MipsISelLowering.cpp revision d4765aa047c43dc0ce2c4a6a3ccdb91b8fa73c51
15821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
25821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
35821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
45821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
55821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// This file is distributed under the University of Illinois Open Source
65821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// License. See LICENSE.TXT for details.
75821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
85821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
95821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
105821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// This file defines the interfaces that Mips uses to lower LLVM code into a
112a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)// selection DAG.
125821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
135821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
14c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)#define DEBUG_TYPE "mips-lower"
155821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "MipsISelLowering.h"
165821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "InstPrinter/MipsInstPrinter.h"
175821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "MCTargetDesc/MipsBaseInfo.h"
185821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "MipsMachineFunction.h"
195821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "MipsSubtarget.h"
205821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "MipsTargetMachine.h"
215821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "MipsTargetObjectFile.h"
225821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/ADT/Statistic.h"
235821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/ADT/StringSwitch.h"
245821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/CallingConvLower.h"
255821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/MachineFrameInfo.h"
265821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/MachineFunction.h"
275821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/MachineInstrBuilder.h"
285821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/MachineRegisterInfo.h"
295821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/SelectionDAGISel.h"
305821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/ValueTypes.h"
315821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/IR/CallingConv.h"
325821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/IR/DerivedTypes.h"
335821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/IR/GlobalVariable.h"
345821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Support/CommandLine.h"
355821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Support/Debug.h"
365821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Support/ErrorHandling.h"
375821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Support/raw_ostream.h"
385821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include <cctype>
395821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
405821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)using namespace llvm;
415821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
425821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)STATISTIC(NumTailCalls, "Number of tail calls");
435821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
445821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)static cl::opt<bool>
455821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)LargeGOT("mxgot", cl::Hidden,
465821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
475821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
485821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)static cl::opt<bool>
495821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
505821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)               cl::desc("MIPS: Don't trap on integer division by zero."),
515821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)               cl::init(false));
525821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
535821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)static const uint16_t O32IntRegs[4] = {
545821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  Mips::A0, Mips::A1, Mips::A2, Mips::A3
555821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)};
565821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
575821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)static const uint16_t Mips64IntRegs[8] = {
585821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
595821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
605821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)};
615821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
625821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)static const uint16_t Mips64DPRegs[8] = {
635821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
645821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
655821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)};
665821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
675821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// If I is a shifted mask, set the size (Size) and the first bit of the
685821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// mask (Pos), and return true.
695821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
705821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
715821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if (!isShiftedMask_64(I))
725821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    return false;
735821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
745821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  Size = CountPopulation_64(I);
755821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  Pos = countTrailingZeros(I);
765821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return true;
775821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
78c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)
79c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
805821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
815821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
825821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
835821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
845821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
855821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                          SelectionDAG &DAG,
865821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                          unsigned Flag) const {
875821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
882a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
892a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
902a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
915821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                          SelectionDAG &DAG,
925821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                          unsigned Flag) const {
935821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
945821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
955821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
965821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
975821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                          SelectionDAG &DAG,
985821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                          unsigned Flag) const {
995821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
1005821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
1015821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1025821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
1035821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                          SelectionDAG &DAG,
1045821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                          unsigned Flag) const {
1055821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
1065821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
1075821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1085821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
1095821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                          SelectionDAG &DAG,
1105821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                          unsigned Flag) const {
1115821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
1125821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                   N->getOffset(), Flag);
1135821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
1145821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1155821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
1165821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  switch (Opcode) {
1175821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
1185821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::TailCall:          return "MipsISD::TailCall";
1195821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::Hi:                return "MipsISD::Hi";
1205821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::Lo:                return "MipsISD::Lo";
1215821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::GPRel:             return "MipsISD::GPRel";
1225821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
1235821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::Ret:               return "MipsISD::Ret";
1245821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
1255821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
1265821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
1275821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
1285821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
1295821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
1305821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::MFHI:              return "MipsISD::MFHI";
1315821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::MFLO:              return "MipsISD::MFLO";
1325821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::MTLOHI:            return "MipsISD::MTLOHI";
1335821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::Mult:              return "MipsISD::Mult";
1345821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::Multu:             return "MipsISD::Multu";
1355821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::MAdd:              return "MipsISD::MAdd";
1365821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::MAddu:             return "MipsISD::MAddu";
1375821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::MSub:              return "MipsISD::MSub";
1385821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::MSubu:             return "MipsISD::MSubu";
1395821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::DivRem:            return "MipsISD::DivRem";
1405821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
1415821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
1425821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
1435821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
1445821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
1455821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
1465821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::Sync:              return "MipsISD::Sync";
1475821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::Ext:               return "MipsISD::Ext";
1485821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::Ins:               return "MipsISD::Ins";
1495821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::LWL:               return "MipsISD::LWL";
1505821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::LWR:               return "MipsISD::LWR";
1515821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::SWL:               return "MipsISD::SWL";
1525821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::SWR:               return "MipsISD::SWR";
1535821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::LDL:               return "MipsISD::LDL";
1545821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::LDR:               return "MipsISD::LDR";
1555821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::SDL:               return "MipsISD::SDL";
1565821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::SDR:               return "MipsISD::SDR";
1575821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::EXTP:              return "MipsISD::EXTP";
1585821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
1595821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
1605821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
1615821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
1625821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
1635821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::SHILO:             return "MipsISD::SHILO";
1645821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
1655821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::MULT:              return "MipsISD::MULT";
1665821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::MULTU:             return "MipsISD::MULTU";
1675821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
1685821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
1695821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
1705821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
1715821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
1725821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
1735821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
1745821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
1755821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
1765821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
1775821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
1785821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
1795821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
1805821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::VCEQ:              return "MipsISD::VCEQ";
1815821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
1825821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
1835821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
1845821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
1855821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::VSMAX:             return "MipsISD::VSMAX";
1865821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::VSMIN:             return "MipsISD::VSMIN";
1875821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::VUMAX:             return "MipsISD::VUMAX";
1885821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::VUMIN:             return "MipsISD::VUMIN";
1895821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
1905821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
1915821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::VNOR:              return "MipsISD::VNOR";
1925821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::VSHF:              return "MipsISD::VSHF";
1935821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::SHF:               return "MipsISD::SHF";
1945821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::ILVEV:             return "MipsISD::ILVEV";
1955821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::ILVOD:             return "MipsISD::ILVOD";
1965821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::ILVL:              return "MipsISD::ILVL";
1975821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::ILVR:              return "MipsISD::ILVR";
1985821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::PCKEV:             return "MipsISD::PCKEV";
1995821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MipsISD::PCKOD:             return "MipsISD::PCKOD";
2005821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  default:                         return NULL;
2015821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  }
2025821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
2035821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
2045821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)MipsTargetLowering::
2055821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)MipsTargetLowering(MipsTargetMachine &TM)
2065821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  : TargetLowering(TM, new MipsTargetObjectFile()),
2075821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
2085821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
2095821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    IsO32(Subtarget->isABI_O32()) {
2105821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // Mips does not have i1 type, so use i32 for
211  // setcc operations results (slt, sgt, ...).
