MipsISelLowering.cpp revision cd6c57917db22a3913a2cdbadfa79fed3547bdec
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include "MipsISelLowering.h"
16#include "InstPrinter/MipsInstPrinter.h"
17#include "MCTargetDesc/MipsBaseInfo.h"
18#include "MipsMachineFunction.h"
19#include "MipsSubtarget.h"
20#include "MipsTargetMachine.h"
21#include "MipsTargetObjectFile.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37
38using namespace llvm;
39
40STATISTIC(NumTailCalls, "Number of tail calls");
41
42static cl::opt<bool>
43LargeGOT("mxgot", cl::Hidden,
44         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
45
46static const uint16_t O32IntRegs[4] = {
47  Mips::A0, Mips::A1, Mips::A2, Mips::A3
48};
49
50static const uint16_t Mips64IntRegs[8] = {
51  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
52  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
53};
54
55static const uint16_t Mips64DPRegs[8] = {
56  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
57  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
58};
59
60// If I is a shifted mask, set the size (Size) and the first bit of the
61// mask (Pos), and return true.
62// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
63static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
64  if (!isShiftedMask_64(I))
65     return false;
66
67  Size = CountPopulation_64(I);
68  Pos = CountTrailingZeros_64(I);
69  return true;
70}
71
72SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
73  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
74  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
75}
76
77static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
78  EVT Ty = Op.getValueType();
79
80  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
81    return DAG.getTargetGlobalAddress(N->getGlobal(), Op.getDebugLoc(), Ty, 0,
82                                      Flag);
83  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
84    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
85  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
86    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
87  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
88    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
89  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
90    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
91                                     N->getOffset(), Flag);
92
93  llvm_unreachable("Unexpected node type.");
94  return SDValue();
95}
96
97static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
98  DebugLoc DL = Op.getDebugLoc();
99  EVT Ty = Op.getValueType();
100  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
101  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
102  return DAG.getNode(ISD::ADD, DL, Ty,
103                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
104                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
105}
106
107SDValue MipsTargetLowering::getAddrLocal(SDValue Op, SelectionDAG &DAG,
108                                         bool HasMips64) const {
109  DebugLoc DL = Op.getDebugLoc();
110  EVT Ty = Op.getValueType();
111  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
112  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
113                            getTargetNode(Op, DAG, GOTFlag));
114  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
115                             MachinePointerInfo::getGOT(), false, false, false,
116                             0);
117  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
118  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
119  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
120}
121
122SDValue MipsTargetLowering::getAddrGlobal(SDValue Op, SelectionDAG &DAG,
123                                          unsigned Flag) const {
124  DebugLoc DL = Op.getDebugLoc();
125  EVT Ty = Op.getValueType();
126  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
127                            getTargetNode(Op, DAG, Flag));
128  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
129                     MachinePointerInfo::getGOT(), false, false, false, 0);
130}
131
132SDValue MipsTargetLowering::getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
133                                                  unsigned HiFlag,
134                                                  unsigned LoFlag) const {
135  DebugLoc DL = Op.getDebugLoc();
136  EVT Ty = Op.getValueType();
137  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
138  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
139  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
140                                getTargetNode(Op, DAG, LoFlag));
141  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
142                     MachinePointerInfo::getGOT(), false, false, false, 0);
143}
144
145const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
146  switch (Opcode) {
147  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
148  case MipsISD::TailCall:          return "MipsISD::TailCall";
149  case MipsISD::Hi:                return "MipsISD::Hi";
150  case MipsISD::Lo:                return "MipsISD::Lo";
151  case MipsISD::GPRel:             return "MipsISD::GPRel";
152  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
153  case MipsISD::Ret:               return "MipsISD::Ret";
154  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
155  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
156  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
157  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
158  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
159  case MipsISD::FPRound:           return "MipsISD::FPRound";
160  case MipsISD::ExtractLOHI:       return "MipsISD::ExtractLOHI";
161  case MipsISD::InsertLOHI:        return "MipsISD::InsertLOHI";
162  case MipsISD::Mult:              return "MipsISD::Mult";
163  case MipsISD::Multu:             return "MipsISD::Multu";
164  case MipsISD::MAdd:              return "MipsISD::MAdd";
165  case MipsISD::MAddu:             return "MipsISD::MAddu";
166  case MipsISD::MSub:              return "MipsISD::MSub";
167  case MipsISD::MSubu:             return "MipsISD::MSubu";
168  case MipsISD::DivRem:            return "MipsISD::DivRem";
169  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
170  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
171  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
172  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
173  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
174  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
175  case MipsISD::Sync:              return "MipsISD::Sync";
176  case MipsISD::Ext:               return "MipsISD::Ext";
177  case MipsISD::Ins:               return "MipsISD::Ins";
178  case MipsISD::LWL:               return "MipsISD::LWL";
179  case MipsISD::LWR:               return "MipsISD::LWR";
180  case MipsISD::SWL:               return "MipsISD::SWL";
181  case MipsISD::SWR:               return "MipsISD::SWR";
182  case MipsISD::LDL:               return "MipsISD::LDL";
183  case MipsISD::LDR:               return "MipsISD::LDR";
184  case MipsISD::SDL:               return "MipsISD::SDL";
185  case MipsISD::SDR:               return "MipsISD::SDR";
186  case MipsISD::EXTP:              return "MipsISD::EXTP";
187  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
188  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
189  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
190  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
191  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
192  case MipsISD::SHILO:             return "MipsISD::SHILO";
193  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
194  case MipsISD::MULT:              return "MipsISD::MULT";
195  case MipsISD::MULTU:             return "MipsISD::MULTU";
196  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
197  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
198  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
199  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
200  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
201  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
202  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
203  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
204  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
205  default:                         return NULL;
206  }
207}
208
209MipsTargetLowering::
210MipsTargetLowering(MipsTargetMachine &TM)
211  : TargetLowering(TM, new MipsTargetObjectFile()),
212    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
213    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
214    IsO32(Subtarget->isABI_O32()) {
215  // Mips does not have i1 type, so use i32 for
216  // setcc operations results (slt, sgt, ...).
217  setBooleanContents(ZeroOrOneBooleanContent);
218  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
219
220  // Load extented operations for i1 types must be promoted
221  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
222  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
223  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
224
225  // MIPS doesn't have extending float->double load/store
226  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
227  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
228
229  // Used by legalize types to correctly generate the setcc result.
230  // Without this, every float setcc comes with a AND/OR with the result,
231  // we don't want this, since the fpcmp result goes to a flag register,
232  // which is used implicitly by brcond and select operations.
233  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
234
235  // Mips Custom Operations
236  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
237  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
238  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
239  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
240  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
241  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
242  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
243  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
244  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
245  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
246  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
247  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
248  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
249  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
250  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
251  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
252  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
253
254  if (!TM.Options.NoNaNsFPMath) {
255    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
256    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
257  }
258
259  if (HasMips64) {
260    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
261    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
262    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
263    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
264    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
265    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
266    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
267    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
268  }
269
270  if (!HasMips64) {
271    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
272    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
273    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
274  }
275
276  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
277  if (HasMips64)
278    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
279
280  setOperationAction(ISD::SDIV, MVT::i32, Expand);
281  setOperationAction(ISD::SREM, MVT::i32, Expand);
282  setOperationAction(ISD::UDIV, MVT::i32, Expand);
283  setOperationAction(ISD::UREM, MVT::i32, Expand);
284  setOperationAction(ISD::SDIV, MVT::i64, Expand);
285  setOperationAction(ISD::SREM, MVT::i64, Expand);
286  setOperationAction(ISD::UDIV, MVT::i64, Expand);
287  setOperationAction(ISD::UREM, MVT::i64, Expand);
288
289  // Operations not directly supported by Mips.
290  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
291  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
292  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
293  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
294  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
295  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
296  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
297  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
298  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
299  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
300  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
301  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
302  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
303  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
304  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
305  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
306  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
307  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
308  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
309  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
310  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
311  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
312
313  if (!Subtarget->hasMips32r2())
314    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
315
316  if (!Subtarget->hasMips64r2())
317    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
318
319  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
320  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
321  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
322  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
323  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
324  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
325  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
326  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
327  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
328  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
329  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
330  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
331  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
332  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
333  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
334  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
335  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
336
337  if (!TM.Options.NoNaNsFPMath) {
338    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
339    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
340  }
341
342  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
343  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
344  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
345  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
346
347  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
348
349  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
350  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
351  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
352
353  // Use the default for now
354  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
355  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
356
357  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
358  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
359  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
360  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
361
362  setInsertFencesForAtomic(true);
363
364  if (!Subtarget->hasSEInReg()) {
365    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
366    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
367  }
368
369  if (!Subtarget->hasBitCount()) {
370    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
371    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
372  }
373
374  if (!Subtarget->hasSwap()) {
375    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
376    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
377  }
378
379  if (HasMips64) {
380    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
381    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
382    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
383    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
384  }
385
386  setTargetDAGCombine(ISD::SDIVREM);
387  setTargetDAGCombine(ISD::UDIVREM);
388  setTargetDAGCombine(ISD::SELECT);
389  setTargetDAGCombine(ISD::AND);
390  setTargetDAGCombine(ISD::OR);
391  setTargetDAGCombine(ISD::ADD);
392
393  setMinFunctionAlignment(HasMips64 ? 3 : 2);
394
395  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
396
397  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
398  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
399
400  MaxStoresPerMemcpy = 16;
401}
402
403const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
404  if (TM.getSubtargetImpl()->inMips16Mode())
405    return llvm::createMips16TargetLowering(TM);
406
407  return llvm::createMipsSETargetLowering(TM);
408}
409
410EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
411  if (!VT.isVector())
412    return MVT::i32;
413  return VT.changeVectorElementTypeToInteger();
414}
415
416static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
417                                    TargetLowering::DAGCombinerInfo &DCI,
418                                    const MipsSubtarget *Subtarget) {
419  if (DCI.isBeforeLegalizeOps())
420    return SDValue();
421
422  EVT Ty = N->getValueType(0);
423  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
424  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
425  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
426                                                  MipsISD::DivRemU16;
427  DebugLoc DL = N->getDebugLoc();
428
429  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
430                               N->getOperand(0), N->getOperand(1));
431  SDValue InChain = DAG.getEntryNode();
432  SDValue InGlue = DivRem;
433
434  // insert MFLO
435  if (N->hasAnyUseOfValue(0)) {
436    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
437                                            InGlue);
438    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
439    InChain = CopyFromLo.getValue(1);
440    InGlue = CopyFromLo.getValue(2);
441  }
442
443  // insert MFHI
444  if (N->hasAnyUseOfValue(1)) {
445    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
446                                            HI, Ty, InGlue);
447    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
448  }
449
450  return SDValue();
451}
452
453static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
454  switch (CC) {
455  default: llvm_unreachable("Unknown fp condition code!");
456  case ISD::SETEQ:
457  case ISD::SETOEQ: return Mips::FCOND_OEQ;
458  case ISD::SETUNE: return Mips::FCOND_UNE;
459  case ISD::SETLT:
460  case ISD::SETOLT: return Mips::FCOND_OLT;
461  case ISD::SETGT:
462  case ISD::SETOGT: return Mips::FCOND_OGT;
463  case ISD::SETLE:
464  case ISD::SETOLE: return Mips::FCOND_OLE;
465  case ISD::SETGE:
466  case ISD::SETOGE: return Mips::FCOND_OGE;
467  case ISD::SETULT: return Mips::FCOND_ULT;
468  case ISD::SETULE: return Mips::FCOND_ULE;
469  case ISD::SETUGT: return Mips::FCOND_UGT;
470  case ISD::SETUGE: return Mips::FCOND_UGE;
471  case ISD::SETUO:  return Mips::FCOND_UN;
472  case ISD::SETO:   return Mips::FCOND_OR;
473  case ISD::SETNE:
474  case ISD::SETONE: return Mips::FCOND_ONE;
475  case ISD::SETUEQ: return Mips::FCOND_UEQ;
476  }
477}
478
479
480/// This function returns true if the floating point conditional branches and
481/// conditional moves which use condition code CC should be inverted.
482static bool invertFPCondCodeUser(Mips::CondCode CC) {
483  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
484    return false;
485
486  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
487         "Illegal Condition Code");
488
489  return true;
490}
491
492// Creates and returns an FPCmp node from a setcc node.
493// Returns Op if setcc is not a floating point comparison.
