MipsISelLowering.cpp revision c673f9c6fecb0f828845ada7ea5458f66f896283
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include "MipsISelLowering.h"
16#include "InstPrinter/MipsInstPrinter.h"
17#include "MCTargetDesc/MipsBaseInfo.h"
18#include "MipsMachineFunction.h"
19#include "MipsSubtarget.h"
20#include "MipsTargetMachine.h"
21#include "MipsTargetObjectFile.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37#include <cctype>
38
39using namespace llvm;
40
41STATISTIC(NumTailCalls, "Number of tail calls");
42
43static cl::opt<bool>
44LargeGOT("mxgot", cl::Hidden,
45         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
46
47static cl::opt<bool>
48NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
49               cl::desc("MIPS: Don't trap on integer division by zero."),
50               cl::init(false));
51
52static const uint16_t O32IntRegs[4] = {
53  Mips::A0, Mips::A1, Mips::A2, Mips::A3
54};
55
56static const uint16_t Mips64IntRegs[8] = {
57  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
58  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
59};
60
61static const uint16_t Mips64DPRegs[8] = {
62  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
63  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
64};
65
66// If I is a shifted mask, set the size (Size) and the first bit of the
67// mask (Pos), and return true.
68// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
69static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
70  if (!isShiftedMask_64(I))
71     return false;
72
73  Size = CountPopulation_64(I);
74  Pos = countTrailingZeros(I);
75  return true;
76}
77
78SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
79  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
80  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
81}
82
83static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
84  EVT Ty = Op.getValueType();
85
86  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
87    return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(Op), Ty, 0,
88                                      Flag);
89  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
90    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
91  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
92    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
93  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
94    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
95  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
96    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
97                                     N->getOffset(), Flag);
98
99  llvm_unreachable("Unexpected node type.");
100  return SDValue();
101}
102
103static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
104  SDLoc DL(Op);
105  EVT Ty = Op.getValueType();
106  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
107  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
108  return DAG.getNode(ISD::ADD, DL, Ty,
109                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
110                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
111}
112
113SDValue MipsTargetLowering::getAddrLocal(SDValue Op, SelectionDAG &DAG,
114                                         bool HasMips64) const {
115  SDLoc DL(Op);
116  EVT Ty = Op.getValueType();
117  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
118  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
119                            getTargetNode(Op, DAG, GOTFlag));
120  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
121                             MachinePointerInfo::getGOT(), false, false, false,
122                             0);
123  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
124  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
125  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
126}
127
128SDValue MipsTargetLowering::getAddrGlobal(SDValue Op, SelectionDAG &DAG,
129                                          unsigned Flag) const {
130  SDLoc DL(Op);
131  EVT Ty = Op.getValueType();
132  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
133                            getTargetNode(Op, DAG, Flag));
134  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
135                     MachinePointerInfo::getGOT(), false, false, false, 0);
136}
137
138SDValue MipsTargetLowering::getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
139                                                  unsigned HiFlag,
140                                                  unsigned LoFlag) const {
141  SDLoc DL(Op);
142  EVT Ty = Op.getValueType();
143  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
144  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
145  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
146                                getTargetNode(Op, DAG, LoFlag));
147  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
148                     MachinePointerInfo::getGOT(), false, false, false, 0);
149}
150
151const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
152  switch (Opcode) {
153  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
154  case MipsISD::TailCall:          return "MipsISD::TailCall";
155  case MipsISD::Hi:                return "MipsISD::Hi";
156  case MipsISD::Lo:                return "MipsISD::Lo";
157  case MipsISD::GPRel:             return "MipsISD::GPRel";
158  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
159  case MipsISD::Ret:               return "MipsISD::Ret";
160  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
161  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
162  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
163  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
164  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
165  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
166  case MipsISD::ExtractLOHI:       return "MipsISD::ExtractLOHI";
167  case MipsISD::InsertLOHI:        return "MipsISD::InsertLOHI";
168  case MipsISD::Mult:              return "MipsISD::Mult";
169  case MipsISD::Multu:             return "MipsISD::Multu";
170  case MipsISD::MAdd:              return "MipsISD::MAdd";
171  case MipsISD::MAddu:             return "MipsISD::MAddu";
172  case MipsISD::MSub:              return "MipsISD::MSub";
173  case MipsISD::MSubu:             return "MipsISD::MSubu";
174  case MipsISD::DivRem:            return "MipsISD::DivRem";
175  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
176  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
177  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
178  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
179  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
180  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
181  case MipsISD::Sync:              return "MipsISD::Sync";
182  case MipsISD::Ext:               return "MipsISD::Ext";
183  case MipsISD::Ins:               return "MipsISD::Ins";
184  case MipsISD::LWL:               return "MipsISD::LWL";
185  case MipsISD::LWR:               return "MipsISD::LWR";
186  case MipsISD::SWL:               return "MipsISD::SWL";
187  case MipsISD::SWR:               return "MipsISD::SWR";
188  case MipsISD::LDL:               return "MipsISD::LDL";
189  case MipsISD::LDR:               return "MipsISD::LDR";
190  case MipsISD::SDL:               return "MipsISD::SDL";
191  case MipsISD::SDR:               return "MipsISD::SDR";
192  case MipsISD::EXTP:              return "MipsISD::EXTP";
193  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
194  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
195  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
196  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
197  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
198  case MipsISD::SHILO:             return "MipsISD::SHILO";
199  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
200  case MipsISD::MULT:              return "MipsISD::MULT";
201  case MipsISD::MULTU:             return "MipsISD::MULTU";
202  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
203  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
204  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
205  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
206  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
207  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
208  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
209  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
210  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
211  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
212  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
213  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
214  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
215  default:                         return NULL;
216  }
217}
218
219MipsTargetLowering::
220MipsTargetLowering(MipsTargetMachine &TM)
221  : TargetLowering(TM, new MipsTargetObjectFile()),
222    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
223    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
224    IsO32(Subtarget->isABI_O32()) {
225  // Mips does not have i1 type, so use i32 for
226  // setcc operations results (slt, sgt, ...).
227  setBooleanContents(ZeroOrOneBooleanContent);
228  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
229
230  // Load extented operations for i1 types must be promoted
231  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
232  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
233  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
234
235  // MIPS doesn't have extending float->double load/store
236  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
237  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
238
239  // Used by legalize types to correctly generate the setcc result.
240  // Without this, every float setcc comes with a AND/OR with the result,
241  // we don't want this, since the fpcmp result goes to a flag register,
242  // which is used implicitly by brcond and select operations.
243  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
244
245  // Mips Custom Operations
246  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
247  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
248  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
249  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
250  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
251  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
252  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
253  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
254  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
255  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
256  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
257  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
258  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
259  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
260  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
261  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
262  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
263  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
264
265  if (!TM.Options.NoNaNsFPMath) {
266    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
267    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
268  }
269
270  if (HasMips64) {
271    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
272    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
273    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
274    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
275    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
276    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
277    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
278    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
279    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
280  }
281
282  if (!HasMips64) {
283    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
284    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
285    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
286  }
287
288  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
289  if (HasMips64)
290    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
291
292  setOperationAction(ISD::SDIV, MVT::i32, Expand);
293  setOperationAction(ISD::SREM, MVT::i32, Expand);
294  setOperationAction(ISD::UDIV, MVT::i32, Expand);
295  setOperationAction(ISD::UREM, MVT::i32, Expand);
296  setOperationAction(ISD::SDIV, MVT::i64, Expand);
297  setOperationAction(ISD::SREM, MVT::i64, Expand);
298  setOperationAction(ISD::UDIV, MVT::i64, Expand);
299  setOperationAction(ISD::UREM, MVT::i64, Expand);
300
301  // Operations not directly supported by Mips.
302  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
303  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
304  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
305  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
306  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
307  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
308  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
309  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
310  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
311  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
312  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
313  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
314  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
315  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
316  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
317  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
318  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
319  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
320  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
321  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
322  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
323  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
324
325  if (!Subtarget->hasMips32r2())
326    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
327
328  if (!Subtarget->hasMips64r2())
329    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
330
331  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
332  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
333  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
334  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
335  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
336  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
337  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
338  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
339  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
340  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
341  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
342  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
343  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
344  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
345  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
346  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
347  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
348
349  if (!TM.Options.NoNaNsFPMath) {
350    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
351    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
352  }
353
354  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
355
356  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
357  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
358  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
359
360  // Use the default for now
361  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
362  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
363
364  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
365  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
366  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
367  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
368
369  setInsertFencesForAtomic(true);
370
371  if (!Subtarget->hasSEInReg()) {
372    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
373    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
374  }
375
376  if (!Subtarget->hasBitCount()) {
377    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
378    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
379  }
380
381  if (!Subtarget->hasSwap()) {
382    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
383    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
384  }
385
386  if (HasMips64) {
387    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
388    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
389    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
390    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
391  }
392
393  setOperationAction(ISD::TRAP, MVT::Other, Legal);
394
395  setTargetDAGCombine(ISD::SDIVREM);
396  setTargetDAGCombine(ISD::UDIVREM);
397  setTargetDAGCombine(ISD::SELECT);
398  setTargetDAGCombine(ISD::AND);
399  setTargetDAGCombine(ISD::OR);
400  setTargetDAGCombine(ISD::ADD);
401
402  setMinFunctionAlignment(HasMips64 ? 3 : 2);
403
404  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
405
406  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
407  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
408
409  MaxStoresPerMemcpy = 16;
410}
411
412const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
413  if (TM.getSubtargetImpl()->inMips16Mode())
414    return llvm::createMips16TargetLowering(TM);
415
416  return llvm::createMipsSETargetLowering(TM);
417}
418
419EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
420  if (!VT.isVector())
421    return MVT::i32;
422  return VT.changeVectorElementTypeToInteger();
423}
424
425static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
426                                    TargetLowering::DAGCombinerInfo &DCI,
427                                    const MipsSubtarget *Subtarget) {
428  if (DCI.isBeforeLegalizeOps())
429    return SDValue();
430
431  EVT Ty = N->getValueType(0);
432  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
433  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
434  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
435                                                  MipsISD::DivRemU16;
436  SDLoc DL(N);
437
438  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
439                               N->getOperand(0), N->getOperand(1));
440  SDValue InChain = DAG.getEntryNode();
441  SDValue InGlue = DivRem;
442
443  // insert MFLO
444  if (N->hasAnyUseOfValue(0)) {
445    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
446                                            InGlue);
447    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
448    InChain = CopyFromLo.getValue(1);
449    InGlue = CopyFromLo.getValue(2);
450  }
451
452  // insert MFHI
453  if (N->hasAnyUseOfValue(1)) {
454    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
455                                            HI, Ty, InGlue);
456    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
457  }
458
459  return SDValue();
460}
461
462static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
463  switch (CC) {
464  default: llvm_unreachable("Unknown fp condition code!");
465  case ISD::SETEQ:
466  case ISD::SETOEQ: return Mips::FCOND_OEQ;
467  case ISD::SETUNE: return Mips::FCOND_UNE;
468  case ISD::SETLT:
469  case ISD::SETOLT: return Mips::FCOND_OLT;
470  case ISD::SETGT:
471  case ISD::SETOGT: return Mips::FCOND_OGT;
472  case ISD::SETLE:
473  case ISD::SETOLE: return Mips::FCOND_OLE;
474  case ISD::SETGE:
475  case ISD::SETOGE: return Mips::FCOND_OGE;
476  case ISD::SETULT: return Mips::FCOND_ULT;
477  case ISD::SETULE: return Mips::FCOND_ULE;
478  case ISD::SETUGT: return Mips::FCOND_UGT;
479  case ISD::SETUGE: return Mips::FCOND_UGE;
480  case ISD::SETUO:  return Mips::FCOND_UN;
481  case ISD::SETO:   return Mips::FCOND_OR;
482  case ISD::SETNE:
483  case ISD::SETONE: return Mips::FCOND_ONE;
484  case ISD::SETUEQ: return Mips::FCOND_UEQ;
485  }
486}
487
488
489/// This function returns true if the floating point conditional branches and
490/// conditional moves which use condition code CC should be inverted.
491static bool invertFPCondCodeUser(Mips::CondCode CC) {
492  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
493    return false;
494
495  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
496         "Illegal Condition Code");
497
498  return true;
499}
500
501// Creates and returns an FPCmp node from a setcc node.
502// Returns Op if setcc is not a floating point comparison.
503static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
504  // must be a SETCC node
505  if (Op.getOpcode() != ISD::SETCC)
506    return Op;
507
508  SDValue LHS = Op.getOperand(0);
509
510  if (!LHS.getValueType().isFloatingPoint())
511    return Op;
512
513  SDValue RHS = Op.getOperand(1);
514  SDLoc DL(Op);
515
516  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
517  // node if necessary.
518  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
519
520  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
521                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
522}
523
524// Creates and returns a CMovFPT/F node.
