
2946  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2947                 getTargetMachine(), RVLocs, *DAG.getContext());
2948
2949  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
2950
2951  // Copy all of the result registers out of their specified physreg.
2952  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2953    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
2954                               RVLocs[i].getValVT(), InFlag).getValue(1);
2955    InFlag = Chain.getValue(2);
2956    InVals.push_back(Chain.getValue(0));
2957  }
2958
2959  return Chain;
2960}
2961
2962//===----------------------------------------------------------------------===//
2963//             Formal Arguments Calling Convention Implementation
2964//===----------------------------------------------------------------------===//
2965static void ReadByValArg(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2966                         std::vector<SDValue> &OutChains,
2967                         SelectionDAG &DAG, unsigned NumWords, SDValue FIN,
2968                         const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2969                         const Argument *FuncArg) {
2970  unsigned LocMem = VA.getLocMemOffset();
2971  unsigned FirstWord = LocMem / 4;
2972
2973  // copy register A0 - A3 to frame object
2974  for (unsigned i = 0; i < NumWords; ++i) {
2975    unsigned CurWord = FirstWord + i;
2976    if (CurWord >= O32IntRegsSize)
2977      break;
2978
2979    unsigned SrcReg = O32IntRegs[CurWord];
2980    unsigned Reg = AddLiveIn(MF, SrcReg, &Mips::CPURegsRegClass);
2981    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN,
2982                                   DAG.getConstant(i * 4, MVT::i32));
2983    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(Reg, MVT::i32),
2984                                 StorePtr, MachinePointerInfo(FuncArg, i * 4),
2985                                 false, false, 0);
2986    OutChains.push_back(Store);
2987  }
2988}
2989
2990// Create frame object on stack and copy registers used for byval passing to it.
2991static unsigned
2992CopyMips64ByValRegs(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2993                    std::vector<SDValue> &OutChains, SelectionDAG &DAG,
2994                    const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2995                    MachineFrameInfo *MFI, bool IsRegLoc,
2996                    SmallVectorImpl<SDValue> &InVals, MipsFunctionInfo *MipsFI,
2997                    EVT PtrTy, const Argument *FuncArg) {
2998  const uint16_t *Reg = Mips64IntRegs + 8;
2999  int FOOffset; // Frame object offset from virtual frame pointer.
3000
3001  if (IsRegLoc) {
3002    Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8, VA.getLocReg());
3003    FOOffset = (Reg - Mips64IntRegs) * 8 - 8 * 8;
3004  }
3005  else
3006    FOOffset = VA.getLocMemOffset();
3007
3008  // Create frame object.
3009  unsigned NumRegs = (Flags.getByValSize() + 7) / 8;
3010  unsigned LastFI = MFI->CreateFixedObject(NumRegs * 8, FOOffset, true);
3011  SDValue FIN = DAG.getFrameIndex(LastFI, PtrTy);
3012  InVals.push_back(FIN);
3013
3014  // Copy arg registers.
3015  for (unsigned I = 0; (Reg != Mips64IntRegs + 8) && (I < NumRegs);
3016       ++Reg, ++I) {
3017    unsigned VReg = AddLiveIn(MF, *Reg, &Mips::CPU64RegsRegClass);
3018    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, PtrTy, FIN,
3019                                   DAG.getConstant(I * 8, PtrTy));
3020    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(VReg, MVT::i64),
3021                                 StorePtr, MachinePointerInfo(FuncArg, I * 8),
3022                                 false, false, 0);
3023    OutChains.push_back(Store);
3024  }
3025
3026  return LastFI;
3027}
3028
3029/// LowerFormalArguments - transform physical registers into virtual registers
3030/// and generate load operations for arguments places on the stack.
3031SDValue
3032MipsTargetLowering::LowerFormalArguments(SDValue Chain,
3033                                         CallingConv::ID CallConv,
3034                                         bool isVarArg,
3035                                      const SmallVectorImpl<ISD::InputArg> &Ins,
3036                                         DebugLoc dl, SelectionDAG &DAG,
3037                                         SmallVectorImpl<SDValue> &InVals)
3038                                          const {
3039  MachineFunction &MF = DAG.getMachineFunction();
3040  MachineFrameInfo *MFI = MF.getFrameInfo();
3041  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3042
3043  MipsFI->setVarArgsFrameIndex(0);
3044
3045  // Used with vargs to acumulate store chains.