494static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
495  // must be a SETCC node
496  if (Op.getOpcode() != ISD::SETCC)
497    return Op;
498
499  SDValue LHS = Op.getOperand(0);
500
501  if (!LHS.getValueType().isFloatingPoint())
502    return Op;
503
504  SDValue RHS = Op.getOperand(1);
505  DebugLoc DL = Op.getDebugLoc();
506
507  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
508  // node if necessary.
509  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
510
511  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
512                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
513}
514
515// Creates and returns a CMovFPT/F node.
516static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
517                            SDValue False, DebugLoc DL) {
518  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
519  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
520
521  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
522                     True.getValueType(), True, False, Cond);
523}
524
525static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
526                                    TargetLowering::DAGCombinerInfo &DCI,
527                                    const MipsSubtarget *Subtarget) {
528  if (DCI.isBeforeLegalizeOps())
529    return SDValue();
530
531  SDValue SetCC = N->getOperand(0);
532
533  if ((SetCC.getOpcode() != ISD::SETCC) ||
534      !SetCC.getOperand(0).getValueType().isInteger())
535    return SDValue();
536
537  SDValue False = N->getOperand(2);
538  EVT FalseTy = False.getValueType();
539
540  if (!FalseTy.isInteger())
541    return SDValue();
542
543  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
544
545  if (!CN || CN->getZExtValue())
546    return SDValue();
547
548  const DebugLoc DL = N->getDebugLoc();
549  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
550  SDValue True = N->getOperand(1);
551
552  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
553                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
554
555  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
556}
557
558static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
559                                 TargetLowering::DAGCombinerInfo &DCI,
560                                 const MipsSubtarget *Subtarget) {
561  // Pattern match EXT.
562  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
563  //  => ext $dst, $src, size, pos
564  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
565    return SDValue();
566
567  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
568  unsigned ShiftRightOpc = ShiftRight.getOpcode();
569
570  // Op's first operand must be a shift right.
571  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
572    return SDValue();
573
574  // The second operand of the shift must be an immediate.
575  ConstantSDNode *CN;
576  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
577    return SDValue();
578
579  uint64_t Pos = CN->getZExtValue();
580  uint64_t SMPos, SMSize;
581
582  // Op's second operand must be a shifted mask.
583  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
584      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
585    return SDValue();
586
587  // Return if the shifted mask does not start at bit 0 or the sum of its size
588  // and Pos exceeds the word's size.
589  EVT ValTy = N->getValueType(0);
590  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
591    return SDValue();
592
593  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
594                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
595                     DAG.getConstant(SMSize, MVT::i32));
596}
597
598static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
599                                TargetLowering::DAGCombinerInfo &DCI,
600                                const MipsSubtarget *Subtarget) {
601  // Pattern match INS.
602  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
603  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
604  //  => ins $dst, $src, size, pos, $src1
605  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
606    return SDValue();
607
608  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
609  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
610  ConstantSDNode *CN;
611
612  // See if Op's first operand matches (and $src1 , mask0).
613  if (And0.getOpcode() != ISD::AND)
614    return SDValue();
615
616  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
617      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
618    return SDValue();
619
620  // See if Op's second operand matches (and (shl $src, pos), mask1).
621  if (And1.getOpcode() != ISD::AND)
622    return SDValue();
623
624  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
625      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
626    return SDValue();
627
628  // The shift masks must have the same position and size.
629  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
630    return SDValue();
631
632  SDValue Shl = And1.getOperand(0);
633  if (Shl.getOpcode() != ISD::SHL)
634    return SDValue();
635
636  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
637    return SDValue();
638
639  unsigned Shamt = CN->getZExtValue();
640
641  // Return if the shift amount and the first bit position of mask are not the
642  // same.
643  EVT ValTy = N->getValueType(0);
644  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
645    return SDValue();
646
647  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
648                     DAG.getConstant(SMPos0, MVT::i32),
649                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
650}
651
652static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
653                                 TargetLowering::DAGCombinerInfo &DCI,
654                                 const MipsSubtarget *Subtarget) {
655  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
656
657  if (DCI.isBeforeLegalizeOps())
658    return SDValue();
659
660  SDValue Add = N->getOperand(1);
661
662  if (Add.getOpcode() != ISD::ADD)
663    return SDValue();
664
665  SDValue Lo = Add.getOperand(1);
666
667  if ((Lo.getOpcode() != MipsISD::Lo) ||
668      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
669    return SDValue();
670
671  EVT ValTy = N->getValueType(0);
672  DebugLoc DL = N->getDebugLoc();
673
674  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
675                             Add.getOperand(0));
676  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
677}
678
679SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
680  const {
681  SelectionDAG &DAG = DCI.DAG;
682  unsigned Opc = N->getOpcode();
683
684  switch (Opc) {
685  default: break;
686  case ISD::SDIVREM:
687  case ISD::UDIVREM:
688    return performDivRemCombine(N, DAG, DCI, Subtarget);
689  case ISD::SELECT:
690    return performSELECTCombine(N, DAG, DCI, Subtarget);
691  case ISD::AND:
692    return performANDCombine(N, DAG, DCI, Subtarget);
693  case ISD::OR:
694    return performORCombine(N, DAG, DCI, Subtarget);
695  case ISD::ADD:
696    return performADDCombine(N, DAG, DCI, Subtarget);
697  }
698
699  return SDValue();
700}
701
702void
703MipsTargetLowering::LowerOperationWrapper(SDNode *N,
704                                          SmallVectorImpl<SDValue> &Results,
705                                          SelectionDAG &DAG) const {
706  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
707
708  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
709    Results.push_back(Res.getValue(I));
710}
711
712void
713MipsTargetLowering::ReplaceNodeResults(SDNode *N,
714                                       SmallVectorImpl<SDValue> &Results,
715                                       SelectionDAG &DAG) const {
716  return LowerOperationWrapper(N, Results, DAG);
717}
718
719SDValue MipsTargetLowering::
720LowerOperation(SDValue Op, SelectionDAG &DAG) const
721{
722  switch (Op.getOpcode())
723  {
724  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
725  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
726  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
727  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
728  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
729  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
730  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
731  case ISD::SELECT:             return lowerSELECT(Op, DAG);
732  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
733  case ISD::SETCC:              return lowerSETCC(Op, DAG);
734  case ISD::VASTART:            return lowerVASTART(Op, DAG);
735  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
736  case ISD::FABS:               return lowerFABS(Op, DAG);
737  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
738  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
739  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
740  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
741  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
742  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
743  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
744  case ISD::LOAD:               return lowerLOAD(Op, DAG);
745  case ISD::STORE:              return lowerSTORE(Op, DAG);
746  case ISD::ADD:                return lowerADD(Op, DAG);
747  }
748  return SDValue();
749}
750
751//===----------------------------------------------------------------------===//
752//  Lower helper functions
753//===----------------------------------------------------------------------===//
754
755// addLiveIn - This helper function adds the specified physical register to the
756// MachineFunction as a live in value.  It also creates a corresponding
757// virtual register for it.
758static unsigned
759addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
760{
761  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
762  MF.getRegInfo().addLiveIn(PReg, VReg);
763  return VReg;
764}
765
766MachineBasicBlock *
767MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
768                                                MachineBasicBlock *BB) const {
769  switch (MI->getOpcode()) {
770  default:
771    llvm_unreachable("Unexpected instr type to insert");
772  case Mips::ATOMIC_LOAD_ADD_I8:
773  case Mips::ATOMIC_LOAD_ADD_I8_P8:
774    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
775  case Mips::ATOMIC_LOAD_ADD_I16:
776  case Mips::ATOMIC_LOAD_ADD_I16_P8:
777    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
778  case Mips::ATOMIC_LOAD_ADD_I32:
779  case Mips::ATOMIC_LOAD_ADD_I32_P8:
780    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
781  case Mips::ATOMIC_LOAD_ADD_I64:
782  case Mips::ATOMIC_LOAD_ADD_I64_P8:
783    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
784
785  case Mips::ATOMIC_LOAD_AND_I8:
786  case Mips::ATOMIC_LOAD_AND_I8_P8:
787    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
788  case Mips::ATOMIC_LOAD_AND_I16:
789  case Mips::ATOMIC_LOAD_AND_I16_P8:
790    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
791  case Mips::ATOMIC_LOAD_AND_I32:
792  case Mips::ATOMIC_LOAD_AND_I32_P8:
793    return emitAtomicBinary(MI, BB, 4, Mips::AND);
794  case Mips::ATOMIC_LOAD_AND_I64:
795  case Mips::ATOMIC_LOAD_AND_I64_P8:
796    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
797
798  case Mips::ATOMIC_LOAD_OR_I8:
799  case Mips::ATOMIC_LOAD_OR_I8_P8:
800    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
801  case Mips::ATOMIC_LOAD_OR_I16:
802  case Mips::ATOMIC_LOAD_OR_I16_P8:
803    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
804  case Mips::ATOMIC_LOAD_OR_I32:
805  case Mips::ATOMIC_LOAD_OR_I32_P8:
806    return emitAtomicBinary(MI, BB, 4, Mips::OR);
807  case Mips::ATOMIC_LOAD_OR_I64:
808  case Mips::ATOMIC_LOAD_OR_I64_P8:
809    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
810
811  case Mips::ATOMIC_LOAD_XOR_I8:
812  case Mips::ATOMIC_LOAD_XOR_I8_P8:
813    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
814  case Mips::ATOMIC_LOAD_XOR_I16:
815  case Mips::ATOMIC_LOAD_XOR_I16_P8:
816    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
817  case Mips::ATOMIC_LOAD_XOR_I32:
818  case Mips::ATOMIC_LOAD_XOR_I32_P8:
819    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
820  case Mips::ATOMIC_LOAD_XOR_I64:
821  case Mips::ATOMIC_LOAD_XOR_I64_P8:
822    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
823
824  case Mips::ATOMIC_LOAD_NAND_I8:
825  case Mips::ATOMIC_LOAD_NAND_I8_P8:
826    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
827  case Mips::ATOMIC_LOAD_NAND_I16:
828  case Mips::ATOMIC_LOAD_NAND_I16_P8:
829    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
830  case Mips::ATOMIC_LOAD_NAND_I32:
831  case Mips::ATOMIC_LOAD_NAND_I32_P8:
832    return emitAtomicBinary(MI, BB, 4, 0, true);
833  case Mips::ATOMIC_LOAD_NAND_I64:
834  case Mips::ATOMIC_LOAD_NAND_I64_P8:
835    return emitAtomicBinary(MI, BB, 8, 0, true);
836
837  case Mips::ATOMIC_LOAD_SUB_I8:
838  case Mips::ATOMIC_LOAD_SUB_I8_P8:
839    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
840  case Mips::ATOMIC_LOAD_SUB_I16:
841  case Mips::ATOMIC_LOAD_SUB_I16_P8:
842    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
843  case Mips::ATOMIC_LOAD_SUB_I32:
844  case Mips::ATOMIC_LOAD_SUB_I32_P8:
845    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
846  case Mips::ATOMIC_LOAD_SUB_I64:
847  case Mips::ATOMIC_LOAD_SUB_I64_P8:
848    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
849
850  case Mips::ATOMIC_SWAP_I8:
851  case Mips::ATOMIC_SWAP_I8_P8:
852    return emitAtomicBinaryPartword(MI, BB, 1, 0);
853  case Mips::ATOMIC_SWAP_I16:
854  case Mips::ATOMIC_SWAP_I16_P8:
855    return emitAtomicBinaryPartword(MI, BB, 2, 0);
856  case Mips::ATOMIC_SWAP_I32:
857  case Mips::ATOMIC_SWAP_I32_P8:
858    return emitAtomicBinary(MI, BB, 4, 0);
859  case Mips::ATOMIC_SWAP_I64:
860  case Mips::ATOMIC_SWAP_I64_P8:
861    return emitAtomicBinary(MI, BB, 8, 0);
862
863  case Mips::ATOMIC_CMP_SWAP_I8:
864  case Mips::ATOMIC_CMP_SWAP_I8_P8:
865    return emitAtomicCmpSwapPartword(MI, BB, 1);
866  case Mips::ATOMIC_CMP_SWAP_I16:
867  case Mips::ATOMIC_CMP_SWAP_I16_P8:
868    return emitAtomicCmpSwapPartword(MI, BB, 2);
869  case Mips::ATOMIC_CMP_SWAP_I32:
870  case Mips::ATOMIC_CMP_SWAP_I32_P8:
871    return emitAtomicCmpSwap(MI, BB, 4);
872  case Mips::ATOMIC_CMP_SWAP_I64:
873  case Mips::ATOMIC_CMP_SWAP_I64_P8:
874    return emitAtomicCmpSwap(MI, BB, 8);
875  }
876}
877
878// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
879// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
880MachineBasicBlock *
881MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
882                                     unsigned Size, unsigned BinOpcode,
883                                     bool Nand) const {
884  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
885
886  MachineFunction *MF = BB->getParent();
887  MachineRegisterInfo &RegInfo = MF->getRegInfo();
888  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
889  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
890  DebugLoc DL = MI->getDebugLoc();
891  unsigned LL, SC, AND, NOR, ZERO, BEQ;
892
893  if (Size == 4) {
894    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
895    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
896    AND = Mips::AND;
897    NOR = Mips::NOR;
898    ZERO = Mips::ZERO;
899    BEQ = Mips::BEQ;
900  }
901  else {
902    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
903    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
904    AND = Mips::AND64;
905    NOR = Mips::NOR64;
906    ZERO = Mips::ZERO_64;
907    BEQ = Mips::BEQ64;
908  }
909
910  unsigned OldVal = MI->getOperand(0).getReg();
911  unsigned Ptr = MI->getOperand(1).getReg();
912  unsigned Incr = MI->getOperand(2).getReg();
913
914  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
915  unsigned AndRes = RegInfo.createVirtualRegister(RC);
916  unsigned Success = RegInfo.createVirtualRegister(RC);
917
918  // insert new blocks after the current block
919  const BasicBlock *LLVM_BB = BB->getBasicBlock();
920  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
921  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
922  MachineFunction::iterator It = BB;
923  ++It;
924  MF->insert(It, loopMBB);
925  MF->insert(It, exitMBB);
926
927  // Transfer the remainder of BB and its successor edges to exitMBB.