525static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
526                            SDValue False, SDLoc DL) {
527  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
528  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
529  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
530
531  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
532                     True.getValueType(), True, FCC0, False, Cond);
533}
534
535static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
536                                    TargetLowering::DAGCombinerInfo &DCI,
537                                    const MipsSubtarget *Subtarget) {
538  if (DCI.isBeforeLegalizeOps())
539    return SDValue();
540
541  SDValue SetCC = N->getOperand(0);
542
543  if ((SetCC.getOpcode() != ISD::SETCC) ||
544      !SetCC.getOperand(0).getValueType().isInteger())
545    return SDValue();
546
547  SDValue False = N->getOperand(2);
548  EVT FalseTy = False.getValueType();
549
550  if (!FalseTy.isInteger())
551    return SDValue();
552
553  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
554
555  if (!CN || CN->getZExtValue())
556    return SDValue();
557
558  const SDLoc DL(N);
559  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
560  SDValue True = N->getOperand(1);
561
562  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
563                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
564
565  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
566}
567
568static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
569                                 TargetLowering::DAGCombinerInfo &DCI,
570                                 const MipsSubtarget *Subtarget) {
571  // Pattern match EXT.
572  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
573  //  => ext $dst, $src, size, pos
574  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
575    return SDValue();
576
577  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
578  unsigned ShiftRightOpc = ShiftRight.getOpcode();
579
580  // Op's first operand must be a shift right.
581  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
582    return SDValue();
583
584  // The second operand of the shift must be an immediate.
585  ConstantSDNode *CN;
586  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
587    return SDValue();
588
589  uint64_t Pos = CN->getZExtValue();
590  uint64_t SMPos, SMSize;
591
592  // Op's second operand must be a shifted mask.
593  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
594      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
595    return SDValue();
596
597  // Return if the shifted mask does not start at bit 0 or the sum of its size
598  // and Pos exceeds the word's size.
599  EVT ValTy = N->getValueType(0);
600  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
601    return SDValue();
602
603  return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
604                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
605                     DAG.getConstant(SMSize, MVT::i32));
606}
607
608static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
609                                TargetLowering::DAGCombinerInfo &DCI,
610                                const MipsSubtarget *Subtarget) {
611  // Pattern match INS.
612  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
613  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
614  //  => ins $dst, $src, size, pos, $src1
615  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
616    return SDValue();
617
618  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
619  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
620  ConstantSDNode *CN;
621
622  // See if Op's first operand matches (and $src1 , mask0).
623  if (And0.getOpcode() != ISD::AND)
624    return SDValue();
625
626  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
627      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
628    return SDValue();
629
630  // See if Op's second operand matches (and (shl $src, pos), mask1).
631  if (And1.getOpcode() != ISD::AND)
632    return SDValue();
633
634  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
635      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
636    return SDValue();
637
638  // The shift masks must have the same position and size.
639  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
640    return SDValue();
641
642  SDValue Shl = And1.getOperand(0);
643  if (Shl.getOpcode() != ISD::SHL)
644    return SDValue();
645
646  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
647    return SDValue();
648
649  unsigned Shamt = CN->getZExtValue();
650
651  // Return if the shift amount and the first bit position of mask are not the
652  // same.
653  EVT ValTy = N->getValueType(0);
654  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
655    return SDValue();
656
657  return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
658                     DAG.getConstant(SMPos0, MVT::i32),
659                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
660}
661
662static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
663                                 TargetLowering::DAGCombinerInfo &DCI,
664                                 const MipsSubtarget *Subtarget) {
665  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
666
667  if (DCI.isBeforeLegalizeOps())
668    return SDValue();
669
670  SDValue Add = N->getOperand(1);
671
672  if (Add.getOpcode() != ISD::ADD)
673    return SDValue();
674
675  SDValue Lo = Add.getOperand(1);
676
677  if ((Lo.getOpcode() != MipsISD::Lo) ||
678      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
679    return SDValue();
680
681  EVT ValTy = N->getValueType(0);
682  SDLoc DL(N);
683
684  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
685                             Add.getOperand(0));
686  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
687}
688
689SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
690  const {
691  SelectionDAG &DAG = DCI.DAG;
692  unsigned Opc = N->getOpcode();
693
694  switch (Opc) {
695  default: break;
696  case ISD::SDIVREM:
697  case ISD::UDIVREM:
698    return performDivRemCombine(N, DAG, DCI, Subtarget);
699  case ISD::SELECT:
700    return performSELECTCombine(N, DAG, DCI, Subtarget);
701  case ISD::AND:
702    return performANDCombine(N, DAG, DCI, Subtarget);
703  case ISD::OR:
704    return performORCombine(N, DAG, DCI, Subtarget);
705  case ISD::ADD:
706    return performADDCombine(N, DAG, DCI, Subtarget);
707  }
708
709  return SDValue();
710}
711
712void
713MipsTargetLowering::LowerOperationWrapper(SDNode *N,
714                                          SmallVectorImpl<SDValue> &Results,
715                                          SelectionDAG &DAG) const {
716  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
717
718  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
719    Results.push_back(Res.getValue(I));
720}
721
722void
723MipsTargetLowering::ReplaceNodeResults(SDNode *N,
724                                       SmallVectorImpl<SDValue> &Results,
725                                       SelectionDAG &DAG) const {
726  return LowerOperationWrapper(N, Results, DAG);
727}
728
729SDValue MipsTargetLowering::
730LowerOperation(SDValue Op, SelectionDAG &DAG) const
731{
732  switch (Op.getOpcode())
733  {
734  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
735  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
736  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
737  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
738  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
739  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
740  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
741  case ISD::SELECT:             return lowerSELECT(Op, DAG);
742  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
743  case ISD::SETCC:              return lowerSETCC(Op, DAG);
744  case ISD::VASTART:            return lowerVASTART(Op, DAG);
745  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
746  case ISD::FABS:               return lowerFABS(Op, DAG);
747  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
748  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
749  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
750  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
751  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
752  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
753  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
754  case ISD::LOAD:               return lowerLOAD(Op, DAG);
755  case ISD::STORE:              return lowerSTORE(Op, DAG);
756  case ISD::ADD:                return lowerADD(Op, DAG);
757  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
758  }
759  return SDValue();
760}
761
762//===----------------------------------------------------------------------===//
763//  Lower helper functions
764//===----------------------------------------------------------------------===//
765
766// addLiveIn - This helper function adds the specified physical register to the
767// MachineFunction as a live in value.  It also creates a corresponding
768// virtual register for it.
769static unsigned
770addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
771{
772  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
773  MF.getRegInfo().addLiveIn(PReg, VReg);
774  return VReg;
775}
776
777static MachineBasicBlock *expandPseudoDIV(MachineInstr *MI,
778                                          MachineBasicBlock &MBB,
779                                          const TargetInstrInfo &TII,
780                                          bool Is64Bit) {
781  if (NoZeroDivCheck)
782    return &MBB;
783
784  // Insert instruction "teq $divisor_reg, $zero, 7".
785  MachineBasicBlock::iterator I(MI);
786  MachineInstrBuilder MIB;
787  MIB = BuildMI(MBB, llvm::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
788    .addOperand(MI->getOperand(2)).addReg(Mips::ZERO).addImm(7);
789
790  // Use the 32-bit sub-register if this is a 64-bit division.
791  if (Is64Bit)
792    MIB->getOperand(0).setSubReg(Mips::sub_32);
793
794  return &MBB;
795}
796
797MachineBasicBlock *
798MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
799                                                MachineBasicBlock *BB) const {
800  switch (MI->getOpcode()) {
801  default:
802    llvm_unreachable("Unexpected instr type to insert");
803  case Mips::ATOMIC_LOAD_ADD_I8:
804    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
805  case Mips::ATOMIC_LOAD_ADD_I16:
806    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
807  case Mips::ATOMIC_LOAD_ADD_I32:
808    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
809  case Mips::ATOMIC_LOAD_ADD_I64:
810    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
811
812  case Mips::ATOMIC_LOAD_AND_I8:
813    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
814  case Mips::ATOMIC_LOAD_AND_I16:
815    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
816  case Mips::ATOMIC_LOAD_AND_I32:
817    return emitAtomicBinary(MI, BB, 4, Mips::AND);
818  case Mips::ATOMIC_LOAD_AND_I64:
819    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
820
821  case Mips::ATOMIC_LOAD_OR_I8:
822    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
823  case Mips::ATOMIC_LOAD_OR_I16:
824    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
825  case Mips::ATOMIC_LOAD_OR_I32:
826    return emitAtomicBinary(MI, BB, 4, Mips::OR);
827  case Mips::ATOMIC_LOAD_OR_I64:
828    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
829
830  case Mips::ATOMIC_LOAD_XOR_I8:
831    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
832  case Mips::ATOMIC_LOAD_XOR_I16:
833    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
834  case Mips::ATOMIC_LOAD_XOR_I32:
835    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
836  case Mips::ATOMIC_LOAD_XOR_I64:
837    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
838
839  case Mips::ATOMIC_LOAD_NAND_I8:
840    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
841  case Mips::ATOMIC_LOAD_NAND_I16:
842    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
843  case Mips::ATOMIC_LOAD_NAND_I32:
844    return emitAtomicBinary(MI, BB, 4, 0, true);
845  case Mips::ATOMIC_LOAD_NAND_I64:
846    return emitAtomicBinary(MI, BB, 8, 0, true);
847
848  case Mips::ATOMIC_LOAD_SUB_I8:
849    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
850  case Mips::ATOMIC_LOAD_SUB_I16:
851    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
852  case Mips::ATOMIC_LOAD_SUB_I32:
853    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
854  case Mips::ATOMIC_LOAD_SUB_I64:
855    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
856
857  case Mips::ATOMIC_SWAP_I8:
858    return emitAtomicBinaryPartword(MI, BB, 1, 0);
859  case Mips::ATOMIC_SWAP_I16:
860    return emitAtomicBinaryPartword(MI, BB, 2, 0);
861  case Mips::ATOMIC_SWAP_I32:
862    return emitAtomicBinary(MI, BB, 4, 0);
863  case Mips::ATOMIC_SWAP_I64:
864    return emitAtomicBinary(MI, BB, 8, 0);
865
866  case Mips::ATOMIC_CMP_SWAP_I8:
867    return emitAtomicCmpSwapPartword(MI, BB, 1);
868  case Mips::ATOMIC_CMP_SWAP_I16:
869    return emitAtomicCmpSwapPartword(MI, BB, 2);
870  case Mips::ATOMIC_CMP_SWAP_I32:
871    return emitAtomicCmpSwap(MI, BB, 4);
872  case Mips::ATOMIC_CMP_SWAP_I64:
873    return emitAtomicCmpSwap(MI, BB, 8);
874  case Mips::PseudoSDIV:
875  case Mips::PseudoUDIV:
876    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), false);
877  case Mips::PseudoDSDIV:
878  case Mips::PseudoDUDIV:
879    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), true);
880  }
881}
882
883// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
884// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
885MachineBasicBlock *
886MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
887                                     unsigned Size, unsigned BinOpcode,
888                                     bool Nand) const {
889  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
890
891  MachineFunction *MF = BB->getParent();
892  MachineRegisterInfo &RegInfo = MF->getRegInfo();
893  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
894  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
895  DebugLoc DL = MI->getDebugLoc();
896  unsigned LL, SC, AND, NOR, ZERO, BEQ;
897
898  if (Size == 4) {
899    LL = Mips::LL;
900    SC = Mips::SC;
901    AND = Mips::AND;
902    NOR = Mips::NOR;
903    ZERO = Mips::ZERO;
904    BEQ = Mips::BEQ;
905  }
906  else {
907    LL = Mips::LLD;
908    SC = Mips::SCD;
909    AND = Mips::AND64;
910    NOR = Mips::NOR64;
911    ZERO = Mips::ZERO_64;
912    BEQ = Mips::BEQ64;
913  }
914
915  unsigned OldVal = MI->getOperand(0).getReg();
916  unsigned Ptr = MI->getOperand(1).getReg();
917  unsigned Incr = MI->getOperand(2).getReg();
918
919  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
920  unsigned AndRes = RegInfo.createVirtualRegister(RC);
921  unsigned Success = RegInfo.createVirtualRegister(RC);
922
923  // insert new blocks after the current block
924  const BasicBlock *LLVM_BB = BB->getBasicBlock();
925  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
926  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
927  MachineFunction::iterator It = BB;
928  ++It;
929  MF->insert(It, loopMBB);
930  MF->insert(It, exitMBB);
931
932  // Transfer the remainder of BB and its successor edges to exitMBB.
933  exitMBB->splice(exitMBB->begin(), BB,
934                  llvm::next(MachineBasicBlock::iterator(MI)),
935                  BB->end());
936  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
937
938  //  thisMBB:
939  //    ...