3046  std::vector<SDValue> OutChains;
3047
3048  // Assign locations to all of the incoming arguments.
3049  SmallVector<CCValAssign, 16> ArgLocs;
3050  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3051                 getTargetMachine(), ArgLocs, *DAG.getContext());
3052
3053  if (CallConv == CallingConv::Fast)
3054    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FastCC);
3055  else if (IsO32)
3056    CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32);
3057  else
3058    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
3059
3060  Function::const_arg_iterator FuncArg =
3061    DAG.getMachineFunction().getFunction()->arg_begin();
3062  int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function.
3063
3064  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++FuncArg) {
3065    CCValAssign &VA = ArgLocs[i];
3066    EVT ValVT = VA.getValVT();
3067    ISD::ArgFlagsTy Flags = Ins[i].Flags;
3068    bool IsRegLoc = VA.isRegLoc();
3069
3070    if (Flags.isByVal()) {
3071      assert(Flags.getByValSize() &&
3072             "ByVal args of size 0 should have been ignored by front-end.");
3073      if (IsO32) {
3074        unsigned NumWords = (Flags.getByValSize() + 3) / 4;
3075        LastFI = MFI->CreateFixedObject(NumWords * 4, VA.getLocMemOffset(),
3076                                        true);
3077        SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3078        InVals.push_back(FIN);
3079        ReadByValArg(MF, Chain, dl, OutChains, DAG, NumWords, FIN, VA, Flags,
3080                     &*FuncArg);
3081      } else // N32/64
3082        LastFI = CopyMips64ByValRegs(MF, Chain, dl, OutChains, DAG, VA, Flags,
3083                                     MFI, IsRegLoc, InVals, MipsFI,
3084                                     getPointerTy(), &*FuncArg);
3085      continue;
3086    }
3087
3088    // Arguments stored on registers
3089    if (IsRegLoc) {
3090      EVT RegVT = VA.getLocVT();
3091      unsigned ArgReg = VA.getLocReg();
3092      const TargetRegisterClass *RC;
3093
3094      if (RegVT == MVT::i32)
3095        RC = &Mips::CPURegsRegClass;
3096      else if (RegVT == MVT::i64)
3097        RC = &Mips::CPU64RegsRegClass;
3098      else if (RegVT == MVT::f32)
3099        RC = &Mips::FGR32RegClass;
3100      else if (RegVT == MVT::f64)
3101        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
3102      else
3103        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
3104
3105      // Transform the arguments stored on
3106      // physical registers into virtual ones
3107      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3108      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3109
3110      // If this is an 8 or 16-bit value, it has been passed promoted
3111      // to 32 bits.  Insert an assert[sz]ext to capture this, then
3112      // truncate to the right size.
3113      if (VA.getLocInfo() != CCValAssign::Full) {
3114        unsigned Opcode = 0;
3115        if (VA.getLocInfo() == CCValAssign::SExt)
3116          Opcode = ISD::AssertSext;
3117        else if (VA.getLocInfo() == CCValAssign::ZExt)
3118          Opcode = ISD::AssertZext;
3119        if (Opcode)
3120          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
3121                                 DAG.getValueType(ValVT));
3122        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
3123      }
3124
3125      // Handle floating point arguments passed in integer registers.
3126      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3127          (RegVT == MVT::i64 && ValVT == MVT::f64))
3128        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
3129      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
3130        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
3131                                  getNextIntArgReg(ArgReg), RC);
3132        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
3133        if (!Subtarget->isLittle())
3134          std::swap(ArgValue, ArgValue2);
3135        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
3136                               ArgValue, ArgValue2);
3137      }
3138
3139      InVals.push_back(ArgValue);
3140    } else { // VA.isRegLoc()
3141
3142      // sanity check
3143      assert(VA.isMemLoc());
3144
3145      // The stack pointer offset is relative to the caller stack frame.
3146      LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
3147                                      VA.getLocMemOffset(), true);
3148
3149      // Create load nodes to retrieve arguments from the stack
3150      SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3151      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
3152                                   MachinePointerInfo::getFixedStack(LastFI),
3153                                   false, false, false, 0));
3154    }
3155  }
3156
3157  // The mips ABIs for returning structs by value requires that we copy
3158  // the sret argument into $v0 for the return. Save the argument into
3159  // a virtual register so that we can access it from the return points.