928  exitMBB->splice(exitMBB->begin(), BB,
929                  llvm::next(MachineBasicBlock::iterator(MI)),
930                  BB->end());
931  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
932
933  //  thisMBB:
934  //    ...
935  //    fallthrough --> loopMBB
936  BB->addSuccessor(loopMBB);
937  loopMBB->addSuccessor(loopMBB);
938  loopMBB->addSuccessor(exitMBB);
939
940  //  loopMBB:
941  //    ll oldval, 0(ptr)
942  //    <binop> storeval, oldval, incr
943  //    sc success, storeval, 0(ptr)
944  //    beq success, $0, loopMBB
945  BB = loopMBB;
946  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
947  if (Nand) {
948    //  and andres, oldval, incr
949    //  nor storeval, $0, andres
950    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
951    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
952  } else if (BinOpcode) {
953    //  <binop> storeval, oldval, incr
954    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
955  } else {
956    StoreVal = Incr;
957  }
958  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
959  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
960
961  MI->eraseFromParent();   // The instruction is gone now.
962
963  return exitMBB;
964}
965
966MachineBasicBlock *
967MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
968                                             MachineBasicBlock *BB,
969                                             unsigned Size, unsigned BinOpcode,
970                                             bool Nand) const {
971  assert((Size == 1 || Size == 2) &&
972      "Unsupported size for EmitAtomicBinaryPartial.");
973
974  MachineFunction *MF = BB->getParent();
975  MachineRegisterInfo &RegInfo = MF->getRegInfo();
976  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
977  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
978  DebugLoc DL = MI->getDebugLoc();
979  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
980  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
981
982  unsigned Dest = MI->getOperand(0).getReg();
983  unsigned Ptr = MI->getOperand(1).getReg();
984  unsigned Incr = MI->getOperand(2).getReg();
985
986  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
987  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
988  unsigned Mask = RegInfo.createVirtualRegister(RC);
989  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
990  unsigned NewVal = RegInfo.createVirtualRegister(RC);
991  unsigned OldVal = RegInfo.createVirtualRegister(RC);
992  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
993  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
994  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
995  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
996  unsigned AndRes = RegInfo.createVirtualRegister(RC);
997  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
998  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
999  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1000  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1001  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1002  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1003  unsigned Success = RegInfo.createVirtualRegister(RC);
1004
1005  // insert new blocks after the current block
1006  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1007  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1008  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1009  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1010  MachineFunction::iterator It = BB;
1011  ++It;
1012  MF->insert(It, loopMBB);
1013  MF->insert(It, sinkMBB);
1014  MF->insert(It, exitMBB);
1015
1016  // Transfer the remainder of BB and its successor edges to exitMBB.
1017  exitMBB->splice(exitMBB->begin(), BB,
1018                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1019  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1020
1021  BB->addSuccessor(loopMBB);
1022  loopMBB->addSuccessor(loopMBB);
1023  loopMBB->addSuccessor(sinkMBB);
1024  sinkMBB->addSuccessor(exitMBB);
1025
1026  //  thisMBB:
1027  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1028  //    and     alignedaddr,ptr,masklsb2
1029  //    andi    ptrlsb2,ptr,3
1030  //    sll     shiftamt,ptrlsb2,3
1031  //    ori     maskupper,$0,255               # 0xff
1032  //    sll     mask,maskupper,shiftamt
1033  //    nor     mask2,$0,mask
1034  //    sll     incr2,incr,shiftamt
1035
1036  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1037  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1038    .addReg(Mips::ZERO).addImm(-4);
1039  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1040    .addReg(Ptr).addReg(MaskLSB2);
1041  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1042  BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1043  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1044    .addReg(Mips::ZERO).addImm(MaskImm);
1045  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1046    .addReg(ShiftAmt).addReg(MaskUpper);
1047  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1048  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1049
1050  // atomic.load.binop
1051  // loopMBB:
1052  //   ll      oldval,0(alignedaddr)
1053  //   binop   binopres,oldval,incr2
1054  //   and     newval,binopres,mask
1055  //   and     maskedoldval0,oldval,mask2
1056  //   or      storeval,maskedoldval0,newval
1057  //   sc      success,storeval,0(alignedaddr)
1058  //   beq     success,$0,loopMBB
1059
1060  // atomic.swap
1061  // loopMBB:
1062  //   ll      oldval,0(alignedaddr)
1063  //   and     newval,incr2,mask
1064  //   and     maskedoldval0,oldval,mask2
1065  //   or      storeval,maskedoldval0,newval
1066  //   sc      success,storeval,0(alignedaddr)
1067  //   beq     success,$0,loopMBB
1068
1069  BB = loopMBB;
1070  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1071  if (Nand) {
1072    //  and andres, oldval, incr2
1073    //  nor binopres, $0, andres
1074    //  and newval, binopres, mask
1075    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1076    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1077      .addReg(Mips::ZERO).addReg(AndRes);
1078    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1079  } else if (BinOpcode) {
1080    //  <binop> binopres, oldval, incr2
1081    //  and newval, binopres, mask
1082    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1083    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1084  } else {// atomic.swap
1085    //  and newval, incr2, mask
1086    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1087  }
1088
1089  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1090    .addReg(OldVal).addReg(Mask2);
1091  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1092    .addReg(MaskedOldVal0).addReg(NewVal);
1093  BuildMI(BB, DL, TII->get(SC), Success)
1094    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1095  BuildMI(BB, DL, TII->get(Mips::BEQ))
1096    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1097
1098  //  sinkMBB:
1099  //    and     maskedoldval1,oldval,mask
1100  //    srl     srlres,maskedoldval1,shiftamt
1101  //    sll     sllres,srlres,24
1102  //    sra     dest,sllres,24
1103  BB = sinkMBB;
1104  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1105
1106  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1107    .addReg(OldVal).addReg(Mask);
1108  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1109      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1110  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1111      .addReg(SrlRes).addImm(ShiftImm);
1112  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1113      .addReg(SllRes).addImm(ShiftImm);
1114
1115  MI->eraseFromParent();   // The instruction is gone now.
1116
1117  return exitMBB;
1118}
1119
1120MachineBasicBlock *
1121MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1122                                      MachineBasicBlock *BB,
1123                                      unsigned Size) const {
1124  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1125
1126  MachineFunction *MF = BB->getParent();
1127  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1128  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1129  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1130  DebugLoc DL = MI->getDebugLoc();
1131  unsigned LL, SC, ZERO, BNE, BEQ;
1132
1133  if (Size == 4) {
1134    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1135    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1136    ZERO = Mips::ZERO;
1137    BNE = Mips::BNE;
1138    BEQ = Mips::BEQ;
1139  }
1140  else {
1141    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1142    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1143    ZERO = Mips::ZERO_64;
1144    BNE = Mips::BNE64;
1145    BEQ = Mips::BEQ64;
1146  }
1147
1148  unsigned Dest    = MI->getOperand(0).getReg();
1149  unsigned Ptr     = MI->getOperand(1).getReg();
1150  unsigned OldVal  = MI->getOperand(2).getReg();
1151  unsigned NewVal  = MI->getOperand(3).getReg();
1152
1153  unsigned Success = RegInfo.createVirtualRegister(RC);
1154
1155  // insert new blocks after the current block
1156  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1157  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1158  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1159  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1160  MachineFunction::iterator It = BB;
1161  ++It;
1162  MF->insert(It, loop1MBB);
1163  MF->insert(It, loop2MBB);
1164  MF->insert(It, exitMBB);
1165
1166  // Transfer the remainder of BB and its successor edges to exitMBB.
1167  exitMBB->splice(exitMBB->begin(), BB,
1168                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1169  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1170
1171  //  thisMBB:
1172  //    ...
1173  //    fallthrough --> loop1MBB
1174  BB->addSuccessor(loop1MBB);
1175  loop1MBB->addSuccessor(exitMBB);
1176  loop1MBB->addSuccessor(loop2MBB);
1177  loop2MBB->addSuccessor(loop1MBB);
1178  loop2MBB->addSuccessor(exitMBB);
1179
1180  // loop1MBB:
1181  //   ll dest, 0(ptr)
1182  //   bne dest, oldval, exitMBB
1183  BB = loop1MBB;
1184  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1185  BuildMI(BB, DL, TII->get(BNE))
1186    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1187
1188  // loop2MBB:
1189  //   sc success, newval, 0(ptr)
1190  //   beq success, $0, loop1MBB
1191  BB = loop2MBB;
1192  BuildMI(BB, DL, TII->get(SC), Success)
1193    .addReg(NewVal).addReg(Ptr).addImm(0);
1194  BuildMI(BB, DL, TII->get(BEQ))
1195    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1196
1197  MI->eraseFromParent();   // The instruction is gone now.
1198
1199  return exitMBB;
1200}
1201
1202MachineBasicBlock *
1203MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1204                                              MachineBasicBlock *BB,
1205                                              unsigned Size) const {
1206  assert((Size == 1 || Size == 2) &&
1207      "Unsupported size for EmitAtomicCmpSwapPartial.");
1208
1209  MachineFunction *MF = BB->getParent();
1210  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1211  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1212  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1213  DebugLoc DL = MI->getDebugLoc();
1214  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1215  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1216
1217  unsigned Dest    = MI->getOperand(0).getReg();
1218  unsigned Ptr     = MI->getOperand(1).getReg();
1219  unsigned CmpVal  = MI->getOperand(2).getReg();
1220  unsigned NewVal  = MI->getOperand(3).getReg();
1221
1222  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1223  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1224  unsigned Mask = RegInfo.createVirtualRegister(RC);
1225  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1226  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1227  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1228  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1229  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1230  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1231  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1232  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1233  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1234  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1235  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1236  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1237  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1238  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1239  unsigned Success = RegInfo.createVirtualRegister(RC);
1240
1241  // insert new blocks after the current block
1242  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1243  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1244  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1245  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1246  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1247  MachineFunction::iterator It = BB;
1248  ++It;
1249  MF->insert(It, loop1MBB);
1250  MF->insert(It, loop2MBB);
1251  MF->insert(It, sinkMBB);
1252  MF->insert(It, exitMBB);
1253
1254  // Transfer the remainder of BB and its successor edges to exitMBB.
1255  exitMBB->splice(exitMBB->begin(), BB,
1256                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1257  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1258
1259  BB->addSuccessor(loop1MBB);
1260  loop1MBB->addSuccessor(sinkMBB);
1261  loop1MBB->addSuccessor(loop2MBB);
1262  loop2MBB->addSuccessor(loop1MBB);
1263  loop2MBB->addSuccessor(sinkMBB);
1264  sinkMBB->addSuccessor(exitMBB);
1265
1266  // FIXME: computation of newval2 can be moved to loop2MBB.