940  //    fallthrough --> loopMBB
941  BB->addSuccessor(loopMBB);
942  loopMBB->addSuccessor(loopMBB);
943  loopMBB->addSuccessor(exitMBB);
944
945  //  loopMBB:
946  //    ll oldval, 0(ptr)
947  //    <binop> storeval, oldval, incr
948  //    sc success, storeval, 0(ptr)
949  //    beq success, $0, loopMBB
950  BB = loopMBB;
951  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
952  if (Nand) {
953    //  and andres, oldval, incr
954    //  nor storeval, $0, andres
955    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
956    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
957  } else if (BinOpcode) {
958    //  <binop> storeval, oldval, incr
959    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
960  } else {
961    StoreVal = Incr;
962  }
963  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
964  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
965
966  MI->eraseFromParent();   // The instruction is gone now.
967
968  return exitMBB;
969}
970
971MachineBasicBlock *
972MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
973                                             MachineBasicBlock *BB,
974                                             unsigned Size, unsigned BinOpcode,
975                                             bool Nand) const {
976  assert((Size == 1 || Size == 2) &&
977      "Unsupported size for EmitAtomicBinaryPartial.");
978
979  MachineFunction *MF = BB->getParent();
980  MachineRegisterInfo &RegInfo = MF->getRegInfo();
981  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
982  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
983  DebugLoc DL = MI->getDebugLoc();
984
985  unsigned Dest = MI->getOperand(0).getReg();
986  unsigned Ptr = MI->getOperand(1).getReg();
987  unsigned Incr = MI->getOperand(2).getReg();
988
989  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
990  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
991  unsigned Mask = RegInfo.createVirtualRegister(RC);
992  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
993  unsigned NewVal = RegInfo.createVirtualRegister(RC);
994  unsigned OldVal = RegInfo.createVirtualRegister(RC);
995  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
996  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
997  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
998  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
999  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1000  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1001  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1002  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1003  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1004  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1005  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1006  unsigned Success = RegInfo.createVirtualRegister(RC);
1007
1008  // insert new blocks after the current block
1009  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1010  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1011  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1012  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1013  MachineFunction::iterator It = BB;
1014  ++It;
1015  MF->insert(It, loopMBB);
1016  MF->insert(It, sinkMBB);
1017  MF->insert(It, exitMBB);
1018
1019  // Transfer the remainder of BB and its successor edges to exitMBB.
1020  exitMBB->splice(exitMBB->begin(), BB,
1021                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1022  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1023
1024  BB->addSuccessor(loopMBB);
1025  loopMBB->addSuccessor(loopMBB);
1026  loopMBB->addSuccessor(sinkMBB);
1027  sinkMBB->addSuccessor(exitMBB);
1028
1029  //  thisMBB:
1030  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1031  //    and     alignedaddr,ptr,masklsb2
1032  //    andi    ptrlsb2,ptr,3
1033  //    sll     shiftamt,ptrlsb2,3
1034  //    ori     maskupper,$0,255               # 0xff
1035  //    sll     mask,maskupper,shiftamt
1036  //    nor     mask2,$0,mask
1037  //    sll     incr2,incr,shiftamt
1038
1039  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1040  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1041    .addReg(Mips::ZERO).addImm(-4);
1042  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1043    .addReg(Ptr).addReg(MaskLSB2);
1044  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1045  if (Subtarget->isLittle()) {
1046    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1047  } else {
1048    unsigned Off = RegInfo.createVirtualRegister(RC);
1049    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1050      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1051    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1052  }
1053  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1054    .addReg(Mips::ZERO).addImm(MaskImm);
1055  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1056    .addReg(MaskUpper).addReg(ShiftAmt);
1057  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1058  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1059
1060  // atomic.load.binop
1061  // loopMBB:
1062  //   ll      oldval,0(alignedaddr)
1063  //   binop   binopres,oldval,incr2
1064  //   and     newval,binopres,mask
1065  //   and     maskedoldval0,oldval,mask2
1066  //   or      storeval,maskedoldval0,newval
1067  //   sc      success,storeval,0(alignedaddr)
1068  //   beq     success,$0,loopMBB
1069
1070  // atomic.swap
1071  // loopMBB:
1072  //   ll      oldval,0(alignedaddr)
1073  //   and     newval,incr2,mask
1074  //   and     maskedoldval0,oldval,mask2
1075  //   or      storeval,maskedoldval0,newval
1076  //   sc      success,storeval,0(alignedaddr)
1077  //   beq     success,$0,loopMBB
1078
1079  BB = loopMBB;
1080  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1081  if (Nand) {
1082    //  and andres, oldval, incr2
1083    //  nor binopres, $0, andres
1084    //  and newval, binopres, mask
1085    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1086    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1087      .addReg(Mips::ZERO).addReg(AndRes);
1088    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1089  } else if (BinOpcode) {
1090    //  <binop> binopres, oldval, incr2
1091    //  and newval, binopres, mask
1092    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1093    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1094  } else {// atomic.swap
1095    //  and newval, incr2, mask
1096    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1097  }
1098
1099  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1100    .addReg(OldVal).addReg(Mask2);
1101  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1102    .addReg(MaskedOldVal0).addReg(NewVal);
1103  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1104    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1105  BuildMI(BB, DL, TII->get(Mips::BEQ))
1106    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1107
1108  //  sinkMBB:
1109  //    and     maskedoldval1,oldval,mask
1110  //    srl     srlres,maskedoldval1,shiftamt
1111  //    sll     sllres,srlres,24
1112  //    sra     dest,sllres,24
1113  BB = sinkMBB;
1114  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1115
1116  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1117    .addReg(OldVal).addReg(Mask);
1118  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1119      .addReg(MaskedOldVal1).addReg(ShiftAmt);
1120  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1121      .addReg(SrlRes).addImm(ShiftImm);
1122  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1123      .addReg(SllRes).addImm(ShiftImm);
1124
1125  MI->eraseFromParent();   // The instruction is gone now.
1126
1127  return exitMBB;
1128}
1129
1130MachineBasicBlock *
1131MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1132                                      MachineBasicBlock *BB,
1133                                      unsigned Size) const {
1134  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1135
1136  MachineFunction *MF = BB->getParent();
1137  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1138  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1139  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1140  DebugLoc DL = MI->getDebugLoc();
1141  unsigned LL, SC, ZERO, BNE, BEQ;
1142
1143  if (Size == 4) {
1144    LL = Mips::LL;
1145    SC = Mips::SC;
1146    ZERO = Mips::ZERO;
1147    BNE = Mips::BNE;
1148    BEQ = Mips::BEQ;
1149  }
1150  else {
1151    LL = Mips::LLD;
1152    SC = Mips::SCD;
1153    ZERO = Mips::ZERO_64;
1154    BNE = Mips::BNE64;
1155    BEQ = Mips::BEQ64;
1156  }
1157
1158  unsigned Dest    = MI->getOperand(0).getReg();
1159  unsigned Ptr     = MI->getOperand(1).getReg();
1160  unsigned OldVal  = MI->getOperand(2).getReg();
1161  unsigned NewVal  = MI->getOperand(3).getReg();
1162
1163  unsigned Success = RegInfo.createVirtualRegister(RC);
1164
1165  // insert new blocks after the current block
1166  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1167  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1168  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1169  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1170  MachineFunction::iterator It = BB;
1171  ++It;
1172  MF->insert(It, loop1MBB);
1173  MF->insert(It, loop2MBB);
1174  MF->insert(It, exitMBB);
1175
1176  // Transfer the remainder of BB and its successor edges to exitMBB.
1177  exitMBB->splice(exitMBB->begin(), BB,
1178                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1179  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1180
1181  //  thisMBB:
1182  //    ...
1183  //    fallthrough --> loop1MBB
1184  BB->addSuccessor(loop1MBB);
1185  loop1MBB->addSuccessor(exitMBB);
1186  loop1MBB->addSuccessor(loop2MBB);
1187  loop2MBB->addSuccessor(loop1MBB);
1188  loop2MBB->addSuccessor(exitMBB);
1189
1190  // loop1MBB:
1191  //   ll dest, 0(ptr)
1192  //   bne dest, oldval, exitMBB
1193  BB = loop1MBB;
1194  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1195  BuildMI(BB, DL, TII->get(BNE))
1196    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1197
1198  // loop2MBB:
1199  //   sc success, newval, 0(ptr)
1200  //   beq success, $0, loop1MBB
1201  BB = loop2MBB;
1202  BuildMI(BB, DL, TII->get(SC), Success)
1203    .addReg(NewVal).addReg(Ptr).addImm(0);
1204  BuildMI(BB, DL, TII->get(BEQ))
1205    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1206
1207  MI->eraseFromParent();   // The instruction is gone now.
1208
1209  return exitMBB;
1210}
1211
1212MachineBasicBlock *
1213MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1214                                              MachineBasicBlock *BB,
1215                                              unsigned Size) const {
1216  assert((Size == 1 || Size == 2) &&
1217      "Unsupported size for EmitAtomicCmpSwapPartial.");
1218
1219  MachineFunction *MF = BB->getParent();
1220  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1221  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1222  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1223  DebugLoc DL = MI->getDebugLoc();
1224
1225  unsigned Dest    = MI->getOperand(0).getReg();
1226  unsigned Ptr     = MI->getOperand(1).getReg();
1227  unsigned CmpVal  = MI->getOperand(2).getReg();
1228  unsigned NewVal  = MI->getOperand(3).getReg();
1229
1230  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1231  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1232  unsigned Mask = RegInfo.createVirtualRegister(RC);
1233  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1234  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1235  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1236  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1237  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1238  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1239  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1240  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1241  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1242  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1243  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1244  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1245  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1246  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1247  unsigned Success = RegInfo.createVirtualRegister(RC);
1248
1249  // insert new blocks after the current block
1250  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1251  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1252  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1253  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1254  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1255  MachineFunction::iterator It = BB;
1256  ++It;
1257  MF->insert(It, loop1MBB);
1258  MF->insert(It, loop2MBB);
1259  MF->insert(It, sinkMBB);
1260  MF->insert(It, exitMBB);
1261
1262  // Transfer the remainder of BB and its successor edges to exitMBB.
1263  exitMBB->splice(exitMBB->begin(), BB,
1264                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1265  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1266
1267  BB->addSuccessor(loop1MBB);
1268  loop1MBB->addSuccessor(sinkMBB);
1269  loop1MBB->addSuccessor(loop2MBB);
1270  loop2MBB->addSuccessor(loop1MBB);
1271  loop2MBB->addSuccessor(sinkMBB);
1272  sinkMBB->addSuccessor(exitMBB);
1273
1274  // FIXME: computation of newval2 can be moved to loop2MBB.
1275  //  thisMBB:
1276  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1277  //    and     alignedaddr,ptr,masklsb2
1278  //    andi    ptrlsb2,ptr,3
1279  //    sll     shiftamt,ptrlsb2,3
1280  //    ori     maskupper,$0,255               # 0xff
1281  //    sll     mask,maskupper,shiftamt
1282  //    nor     mask2,$0,mask
1283  //    andi    maskedcmpval,cmpval,255
1284  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1285  //    andi    maskednewval,newval,255
1286  //    sll     shiftednewval,maskednewval,shiftamt
1287  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1288  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1289    .addReg(Mips::ZERO).addImm(-4);
1290  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1291    .addReg(Ptr).addReg(MaskLSB2);
1292  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1293  if (Subtarget->isLittle()) {
1294    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1295  } else {
1296    unsigned Off = RegInfo.createVirtualRegister(RC);
1297    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1298      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1299    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1300  }
1301  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1302    .addReg(Mips::ZERO).addImm(MaskImm);
1303  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1304    .addReg(MaskUpper).addReg(ShiftAmt);
1305  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1306  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1307    .addReg(CmpVal).addImm(MaskImm);
1308  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1309    .addReg(MaskedCmpVal).addReg(ShiftAmt);
1310  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1311    .addReg(NewVal).addImm(MaskImm);
1312  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1313    .addReg(MaskedNewVal).addReg(ShiftAmt);
1314
1315  //  loop1MBB:
1316  //    ll      oldval,0(alginedaddr)
1317  //    and     maskedoldval0,oldval,mask
1318  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1319  BB = loop1MBB;
1320  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1321  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1322    .addReg(OldVal).addReg(Mask);
1323  BuildMI(BB, DL, TII->get(Mips::BNE))
1324    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1325
1326  //  loop2MBB:
1327  //    and     maskedoldval1,oldval,mask2
1328  //    or      storeval,maskedoldval1,shiftednewval
1329  //    sc      success,storeval,0(alignedaddr)
1330  //    beq     success,$0,loop1MBB
1331  BB = loop2MBB;
1332  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1333    .addReg(OldVal).addReg(Mask2);
1334  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1335    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1336  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1337      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1338  BuildMI(BB, DL, TII->get(Mips::BEQ))
1339      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1340
1341  //  sinkMBB:
1342  //    srl     srlres,maskedoldval0,shiftamt
1343  //    sll     sllres,srlres,24
1344  //    sra     dest,sllres,24
1345  BB = sinkMBB;
1346  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1347
1348  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1349      .addReg(MaskedOldVal0).addReg(ShiftAmt);
1350  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1351      .addReg(SrlRes).addImm(ShiftImm);
1352  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1353      .addReg(SllRes).addImm(ShiftImm);
1354
1355  MI->eraseFromParent();   // The instruction is gone now.
1356
1357  return exitMBB;
1358}
1359
1360//===----------------------------------------------------------------------===//
1361//  Misc Lower Operation implementation
1362//===----------------------------------------------------------------------===//
1363SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1364  SDValue Chain = Op.getOperand(0);
1365  SDValue Table = Op.getOperand(1);
1366  SDValue Index = Op.getOperand(2);
1367  SDLoc DL(Op);
1368  EVT PTy = getPointerTy();
1369  unsigned EntrySize =
1370    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1371
1372  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1373                      DAG.getConstant(EntrySize, PTy));
1374  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1375
1376  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1377  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1378                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1379                        0);
1380  Chain = Addr.getValue(1);
1381
1382  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
1383    // For PIC, the sequence is:
1384    // BRIND(load(Jumptable + index) + RelocBase)
1385    // RelocBase can be JumpTable, GOT or some sort of global base.