3160  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3161    unsigned Reg = MipsFI->getSRetReturnReg();
3162    if (!Reg) {
3163      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
3164      MipsFI->setSRetReturnReg(Reg);
3165    }
3166    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
3167    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
3168  }
3169
3170  if (isVarArg) {
3171    unsigned NumOfRegs = IsO32 ? 4 : 8;
3172    const uint16_t *ArgRegs = IsO32 ? O32IntRegs : Mips64IntRegs;
3173    unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumOfRegs);
3174    int FirstRegSlotOffset = IsO32 ? 0 : -64 ; // offset of $a0's slot.
3175    const TargetRegisterClass *RC = IsO32 ?
3176      (const TargetRegisterClass*)&Mips::CPURegsRegClass :
3177      (const TargetRegisterClass*)&Mips::CPU64RegsRegClass;
3178    unsigned RegSize = RC->getSize();
3179    int RegSlotOffset = FirstRegSlotOffset + Idx * RegSize;
3180
3181    // Offset of the first variable argument from stack pointer.
3182    int FirstVaArgOffset;
3183
3184    if (IsO32 || (Idx == NumOfRegs)) {
3185      FirstVaArgOffset =
3186        (CCInfo.getNextStackOffset() + RegSize - 1) / RegSize * RegSize;
3187    } else
3188      FirstVaArgOffset = RegSlotOffset;
3189
3190    // Record the frame index of the first variable argument
3191    // which is a value necessary to VASTART.
3192    LastFI = MFI->CreateFixedObject(RegSize, FirstVaArgOffset, true);
3193    MipsFI->setVarArgsFrameIndex(LastFI);
3194
3195    // Copy the integer registers that have not been used for argument passing
3196    // to the argument register save area. For O32, the save area is allocated
3197    // in the caller's stack frame, while for N32/64, it is allocated in the
3198    // callee's stack frame.
3199    for (int StackOffset = RegSlotOffset;
3200         Idx < NumOfRegs; ++Idx, StackOffset += RegSize) {
3201      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegs[Idx], RC);
3202      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3203                                            MVT::getIntegerVT(RegSize * 8));
3204      LastFI = MFI->CreateFixedObject(RegSize, StackOffset, true);
3205      SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
3206      OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
3207                                       MachinePointerInfo(), false, false, 0));
3208    }
3209  }
3210
3211  MipsFI->setLastInArgFI(LastFI);
3212
3213  // All stores are grouped in one node to allow the matching between
3214  // the size of Ins and InVals. This only happens when on varg functions
3215  if (!OutChains.empty()) {
3216    OutChains.push_back(Chain);
3217    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3218                        &OutChains[0], OutChains.size());
3219  }
3220
3221  return Chain;
3222}
3223
3224//===----------------------------------------------------------------------===//
3225//               Return Value Calling Convention Implementation
3226//===----------------------------------------------------------------------===//
3227
3228SDValue
3229MipsTargetLowering::LowerReturn(SDValue Chain,
3230                                CallingConv::ID CallConv, bool isVarArg,
3231                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3232                                const SmallVectorImpl<SDValue> &OutVals,
3233                                DebugLoc dl, SelectionDAG &DAG) const {
3234
3235  // CCValAssign - represent the assignment of
3236  // the return value to a location
3237  SmallVector<CCValAssign, 16> RVLocs;
3238
3239  // CCState - Info about the registers and stack slot.
3240  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3241                 getTargetMachine(), RVLocs, *DAG.getContext());
3242
3243  // Analize return values.
3244  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3245
3246  // If this is the first return lowered for this function, add
3247  // the regs to the liveout set for the function.
3248  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3249    for (unsigned i = 0; i != RVLocs.size(); ++i)
3250      if (RVLocs[i].isRegLoc())
3251        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3252  }
3253
3254  SDValue Flag;
3255
3256  // Copy the result values into the output registers.
3257  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3258    CCValAssign &VA = RVLocs[i];
3259    assert(VA.isRegLoc() && "Can only return in registers!");
3260
3261    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
3262
3263    // guarantee that all emitted copies are
3264    // stuck together, avoiding something bad
3265    Flag = Chain.getValue(1);
3266  }
3267
3268  // The mips ABIs for returning structs by value requires that we copy
3269  // the sret argument into $v0 for the return. We saved the argument into
3270  // a virtual register in the entry block, so now we copy the value out
3271  // and into $v0.