1267  //  thisMBB:
1268  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1269  //    and     alignedaddr,ptr,masklsb2
1270  //    andi    ptrlsb2,ptr,3
1271  //    sll     shiftamt,ptrlsb2,3
1272  //    ori     maskupper,$0,255               # 0xff
1273  //    sll     mask,maskupper,shiftamt
1274  //    nor     mask2,$0,mask
1275  //    andi    maskedcmpval,cmpval,255
1276  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1277  //    andi    maskednewval,newval,255
1278  //    sll     shiftednewval,maskednewval,shiftamt
1279  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1280  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1281    .addReg(Mips::ZERO).addImm(-4);
1282  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1283    .addReg(Ptr).addReg(MaskLSB2);
1284  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1285  BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1286  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1287    .addReg(Mips::ZERO).addImm(MaskImm);
1288  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1289    .addReg(ShiftAmt).addReg(MaskUpper);
1290  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1291  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1292    .addReg(CmpVal).addImm(MaskImm);
1293  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1294    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1295  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1296    .addReg(NewVal).addImm(MaskImm);
1297  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1298    .addReg(ShiftAmt).addReg(MaskedNewVal);
1299
1300  //  loop1MBB:
1301  //    ll      oldval,0(alginedaddr)
1302  //    and     maskedoldval0,oldval,mask
1303  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1304  BB = loop1MBB;
1305  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1306  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1307    .addReg(OldVal).addReg(Mask);
1308  BuildMI(BB, DL, TII->get(Mips::BNE))
1309    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1310
1311  //  loop2MBB:
1312  //    and     maskedoldval1,oldval,mask2
1313  //    or      storeval,maskedoldval1,shiftednewval
1314  //    sc      success,storeval,0(alignedaddr)
1315  //    beq     success,$0,loop1MBB
1316  BB = loop2MBB;
1317  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1318    .addReg(OldVal).addReg(Mask2);
1319  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1320    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1321  BuildMI(BB, DL, TII->get(SC), Success)
1322      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1323  BuildMI(BB, DL, TII->get(Mips::BEQ))
1324      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1325
1326  //  sinkMBB:
1327  //    srl     srlres,maskedoldval0,shiftamt
1328  //    sll     sllres,srlres,24
1329  //    sra     dest,sllres,24
1330  BB = sinkMBB;
1331  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1332
1333  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1334      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1335  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1336      .addReg(SrlRes).addImm(ShiftImm);
1337  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1338      .addReg(SllRes).addImm(ShiftImm);
1339
1340  MI->eraseFromParent();   // The instruction is gone now.
1341
1342  return exitMBB;
1343}
1344
1345//===----------------------------------------------------------------------===//
1346//  Misc Lower Operation implementation
1347//===----------------------------------------------------------------------===//
1348SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1349  SDValue Chain = Op.getOperand(0);
1350  SDValue Table = Op.getOperand(1);
1351  SDValue Index = Op.getOperand(2);
1352  DebugLoc DL = Op.getDebugLoc();
1353  EVT PTy = getPointerTy();
1354  unsigned EntrySize =
1355    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1356
1357  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1358                      DAG.getConstant(EntrySize, PTy));
1359  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1360
1361  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1362  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1363                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1364                        0);
1365  Chain = Addr.getValue(1);
1366
1367  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
1368    // For PIC, the sequence is:
1369    // BRIND(load(Jumptable + index) + RelocBase)
1370    // RelocBase can be JumpTable, GOT or some sort of global base.
1371    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1372                       getPICJumpTableRelocBase(Table, DAG));
1373  }
1374
1375  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1376}
1377
1378SDValue MipsTargetLowering::
1379lowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1380{
1381  // The first operand is the chain, the second is the condition, the third is
1382  // the block to branch to if the condition is true.
1383  SDValue Chain = Op.getOperand(0);
1384  SDValue Dest = Op.getOperand(2);
1385  DebugLoc DL = Op.getDebugLoc();
1386
1387  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1388
1389  // Return if flag is not set by a floating point comparison.
1390  if (CondRes.getOpcode() != MipsISD::FPCmp)
1391    return Op;
1392
1393  SDValue CCNode  = CondRes.getOperand(2);
1394  Mips::CondCode CC =
1395    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1396  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1397  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1398  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1399                     Dest, CondRes);
1400}
1401
1402SDValue MipsTargetLowering::
1403lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1404{
1405  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1406
1407  // Return if flag is not set by a floating point comparison.
1408  if (Cond.getOpcode() != MipsISD::FPCmp)
1409    return Op;
1410
1411  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1412                      Op.getDebugLoc());
1413}
1414
1415SDValue MipsTargetLowering::
1416lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1417{
1418  DebugLoc DL = Op.getDebugLoc();
1419  EVT Ty = Op.getOperand(0).getValueType();
1420  SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
1421                             Op.getOperand(0), Op.getOperand(1),
1422                             Op.getOperand(4));
1423
1424  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1425                     Op.getOperand(3));
1426}
1427
1428SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1429  SDValue Cond = createFPCmp(DAG, Op);
1430
1431  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1432         "Floating point operand expected.");
1433
1434  SDValue True  = DAG.getConstant(1, MVT::i32);
1435  SDValue False = DAG.getConstant(0, MVT::i32);
1436
1437  return createCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1438}
1439
1440SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1441                                               SelectionDAG &DAG) const {
1442  // FIXME there isn't actually debug info here
1443  DebugLoc DL = Op.getDebugLoc();
1444  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1445
1446  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1447    const MipsTargetObjectFile &TLOF =
1448      (const MipsTargetObjectFile&)getObjFileLowering();
1449
1450    // %gp_rel relocation
1451    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1452      SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1453                                              MipsII::MO_GPREL);
1454      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1455                                      DAG.getVTList(MVT::i32), &GA, 1);
1456      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1457      return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1458    }
1459
1460    // %hi/%lo relocation
1461    return getAddrNonPIC(Op, DAG);
1462  }
1463
1464  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1465    return getAddrLocal(Op, DAG, HasMips64);
1466
1467  if (LargeGOT)
1468    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
1469                                 MipsII::MO_GOT_LO16);
1470
1471  return getAddrGlobal(Op, DAG,
1472                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1473}
1474
1475SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1476                                              SelectionDAG &DAG) const {
1477  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1478    return getAddrNonPIC(Op, DAG);
1479
1480  return getAddrLocal(Op, DAG, HasMips64);
1481}
1482
1483SDValue MipsTargetLowering::
1484lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1485{
1486  // If the relocation model is PIC, use the General Dynamic TLS Model or
1487  // Local Dynamic TLS model, otherwise use the Initial Exec or
1488  // Local Exec TLS Model.
1489
1490  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1491  DebugLoc DL = GA->getDebugLoc();
1492  const GlobalValue *GV = GA->getGlobal();
1493  EVT PtrVT = getPointerTy();
1494
1495  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1496
1497  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1498    // General Dynamic and Local Dynamic TLS Model.
1499    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1500                                                      : MipsII::MO_TLSGD;
1501
1502    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1503    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1504                                   getGlobalReg(DAG, PtrVT), TGA);
1505    unsigned PtrSize = PtrVT.getSizeInBits();
1506    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1507
1508    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1509
1510    ArgListTy Args;
1511    ArgListEntry Entry;
1512    Entry.Node = Argument;
1513    Entry.Ty = PtrTy;
1514    Args.push_back(Entry);
1515
1516    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1517                  false, false, false, false, 0, CallingConv::C,
1518                  /*IsTailCall=*/false, /*doesNotRet=*/false,
1519                  /*isReturnValueUsed=*/true,
1520                  TlsGetAddr, Args, DAG, DL);
1521    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1522
1523    SDValue Ret = CallResult.first;
1524
1525    if (model != TLSModel::LocalDynamic)
1526      return Ret;
1527
1528    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1529                                               MipsII::MO_DTPREL_HI);
1530    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1531    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1532                                               MipsII::MO_DTPREL_LO);
1533    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1534    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1535    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1536  }
1537
1538  SDValue Offset;
1539  if (model == TLSModel::InitialExec) {
1540    // Initial Exec TLS Model
1541    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1542                                             MipsII::MO_GOTTPREL);
1543    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1544                      TGA);
1545    Offset = DAG.getLoad(PtrVT, DL,
1546                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1547                         false, false, false, 0);
1548  } else {
1549    // Local Exec TLS Model
1550    assert(model == TLSModel::LocalExec);
1551    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1552                                               MipsII::MO_TPREL_HI);
1553    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1554                                               MipsII::MO_TPREL_LO);
1555    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1556    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1557    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1558  }
1559
1560  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1561  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1562}
1563
1564SDValue MipsTargetLowering::
1565lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1566{
1567  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1568    return getAddrNonPIC(Op, DAG);
1569
1570  return getAddrLocal(Op, DAG, HasMips64);
1571}
1572
1573SDValue MipsTargetLowering::
1574lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1575{
1576  // gp_rel relocation
1577  // FIXME: we should reference the constant pool using small data sections,
1578  // but the asm printer currently doesn't support this feature without
1579  // hacking it. This feature should come soon so we can uncomment the
1580  // stuff below.
1581  //if (IsInSmallSection(C->getType())) {
1582  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1583  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1584  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1585
1586  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1587    return getAddrNonPIC(Op, DAG);
1588
1589  return getAddrLocal(Op, DAG, HasMips64);
1590}
1591
1592SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1593  MachineFunction &MF = DAG.getMachineFunction();
1594  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1595
1596  DebugLoc DL = Op.getDebugLoc();
1597  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1598                                 getPointerTy());
1599
1600  // vastart just stores the address of the VarArgsFrameIndex slot into the
1601  // memory location argument.
1602  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1603  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1604                      MachinePointerInfo(SV), false, false, 0);
1605}
1606
1607static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1608  EVT TyX = Op.getOperand(0).getValueType();
1609  EVT TyY = Op.getOperand(1).getValueType();
1610  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1611  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1612  DebugLoc DL = Op.getDebugLoc();
1613  SDValue Res;
1614
1615  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1616  // to i32.
1617  SDValue X = (TyX == MVT::f32) ?
1618    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1619    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1620                Const1);
1621  SDValue Y = (TyY == MVT::f32) ?
1622    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1623    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1624                Const1);
1625
1626  if (HasR2) {
1627    // ext  E, Y, 31, 1  ; extract bit31 of Y
1628    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1629    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1630    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1631  } else {
1632    // sll SllX, X, 1
1633    // srl SrlX, SllX, 1
1634    // srl SrlY, Y, 31
1635    // sll SllY, SrlX, 31
1636    // or  Or, SrlX, SllY
1637    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1638    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1639    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1640    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1641    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1642  }
1643
1644  if (TyX == MVT::f32)
1645    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1646
1647  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1648                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1649  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1650}
1651
1652static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1653  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1654  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1655  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1656  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1657  DebugLoc DL = Op.getDebugLoc();
1658
1659  // Bitcast to integer nodes.
1660  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1661  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1662
1663  if (HasR2) {
1664    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1665    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1666    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1667                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1668
1669    if (WidthX > WidthY)
1670      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1671    else if (WidthY > WidthX)
1672      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1673
1674    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1675                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1676    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1677  }
1678
1679  // (d)sll SllX, X, 1
1680  // (d)srl SrlX, SllX, 1
1681  // (d)srl SrlY, Y, width(Y)-1
1682  // (d)sll SllY, SrlX, width(Y)-1
1683  // or     Or, SrlX, SllY
1684  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1685  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1686  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1687                             DAG.getConstant(WidthY - 1, MVT::i32));
1688
1689  if (WidthX > WidthY)
1690    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1691  else if (WidthY > WidthX)
1692    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1693
1694  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1695                             DAG.getConstant(WidthX - 1, MVT::i32));
1696  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1697  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1698}
1699
1700SDValue
1701MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1702  if (Subtarget->hasMips64())
1703    return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1704
1705  return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1706}
1707
1708static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1709  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1710  DebugLoc DL = Op.getDebugLoc();
1711
1712  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1713  // to i32.
1714  SDValue X = (Op.getValueType() == MVT::f32) ?
1715    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1716    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1717                Const1);
1718
1719  // Clear MSB.
1720  if (HasR2)
1721    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1722                      DAG.getRegister(Mips::ZERO, MVT::i32),
1723                      DAG.getConstant(31, MVT::i32), Const1, X);
1724  else {
1725    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1726    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1727  }
1728
1729  if (Op.getValueType() == MVT::f32)
1730    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1731
1732  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1733                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1734  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1735}
1736
1737static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1738  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1739  DebugLoc DL = Op.getDebugLoc();
1740
1741  // Bitcast to integer node.