1386    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1387                       getPICJumpTableRelocBase(Table, DAG));
1388  }
1389
1390  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1391}
1392
1393SDValue MipsTargetLowering::
1394lowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1395{
1396  // The first operand is the chain, the second is the condition, the third is
1397  // the block to branch to if the condition is true.
1398  SDValue Chain = Op.getOperand(0);
1399  SDValue Dest = Op.getOperand(2);
1400  SDLoc DL(Op);
1401
1402  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1403
1404  // Return if flag is not set by a floating point comparison.
1405  if (CondRes.getOpcode() != MipsISD::FPCmp)
1406    return Op;
1407
1408  SDValue CCNode  = CondRes.getOperand(2);
1409  Mips::CondCode CC =
1410    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1411  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1412  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1413  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1414  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1415                     FCC0, Dest, CondRes);
1416}
1417
1418SDValue MipsTargetLowering::
1419lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1420{
1421  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1422
1423  // Return if flag is not set by a floating point comparison.
1424  if (Cond.getOpcode() != MipsISD::FPCmp)
1425    return Op;
1426
1427  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1428                      SDLoc(Op));
1429}
1430
1431SDValue MipsTargetLowering::
1432lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1433{
1434  SDLoc DL(Op);
1435  EVT Ty = Op.getOperand(0).getValueType();
1436  SDValue Cond = DAG.getNode(ISD::SETCC, DL,
1437                             getSetCCResultType(*DAG.getContext(), Ty),
1438                             Op.getOperand(0), Op.getOperand(1),
1439                             Op.getOperand(4));
1440
1441  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1442                     Op.getOperand(3));
1443}
1444
1445SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1446  SDValue Cond = createFPCmp(DAG, Op);
1447
1448  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1449         "Floating point operand expected.");
1450
1451  SDValue True  = DAG.getConstant(1, MVT::i32);
1452  SDValue False = DAG.getConstant(0, MVT::i32);
1453
1454  return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
1455}
1456
1457SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1458                                               SelectionDAG &DAG) const {
1459  // FIXME there isn't actually debug info here
1460  SDLoc DL(Op);
1461  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1462
1463  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1464    const MipsTargetObjectFile &TLOF =
1465      (const MipsTargetObjectFile&)getObjFileLowering();
1466
1467    // %gp_rel relocation
1468    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1469      SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1470                                              MipsII::MO_GPREL);
1471      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1472                                      DAG.getVTList(MVT::i32), &GA, 1);
1473      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1474      return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1475    }
1476
1477    // %hi/%lo relocation
1478    return getAddrNonPIC(Op, DAG);
1479  }
1480
1481  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1482    return getAddrLocal(Op, DAG, HasMips64);
1483
1484  if (LargeGOT)
1485    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
1486                                 MipsII::MO_GOT_LO16);
1487
1488  return getAddrGlobal(Op, DAG,
1489                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1490}
1491
1492SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1493                                              SelectionDAG &DAG) const {
1494  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1495    return getAddrNonPIC(Op, DAG);
1496
1497  return getAddrLocal(Op, DAG, HasMips64);
1498}
1499
1500SDValue MipsTargetLowering::
1501lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1502{
1503  // If the relocation model is PIC, use the General Dynamic TLS Model or
1504  // Local Dynamic TLS model, otherwise use the Initial Exec or
1505  // Local Exec TLS Model.
1506
1507  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1508  SDLoc DL(GA);
1509  const GlobalValue *GV = GA->getGlobal();
1510  EVT PtrVT = getPointerTy();
1511
1512  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1513
1514  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1515    // General Dynamic and Local Dynamic TLS Model.
1516    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1517                                                      : MipsII::MO_TLSGD;
1518
1519    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1520    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1521                                   getGlobalReg(DAG, PtrVT), TGA);
1522    unsigned PtrSize = PtrVT.getSizeInBits();
1523    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1524
1525    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1526
1527    ArgListTy Args;
1528    ArgListEntry Entry;
1529    Entry.Node = Argument;
1530    Entry.Ty = PtrTy;
1531    Args.push_back(Entry);
1532
1533    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1534                  false, false, false, false, 0, CallingConv::C,
1535                  /*IsTailCall=*/false, /*doesNotRet=*/false,
1536                  /*isReturnValueUsed=*/true,
1537                  TlsGetAddr, Args, DAG, DL);
1538    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1539
1540    SDValue Ret = CallResult.first;
1541
1542    if (model != TLSModel::LocalDynamic)
1543      return Ret;
1544
1545    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1546                                               MipsII::MO_DTPREL_HI);
1547    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1548    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1549                                               MipsII::MO_DTPREL_LO);
1550    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1551    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1552    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1553  }
1554
1555  SDValue Offset;
1556  if (model == TLSModel::InitialExec) {
1557    // Initial Exec TLS Model
1558    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1559                                             MipsII::MO_GOTTPREL);
1560    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1561                      TGA);
1562    Offset = DAG.getLoad(PtrVT, DL,
1563                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1564                         false, false, false, 0);
1565  } else {
1566    // Local Exec TLS Model
1567    assert(model == TLSModel::LocalExec);
1568    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1569                                               MipsII::MO_TPREL_HI);
1570    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1571                                               MipsII::MO_TPREL_LO);
1572    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1573    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1574    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1575  }
1576
1577  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1578  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1579}
1580
1581SDValue MipsTargetLowering::
1582lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1583{
1584  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1585    return getAddrNonPIC(Op, DAG);
1586
1587  return getAddrLocal(Op, DAG, HasMips64);
1588}
1589
1590SDValue MipsTargetLowering::
1591lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1592{
1593  // gp_rel relocation
1594  // FIXME: we should reference the constant pool using small data sections,
1595  // but the asm printer currently doesn't support this feature without
1596  // hacking it. This feature should come soon so we can uncomment the
1597  // stuff below.
1598  //if (IsInSmallSection(C->getType())) {
1599  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1600  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1601  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1602
1603  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1604    return getAddrNonPIC(Op, DAG);
1605
1606  return getAddrLocal(Op, DAG, HasMips64);
1607}
1608
1609SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1610  MachineFunction &MF = DAG.getMachineFunction();
1611  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1612
1613  SDLoc DL(Op);
1614  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1615                                 getPointerTy());
1616
1617  // vastart just stores the address of the VarArgsFrameIndex slot into the
1618  // memory location argument.
1619  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1620  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1621                      MachinePointerInfo(SV), false, false, 0);
1622}
1623
1624static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1625  EVT TyX = Op.getOperand(0).getValueType();
1626  EVT TyY = Op.getOperand(1).getValueType();
1627  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1628  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1629  SDLoc DL(Op);
1630  SDValue Res;
1631
1632  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1633  // to i32.
1634  SDValue X = (TyX == MVT::f32) ?
1635    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1636    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1637                Const1);
1638  SDValue Y = (TyY == MVT::f32) ?
1639    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1640    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1641                Const1);
1642
1643  if (HasR2) {
1644    // ext  E, Y, 31, 1  ; extract bit31 of Y
1645    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1646    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1647    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1648  } else {
1649    // sll SllX, X, 1
1650    // srl SrlX, SllX, 1
1651    // srl SrlY, Y, 31
1652    // sll SllY, SrlX, 31
1653    // or  Or, SrlX, SllY
1654    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1655    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1656    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1657    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1658    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1659  }
1660
1661  if (TyX == MVT::f32)
1662    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1663
1664  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1665                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1666  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1667}
1668
1669static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1670  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1671  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1672  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1673  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1674  SDLoc DL(Op);
1675
1676  // Bitcast to integer nodes.
1677  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1678  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1679
1680  if (HasR2) {
1681    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1682    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1683    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1684                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1685
1686    if (WidthX > WidthY)
1687      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1688    else if (WidthY > WidthX)
1689      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1690
1691    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1692                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1693    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1694  }
1695
1696  // (d)sll SllX, X, 1
1697  // (d)srl SrlX, SllX, 1
1698  // (d)srl SrlY, Y, width(Y)-1
1699  // (d)sll SllY, SrlX, width(Y)-1
1700  // or     Or, SrlX, SllY
1701  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1702  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1703  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1704                             DAG.getConstant(WidthY - 1, MVT::i32));
1705
1706  if (WidthX > WidthY)
1707    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1708  else if (WidthY > WidthX)
1709    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1710
1711  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1712                             DAG.getConstant(WidthX - 1, MVT::i32));
1713  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1714  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1715}
1716
1717SDValue
1718MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1719  if (Subtarget->hasMips64())
1720    return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1721
1722  return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1723}
1724
1725static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1726  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1727  SDLoc DL(Op);
1728
1729  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1730  // to i32.
1731  SDValue X = (Op.getValueType() == MVT::f32) ?
1732    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1733    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1734                Const1);
1735
1736  // Clear MSB.
1737  if (HasR2)
1738    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1739                      DAG.getRegister(Mips::ZERO, MVT::i32),
1740                      DAG.getConstant(31, MVT::i32), Const1, X);
1741  else {
1742    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1743    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1744  }
1745
1746  if (Op.getValueType() == MVT::f32)
1747    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1748
1749  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1750                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1751  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1752}
1753
1754static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1755  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1756  SDLoc DL(Op);
1757
1758  // Bitcast to integer node.
1759  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1760
1761  // Clear MSB.
1762  if (HasR2)
1763    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1764                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1765                      DAG.getConstant(63, MVT::i32), Const1, X);
1766  else {
1767    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1768    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1769  }
1770
1771  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1772}
1773
1774SDValue
1775MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
1776  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1777    return lowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1778
1779  return lowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1780}
1781
1782SDValue MipsTargetLowering::
1783lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1784  // check the depth
1785  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1786         "Frame address can only be determined for current frame.");
1787
1788  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1789  MFI->setFrameAddressIsTaken(true);
1790  EVT VT = Op.getValueType();
1791  SDLoc DL(Op);
1792  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1793                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1794  return FrameAddr;
1795}
1796
1797SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1798                                            SelectionDAG &DAG) const {
1799  // check the depth
1800  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1801         "Return address can be determined only for current frame.");
1802
1803  MachineFunction &MF = DAG.getMachineFunction();
1804  MachineFrameInfo *MFI = MF.getFrameInfo();
1805  MVT VT = Op.getSimpleValueType();
1806  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1807  MFI->setReturnAddressIsTaken(true);
1808
1809  // Return RA, which contains the return address. Mark it an implicit live-in.
1810  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1811  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
1812}
1813
1814// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1815// generated from __builtin_eh_return (offset, handler)
1816// The effect of this is to adjust the stack pointer by "offset"
1817// and then branch to "handler".
1818SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1819                                                                     const {
1820  MachineFunction &MF = DAG.getMachineFunction();
1821  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1822
1823  MipsFI->setCallsEhReturn();
1824  SDValue Chain     = Op.getOperand(0);
1825  SDValue Offset    = Op.getOperand(1);
1826  SDValue Handler   = Op.getOperand(2);
1827  SDLoc DL(Op);
1828  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
1829
1830  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1831  // EH_RETURN nodes, so that instructions are emitted back-to-back.
1832  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
1833  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
1834  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1835  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1836  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1837                     DAG.getRegister(OffsetReg, Ty),
1838                     DAG.getRegister(AddrReg, getPointerTy()),
1839                     Chain.getValue(1));
1840}
1841
1842SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1843                                              SelectionDAG &DAG) const {
1844  // FIXME: Need pseudo-fence for 'singlethread' fences
1845  // FIXME: Set SType for weaker fences where supported/appropriate.