3272  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3273    MachineFunction &MF      = DAG.getMachineFunction();
3274    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3275    unsigned Reg = MipsFI->getSRetReturnReg();
3276
3277    if (!Reg)
3278      llvm_unreachable("sret virtual register not created in the entry block");
3279    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
3280
3281    Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
3282    Flag = Chain.getValue(1);
3283  }
3284
3285  // Return on Mips is always a "jr $ra"
3286  if (Flag.getNode())
3287    return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain, Flag);
3288
3289  // Return Void
3290  return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain);
3291}
3292
3293//===----------------------------------------------------------------------===//
3294//                           Mips Inline Assembly Support
3295//===----------------------------------------------------------------------===//
3296
3297/// getConstraintType - Given a constraint letter, return the type of
3298/// constraint it is for this target.
3299MipsTargetLowering::ConstraintType MipsTargetLowering::
3300getConstraintType(const std::string &Constraint) const
3301{
3302  // Mips specific constrainy
3303  // GCC config/mips/constraints.md
3304  //
3305  // 'd' : An address register. Equivalent to r
3306  //       unless generating MIPS16 code.
3307  // 'y' : Equivalent to r; retained for
3308  //       backwards compatibility.
3309  // 'c' : A register suitable for use in an indirect
3310  //       jump. This will always be $25 for -mabicalls.
3311  // 'l' : The lo register. 1 word storage.
3312  // 'x' : The hilo register pair. Double word storage.
3313  if (Constraint.size() == 1) {
3314    switch (Constraint[0]) {
3315      default : break;
3316      case 'd':
3317      case 'y':
3318      case 'f':
3319      case 'c':
3320      case 'l':
3321      case 'x':
3322        return C_RegisterClass;
3323    }
3324  }
3325  return TargetLowering::getConstraintType(Constraint);
3326}
3327
3328/// Examine constraint type and operand type and determine a weight value.
3329/// This object must already have been set up with the operand type
3330/// and the current alternative constraint selected.
3331TargetLowering::ConstraintWeight
3332MipsTargetLowering::getSingleConstraintMatchWeight(
3333    AsmOperandInfo &info, const char *constraint) const {
3334  ConstraintWeight weight = CW_Invalid;
3335  Value *CallOperandVal = info.CallOperandVal;
3336    // If we don't have a value, we can't do a match,
3337    // but allow it at the lowest weight.
3338  if (CallOperandVal == NULL)
3339    return CW_Default;
3340  Type *type = CallOperandVal->getType();
3341  // Look at the constraint type.
3342  switch (*constraint) {
3343  default:
3344    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3345    break;
3346  case 'd':
3347  case 'y':
3348    if (type->isIntegerTy())
3349      weight = CW_Register;
3350    break;
3351  case 'f':
3352    if (type->isFloatTy())
3353      weight = CW_Register;
3354    break;
3355  case 'c': // $25 for indirect jumps
3356  case 'l': // lo register
3357  case 'x': // hilo register pair
3358      if (type->isIntegerTy())
3359      weight = CW_SpecificReg;
3360      break;
3361  case 'I': // signed 16 bit immediate
3362  case 'J': // integer zero
3363  case 'K': // unsigned 16 bit immediate
3364  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3365  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3366  case 'O': // signed 15 bit immediate (+- 16383)
3367  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3368    if (isa<ConstantInt>(CallOperandVal))
3369      weight = CW_Constant;
3370    break;
3371  }
3372  return weight;
3373}
3374
3375/// Given a register class constraint, like 'r', if this corresponds directly
3376/// to an LLVM register class, return a register of 0 and the register class
3377/// pointer.
3378std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3379getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3380{
3381  if (Constraint.size() == 1) {
3382    switch (Constraint[0]) {
3383    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3384    case 'y': // Same as 'r'. Exists for compatibility.