1742  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1743
1744  // Clear MSB.
1745  if (HasR2)
1746    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1747                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1748                      DAG.getConstant(63, MVT::i32), Const1, X);
1749  else {
1750    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1751    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1752  }
1753
1754  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1755}
1756
1757SDValue
1758MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
1759  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1760    return lowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1761
1762  return lowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1763}
1764
1765SDValue MipsTargetLowering::
1766lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1767  // check the depth
1768  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1769         "Frame address can only be determined for current frame.");
1770
1771  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1772  MFI->setFrameAddressIsTaken(true);
1773  EVT VT = Op.getValueType();
1774  DebugLoc DL = Op.getDebugLoc();
1775  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1776                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1777  return FrameAddr;
1778}
1779
1780SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1781                                            SelectionDAG &DAG) const {
1782  // check the depth
1783  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1784         "Return address can be determined only for current frame.");
1785
1786  MachineFunction &MF = DAG.getMachineFunction();
1787  MachineFrameInfo *MFI = MF.getFrameInfo();
1788  MVT VT = Op.getSimpleValueType();
1789  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1790  MFI->setReturnAddressIsTaken(true);
1791
1792  // Return RA, which contains the return address. Mark it an implicit live-in.
1793  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1794  return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
1795}
1796
1797// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1798// generated from __builtin_eh_return (offset, handler)
1799// The effect of this is to adjust the stack pointer by "offset"
1800// and then branch to "handler".
1801SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1802                                                                     const {
1803  MachineFunction &MF = DAG.getMachineFunction();
1804  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1805
1806  MipsFI->setCallsEhReturn();
1807  SDValue Chain     = Op.getOperand(0);
1808  SDValue Offset    = Op.getOperand(1);
1809  SDValue Handler   = Op.getOperand(2);
1810  DebugLoc DL       = Op.getDebugLoc();
1811  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
1812
1813  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1814  // EH_RETURN nodes, so that instructions are emitted back-to-back.
1815  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
1816  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
1817  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1818  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1819  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1820                     DAG.getRegister(OffsetReg, Ty),
1821                     DAG.getRegister(AddrReg, getPointerTy()),
1822                     Chain.getValue(1));
1823}
1824
1825SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1826                                              SelectionDAG &DAG) const {
1827  // FIXME: Need pseudo-fence for 'singlethread' fences
1828  // FIXME: Set SType for weaker fences where supported/appropriate.
1829  unsigned SType = 0;
1830  DebugLoc DL = Op.getDebugLoc();
1831  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1832                     DAG.getConstant(SType, MVT::i32));
1833}
1834
1835SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1836                                                SelectionDAG &DAG) const {
1837  DebugLoc DL = Op.getDebugLoc();
1838  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1839  SDValue Shamt = Op.getOperand(2);
1840
1841  // if shamt < 32:
1842  //  lo = (shl lo, shamt)
1843  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1844  // else:
1845  //  lo = 0
1846  //  hi = (shl lo, shamt[4:0])
1847  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1848                            DAG.getConstant(-1, MVT::i32));
1849  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1850                                      DAG.getConstant(1, MVT::i32));
1851  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1852                                     Not);
1853  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1854  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1855  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1856  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1857                             DAG.getConstant(0x20, MVT::i32));
1858  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1859                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1860  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1861
1862  SDValue Ops[2] = {Lo, Hi};
1863  return DAG.getMergeValues(Ops, 2, DL);
1864}
1865
1866SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1867                                                 bool IsSRA) const {
1868  DebugLoc DL = Op.getDebugLoc();
1869  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1870  SDValue Shamt = Op.getOperand(2);
1871
1872  // if shamt < 32:
1873  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1874  //  if isSRA:
1875  //    hi = (sra hi, shamt)
1876  //  else:
1877  //    hi = (srl hi, shamt)
1878  // else:
1879  //  if isSRA:
1880  //   lo = (sra hi, shamt[4:0])
1881  //   hi = (sra hi, 31)
1882  //  else:
1883  //   lo = (srl hi, shamt[4:0])
1884  //   hi = 0
1885  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1886                            DAG.getConstant(-1, MVT::i32));
1887  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1888                                     DAG.getConstant(1, MVT::i32));
1889  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1890  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1891  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1892  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1893                                     Hi, Shamt);
1894  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1895                             DAG.getConstant(0x20, MVT::i32));
1896  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1897                                DAG.getConstant(31, MVT::i32));
1898  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1899  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1900                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
1901                   ShiftRightHi);
1902
1903  SDValue Ops[2] = {Lo, Hi};
1904  return DAG.getMergeValues(Ops, 2, DL);
1905}
1906
1907static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
1908                            SDValue Chain, SDValue Src, unsigned Offset) {
1909  SDValue Ptr = LD->getBasePtr();
1910  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
1911  EVT BasePtrVT = Ptr.getValueType();
1912  DebugLoc DL = LD->getDebugLoc();
1913  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1914
1915  if (Offset)
1916    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1917                      DAG.getConstant(Offset, BasePtrVT));
1918
1919  SDValue Ops[] = { Chain, Ptr, Src };
1920  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
1921                                 LD->getMemOperand());
1922}
1923
1924// Expand an unaligned 32 or 64-bit integer load node.
1925SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1926  LoadSDNode *LD = cast<LoadSDNode>(Op);
1927  EVT MemVT = LD->getMemoryVT();
1928
1929  // Return if load is aligned or if MemVT is neither i32 nor i64.
1930  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
1931      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
1932    return SDValue();
1933
1934  bool IsLittle = Subtarget->isLittle();
1935  EVT VT = Op.getValueType();
1936  ISD::LoadExtType ExtType = LD->getExtensionType();
1937  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
1938
1939  assert((VT == MVT::i32) || (VT == MVT::i64));
1940
1941  // Expand
1942  //  (set dst, (i64 (load baseptr)))
1943  // to
1944  //  (set tmp, (ldl (add baseptr, 7), undef))
1945  //  (set dst, (ldr baseptr, tmp))
1946  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
1947    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
1948                               IsLittle ? 7 : 0);
1949    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
1950                        IsLittle ? 0 : 7);
1951  }
1952
1953  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
1954                             IsLittle ? 3 : 0);
1955  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
1956                             IsLittle ? 0 : 3);
1957
1958  // Expand
1959  //  (set dst, (i32 (load baseptr))) or
1960  //  (set dst, (i64 (sextload baseptr))) or
1961  //  (set dst, (i64 (extload baseptr)))
1962  // to
1963  //  (set tmp, (lwl (add baseptr, 3), undef))
1964  //  (set dst, (lwr baseptr, tmp))
1965  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
1966      (ExtType == ISD::EXTLOAD))
1967    return LWR;
1968
1969  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
1970
1971  // Expand
1972  //  (set dst, (i64 (zextload baseptr)))
1973  // to
1974  //  (set tmp0, (lwl (add baseptr, 3), undef))
1975  //  (set tmp1, (lwr baseptr, tmp0))
1976  //  (set tmp2, (shl tmp1, 32))
1977  //  (set dst, (srl tmp2, 32))
1978  DebugLoc DL = LD->getDebugLoc();
1979  SDValue Const32 = DAG.getConstant(32, MVT::i32);
1980  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
1981  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
1982  SDValue Ops[] = { SRL, LWR.getValue(1) };
1983  return DAG.getMergeValues(Ops, 2, DL);
1984}
1985
1986static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
1987                             SDValue Chain, unsigned Offset) {
1988  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
1989  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
1990  DebugLoc DL = SD->getDebugLoc();
1991  SDVTList VTList = DAG.getVTList(MVT::Other);
1992
1993  if (Offset)
1994    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1995                      DAG.getConstant(Offset, BasePtrVT));
1996
1997  SDValue Ops[] = { Chain, Value, Ptr };
1998  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
1999                                 SD->getMemOperand());
2000}
2001
2002// Expand an unaligned 32 or 64-bit integer store node.
2003SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2004  StoreSDNode *SD = cast<StoreSDNode>(Op);
2005  EVT MemVT = SD->getMemoryVT();
2006
2007  // Return if store is aligned or if MemVT is neither i32 nor i64.
2008  if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2009      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2010    return SDValue();
2011
2012  bool IsLittle = Subtarget->isLittle();
2013  SDValue Value = SD->getValue(), Chain = SD->getChain();
2014  EVT VT = Value.getValueType();
2015
2016  // Expand
2017  //  (store val, baseptr) or
2018  //  (truncstore val, baseptr)
2019  // to
2020  //  (swl val, (add baseptr, 3))
2021  //  (swr val, baseptr)
2022  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2023    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2024                                IsLittle ? 3 : 0);
2025    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2026  }
2027
2028  assert(VT == MVT::i64);
2029
2030  // Expand
2031  //  (store val, baseptr)
2032  // to
2033  //  (sdl val, (add baseptr, 7))
2034  //  (sdr val, baseptr)
2035  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2036  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2037}
2038
2039SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2040  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2041      || cast<ConstantSDNode>
2042        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2043      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2044    return SDValue();
2045
2046  // The pattern
2047  //   (add (frameaddr 0), (frame_to_args_offset))
2048  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2049  //   (add FrameObject, 0)
2050  // where FrameObject is a fixed StackObject with offset 0 which points to
2051  // the old stack pointer.
2052  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2053  EVT ValTy = Op->getValueType(0);
2054  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2055  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2056  return DAG.getNode(ISD::ADD, Op->getDebugLoc(), ValTy, InArgsAddr,
2057                     DAG.getConstant(0, ValTy));
2058}
2059
2060//===----------------------------------------------------------------------===//
2061//                      Calling Convention Implementation
2062//===----------------------------------------------------------------------===//
2063
2064//===----------------------------------------------------------------------===//
2065// TODO: Implement a generic logic using tblgen that can support this.
2066// Mips O32 ABI rules:
2067// ---
2068// i32 - Passed in A0, A1, A2, A3 and stack
2069// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2070//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2071// f64 - Only passed in two aliased f32 registers if no int reg has been used
2072//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2073//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2074//       go to stack.
2075//
2076//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2077//===----------------------------------------------------------------------===//
2078
2079static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2080                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2081                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2082
2083  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2084
2085  static const uint16_t IntRegs[] = {
2086      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2087  };
2088  static const uint16_t F32Regs[] = {
2089      Mips::F12, Mips::F14
2090  };
2091  static const uint16_t F64Regs[] = {
2092      Mips::D6, Mips::D7
2093  };
2094
2095  // Do not process byval args here.
2096  if (ArgFlags.isByVal())
2097    return true;
2098
2099  // Promote i8 and i16
2100  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2101    LocVT = MVT::i32;
2102    if (ArgFlags.isSExt())
2103      LocInfo = CCValAssign::SExt;
2104    else if (ArgFlags.isZExt())
2105      LocInfo = CCValAssign::ZExt;
2106    else
2107      LocInfo = CCValAssign::AExt;
2108  }
2109
2110  unsigned Reg;
2111
2112  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2113  // is true: function is vararg, argument is 3rd or higher, there is previous
2114  // argument which is not f32 or f64.
2115  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2116      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2117  unsigned OrigAlign = ArgFlags.getOrigAlign();
2118  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2119
2120  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2121    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2122    // If this is the first part of an i64 arg,
2123    // the allocated register must be either A0 or A2.
2124    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2125      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2126    LocVT = MVT::i32;
2127  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2128    // Allocate int register and shadow next int register. If first
2129    // available register is Mips::A1 or Mips::A3, shadow it too.
2130    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2131    if (Reg == Mips::A1 || Reg == Mips::A3)
2132      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2133    State.AllocateReg(IntRegs, IntRegsSize);
2134    LocVT = MVT::i32;
2135  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2136    // we are guaranteed to find an available float register
2137    if (ValVT == MVT::f32) {
2138      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2139      // Shadow int register
2140      State.AllocateReg(IntRegs, IntRegsSize);
2141    } else {
2142      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2143      // Shadow int registers
2144      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2145      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2146        State.AllocateReg(IntRegs, IntRegsSize);
2147      State.AllocateReg(IntRegs, IntRegsSize);
2148    }
2149  } else
2150    llvm_unreachable("Cannot handle this ValVT.");
2151
2152  if (!Reg) {
2153    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2154                                          OrigAlign);
2155    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2156  } else
2157    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2158
2159  return false;
2160}
2161
2162#include "MipsGenCallingConv.inc"
2163
2164//===----------------------------------------------------------------------===//
2165//                  Call Calling Convention Implementation
2166//===----------------------------------------------------------------------===//
2167
2168static const unsigned O32IntRegsSize = 4;
2169
2170// Return next O32 integer argument register.