1846  unsigned SType = 0;
1847  SDLoc DL(Op);
1848  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1849                     DAG.getConstant(SType, MVT::i32));
1850}
1851
1852SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1853                                                SelectionDAG &DAG) const {
1854  SDLoc DL(Op);
1855  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1856  SDValue Shamt = Op.getOperand(2);
1857
1858  // if shamt < 32:
1859  //  lo = (shl lo, shamt)
1860  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1861  // else:
1862  //  lo = 0
1863  //  hi = (shl lo, shamt[4:0])
1864  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1865                            DAG.getConstant(-1, MVT::i32));
1866  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1867                                      DAG.getConstant(1, MVT::i32));
1868  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1869                                     Not);
1870  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1871  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1872  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1873  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1874                             DAG.getConstant(0x20, MVT::i32));
1875  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1876                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1877  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1878
1879  SDValue Ops[2] = {Lo, Hi};
1880  return DAG.getMergeValues(Ops, 2, DL);
1881}
1882
1883SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1884                                                 bool IsSRA) const {
1885  SDLoc DL(Op);
1886  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1887  SDValue Shamt = Op.getOperand(2);
1888
1889  // if shamt < 32:
1890  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1891  //  if isSRA:
1892  //    hi = (sra hi, shamt)
1893  //  else:
1894  //    hi = (srl hi, shamt)
1895  // else:
1896  //  if isSRA:
1897  //   lo = (sra hi, shamt[4:0])
1898  //   hi = (sra hi, 31)
1899  //  else:
1900  //   lo = (srl hi, shamt[4:0])
1901  //   hi = 0
1902  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1903                            DAG.getConstant(-1, MVT::i32));
1904  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1905                                     DAG.getConstant(1, MVT::i32));
1906  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1907  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1908  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1909  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1910                                     Hi, Shamt);
1911  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1912                             DAG.getConstant(0x20, MVT::i32));
1913  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1914                                DAG.getConstant(31, MVT::i32));
1915  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1916  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1917                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
1918                   ShiftRightHi);
1919
1920  SDValue Ops[2] = {Lo, Hi};
1921  return DAG.getMergeValues(Ops, 2, DL);
1922}
1923
1924static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
1925                            SDValue Chain, SDValue Src, unsigned Offset) {
1926  SDValue Ptr = LD->getBasePtr();
1927  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
1928  EVT BasePtrVT = Ptr.getValueType();
1929  SDLoc DL(LD);
1930  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1931
1932  if (Offset)
1933    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1934                      DAG.getConstant(Offset, BasePtrVT));
1935
1936  SDValue Ops[] = { Chain, Ptr, Src };
1937  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
1938                                 LD->getMemOperand());
1939}
1940
1941// Expand an unaligned 32 or 64-bit integer load node.
1942SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1943  LoadSDNode *LD = cast<LoadSDNode>(Op);
1944  EVT MemVT = LD->getMemoryVT();
1945
1946  // Return if load is aligned or if MemVT is neither i32 nor i64.
1947  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
1948      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
1949    return SDValue();
1950
1951  bool IsLittle = Subtarget->isLittle();
1952  EVT VT = Op.getValueType();
1953  ISD::LoadExtType ExtType = LD->getExtensionType();
1954  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
1955
1956  assert((VT == MVT::i32) || (VT == MVT::i64));
1957
1958  // Expand
1959  //  (set dst, (i64 (load baseptr)))
1960  // to
1961  //  (set tmp, (ldl (add baseptr, 7), undef))
1962  //  (set dst, (ldr baseptr, tmp))
1963  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
1964    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
1965                               IsLittle ? 7 : 0);
1966    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
1967                        IsLittle ? 0 : 7);
1968  }
1969
1970  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
1971                             IsLittle ? 3 : 0);
1972  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
1973                             IsLittle ? 0 : 3);
1974
1975  // Expand
1976  //  (set dst, (i32 (load baseptr))) or
1977  //  (set dst, (i64 (sextload baseptr))) or
1978  //  (set dst, (i64 (extload baseptr)))
1979  // to
1980  //  (set tmp, (lwl (add baseptr, 3), undef))
1981  //  (set dst, (lwr baseptr, tmp))
1982  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
1983      (ExtType == ISD::EXTLOAD))
1984    return LWR;
1985
1986  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
1987
1988  // Expand
1989  //  (set dst, (i64 (zextload baseptr)))
1990  // to
1991  //  (set tmp0, (lwl (add baseptr, 3), undef))
1992  //  (set tmp1, (lwr baseptr, tmp0))
1993  //  (set tmp2, (shl tmp1, 32))
1994  //  (set dst, (srl tmp2, 32))
1995  SDLoc DL(LD);
1996  SDValue Const32 = DAG.getConstant(32, MVT::i32);
1997  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
1998  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
1999  SDValue Ops[] = { SRL, LWR.getValue(1) };
2000  return DAG.getMergeValues(Ops, 2, DL);
2001}
2002
2003static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2004                             SDValue Chain, unsigned Offset) {
2005  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2006  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2007  SDLoc DL(SD);
2008  SDVTList VTList = DAG.getVTList(MVT::Other);
2009
2010  if (Offset)
2011    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2012                      DAG.getConstant(Offset, BasePtrVT));
2013
2014  SDValue Ops[] = { Chain, Value, Ptr };
2015  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2016                                 SD->getMemOperand());
2017}
2018
2019// Expand an unaligned 32 or 64-bit integer store node.
2020static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2021                                      bool IsLittle) {
2022  SDValue Value = SD->getValue(), Chain = SD->getChain();
2023  EVT VT = Value.getValueType();
2024
2025  // Expand
2026  //  (store val, baseptr) or
2027  //  (truncstore val, baseptr)
2028  // to
2029  //  (swl val, (add baseptr, 3))
2030  //  (swr val, baseptr)
2031  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2032    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2033                                IsLittle ? 3 : 0);
2034    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2035  }
2036
2037  assert(VT == MVT::i64);
2038
2039  // Expand
2040  //  (store val, baseptr)
2041  // to
2042  //  (sdl val, (add baseptr, 7))
2043  //  (sdr val, baseptr)
2044  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2045  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2046}
2047
2048// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2049static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2050  SDValue Val = SD->getValue();
2051
2052  if (Val.getOpcode() != ISD::FP_TO_SINT)
2053    return SDValue();
2054
2055  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2056  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2057                           Val.getOperand(0));
2058
2059  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2060                      SD->getPointerInfo(), SD->isVolatile(),
2061                      SD->isNonTemporal(), SD->getAlignment());
2062}
2063
2064SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2065  StoreSDNode *SD = cast<StoreSDNode>(Op);
2066  EVT MemVT = SD->getMemoryVT();
2067
2068  // Lower unaligned integer stores.
2069  if ((SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2070      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2071    return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
2072
2073  return lowerFP_TO_SINT_STORE(SD, DAG);
2074}
2075
2076SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2077  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2078      || cast<ConstantSDNode>
2079        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2080      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2081    return SDValue();
2082
2083  // The pattern
2084  //   (add (frameaddr 0), (frame_to_args_offset))
2085  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2086  //   (add FrameObject, 0)
2087  // where FrameObject is a fixed StackObject with offset 0 which points to
2088  // the old stack pointer.
2089  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2090  EVT ValTy = Op->getValueType(0);
2091  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2092  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2093  return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
2094                     DAG.getConstant(0, ValTy));
2095}
2096
2097SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2098                                            SelectionDAG &DAG) const {
2099  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2100  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2101                              Op.getOperand(0));
2102  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2103}
2104
2105//===----------------------------------------------------------------------===//
2106//                      Calling Convention Implementation
2107//===----------------------------------------------------------------------===//
2108
2109//===----------------------------------------------------------------------===//
2110// TODO: Implement a generic logic using tblgen that can support this.
2111// Mips O32 ABI rules:
2112// ---
2113// i32 - Passed in A0, A1, A2, A3 and stack
2114// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2115//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2116// f64 - Only passed in two aliased f32 registers if no int reg has been used
2117//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2118//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2119//       go to stack.
2120//
2121//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2122//===----------------------------------------------------------------------===//
2123
2124static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2125                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2126                       ISD::ArgFlagsTy ArgFlags, CCState &State,
2127                       const uint16_t *F64Regs) {
2128
2129  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2130
2131  static const uint16_t IntRegs[] = {
2132      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2133  };
2134  static const uint16_t F32Regs[] = {
2135      Mips::F12, Mips::F14
2136  };
2137
2138  // Do not process byval args here.
2139  if (ArgFlags.isByVal())
2140    return true;
2141
2142  // Promote i8 and i16
2143  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2144    LocVT = MVT::i32;
2145    if (ArgFlags.isSExt())
2146      LocInfo = CCValAssign::SExt;
2147    else if (ArgFlags.isZExt())
2148      LocInfo = CCValAssign::ZExt;
2149    else
2150      LocInfo = CCValAssign::AExt;
2151  }
2152
2153  unsigned Reg;
2154
2155  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2156  // is true: function is vararg, argument is 3rd or higher, there is previous
2157  // argument which is not f32 or f64.
2158  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2159      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2160  unsigned OrigAlign = ArgFlags.getOrigAlign();
2161  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2162
2163  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2164    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2165    // If this is the first part of an i64 arg,
2166    // the allocated register must be either A0 or A2.
2167    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2168      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2169    LocVT = MVT::i32;
2170  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2171    // Allocate int register and shadow next int register. If first
2172    // available register is Mips::A1 or Mips::A3, shadow it too.
2173    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2174    if (Reg == Mips::A1 || Reg == Mips::A3)
2175      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2176    State.AllocateReg(IntRegs, IntRegsSize);
2177    LocVT = MVT::i32;
2178  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2179    // we are guaranteed to find an available float register
2180    if (ValVT == MVT::f32) {
2181      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2182      // Shadow int register
2183      State.AllocateReg(IntRegs, IntRegsSize);
2184    } else {
2185      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2186      // Shadow int registers
2187      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2188      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2189        State.AllocateReg(IntRegs, IntRegsSize);
2190      State.AllocateReg(IntRegs, IntRegsSize);
2191    }
2192  } else
2193    llvm_unreachable("Cannot handle this ValVT.");
2194
2195  if (!Reg) {
2196    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2197                                          OrigAlign);
2198    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2199  } else
2200    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2201
2202  return false;
2203}
2204
2205static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2206                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2207                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2208  static const uint16_t F64Regs[] = { Mips::D6, Mips::D7 };
2209
2210  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2211}
2212
2213static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2214                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2215                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2216  static const uint16_t F64Regs[] = { Mips::D12_64, Mips::D12_64 };
2217
2218  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2219}
2220
2221#include "MipsGenCallingConv.inc"
2222
2223//===----------------------------------------------------------------------===//
2224//                  Call Calling Convention Implementation
2225//===----------------------------------------------------------------------===//
2226
2227static const unsigned O32IntRegsSize = 4;
2228
2229// Return next O32 integer argument register.
2230static unsigned getNextIntArgReg(unsigned Reg) {
2231  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2232  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2233}
2234
2235SDValue
2236MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2237                                   SDValue Chain, SDValue Arg, SDLoc DL,
2238                                   bool IsTailCall, SelectionDAG &DAG) const {
2239  if (!IsTailCall) {
2240    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2241                                 DAG.getIntPtrConstant(Offset));
2242    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2243                        false, 0);
2244  }
2245
2246  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2247  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2248  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2249  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2250                      /*isVolatile=*/ true, false, 0);
2251}
2252
2253void MipsTargetLowering::
2254getOpndList(SmallVectorImpl<SDValue> &Ops,
2255            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2256            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2257            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2258  // Insert node "GP copy globalreg" before call to function.
2259  //
2260  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2261  // in PIC mode) allow symbols to be resolved via lazy binding.
2262  // The lazy binding stub requires GP to point to the GOT.
2263  if (IsPICCall && !InternalLinkage) {
2264    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2265    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2266    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2267  }
2268
2269  // Build a sequence of copy-to-reg nodes chained together with token
2270  // chain and flag operands which copy the outgoing args into registers.
2271  // The InFlag in necessary since all emitted instructions must be
2272  // stuck together.
2273  SDValue InFlag;
2274
2275  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2276    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2277                                 RegsToPass[i].second, InFlag);
2278    InFlag = Chain.getValue(1);
2279  }
2280
2281  // Add argument registers to the end of the list so that they are
2282  // known live into the call.
2283  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2284    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2285                                      RegsToPass[i].second.getValueType()));
2286
2287  // Add a register mask operand representing the call-preserved registers.