3385    case 'r':
3386      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3387        if (Subtarget->inMips16Mode())
3388          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3389        return std::make_pair(0U, &Mips::CPURegsRegClass);
3390      }
3391      if (VT == MVT::i64 && !HasMips64)
3392        return std::make_pair(0U, &Mips::CPURegsRegClass);
3393      if (VT == MVT::i64 && HasMips64)
3394        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
3395      // This will generate an error message
3396      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3397    case 'f':
3398      if (VT == MVT::f32)
3399        return std::make_pair(0U, &Mips::FGR32RegClass);
3400      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3401        if (Subtarget->isFP64bit())
3402          return std::make_pair(0U, &Mips::FGR64RegClass);
3403        return std::make_pair(0U, &Mips::AFGR64RegClass);
3404      }
3405      break;
3406    case 'c': // register suitable for indirect jump
3407      if (VT == MVT::i32)
3408        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
3409      assert(VT == MVT::i64 && "Unexpected type.");
3410      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
3411    case 'l': // register suitable for indirect jump
3412      if (VT == MVT::i32)
3413        return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
3414      return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
3415    case 'x': // register suitable for indirect jump
3416      // Fixme: Not triggering the use of both hi and low
3417      // This will generate an error message
3418      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3419    }
3420  }
3421  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3422}
3423
3424/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3425/// vector.  If it is invalid, don't add anything to Ops.
3426void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3427                                                     std::string &Constraint,
3428                                                     std::vector<SDValue>&Ops,
3429                                                     SelectionDAG &DAG) const {
3430  SDValue Result(0, 0);
3431
3432  // Only support length 1 constraints for now.
3433  if (Constraint.length() > 1) return;
3434
3435  char ConstraintLetter = Constraint[0];
3436  switch (ConstraintLetter) {
3437  default: break; // This will fall through to the generic implementation
3438  case 'I': // Signed 16 bit constant
3439    // If this fails, the parent routine will give an error
3440    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3441      EVT Type = Op.getValueType();
3442      int64_t Val = C->getSExtValue();
3443      if (isInt<16>(Val)) {
3444        Result = DAG.getTargetConstant(Val, Type);
3445        break;
3446      }
3447    }
3448    return;
3449  case 'J': // integer zero
3450    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3451      EVT Type = Op.getValueType();
3452      int64_t Val = C->getZExtValue();
3453      if (Val == 0) {
3454        Result = DAG.getTargetConstant(0, Type);
3455        break;
3456      }
3457    }
3458    return;
3459  case 'K': // unsigned 16 bit immediate
3460    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3461      EVT Type = Op.getValueType();
3462      uint64_t Val = (uint64_t)C->getZExtValue();
3463      if (isUInt<16>(Val)) {
3464        Result = DAG.getTargetConstant(Val, Type);
3465        break;
3466      }
3467    }
3468    return;
3469  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3470    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3471      EVT Type = Op.getValueType();
3472      int64_t Val = C->getSExtValue();
3473      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3474        Result = DAG.getTargetConstant(Val, Type);
3475        break;
3476      }
3477    }
3478    return;
3479  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3480    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3481      EVT Type = Op.getValueType();
3482      int64_t Val = C->getSExtValue();
3483      if ((Val >= -65535) && (Val <= -1)) {
3484        Result = DAG.getTargetConstant(Val, Type);
3485        break;
3486      }
3487    }
3488    return;
3489  case 'O': // signed 15 bit immediate
3490    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3491      EVT Type = Op.getValueType();
3492      int64_t Val = C->getSExtValue();
3493      if ((isInt<15>(Val))) {
3494        Result = DAG.getTargetConstant(Val, Type);
3495        break;
3496      }
3497    }
3498    return;
3499  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3500    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3501      EVT Type = Op.getValueType();
3502      int64_t Val = C->getSExtValue();
3503      if ((Val <= 65535) && (Val >= 1)) {
3504        Result = DAG.getTargetConstant(Val, Type);
3505        break;
3506      }
3507    }
3508    return;
3509  }
3510
3511  if (Result.getNode()) {
3512    Ops.push_back(Result);
3513    return;
3514  }
3515
3516  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3517}
3518
3519bool
3520MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3521  // The Mips target isn't yet aware of offsets.
3522  return false;
3523}
3524
3525EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3526                                            unsigned SrcAlign, bool IsZeroVal,
3527                                            bool MemcpyStrSrc,
3528                                            MachineFunction &MF) const {
3529  if (Subtarget->hasMips64())
3530    return MVT::i64;
3531
3532  return MVT::i32;
3533}
3534
3535bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3536  if (VT != MVT::f32 && VT != MVT::f64)
3537    return false;
3538  if (Imm.isNegZero())
3539    return false;
3540  return Imm.isZero();
3541}
3542
3543unsigned MipsTargetLowering::getJumpTableEncoding() const {
3544  if (IsN64)
3545    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3546
3547  return TargetLowering::getJumpTableEncoding();
3548}
3549