2171static unsigned getNextIntArgReg(unsigned Reg) {
2172  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2173  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2174}
2175
2176SDValue
2177MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2178                                   SDValue Chain, SDValue Arg, DebugLoc DL,
2179                                   bool IsTailCall, SelectionDAG &DAG) const {
2180  if (!IsTailCall) {
2181    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2182                                 DAG.getIntPtrConstant(Offset));
2183    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2184                        false, 0);
2185  }
2186
2187  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2188  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2189  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2190  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2191                      /*isVolatile=*/ true, false, 0);
2192}
2193
2194void MipsTargetLowering::
2195getOpndList(SmallVectorImpl<SDValue> &Ops,
2196            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2197            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2198            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2199  // Insert node "GP copy globalreg" before call to function.
2200  //
2201  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2202  // in PIC mode) allow symbols to be resolved via lazy binding.
2203  // The lazy binding stub requires GP to point to the GOT.
2204  if (IsPICCall && !InternalLinkage) {
2205    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2206    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2207    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2208  }
2209
2210  // Build a sequence of copy-to-reg nodes chained together with token
2211  // chain and flag operands which copy the outgoing args into registers.
2212  // The InFlag in necessary since all emitted instructions must be
2213  // stuck together.
2214  SDValue InFlag;
2215
2216  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2217    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2218                                 RegsToPass[i].second, InFlag);
2219    InFlag = Chain.getValue(1);
2220  }
2221
2222  // Add argument registers to the end of the list so that they are
2223  // known live into the call.
2224  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2225    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2226                                      RegsToPass[i].second.getValueType()));
2227
2228  // Add a register mask operand representing the call-preserved registers.
2229  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2230  const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2231  assert(Mask && "Missing call preserved mask for calling convention");
2232  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2233
2234  if (InFlag.getNode())
2235    Ops.push_back(InFlag);
2236}
2237
2238/// LowerCall - functions arguments are copied from virtual regs to
2239/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2240SDValue
2241MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2242                              SmallVectorImpl<SDValue> &InVals) const {
2243  SelectionDAG &DAG                     = CLI.DAG;
2244  DebugLoc &DL                          = CLI.DL;
2245  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2246  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2247  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2248  SDValue Chain                         = CLI.Chain;
2249  SDValue Callee                        = CLI.Callee;
2250  bool &IsTailCall                      = CLI.IsTailCall;
2251  CallingConv::ID CallConv              = CLI.CallConv;
2252  bool IsVarArg                         = CLI.IsVarArg;
2253
2254  MachineFunction &MF = DAG.getMachineFunction();
2255  MachineFrameInfo *MFI = MF.getFrameInfo();
2256  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2257  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2258
2259  // Analyze operands of the call, assigning locations to each operand.
2260  SmallVector<CCValAssign, 16> ArgLocs;
2261  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2262                 getTargetMachine(), ArgLocs, *DAG.getContext());
2263  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2264
2265  MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2266                                 getTargetMachine().Options.UseSoftFloat,
2267                                 Callee.getNode(), CLI.Args);
2268
2269  // Get a count of how many bytes are to be pushed on the stack.
2270  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2271
2272  // Check if it's really possible to do a tail call.
2273  if (IsTailCall)
2274    IsTailCall =
2275      isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2276                                        *MF.getInfo<MipsFunctionInfo>());
2277
2278  if (IsTailCall)
2279    ++NumTailCalls;
2280
2281  // Chain is the output chain of the last Load/Store or CopyToReg node.
2282  // ByValChain is the output chain of the last Memcpy node created for copying
2283  // byval arguments to the stack.
2284  unsigned StackAlignment = TFL->getStackAlignment();
2285  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2286  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2287
2288  if (!IsTailCall)
2289    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
2290
2291  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
2292                                        IsN64 ? Mips::SP_64 : Mips::SP,
2293                                        getPointerTy());
2294
2295  // With EABI is it possible to have 16 args on registers.
2296  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2297  SmallVector<SDValue, 8> MemOpChains;
2298  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2299
2300  // Walk the register/memloc assignments, inserting copies/loads.
2301  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2302    SDValue Arg = OutVals[i];
2303    CCValAssign &VA = ArgLocs[i];
2304    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2305    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2306
2307    // ByVal Arg.
2308    if (Flags.isByVal()) {
2309      assert(Flags.getByValSize() &&
2310             "ByVal args of size 0 should have been ignored by front-end.");
2311      assert(ByValArg != MipsCCInfo.byval_end());
2312      assert(!IsTailCall &&
2313             "Do not tail-call optimize if there is a byval argument.");
2314      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2315                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2316      ++ByValArg;
2317      continue;
2318    }
2319
2320    // Promote the value if needed.
2321    switch (VA.getLocInfo()) {
2322    default: llvm_unreachable("Unknown loc info!");
2323    case CCValAssign::Full:
2324      if (VA.isRegLoc()) {
2325        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2326            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2327            (ValVT == MVT::i64 && LocVT == MVT::f64))
2328          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2329        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2330          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2331                                   Arg, DAG.getConstant(0, MVT::i32));
2332          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2333                                   Arg, DAG.getConstant(1, MVT::i32));
2334          if (!Subtarget->isLittle())
2335            std::swap(Lo, Hi);
2336          unsigned LocRegLo = VA.getLocReg();
2337          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2338          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2339          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2340          continue;
2341        }
2342      }
2343      break;
2344    case CCValAssign::SExt:
2345      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2346      break;
2347    case CCValAssign::ZExt:
2348      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2349      break;
2350    case CCValAssign::AExt:
2351      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2352      break;
2353    }
2354
2355    // Arguments that can be passed on register must be kept at
2356    // RegsToPass vector
2357    if (VA.isRegLoc()) {
2358      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2359      continue;
2360    }
2361
2362    // Register can't get to this point...
2363    assert(VA.isMemLoc());
2364
2365    // emit ISD::STORE whichs stores the
2366    // parameter value to a stack Location
2367    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2368                                         Chain, Arg, DL, IsTailCall, DAG));
2369  }
2370
2371  // Transform all store nodes into one single node because all store
2372  // nodes are independent of each other.
2373  if (!MemOpChains.empty())
2374    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2375                        &MemOpChains[0], MemOpChains.size());
2376
2377  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2378  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2379  // node so that legalize doesn't hack it.
2380  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2381  bool GlobalOrExternal = false, InternalLinkage = false;
2382  SDValue CalleeLo;
2383
2384  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2385    if (IsPICCall) {
2386      InternalLinkage = G->getGlobal()->hasInternalLinkage();
2387
2388      if (InternalLinkage)
2389        Callee = getAddrLocal(Callee, DAG, HasMips64);
2390      else if (LargeGOT)
2391        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2392                                       MipsII::MO_CALL_LO16);
2393      else
2394        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2395    } else
2396      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2397                                          MipsII::MO_NO_FLAG);
2398    GlobalOrExternal = true;
2399  }
2400  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2401    if (!IsN64 && !IsPIC) // !N64 && static
2402      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2403                                            MipsII::MO_NO_FLAG);
2404    else if (LargeGOT)
2405      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2406                                     MipsII::MO_CALL_LO16);
2407    else // N64 || PIC
2408      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2409
2410    GlobalOrExternal = true;
2411  }
2412
2413  SmallVector<SDValue, 8> Ops(1, Chain);
2414  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2415
2416  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2417              CLI, Callee, Chain);
2418
2419  if (IsTailCall)
2420    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
2421
2422  Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
2423  SDValue InFlag = Chain.getValue(1);
2424
2425  // Create the CALLSEQ_END node.
2426  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2427                             DAG.getIntPtrConstant(0, true), InFlag);
2428  InFlag = Chain.getValue(1);
2429
2430  // Handle result values, copying them out of physregs into vregs that we
2431  // return.
2432  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2433                         Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2434}
2435
2436/// LowerCallResult - Lower the result values of a call into the
2437/// appropriate copies out of appropriate physical registers.
2438SDValue
2439MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2440                                    CallingConv::ID CallConv, bool IsVarArg,
2441                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2442                                    DebugLoc DL, SelectionDAG &DAG,
2443                                    SmallVectorImpl<SDValue> &InVals,
2444                                    const SDNode *CallNode,
2445                                    const Type *RetTy) const {
2446  // Assign locations to each value returned by this call.
2447  SmallVector<CCValAssign, 16> RVLocs;
2448  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2449                 getTargetMachine(), RVLocs, *DAG.getContext());
2450  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2451
2452  MipsCCInfo.analyzeCallResult(Ins, getTargetMachine().Options.UseSoftFloat,
2453                               CallNode, RetTy);
2454
2455  // Copy all of the result registers out of their specified physreg.
2456  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2457    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2458                                     RVLocs[i].getLocVT(), InFlag);
2459    Chain = Val.getValue(1);
2460    InFlag = Val.getValue(2);
2461
2462    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2463      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2464
2465    InVals.push_back(Val);
2466  }
2467
2468  return Chain;
2469}
2470
2471//===----------------------------------------------------------------------===//
2472//             Formal Arguments Calling Convention Implementation
2473//===----------------------------------------------------------------------===//
2474/// LowerFormalArguments - transform physical registers into virtual registers
2475/// and generate load operations for arguments places on the stack.
2476SDValue
2477MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2478                                         CallingConv::ID CallConv,
2479                                         bool IsVarArg,
2480                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2481                                         DebugLoc DL, SelectionDAG &DAG,
2482                                         SmallVectorImpl<SDValue> &InVals)
2483                                          const {
2484  MachineFunction &MF = DAG.getMachineFunction();
2485  MachineFrameInfo *MFI = MF.getFrameInfo();
2486  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2487
2488  MipsFI->setVarArgsFrameIndex(0);
2489
2490  // Used with vargs to acumulate store chains.
2491  std::vector<SDValue> OutChains;
2492
2493  // Assign locations to all of the incoming arguments.
2494  SmallVector<CCValAssign, 16> ArgLocs;
2495  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2496                 getTargetMachine(), ArgLocs, *DAG.getContext());
2497  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2498  Function::const_arg_iterator FuncArg =
2499    DAG.getMachineFunction().getFunction()->arg_begin();
2500  bool UseSoftFloat = getTargetMachine().Options.UseSoftFloat;
2501
2502  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2503  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2504                           MipsCCInfo.hasByValArg());
2505
2506  unsigned CurArgIdx = 0;
2507  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2508
2509  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2510    CCValAssign &VA = ArgLocs[i];
2511    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2512    CurArgIdx = Ins[i].OrigArgIndex;
2513    EVT ValVT = VA.getValVT();
2514    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2515    bool IsRegLoc = VA.isRegLoc();
2516
2517    if (Flags.isByVal()) {
2518      assert(Flags.getByValSize() &&
2519             "ByVal args of size 0 should have been ignored by front-end.");
2520      assert(ByValArg != MipsCCInfo.byval_end());
2521      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2522                    MipsCCInfo, *ByValArg);
2523      ++ByValArg;
2524      continue;
2525    }
2526
2527    // Arguments stored on registers
2528    if (IsRegLoc) {
2529      EVT RegVT = VA.getLocVT();
2530      unsigned ArgReg = VA.getLocReg();
2531      const TargetRegisterClass *RC;
2532
2533      if (RegVT == MVT::i32)
2534        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
2535                                        &Mips::CPURegsRegClass;
2536      else if (RegVT == MVT::i64)
2537        RC = &Mips::CPU64RegsRegClass;
2538      else if (RegVT == MVT::f32)
2539        RC = &Mips::FGR32RegClass;
2540      else if (RegVT == MVT::f64)
2541        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
2542      else
2543        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2544
2545      // Transform the arguments stored on
2546      // physical registers into virtual ones
2547      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2548      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2549
2550      // If this is an 8 or 16-bit value, it has been passed promoted
2551      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2552      // truncate to the right size.
2553      if (VA.getLocInfo() != CCValAssign::Full) {
2554        unsigned Opcode = 0;
2555        if (VA.getLocInfo() == CCValAssign::SExt)
2556          Opcode = ISD::AssertSext;
2557        else if (VA.getLocInfo() == CCValAssign::ZExt)
2558          Opcode = ISD::AssertZext;
2559        if (Opcode)
2560          ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2561                                 DAG.getValueType(ValVT));
2562        ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2563      }
2564
2565      // Handle floating point arguments passed in integer registers and
2566      // long double arguments passed in floating point registers.