2288  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2289  const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2290  assert(Mask && "Missing call preserved mask for calling convention");
2291  if (Subtarget->inMips16HardFloat()) {
2292    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2293      llvm::StringRef Sym = G->getGlobal()->getName();
2294      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2295      if (F->hasFnAttribute("__Mips16RetHelper")) {
2296        Mask = MipsRegisterInfo::getMips16RetHelperMask();
2297      }
2298    }
2299  }
2300  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2301
2302  if (InFlag.getNode())
2303    Ops.push_back(InFlag);
2304}
2305
2306/// LowerCall - functions arguments are copied from virtual regs to
2307/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2308SDValue
2309MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2310                              SmallVectorImpl<SDValue> &InVals) const {
2311  SelectionDAG &DAG                     = CLI.DAG;
2312  SDLoc DL                              = CLI.DL;
2313  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2314  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2315  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2316  SDValue Chain                         = CLI.Chain;
2317  SDValue Callee                        = CLI.Callee;
2318  bool &IsTailCall                      = CLI.IsTailCall;
2319  CallingConv::ID CallConv              = CLI.CallConv;
2320  bool IsVarArg                         = CLI.IsVarArg;
2321
2322  MachineFunction &MF = DAG.getMachineFunction();
2323  MachineFrameInfo *MFI = MF.getFrameInfo();
2324  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2325  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2326
2327  // Analyze operands of the call, assigning locations to each operand.
2328  SmallVector<CCValAssign, 16> ArgLocs;
2329  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2330                 getTargetMachine(), ArgLocs, *DAG.getContext());
2331  MipsCC::SpecialCallingConvType SpecialCallingConv =
2332    getSpecialCallingConv(Callee);
2333  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo,
2334                    SpecialCallingConv);
2335
2336  MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2337                                 Subtarget->mipsSEUsesSoftFloat(),
2338                                 Callee.getNode(), CLI.Args);
2339
2340  // Get a count of how many bytes are to be pushed on the stack.
2341  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2342
2343  // Check if it's really possible to do a tail call.
2344  if (IsTailCall)
2345    IsTailCall =
2346      isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2347                                        *MF.getInfo<MipsFunctionInfo>());
2348
2349  if (IsTailCall)
2350    ++NumTailCalls;
2351
2352  // Chain is the output chain of the last Load/Store or CopyToReg node.
2353  // ByValChain is the output chain of the last Memcpy node created for copying
2354  // byval arguments to the stack.
2355  unsigned StackAlignment = TFL->getStackAlignment();
2356  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2357  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2358
2359  if (!IsTailCall)
2360    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2361
2362  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
2363                                        IsN64 ? Mips::SP_64 : Mips::SP,
2364                                        getPointerTy());
2365
2366  // With EABI is it possible to have 16 args on registers.
2367  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2368  SmallVector<SDValue, 8> MemOpChains;
2369  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2370
2371  // Walk the register/memloc assignments, inserting copies/loads.
2372  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2373    SDValue Arg = OutVals[i];
2374    CCValAssign &VA = ArgLocs[i];
2375    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2376    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2377
2378    // ByVal Arg.
2379    if (Flags.isByVal()) {
2380      assert(Flags.getByValSize() &&
2381             "ByVal args of size 0 should have been ignored by front-end.");
2382      assert(ByValArg != MipsCCInfo.byval_end());
2383      assert(!IsTailCall &&
2384             "Do not tail-call optimize if there is a byval argument.");
2385      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2386                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2387      ++ByValArg;
2388      continue;
2389    }
2390
2391    // Promote the value if needed.
2392    switch (VA.getLocInfo()) {
2393    default: llvm_unreachable("Unknown loc info!");
2394    case CCValAssign::Full:
2395      if (VA.isRegLoc()) {
2396        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2397            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2398            (ValVT == MVT::i64 && LocVT == MVT::f64))
2399          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2400        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2401          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2402                                   Arg, DAG.getConstant(0, MVT::i32));
2403          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2404                                   Arg, DAG.getConstant(1, MVT::i32));
2405          if (!Subtarget->isLittle())
2406            std::swap(Lo, Hi);
2407          unsigned LocRegLo = VA.getLocReg();
2408          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2409          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2410          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2411          continue;
2412        }
2413      }
2414      break;
2415    case CCValAssign::SExt:
2416      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2417      break;
2418    case CCValAssign::ZExt:
2419      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2420      break;
2421    case CCValAssign::AExt:
2422      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2423      break;
2424    }
2425
2426    // Arguments that can be passed on register must be kept at
2427    // RegsToPass vector
2428    if (VA.isRegLoc()) {
2429      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2430      continue;
2431    }
2432
2433    // Register can't get to this point...
2434    assert(VA.isMemLoc());
2435
2436    // emit ISD::STORE whichs stores the
2437    // parameter value to a stack Location
2438    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2439                                         Chain, Arg, DL, IsTailCall, DAG));
2440  }
2441
2442  // Transform all store nodes into one single node because all store
2443  // nodes are independent of each other.
2444  if (!MemOpChains.empty())
2445    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2446                        &MemOpChains[0], MemOpChains.size());
2447
2448  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2449  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2450  // node so that legalize doesn't hack it.
2451  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2452  bool GlobalOrExternal = false, InternalLinkage = false;
2453  SDValue CalleeLo;
2454
2455  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2456    if (IsPICCall) {
2457      InternalLinkage = G->getGlobal()->hasInternalLinkage();
2458
2459      if (InternalLinkage)
2460        Callee = getAddrLocal(Callee, DAG, HasMips64);
2461      else if (LargeGOT)
2462        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2463                                       MipsII::MO_CALL_LO16);
2464      else
2465        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2466    } else
2467      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2468                                          MipsII::MO_NO_FLAG);
2469    GlobalOrExternal = true;
2470  }
2471  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2472    if (!IsN64 && !IsPIC) // !N64 && static
2473      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2474                                            MipsII::MO_NO_FLAG);
2475    else if (LargeGOT)
2476      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2477                                     MipsII::MO_CALL_LO16);
2478    else // N64 || PIC
2479      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2480
2481    GlobalOrExternal = true;
2482  }
2483
2484  SmallVector<SDValue, 8> Ops(1, Chain);
2485  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2486
2487  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2488              CLI, Callee, Chain);
2489
2490  if (IsTailCall)
2491    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
2492
2493  Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
2494  SDValue InFlag = Chain.getValue(1);
2495
2496  // Create the CALLSEQ_END node.
2497  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2498                             DAG.getIntPtrConstant(0, true), InFlag, DL);
2499  InFlag = Chain.getValue(1);
2500
2501  // Handle result values, copying them out of physregs into vregs that we
2502  // return.
2503  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2504                         Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2505}
2506
2507/// LowerCallResult - Lower the result values of a call into the
2508/// appropriate copies out of appropriate physical registers.
2509SDValue
2510MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2511                                    CallingConv::ID CallConv, bool IsVarArg,
2512                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2513                                    SDLoc DL, SelectionDAG &DAG,
2514                                    SmallVectorImpl<SDValue> &InVals,
2515                                    const SDNode *CallNode,
2516                                    const Type *RetTy) const {
2517  // Assign locations to each value returned by this call.
2518  SmallVector<CCValAssign, 16> RVLocs;
2519  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2520                 getTargetMachine(), RVLocs, *DAG.getContext());
2521  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2522
2523  MipsCCInfo.analyzeCallResult(Ins, Subtarget->mipsSEUsesSoftFloat(),
2524                               CallNode, RetTy);
2525
2526  // Copy all of the result registers out of their specified physreg.
2527  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2528    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2529                                     RVLocs[i].getLocVT(), InFlag);
2530    Chain = Val.getValue(1);
2531    InFlag = Val.getValue(2);
2532
2533    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2534      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2535
2536    InVals.push_back(Val);
2537  }
2538
2539  return Chain;
2540}
2541
2542//===----------------------------------------------------------------------===//
2543//             Formal Arguments Calling Convention Implementation
2544//===----------------------------------------------------------------------===//
2545/// LowerFormalArguments - transform physical registers into virtual registers
2546/// and generate load operations for arguments places on the stack.
2547SDValue
2548MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2549                                         CallingConv::ID CallConv,
2550                                         bool IsVarArg,
2551                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2552                                         SDLoc DL, SelectionDAG &DAG,
2553                                         SmallVectorImpl<SDValue> &InVals)
2554                                          const {
2555  MachineFunction &MF = DAG.getMachineFunction();
2556  MachineFrameInfo *MFI = MF.getFrameInfo();
2557  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2558
2559  MipsFI->setVarArgsFrameIndex(0);
2560
2561  // Used with vargs to acumulate store chains.
2562  std::vector<SDValue> OutChains;
2563
2564  // Assign locations to all of the incoming arguments.
2565  SmallVector<CCValAssign, 16> ArgLocs;
2566  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2567                 getTargetMachine(), ArgLocs, *DAG.getContext());
2568  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2569  Function::const_arg_iterator FuncArg =
2570    DAG.getMachineFunction().getFunction()->arg_begin();
2571  bool UseSoftFloat = Subtarget->mipsSEUsesSoftFloat();
2572
2573  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2574  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2575                           MipsCCInfo.hasByValArg());
2576
2577  unsigned CurArgIdx = 0;
2578  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2579
2580  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2581    CCValAssign &VA = ArgLocs[i];
2582    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2583    CurArgIdx = Ins[i].OrigArgIndex;
2584    EVT ValVT = VA.getValVT();
2585    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2586    bool IsRegLoc = VA.isRegLoc();
2587
2588    if (Flags.isByVal()) {
2589      assert(Flags.getByValSize() &&
2590             "ByVal args of size 0 should have been ignored by front-end.");
2591      assert(ByValArg != MipsCCInfo.byval_end());
2592      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2593                    MipsCCInfo, *ByValArg);
2594      ++ByValArg;
2595      continue;
2596    }
2597
2598    // Arguments stored on registers
2599    if (IsRegLoc) {
2600      EVT RegVT = VA.getLocVT();
2601      unsigned ArgReg = VA.getLocReg();
2602      const TargetRegisterClass *RC;
2603
2604      if (RegVT == MVT::i32)
2605        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
2606                                        &Mips::GPR32RegClass;
2607      else if (RegVT == MVT::i64)
2608        RC = &Mips::GPR64RegClass;
2609      else if (RegVT == MVT::f32)
2610        RC = &Mips::FGR32RegClass;
2611      else if (RegVT == MVT::f64)
2612        RC = Subtarget->isFP64bit() ? &Mips::FGR64RegClass :
2613                                      &Mips::AFGR64RegClass;
2614      else
2615        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2616
2617      // Transform the arguments stored on
2618      // physical registers into virtual ones
2619      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2620      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2621
2622      // If this is an 8 or 16-bit value, it has been passed promoted
2623      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2624      // truncate to the right size.
2625      if (VA.getLocInfo() != CCValAssign::Full) {
2626        unsigned Opcode = 0;
2627        if (VA.getLocInfo() == CCValAssign::SExt)
2628          Opcode = ISD::AssertSext;
2629        else if (VA.getLocInfo() == CCValAssign::ZExt)
2630          Opcode = ISD::AssertZext;
2631        if (Opcode)
2632          ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2633                                 DAG.getValueType(ValVT));
2634        ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2635      }
2636
2637      // Handle floating point arguments passed in integer registers and
2638      // long double arguments passed in floating point registers.
2639      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2640          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2641          (RegVT == MVT::f64 && ValVT == MVT::i64))
2642        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2643      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2644        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2645                                  getNextIntArgReg(ArgReg), RC);
2646        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2647        if (!Subtarget->isLittle())
2648          std::swap(ArgValue, ArgValue2);
2649        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2650                               ArgValue, ArgValue2);
2651      }
2652
2653      InVals.push_back(ArgValue);
2654    } else { // VA.isRegLoc()
2655
2656      // sanity check
2657      assert(VA.isMemLoc());
2658
2659      // The stack pointer offset is relative to the caller stack frame.
2660      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2661                                      VA.getLocMemOffset(), true);
2662
2663      // Create load nodes to retrieve arguments from the stack
2664      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2665      InVals.push_back(DAG.getLoad(ValVT, DL, Chain, FIN,
2666                                   MachinePointerInfo::getFixedStack(FI),
2667                                   false, false, false, 0));
2668    }
2669  }
2670
2671  // The mips ABIs for returning structs by value requires that we copy
2672  // the sret argument into $v0 for the return. Save the argument into
2673  // a virtual register so that we can access it from the return points.
2674  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2675    unsigned Reg = MipsFI->getSRetReturnReg();
2676    if (!Reg) {
2677      Reg = MF.getRegInfo().
2678        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
2679      MipsFI->setSRetReturnReg(Reg);
2680    }
2681    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
2682    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2683  }
2684
2685  if (IsVarArg)
2686    writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2687
2688  // All stores are grouped in one node to allow the matching between
2689  // the size of Ins and InVals. This only happens when on varg functions
2690  if (!OutChains.empty()) {
2691    OutChains.push_back(Chain);
2692    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2693                        &OutChains[0], OutChains.size());
2694  }
2695
2696  return Chain;
2697}
2698
2699//===----------------------------------------------------------------------===//
2700//               Return Value Calling Convention Implementation
2701//===----------------------------------------------------------------------===//
2702
2703bool
2704MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2705                                   MachineFunction &MF, bool IsVarArg,
2706                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2707                                   LLVMContext &Context) const {
2708  SmallVector<CCValAssign, 16> RVLocs;
2709  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2710                 RVLocs, Context);
2711  return CCInfo.CheckReturn(Outs, RetCC_Mips);
2712}
2713
2714SDValue
2715MipsTargetLowering::LowerReturn(SDValue Chain,
2716                                CallingConv::ID CallConv, bool IsVarArg,
2717                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2718                                const SmallVectorImpl<SDValue> &OutVals,
2719                                SDLoc DL, SelectionDAG &DAG) const {
2720  // CCValAssign - represent the assignment of
2721  // the return value to a location
2722  SmallVector<CCValAssign, 16> RVLocs;
2723  MachineFunction &MF = DAG.getMachineFunction();
2724
2725  // CCState - Info about the registers and stack slot.