2567      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2568          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2569          (RegVT == MVT::f64 && ValVT == MVT::i64))
2570        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2571      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2572        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2573                                  getNextIntArgReg(ArgReg), RC);
2574        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2575        if (!Subtarget->isLittle())
2576          std::swap(ArgValue, ArgValue2);
2577        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2578                               ArgValue, ArgValue2);
2579      }
2580
2581      InVals.push_back(ArgValue);
2582    } else { // VA.isRegLoc()
2583
2584      // sanity check
2585      assert(VA.isMemLoc());
2586
2587      // The stack pointer offset is relative to the caller stack frame.
2588      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2589                                      VA.getLocMemOffset(), true);
2590
2591      // Create load nodes to retrieve arguments from the stack
2592      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2593      InVals.push_back(DAG.getLoad(ValVT, DL, Chain, FIN,
2594                                   MachinePointerInfo::getFixedStack(FI),
2595                                   false, false, false, 0));
2596    }
2597  }
2598
2599  // The mips ABIs for returning structs by value requires that we copy
2600  // the sret argument into $v0 for the return. Save the argument into
2601  // a virtual register so that we can access it from the return points.
2602  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2603    unsigned Reg = MipsFI->getSRetReturnReg();
2604    if (!Reg) {
2605      Reg = MF.getRegInfo().
2606        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
2607      MipsFI->setSRetReturnReg(Reg);
2608    }
2609    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
2610    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2611  }
2612
2613  if (IsVarArg)
2614    writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2615
2616  // All stores are grouped in one node to allow the matching between
2617  // the size of Ins and InVals. This only happens when on varg functions
2618  if (!OutChains.empty()) {
2619    OutChains.push_back(Chain);
2620    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2621                        &OutChains[0], OutChains.size());
2622  }
2623
2624  return Chain;
2625}
2626
2627//===----------------------------------------------------------------------===//
2628//               Return Value Calling Convention Implementation
2629//===----------------------------------------------------------------------===//
2630
2631bool
2632MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2633                                   MachineFunction &MF, bool IsVarArg,
2634                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2635                                   LLVMContext &Context) const {
2636  SmallVector<CCValAssign, 16> RVLocs;
2637  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2638                 RVLocs, Context);
2639  return CCInfo.CheckReturn(Outs, RetCC_Mips);
2640}
2641
2642SDValue
2643MipsTargetLowering::LowerReturn(SDValue Chain,
2644                                CallingConv::ID CallConv, bool IsVarArg,
2645                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2646                                const SmallVectorImpl<SDValue> &OutVals,
2647                                DebugLoc DL, SelectionDAG &DAG) const {
2648  // CCValAssign - represent the assignment of
2649  // the return value to a location
2650  SmallVector<CCValAssign, 16> RVLocs;
2651  MachineFunction &MF = DAG.getMachineFunction();
2652
2653  // CCState - Info about the registers and stack slot.
2654  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2655                 *DAG.getContext());
2656  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2657
2658  // Analyze return values.
2659  MipsCCInfo.analyzeReturn(Outs, getTargetMachine().Options.UseSoftFloat,
2660                           MF.getFunction()->getReturnType());
2661
2662  SDValue Flag;
2663  SmallVector<SDValue, 4> RetOps(1, Chain);
2664
2665  // Copy the result values into the output registers.
2666  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2667    SDValue Val = OutVals[i];
2668    CCValAssign &VA = RVLocs[i];
2669    assert(VA.isRegLoc() && "Can only return in registers!");
2670
2671    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2672      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2673
2674    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2675
2676    // Guarantee that all emitted copies are stuck together with flags.
2677    Flag = Chain.getValue(1);
2678    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2679  }
2680
2681  // The mips ABIs for returning structs by value requires that we copy
2682  // the sret argument into $v0 for the return. We saved the argument into
2683  // a virtual register in the entry block, so now we copy the value out
2684  // and into $v0.
2685  if (MF.getFunction()->hasStructRetAttr()) {
2686    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2687    unsigned Reg = MipsFI->getSRetReturnReg();
2688
2689    if (!Reg)
2690      llvm_unreachable("sret virtual register not created in the entry block");
2691    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2692    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
2693
2694    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2695    Flag = Chain.getValue(1);
2696    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2697  }
2698
2699  RetOps[0] = Chain;  // Update chain.
2700
2701  // Add the flag if we have it.
2702  if (Flag.getNode())
2703    RetOps.push_back(Flag);
2704
2705  // Return on Mips is always a "jr $ra"
2706  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
2707}
2708
2709//===----------------------------------------------------------------------===//
2710//                           Mips Inline Assembly Support
2711//===----------------------------------------------------------------------===//
2712
2713/// getConstraintType - Given a constraint letter, return the type of
2714/// constraint it is for this target.
2715MipsTargetLowering::ConstraintType MipsTargetLowering::
2716getConstraintType(const std::string &Constraint) const
2717{
2718  // Mips specific constrainy
2719  // GCC config/mips/constraints.md
2720  //
2721  // 'd' : An address register. Equivalent to r
2722  //       unless generating MIPS16 code.
2723  // 'y' : Equivalent to r; retained for
2724  //       backwards compatibility.
2725  // 'c' : A register suitable for use in an indirect
2726  //       jump. This will always be $25 for -mabicalls.
2727  // 'l' : The lo register. 1 word storage.
2728  // 'x' : The hilo register pair. Double word storage.
2729  if (Constraint.size() == 1) {
2730    switch (Constraint[0]) {
2731      default : break;
2732      case 'd':
2733      case 'y':
2734      case 'f':
2735      case 'c':
2736      case 'l':
2737      case 'x':
2738        return C_RegisterClass;
2739      case 'R':
2740        return C_Memory;
2741    }
2742  }
2743  return TargetLowering::getConstraintType(Constraint);
2744}
2745
2746/// Examine constraint type and operand type and determine a weight value.
2747/// This object must already have been set up with the operand type
2748/// and the current alternative constraint selected.
2749TargetLowering::ConstraintWeight
2750MipsTargetLowering::getSingleConstraintMatchWeight(
2751    AsmOperandInfo &info, const char *constraint) const {
2752  ConstraintWeight weight = CW_Invalid;
2753  Value *CallOperandVal = info.CallOperandVal;
2754    // If we don't have a value, we can't do a match,
2755    // but allow it at the lowest weight.
2756  if (CallOperandVal == NULL)
2757    return CW_Default;
2758  Type *type = CallOperandVal->getType();
2759  // Look at the constraint type.
2760  switch (*constraint) {
2761  default:
2762    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2763    break;
2764  case 'd':
2765  case 'y':
2766    if (type->isIntegerTy())
2767      weight = CW_Register;
2768    break;
2769  case 'f':
2770    if (type->isFloatTy())
2771      weight = CW_Register;
2772    break;
2773  case 'c': // $25 for indirect jumps
2774  case 'l': // lo register
2775  case 'x': // hilo register pair
2776      if (type->isIntegerTy())
2777      weight = CW_SpecificReg;
2778      break;
2779  case 'I': // signed 16 bit immediate
2780  case 'J': // integer zero
2781  case 'K': // unsigned 16 bit immediate
2782  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2783  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2784  case 'O': // signed 15 bit immediate (+- 16383)
2785  case 'P': // immediate in the range of 65535 to 1 (inclusive)
2786    if (isa<ConstantInt>(CallOperandVal))
2787      weight = CW_Constant;
2788    break;
2789  case 'R':
2790    weight = CW_Memory;
2791    break;
2792  }
2793  return weight;
2794}
2795
2796/// Given a register class constraint, like 'r', if this corresponds directly
2797/// to an LLVM register class, return a register of 0 and the register class
2798/// pointer.
2799std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2800getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
2801{
2802  if (Constraint.size() == 1) {
2803    switch (Constraint[0]) {
2804    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2805    case 'y': // Same as 'r'. Exists for compatibility.
2806    case 'r':
2807      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
2808        if (Subtarget->inMips16Mode())
2809          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
2810        return std::make_pair(0U, &Mips::CPURegsRegClass);
2811      }
2812      if (VT == MVT::i64 && !HasMips64)
2813        return std::make_pair(0U, &Mips::CPURegsRegClass);
2814      if (VT == MVT::i64 && HasMips64)
2815        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
2816      // This will generate an error message
2817      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2818    case 'f':
2819      if (VT == MVT::f32)
2820        return std::make_pair(0U, &Mips::FGR32RegClass);
2821      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2822        if (Subtarget->isFP64bit())
2823          return std::make_pair(0U, &Mips::FGR64RegClass);
2824        return std::make_pair(0U, &Mips::AFGR64RegClass);
2825      }
2826      break;
2827    case 'c': // register suitable for indirect jump
2828      if (VT == MVT::i32)
2829        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
2830      assert(VT == MVT::i64 && "Unexpected type.");
2831      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
2832    case 'l': // register suitable for indirect jump
2833      if (VT == MVT::i32)
2834        return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
2835      return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
2836    case 'x': // register suitable for indirect jump
2837      // Fixme: Not triggering the use of both hi and low
2838      // This will generate an error message
2839      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2840    }
2841  }
2842  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2843}
2844
2845/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2846/// vector.  If it is invalid, don't add anything to Ops.
2847void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2848                                                     std::string &Constraint,
2849                                                     std::vector<SDValue>&Ops,
2850                                                     SelectionDAG &DAG) const {
2851  SDValue Result(0, 0);
2852
2853  // Only support length 1 constraints for now.
2854  if (Constraint.length() > 1) return;
2855
2856  char ConstraintLetter = Constraint[0];
2857  switch (ConstraintLetter) {
2858  default: break; // This will fall through to the generic implementation
2859  case 'I': // Signed 16 bit constant
2860    // If this fails, the parent routine will give an error
2861    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2862      EVT Type = Op.getValueType();
2863      int64_t Val = C->getSExtValue();
2864      if (isInt<16>(Val)) {
2865        Result = DAG.getTargetConstant(Val, Type);
2866        break;
2867      }
2868    }
2869    return;
2870  case 'J': // integer zero
2871    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2872      EVT Type = Op.getValueType();
2873      int64_t Val = C->getZExtValue();
2874      if (Val == 0) {
2875        Result = DAG.getTargetConstant(0, Type);
2876        break;
2877      }
2878    }
2879    return;
2880  case 'K': // unsigned 16 bit immediate
2881    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2882      EVT Type = Op.getValueType();
2883      uint64_t Val = (uint64_t)C->getZExtValue();
2884      if (isUInt<16>(Val)) {
2885        Result = DAG.getTargetConstant(Val, Type);
2886        break;
2887      }
2888    }
2889    return;
2890  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2891    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2892      EVT Type = Op.getValueType();
2893      int64_t Val = C->getSExtValue();
2894      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
2895        Result = DAG.getTargetConstant(Val, Type);
2896        break;
2897      }
2898    }
2899    return;
2900  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2901    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2902      EVT Type = Op.getValueType();
2903      int64_t Val = C->getSExtValue();
2904      if ((Val >= -65535) && (Val <= -1)) {
2905        Result = DAG.getTargetConstant(Val, Type);
2906        break;
2907      }
2908    }
2909    return;
2910  case 'O': // signed 15 bit immediate
2911    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2912      EVT Type = Op.getValueType();
2913      int64_t Val = C->getSExtValue();
2914      if ((isInt<15>(Val))) {
2915        Result = DAG.getTargetConstant(Val, Type);
2916        break;
2917      }
2918    }
2919    return;
2920  case 'P': // immediate in the range of 1 to 65535 (inclusive)
2921    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2922      EVT Type = Op.getValueType();
2923      int64_t Val = C->getSExtValue();
2924      if ((Val <= 65535) && (Val >= 1)) {
2925        Result = DAG.getTargetConstant(Val, Type);
2926        break;
2927      }
2928    }
2929    return;
2930  }
2931
2932  if (Result.getNode()) {
2933    Ops.push_back(Result);
2934    return;
2935  }
2936
2937  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2938}
2939
2940bool
2941MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
2942  // No global is ever allowed as a base.
2943  if (AM.BaseGV)
2944    return false;
2945
2946  switch (AM.Scale) {
2947  case 0: // "r+i" or just "i", depending on HasBaseReg.
2948    break;
2949  case 1:
2950    if (!AM.HasBaseReg) // allow "r+i".
2951      break;
2952    return false; // disallow "r+r" or "r+r+i".