2726  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2727                 *DAG.getContext());
2728  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2729
2730  // Analyze return values.
2731  MipsCCInfo.analyzeReturn(Outs, Subtarget->mipsSEUsesSoftFloat(),
2732                           MF.getFunction()->getReturnType());
2733
2734  SDValue Flag;
2735  SmallVector<SDValue, 4> RetOps(1, Chain);
2736
2737  // Copy the result values into the output registers.
2738  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2739    SDValue Val = OutVals[i];
2740    CCValAssign &VA = RVLocs[i];
2741    assert(VA.isRegLoc() && "Can only return in registers!");
2742
2743    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2744      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2745
2746    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2747
2748    // Guarantee that all emitted copies are stuck together with flags.
2749    Flag = Chain.getValue(1);
2750    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2751  }
2752
2753  // The mips ABIs for returning structs by value requires that we copy
2754  // the sret argument into $v0 for the return. We saved the argument into
2755  // a virtual register in the entry block, so now we copy the value out
2756  // and into $v0.
2757  if (MF.getFunction()->hasStructRetAttr()) {
2758    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2759    unsigned Reg = MipsFI->getSRetReturnReg();
2760
2761    if (!Reg)
2762      llvm_unreachable("sret virtual register not created in the entry block");
2763    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2764    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
2765
2766    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2767    Flag = Chain.getValue(1);
2768    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2769  }
2770
2771  RetOps[0] = Chain;  // Update chain.
2772
2773  // Add the flag if we have it.
2774  if (Flag.getNode())
2775    RetOps.push_back(Flag);
2776
2777  // Return on Mips is always a "jr $ra"
2778  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
2779}
2780
2781//===----------------------------------------------------------------------===//
2782//                           Mips Inline Assembly Support
2783//===----------------------------------------------------------------------===//
2784
2785/// getConstraintType - Given a constraint letter, return the type of
2786/// constraint it is for this target.
2787MipsTargetLowering::ConstraintType MipsTargetLowering::
2788getConstraintType(const std::string &Constraint) const
2789{
2790  // Mips specific constrainy
2791  // GCC config/mips/constraints.md
2792  //
2793  // 'd' : An address register. Equivalent to r
2794  //       unless generating MIPS16 code.
2795  // 'y' : Equivalent to r; retained for
2796  //       backwards compatibility.
2797  // 'c' : A register suitable for use in an indirect
2798  //       jump. This will always be $25 for -mabicalls.
2799  // 'l' : The lo register. 1 word storage.
2800  // 'x' : The hilo register pair. Double word storage.
2801  if (Constraint.size() == 1) {
2802    switch (Constraint[0]) {
2803      default : break;
2804      case 'd':
2805      case 'y':
2806      case 'f':
2807      case 'c':
2808      case 'l':
2809      case 'x':
2810        return C_RegisterClass;
2811      case 'R':
2812        return C_Memory;
2813    }
2814  }
2815  return TargetLowering::getConstraintType(Constraint);
2816}
2817
2818/// Examine constraint type and operand type and determine a weight value.
2819/// This object must already have been set up with the operand type
2820/// and the current alternative constraint selected.
2821TargetLowering::ConstraintWeight
2822MipsTargetLowering::getSingleConstraintMatchWeight(
2823    AsmOperandInfo &info, const char *constraint) const {
2824  ConstraintWeight weight = CW_Invalid;
2825  Value *CallOperandVal = info.CallOperandVal;
2826    // If we don't have a value, we can't do a match,
2827    // but allow it at the lowest weight.
2828  if (CallOperandVal == NULL)
2829    return CW_Default;
2830  Type *type = CallOperandVal->getType();
2831  // Look at the constraint type.
2832  switch (*constraint) {
2833  default:
2834    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2835    break;
2836  case 'd':
2837  case 'y':
2838    if (type->isIntegerTy())
2839      weight = CW_Register;
2840    break;
2841  case 'f':
2842    if (type->isFloatTy())
2843      weight = CW_Register;
2844    break;
2845  case 'c': // $25 for indirect jumps
2846  case 'l': // lo register
2847  case 'x': // hilo register pair
2848      if (type->isIntegerTy())
2849      weight = CW_SpecificReg;
2850      break;
2851  case 'I': // signed 16 bit immediate
2852  case 'J': // integer zero
2853  case 'K': // unsigned 16 bit immediate
2854  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2855  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2856  case 'O': // signed 15 bit immediate (+- 16383)
2857  case 'P': // immediate in the range of 65535 to 1 (inclusive)
2858    if (isa<ConstantInt>(CallOperandVal))
2859      weight = CW_Constant;
2860    break;
2861  case 'R':
2862    weight = CW_Memory;
2863    break;
2864  }
2865  return weight;
2866}
2867
2868/// This is a helper function to parse a physical register string and split it
2869/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
2870/// that is returned indicates whether parsing was successful. The second flag
2871/// is true if the numeric part exists.
2872static std::pair<bool, bool>
2873parsePhysicalReg(const StringRef &C, std::string &Prefix,
2874                 unsigned long long &Reg) {
2875  if (C.front() != '{' || C.back() != '}')
2876    return std::make_pair(false, false);
2877
2878  // Search for the first numeric character.
2879  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
2880  I = std::find_if(B, E, std::ptr_fun(isdigit));
2881
2882  Prefix.assign(B, I - B);
2883
2884  // The second flag is set to false if no numeric characters were found.
2885  if (I == E)
2886    return std::make_pair(true, false);
2887
2888  // Parse the numeric characters.
2889  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
2890                        true);
2891}
2892
2893std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
2894parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const {
2895  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2896  const TargetRegisterClass *RC;
2897  std::string Prefix;
2898  unsigned long long Reg;
2899
2900  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
2901
2902  if (!R.first)
2903    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2904
2905  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
2906    // No numeric characters follow "hi" or "lo".
2907    if (R.second)
2908      return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2909
2910    RC = TRI->getRegClass(Prefix == "hi" ?
2911                          Mips::HI32RegClassID : Mips::LO32RegClassID);
2912    return std::make_pair(*(RC->begin()), RC);
2913  }
2914
2915  if (!R.second)
2916    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2917
2918  if (Prefix == "$f") { // Parse $f0-$f31.
2919    // If the size of FP registers is 64-bit or Reg is an even number, select
2920    // the 64-bit register class. Otherwise, select the 32-bit register class.
2921    if (VT == MVT::Other)
2922      VT = (Subtarget->isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
2923
2924    RC= getRegClassFor(VT);
2925
2926    if (RC == &Mips::AFGR64RegClass) {
2927      assert(Reg % 2 == 0);
2928      Reg >>= 1;
2929    }
2930  } else if (Prefix == "$fcc") { // Parse $fcc0-$fcc7.
2931    RC = TRI->getRegClass(Mips::FCCRegClassID);
2932  } else { // Parse $0-$31.
2933    assert(Prefix == "$");
2934    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
2935  }
2936
2937  assert(Reg < RC->getNumRegs());
2938  return std::make_pair(*(RC->begin() + Reg), RC);
2939}
2940
2941/// Given a register class constraint, like 'r', if this corresponds directly
2942/// to an LLVM register class, return a register of 0 and the register class
2943/// pointer.
2944std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2945getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
2946{
2947  if (Constraint.size() == 1) {
2948    switch (Constraint[0]) {
2949    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2950    case 'y': // Same as 'r'. Exists for compatibility.
2951    case 'r':
2952      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
2953        if (Subtarget->inMips16Mode())
2954          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
2955        return std::make_pair(0U, &Mips::GPR32RegClass);
2956      }
2957      if (VT == MVT::i64 && !HasMips64)
2958        return std::make_pair(0U, &Mips::GPR32RegClass);
2959      if (VT == MVT::i64 && HasMips64)
2960        return std::make_pair(0U, &Mips::GPR64RegClass);
2961      // This will generate an error message
2962      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2963    case 'f':
2964      if (VT == MVT::f32)
2965        return std::make_pair(0U, &Mips::FGR32RegClass);
2966      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2967        if (Subtarget->isFP64bit())
2968          return std::make_pair(0U, &Mips::FGR64RegClass);
2969        return std::make_pair(0U, &Mips::AFGR64RegClass);
2970      }
2971      break;
2972    case 'c': // register suitable for indirect jump
2973      if (VT == MVT::i32)
2974        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
2975      assert(VT == MVT::i64 && "Unexpected type.");
2976      return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
2977    case 'l': // register suitable for indirect jump
2978      if (VT == MVT::i32)
2979        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
2980      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
2981    case 'x': // register suitable for indirect jump
2982      // Fixme: Not triggering the use of both hi and low
2983      // This will generate an error message
2984      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2985    }
2986  }
2987
2988  std::pair<unsigned, const TargetRegisterClass *> R;
2989  R = parseRegForInlineAsmConstraint(Constraint, VT);
2990
2991  if (R.second)
2992    return R;
2993
2994  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2995}
2996
2997/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2998/// vector.  If it is invalid, don't add anything to Ops.
2999void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3000                                                     std::string &Constraint,
3001                                                     std::vector<SDValue>&Ops,
3002                                                     SelectionDAG &DAG) const {
3003  SDValue Result(0, 0);
3004
3005  // Only support length 1 constraints for now.
3006  if (Constraint.length() > 1) return;
3007
3008  char ConstraintLetter = Constraint[0];
3009  switch (ConstraintLetter) {
3010  default: break; // This will fall through to the generic implementation
3011  case 'I': // Signed 16 bit constant
3012    // If this fails, the parent routine will give an error
3013    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3014      EVT Type = Op.getValueType();
3015      int64_t Val = C->getSExtValue();
3016      if (isInt<16>(Val)) {
3017        Result = DAG.getTargetConstant(Val, Type);
3018        break;
3019      }
3020    }
3021    return;
3022  case 'J': // integer zero
3023    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3024      EVT Type = Op.getValueType();
3025      int64_t Val = C->getZExtValue();
3026      if (Val == 0) {
3027        Result = DAG.getTargetConstant(0, Type);
3028        break;
3029      }
3030    }
3031    return;
3032  case 'K': // unsigned 16 bit immediate
3033    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3034      EVT Type = Op.getValueType();
3035      uint64_t Val = (uint64_t)C->getZExtValue();
3036      if (isUInt<16>(Val)) {
3037        Result = DAG.getTargetConstant(Val, Type);
3038        break;
3039      }
3040    }
3041    return;
3042  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3043    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3044      EVT Type = Op.getValueType();
3045      int64_t Val = C->getSExtValue();
3046      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3047        Result = DAG.getTargetConstant(Val, Type);
3048        break;
3049      }
3050    }
3051    return;
3052  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3053    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3054      EVT Type = Op.getValueType();
3055      int64_t Val = C->getSExtValue();
3056      if ((Val >= -65535) && (Val <= -1)) {
3057        Result = DAG.getTargetConstant(Val, Type);
3058        break;
3059      }
3060    }
3061    return;
3062  case 'O': // signed 15 bit immediate
3063    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3064      EVT Type = Op.getValueType();
3065      int64_t Val = C->getSExtValue();
3066      if ((isInt<15>(Val))) {
3067        Result = DAG.getTargetConstant(Val, Type);
3068        break;
3069      }
3070    }
3071    return;
3072  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3073    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3074      EVT Type = Op.getValueType();
3075      int64_t Val = C->getSExtValue();
3076      if ((Val <= 65535) && (Val >= 1)) {
3077        Result = DAG.getTargetConstant(Val, Type);
3078        break;
3079      }
3080    }
3081    return;
3082  }
3083
3084  if (Result.getNode()) {
3085    Ops.push_back(Result);
3086    return;
3087  }
3088
3089  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3090}
3091
3092bool
3093MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
3094  // No global is ever allowed as a base.
3095  if (AM.BaseGV)
3096    return false;
3097
3098  switch (AM.Scale) {
3099  case 0: // "r+i" or just "i", depending on HasBaseReg.
3100    break;
3101  case 1:
3102    if (!AM.HasBaseReg) // allow "r+i".
3103      break;
3104    return false; // disallow "r+r" or "r+r+i".
3105  default:
3106    return false;
3107  }
3108
3109  return true;
3110}
3111
3112bool
3113MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3114  // The Mips target isn't yet aware of offsets.