2953  default:
2954    return false;
2955  }
2956
2957  return true;
2958}
2959
2960bool
2961MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
2962  // The Mips target isn't yet aware of offsets.
2963  return false;
2964}
2965
2966EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
2967                                            unsigned SrcAlign,
2968                                            bool IsMemset, bool ZeroMemset,
2969                                            bool MemcpyStrSrc,
2970                                            MachineFunction &MF) const {
2971  if (Subtarget->hasMips64())
2972    return MVT::i64;
2973
2974  return MVT::i32;
2975}
2976
2977bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2978  if (VT != MVT::f32 && VT != MVT::f64)
2979    return false;
2980  if (Imm.isNegZero())
2981    return false;
2982  return Imm.isZero();
2983}
2984
2985unsigned MipsTargetLowering::getJumpTableEncoding() const {
2986  if (IsN64)
2987    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
2988
2989  return TargetLowering::getJumpTableEncoding();
2990}
2991
2992/// This function returns true if CallSym is a long double emulation routine.
2993static bool isF128SoftLibCall(const char *CallSym) {
2994  const char *const LibCalls[] =
2995    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
2996     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
2997     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
2998     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
2999     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3000     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3001     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3002     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3003     "truncl"};
3004
3005  const char * const *End = LibCalls + array_lengthof(LibCalls);
3006
3007  // Check that LibCalls is sorted alphabetically.
3008  MipsTargetLowering::LTStr Comp;
3009
3010#ifndef NDEBUG
3011  for (const char * const *I = LibCalls; I < End - 1; ++I)
3012    assert(Comp(*I, *(I + 1)));
3013#endif
3014
3015  return std::binary_search(LibCalls, End, CallSym, Comp);
3016}
3017
3018/// This function returns true if Ty is fp128 or i128 which was originally a
3019/// fp128.
3020static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3021  if (Ty->isFP128Ty())
3022    return true;
3023
3024  const ExternalSymbolSDNode *ES =
3025    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3026
3027  // If the Ty is i128 and the function being called is a long double emulation
3028  // routine, then the original type is f128.
3029  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3030}
3031
3032MipsTargetLowering::MipsCC::MipsCC(CallingConv::ID CC, bool IsO32_,
3033                                   CCState &Info)
3034  : CCInfo(Info), CallConv(CC), IsO32(IsO32_) {
3035  // Pre-allocate reserved argument area.
3036  CCInfo.AllocateStack(reservedArgArea(), 1);
3037}
3038
3039void MipsTargetLowering::MipsCC::
3040analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3041                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3042                    std::vector<ArgListEntry> &FuncArgs) {
3043  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3044         "CallingConv::Fast shouldn't be used for vararg functions.");
3045
3046  unsigned NumOpnds = Args.size();
3047  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3048
3049  for (unsigned I = 0; I != NumOpnds; ++I) {
3050    MVT ArgVT = Args[I].VT;
3051    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3052    bool R;
3053
3054    if (ArgFlags.isByVal()) {
3055      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3056      continue;
3057    }
3058
3059    if (IsVarArg && !Args[I].IsFixed)
3060      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3061    else {
3062      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3063                           IsSoftFloat);
3064      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3065    }
3066
3067    if (R) {
3068#ifndef NDEBUG
3069      dbgs() << "Call operand #" << I << " has unhandled type "
3070             << EVT(ArgVT).getEVTString();
3071#endif
3072      llvm_unreachable(0);
3073    }
3074  }
3075}
3076
3077void MipsTargetLowering::MipsCC::
3078analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3079                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3080  unsigned NumArgs = Args.size();
3081  llvm::CCAssignFn *FixedFn = fixedArgFn();
3082  unsigned CurArgIdx = 0;
3083
3084  for (unsigned I = 0; I != NumArgs; ++I) {
3085    MVT ArgVT = Args[I].VT;
3086    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3087    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3088    CurArgIdx = Args[I].OrigArgIndex;
3089
3090    if (ArgFlags.isByVal()) {
3091      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3092      continue;
3093    }
3094
3095    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
3096
3097    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3098      continue;
3099
3100#ifndef NDEBUG
3101    dbgs() << "Formal Arg #" << I << " has unhandled type "
3102           << EVT(ArgVT).getEVTString();
3103#endif
3104    llvm_unreachable(0);
3105  }
3106}
3107
3108template<typename Ty>
3109void MipsTargetLowering::MipsCC::
3110analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3111              const SDNode *CallNode, const Type *RetTy) const {
3112  CCAssignFn *Fn;
3113
3114  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3115    Fn = RetCC_F128Soft;
3116  else
3117    Fn = RetCC_Mips;
3118
3119  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3120    MVT VT = RetVals[I].VT;
3121    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3122    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3123
3124    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3125#ifndef NDEBUG
3126      dbgs() << "Call result #" << I << " has unhandled type "
3127             << EVT(VT).getEVTString() << '\n';
3128#endif
3129      llvm_unreachable(0);
3130    }
3131  }
3132}
3133
3134void MipsTargetLowering::MipsCC::
3135analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3136                  const SDNode *CallNode, const Type *RetTy) const {
3137  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3138}
3139
3140void MipsTargetLowering::MipsCC::
3141analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3142              const Type *RetTy) const {
3143  analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
3144}
3145
3146void
3147MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3148                                           MVT LocVT,
3149                                           CCValAssign::LocInfo LocInfo,
3150                                           ISD::ArgFlagsTy ArgFlags) {
3151  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3152
3153  struct ByValArgInfo ByVal;
3154  unsigned RegSize = regSize();
3155  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3156  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3157                            RegSize * 2);
3158
3159  if (useRegsForByval())
3160    allocateRegs(ByVal, ByValSize, Align);
3161
3162  // Allocate space on caller's stack.
3163  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3164                                       Align);
3165  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3166                                    LocInfo));
3167  ByValArgs.push_back(ByVal);
3168}
3169
3170unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3171  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3172}
3173
3174unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3175  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3176}
3177
3178const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
3179  return IsO32 ? O32IntRegs : Mips64IntRegs;
3180}
3181
3182llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3183  if (CallConv == CallingConv::Fast)
3184    return CC_Mips_FastCC;
3185
3186  return IsO32 ? CC_MipsO32 : CC_MipsN;
3187}
3188
3189llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3190  return IsO32 ? CC_MipsO32 : CC_MipsN_VarArg;
3191}
3192
3193const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
3194  return IsO32 ? O32IntRegs : Mips64DPRegs;
3195}
3196
3197void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3198                                              unsigned ByValSize,
3199                                              unsigned Align) {
3200  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3201  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3202  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3203         "Byval argument's size and alignment should be a multiple of"
3204         "RegSize.");
3205
3206  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3207
3208  // If Align > RegSize, the first arg register must be even.
3209  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3210    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3211    ++ByVal.FirstIdx;
3212  }
3213
3214  // Mark the registers allocated.
3215  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3216       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3217    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3218}
3219
3220MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3221                                         const SDNode *CallNode,
3222                                         bool IsSoftFloat) const {
3223  if (IsSoftFloat || IsO32)
3224    return VT;
3225
3226  // Check if the original type was fp128.
3227  if (originalTypeIsF128(OrigTy, CallNode)) {
3228    assert(VT == MVT::i64);
3229    return MVT::f64;
3230  }
3231
3232  return VT;
3233}
3234
3235void MipsTargetLowering::
3236copyByValRegs(SDValue Chain, DebugLoc DL, std::vector<SDValue> &OutChains,
3237              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3238              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3239              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3240  MachineFunction &MF = DAG.getMachineFunction();
3241  MachineFrameInfo *MFI = MF.getFrameInfo();
3242  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3243  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3244  int FrameObjOffset;
3245
3246  if (RegAreaSize)
3247    FrameObjOffset = (int)CC.reservedArgArea() -
3248      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3249  else
3250    FrameObjOffset = ByVal.Address;
3251
3252  // Create frame object.
3253  EVT PtrTy = getPointerTy();
3254  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3255  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3256  InVals.push_back(FIN);
3257
3258  if (!ByVal.NumRegs)
3259    return;
3260
3261  // Copy arg registers.
3262  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3263  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3264
3265  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3266    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3267    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3268    unsigned Offset = I * CC.regSize();
3269    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3270                                   DAG.getConstant(Offset, PtrTy));
3271    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3272                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3273                                 false, false, 0);
3274    OutChains.push_back(Store);
3275  }
3276}
3277
3278// Copy byVal arg to registers and stack.
3279void MipsTargetLowering::
3280passByValArg(SDValue Chain, DebugLoc DL,
3281             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3282             SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
3283             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3284             const MipsCC &CC, const ByValArgInfo &ByVal,
3285             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3286  unsigned ByValSize = Flags.getByValSize();
3287  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3288  unsigned RegSize = CC.regSize();
3289  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3290  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3291
3292  if (ByVal.NumRegs) {
3293    const uint16_t *ArgRegs = CC.intArgRegs();
3294    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3295    unsigned I = 0;
3296
3297    // Copy words to registers.
3298    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3299      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3300                                    DAG.getConstant(Offset, PtrTy));
3301      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3302                                    MachinePointerInfo(), false, false, false,
3303                                    Alignment);
3304      MemOpChains.push_back(LoadVal.getValue(1));
3305      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3306      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3307    }
3308
3309    // Return if the struct has been fully copied.
3310    if (ByValSize == Offset)
3311      return;
3312
3313    // Copy the remainder of the byval argument with sub-word loads and shifts.
3314    if (LeftoverBytes) {
3315      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3316             "Size of the remainder should be smaller than RegSize.");
3317      SDValue Val;
3318
3319      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3320           Offset < ByValSize; LoadSize /= 2) {
3321        unsigned RemSize = ByValSize - Offset;
3322
3323        if (RemSize < LoadSize)
3324          continue;
3325
3326        // Load subword.
3327        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3328                                      DAG.getConstant(Offset, PtrTy));
3329        SDValue LoadVal =
3330          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3331                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3332                         false, false, Alignment);
3333        MemOpChains.push_back(LoadVal.getValue(1));
3334
3335        // Shift the loaded value.
3336        unsigned Shamt;
3337
3338        if (isLittle)
3339          Shamt = TotalSizeLoaded;
3340        else
3341          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3342
3343        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3344                                    DAG.getConstant(Shamt, MVT::i32));
3345
3346        if (Val.getNode())
3347          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3348        else
3349          Val = Shift;
3350
3351        Offset += LoadSize;
3352        TotalSizeLoaded += LoadSize;
3353        Alignment = std::min(Alignment, LoadSize);
3354      }
3355
3356      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3357      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3358      return;
3359    }
3360  }
3361
3362  // Copy remainder of byval arg to it with memcpy.
3363  unsigned MemCpySize = ByValSize - Offset;
3364  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3365                            DAG.getConstant(Offset, PtrTy));
3366  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3367                            DAG.getIntPtrConstant(ByVal.Address));
3368  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
3369                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
3370                        /*isVolatile=*/false, /*AlwaysInline=*/false,
3371                        MachinePointerInfo(0), MachinePointerInfo(0));
3372  MemOpChains.push_back(Chain);
3373}
3374
3375void
3376MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3377                                    const MipsCC &CC, SDValue Chain,
3378                                    DebugLoc DL, SelectionDAG &DAG) const {
3379  unsigned NumRegs = CC.numIntArgRegs();
3380  const uint16_t *ArgRegs = CC.intArgRegs();
3381  const CCState &CCInfo = CC.getCCInfo();
3382  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3383  unsigned RegSize = CC.regSize();
3384  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3385  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3386  MachineFunction &MF = DAG.getMachineFunction();
3387  MachineFrameInfo *MFI = MF.getFrameInfo();
3388  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3389
3390  // Offset of the first variable argument from stack pointer.
3391  int VaArgOffset;
3392
3393  if (NumRegs == Idx)
3394    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3395  else
3396    VaArgOffset =
3397      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3398
3399  // Record the frame index of the first variable argument
3400  // which is a value necessary to VASTART.
3401  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3402  MipsFI->setVarArgsFrameIndex(FI);
3403
3404  // Copy the integer registers that have not been used for argument passing
3405  // to the argument register save area. For O32, the save area is allocated
3406  // in the caller's stack frame, while for N32/64, it is allocated in the
3407  // callee's stack frame.
3408  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3409    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3410    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3411    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3412    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3413    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3414                                 MachinePointerInfo(), false, false, 0);
3415    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3416    OutChains.push_back(Store);
3417  }
3418}
3419