3115  return false;
3116}
3117
3118EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3119                                            unsigned SrcAlign,
3120                                            bool IsMemset, bool ZeroMemset,
3121                                            bool MemcpyStrSrc,
3122                                            MachineFunction &MF) const {
3123  if (Subtarget->hasMips64())
3124    return MVT::i64;
3125
3126  return MVT::i32;
3127}
3128
3129bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3130  if (VT != MVT::f32 && VT != MVT::f64)
3131    return false;
3132  if (Imm.isNegZero())
3133    return false;
3134  return Imm.isZero();
3135}
3136
3137unsigned MipsTargetLowering::getJumpTableEncoding() const {
3138  if (IsN64)
3139    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3140
3141  return TargetLowering::getJumpTableEncoding();
3142}
3143
3144/// This function returns true if CallSym is a long double emulation routine.
3145static bool isF128SoftLibCall(const char *CallSym) {
3146  const char *const LibCalls[] =
3147    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3148     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3149     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3150     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3151     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3152     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3153     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3154     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3155     "truncl"};
3156
3157  const char * const *End = LibCalls + array_lengthof(LibCalls);
3158
3159  // Check that LibCalls is sorted alphabetically.
3160  MipsTargetLowering::LTStr Comp;
3161
3162#ifndef NDEBUG
3163  for (const char * const *I = LibCalls; I < End - 1; ++I)
3164    assert(Comp(*I, *(I + 1)));
3165#endif
3166
3167  return std::binary_search(LibCalls, End, CallSym, Comp);
3168}
3169
3170/// This function returns true if Ty is fp128 or i128 which was originally a
3171/// fp128.
3172static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3173  if (Ty->isFP128Ty())
3174    return true;
3175
3176  const ExternalSymbolSDNode *ES =
3177    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3178
3179  // If the Ty is i128 and the function being called is a long double emulation
3180  // routine, then the original type is f128.
3181  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3182}
3183
3184MipsTargetLowering::MipsCC::SpecialCallingConvType
3185  MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
3186  MipsCC::SpecialCallingConvType SpecialCallingConv =
3187    MipsCC::NoSpecialCallingConv;;
3188  if (Subtarget->inMips16HardFloat()) {
3189    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3190      llvm::StringRef Sym = G->getGlobal()->getName();
3191      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3192      if (F->hasFnAttribute("__Mips16RetHelper")) {
3193        SpecialCallingConv = MipsCC::Mips16RetHelperConv;
3194      }
3195    }
3196  }
3197  return SpecialCallingConv;
3198}
3199
3200MipsTargetLowering::MipsCC::MipsCC(
3201  CallingConv::ID CC, bool IsO32_, bool IsFP64_, CCState &Info,
3202    MipsCC::SpecialCallingConvType SpecialCallingConv_)
3203  : CCInfo(Info), CallConv(CC), IsO32(IsO32_), IsFP64(IsFP64_),
3204    SpecialCallingConv(SpecialCallingConv_){
3205  // Pre-allocate reserved argument area.
3206  CCInfo.AllocateStack(reservedArgArea(), 1);
3207}
3208
3209
3210void MipsTargetLowering::MipsCC::
3211analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3212                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3213                    std::vector<ArgListEntry> &FuncArgs) {
3214  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3215         "CallingConv::Fast shouldn't be used for vararg functions.");
3216
3217  unsigned NumOpnds = Args.size();
3218  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3219
3220  for (unsigned I = 0; I != NumOpnds; ++I) {
3221    MVT ArgVT = Args[I].VT;
3222    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3223    bool R;
3224
3225    if (ArgFlags.isByVal()) {
3226      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3227      continue;
3228    }
3229
3230    if (IsVarArg && !Args[I].IsFixed)
3231      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3232    else {
3233      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3234                           IsSoftFloat);
3235      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3236    }
3237
3238    if (R) {
3239#ifndef NDEBUG
3240      dbgs() << "Call operand #" << I << " has unhandled type "
3241             << EVT(ArgVT).getEVTString();
3242#endif
3243      llvm_unreachable(0);
3244    }
3245  }
3246}
3247
3248void MipsTargetLowering::MipsCC::
3249analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3250                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3251  unsigned NumArgs = Args.size();
3252  llvm::CCAssignFn *FixedFn = fixedArgFn();
3253  unsigned CurArgIdx = 0;
3254
3255  for (unsigned I = 0; I != NumArgs; ++I) {
3256    MVT ArgVT = Args[I].VT;
3257    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3258    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3259    CurArgIdx = Args[I].OrigArgIndex;
3260
3261    if (ArgFlags.isByVal()) {
3262      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3263      continue;
3264    }
3265
3266    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
3267
3268    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3269      continue;
3270
3271#ifndef NDEBUG
3272    dbgs() << "Formal Arg #" << I << " has unhandled type "
3273           << EVT(ArgVT).getEVTString();
3274#endif
3275    llvm_unreachable(0);
3276  }
3277}
3278
3279template<typename Ty>
3280void MipsTargetLowering::MipsCC::
3281analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3282              const SDNode *CallNode, const Type *RetTy) const {
3283  CCAssignFn *Fn;
3284
3285  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3286    Fn = RetCC_F128Soft;
3287  else
3288    Fn = RetCC_Mips;
3289
3290  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3291    MVT VT = RetVals[I].VT;
3292    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3293    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3294
3295    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3296#ifndef NDEBUG
3297      dbgs() << "Call result #" << I << " has unhandled type "
3298             << EVT(VT).getEVTString() << '\n';
3299#endif
3300      llvm_unreachable(0);
3301    }
3302  }
3303}
3304
3305void MipsTargetLowering::MipsCC::
3306analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3307                  const SDNode *CallNode, const Type *RetTy) const {
3308  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3309}
3310
3311void MipsTargetLowering::MipsCC::
3312analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3313              const Type *RetTy) const {
3314  analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
3315}
3316
3317void
3318MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3319                                           MVT LocVT,
3320                                           CCValAssign::LocInfo LocInfo,
3321                                           ISD::ArgFlagsTy ArgFlags) {
3322  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3323
3324  struct ByValArgInfo ByVal;
3325  unsigned RegSize = regSize();
3326  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3327  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3328                            RegSize * 2);
3329
3330  if (useRegsForByval())
3331    allocateRegs(ByVal, ByValSize, Align);
3332
3333  // Allocate space on caller's stack.
3334  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3335                                       Align);
3336  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3337                                    LocInfo));
3338  ByValArgs.push_back(ByVal);
3339}
3340
3341unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3342  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3343}
3344
3345unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3346  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3347}
3348
3349const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
3350  return IsO32 ? O32IntRegs : Mips64IntRegs;
3351}
3352
3353llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3354  if (CallConv == CallingConv::Fast)
3355    return CC_Mips_FastCC;
3356
3357  if (SpecialCallingConv == Mips16RetHelperConv)
3358    return CC_Mips16RetHelper;
3359  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN;
3360}
3361
3362llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3363  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN_VarArg;
3364}
3365
3366const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
3367  return IsO32 ? O32IntRegs : Mips64DPRegs;
3368}
3369
3370void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3371                                              unsigned ByValSize,
3372                                              unsigned Align) {
3373  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3374  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3375  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3376         "Byval argument's size and alignment should be a multiple of"
3377         "RegSize.");
3378
3379  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3380
3381  // If Align > RegSize, the first arg register must be even.
3382  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3383    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3384    ++ByVal.FirstIdx;
3385  }
3386
3387  // Mark the registers allocated.
3388  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3389       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3390    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3391}
3392
3393MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3394                                         const SDNode *CallNode,
3395                                         bool IsSoftFloat) const {
3396  if (IsSoftFloat || IsO32)
3397    return VT;
3398
3399  // Check if the original type was fp128.
3400  if (originalTypeIsF128(OrigTy, CallNode)) {
3401    assert(VT == MVT::i64);
3402    return MVT::f64;
3403  }
3404
3405  return VT;
3406}
3407
3408void MipsTargetLowering::
3409copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
3410              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3411              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3412              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3413  MachineFunction &MF = DAG.getMachineFunction();
3414  MachineFrameInfo *MFI = MF.getFrameInfo();
3415  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3416  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3417  int FrameObjOffset;
3418
3419  if (RegAreaSize)
3420    FrameObjOffset = (int)CC.reservedArgArea() -
3421      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3422  else
3423    FrameObjOffset = ByVal.Address;
3424
3425  // Create frame object.
3426  EVT PtrTy = getPointerTy();
3427  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3428  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3429  InVals.push_back(FIN);
3430
3431  if (!ByVal.NumRegs)
3432    return;
3433
3434  // Copy arg registers.
3435  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3436  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3437
3438  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3439    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3440    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3441    unsigned Offset = I * CC.regSize();
3442    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3443                                   DAG.getConstant(Offset, PtrTy));
3444    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3445                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3446                                 false, false, 0);
3447    OutChains.push_back(Store);
3448  }
3449}
3450
3451// Copy byVal arg to registers and stack.
3452void MipsTargetLowering::
3453passByValArg(SDValue Chain, SDLoc DL,
3454             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3455             SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
3456             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3457             const MipsCC &CC, const ByValArgInfo &ByVal,
3458             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3459  unsigned ByValSize = Flags.getByValSize();
3460  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3461  unsigned RegSize = CC.regSize();
3462  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3463  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3464
3465  if (ByVal.NumRegs) {
3466    const uint16_t *ArgRegs = CC.intArgRegs();
3467    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3468    unsigned I = 0;
3469
3470    // Copy words to registers.
3471    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3472      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3473                                    DAG.getConstant(Offset, PtrTy));
3474      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3475                                    MachinePointerInfo(), false, false, false,
3476                                    Alignment);
3477      MemOpChains.push_back(LoadVal.getValue(1));
3478      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3479      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3480    }
3481
3482    // Return if the struct has been fully copied.
3483    if (ByValSize == Offset)
3484      return;
3485
3486    // Copy the remainder of the byval argument with sub-word loads and shifts.
3487    if (LeftoverBytes) {
3488      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3489             "Size of the remainder should be smaller than RegSize.");
3490      SDValue Val;
3491
3492      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3493           Offset < ByValSize; LoadSize /= 2) {
3494        unsigned RemSize = ByValSize - Offset;
3495
3496        if (RemSize < LoadSize)
3497          continue;
3498
3499        // Load subword.
3500        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3501                                      DAG.getConstant(Offset, PtrTy));
3502        SDValue LoadVal =
3503          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3504                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3505                         false, false, Alignment);
3506        MemOpChains.push_back(LoadVal.getValue(1));
3507
3508        // Shift the loaded value.
3509        unsigned Shamt;
3510
3511        if (isLittle)
3512          Shamt = TotalSizeLoaded;
3513        else
3514          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3515
3516        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3517                                    DAG.getConstant(Shamt, MVT::i32));
3518
3519        if (Val.getNode())
3520          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3521        else
3522          Val = Shift;
3523
3524        Offset += LoadSize;
3525        TotalSizeLoaded += LoadSize;
3526        Alignment = std::min(Alignment, LoadSize);
3527      }
3528
3529      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3530      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3531      return;
3532    }
3533  }
3534
3535  // Copy remainder of byval arg to it with memcpy.
3536  unsigned MemCpySize = ByValSize - Offset;
3537  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3538                            DAG.getConstant(Offset, PtrTy));
3539  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3540                            DAG.getIntPtrConstant(ByVal.Address));
3541  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
3542                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
3543                        /*isVolatile=*/false, /*AlwaysInline=*/false,
3544                        MachinePointerInfo(0), MachinePointerInfo(0));
3545  MemOpChains.push_back(Chain);
3546}
3547
3548void
3549MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3550                                    const MipsCC &CC, SDValue Chain,
3551                                    SDLoc DL, SelectionDAG &DAG) const {
3552  unsigned NumRegs = CC.numIntArgRegs();
3553  const uint16_t *ArgRegs = CC.intArgRegs();
3554  const CCState &CCInfo = CC.getCCInfo();
3555  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3556  unsigned RegSize = CC.regSize();
3557  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3558  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3559  MachineFunction &MF = DAG.getMachineFunction();
3560  MachineFrameInfo *MFI = MF.getFrameInfo();
3561  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3562
3563  // Offset of the first variable argument from stack pointer.
3564  int VaArgOffset;
3565
3566  if (NumRegs == Idx)
3567    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3568  else
3569    VaArgOffset =
3570      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3571
3572  // Record the frame index of the first variable argument
3573  // which is a value necessary to VASTART.
3574  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3575  MipsFI->setVarArgsFrameIndex(FI);
3576
3577  // Copy the integer registers that have not been used for argument passing
3578  // to the argument register save area. For O32, the save area is allocated
3579  // in the caller's stack frame, while for N32/64, it is allocated in the
3580  // callee's stack frame.
3581  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3582    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3583    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3584    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3585    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3586    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3587                                 MachinePointerInfo(), false, false, 0);
3588    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3589    OutChains.push_back(Store);
3590  }
3591}
3592