212  setBooleanContents(ZeroOrOneBooleanContent);
213  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
214
215  // Load extented operations for i1 types must be promoted
216  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
217  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
218  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
219
220  // MIPS doesn't have extending float->double load/store
221  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
222  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
223
224  // Used by legalize types to correctly generate the setcc result.
225  // Without this, every float setcc comes with a AND/OR with the result,
226  // we don't want this, since the fpcmp result goes to a flag register,
227  // which is used implicitly by brcond and select operations.
228  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
229
230  // Mips Custom Operations
231  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
232  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
233  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
234  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
235  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
236  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
237  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
238  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
239  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
240  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
241  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
242  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
243  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
244  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
245  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
246  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
247  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
248  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
249
250  if (!TM.Options.NoNaNsFPMath) {
251    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
252    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
253  }
254
255  if (HasMips64) {
256    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
257    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
258    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
259    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
260    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
261    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
262    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
263    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
264    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
265  }
266
267  if (!HasMips64) {
268    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
269    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
270    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
271  }
272
273  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
274  if (HasMips64)
275    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
276
277  setOperationAction(ISD::SDIV, MVT::i32, Expand);
278  setOperationAction(ISD::SREM, MVT::i32, Expand);
279  setOperationAction(ISD::UDIV, MVT::i32, Expand);
280  setOperationAction(ISD::UREM, MVT::i32, Expand);
281  setOperationAction(ISD::SDIV, MVT::i64, Expand);
282  setOperationAction(ISD::SREM, MVT::i64, Expand);
283  setOperationAction(ISD::UDIV, MVT::i64, Expand);
284  setOperationAction(ISD::UREM, MVT::i64, Expand);
285
286  // Operations not directly supported by Mips.
287  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
288  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
289  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
290  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
291  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
292  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
293  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
294  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
295  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
296  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
297  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
298  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
299  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
300  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
301  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
302  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
303  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
304  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
305  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
306  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
307  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
308  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
309
310  if (!Subtarget->hasMips32r2())
311    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
312
313  if (!Subtarget->hasMips64r2())
314    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
315
316  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
317  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
318  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
319  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
320  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
321  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
322  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
323  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
324  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
325  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
326  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
327  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
328  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
329  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
330  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
331  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
332  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
333
334  if (!TM.Options.NoNaNsFPMath) {
335    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
336    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
337  }
338
339  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
340
341  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
342  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
343  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
344
345  // Use the default for now
346  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
347  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
348
349  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
350  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
351  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
352  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
353
354  setInsertFencesForAtomic(true);
355
356  if (!Subtarget->hasSEInReg()) {
357    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
358    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
359  }
360
361  if (!Subtarget->hasBitCount()) {
362    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
363    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
364  }
365
366  if (!Subtarget->hasSwap()) {
367    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
368    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
369  }
370
371  if (HasMips64) {
372    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
373    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
374    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
375    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
376  }
377
378  setOperationAction(ISD::TRAP, MVT::Other, Legal);
379
380  setTargetDAGCombine(ISD::SDIVREM);
381  setTargetDAGCombine(ISD::UDIVREM);
382  setTargetDAGCombine(ISD::SELECT);
383  setTargetDAGCombine(ISD::AND);
384  setTargetDAGCombine(ISD::OR);
385  setTargetDAGCombine(ISD::ADD);
386
387  setMinFunctionAlignment(HasMips64 ? 3 : 2);
388
389  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
390
391  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
392  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
393
394  MaxStoresPerMemcpy = 16;
395}
396
397const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
398  if (TM.getSubtargetImpl()->inMips16Mode())
399    return llvm::createMips16TargetLowering(TM);
400
401  return llvm::createMipsSETargetLowering(TM);
402}
403
404EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
405  if (!VT.isVector())
406    return MVT::i32;
407  return VT.changeVectorElementTypeToInteger();
408}
409
410static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
411                                    TargetLowering::DAGCombinerInfo &DCI,
412                                    const MipsSubtarget *Subtarget) {
413  if (DCI.isBeforeLegalizeOps())
414    return SDValue();
415
416  EVT Ty = N->getValueType(0);
417  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
418  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
419  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
420                                                  MipsISD::DivRemU16;
421  SDLoc DL(N);
422
423  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
424                               N->getOperand(0), N->getOperand(1));
425  SDValue InChain = DAG.getEntryNode();
426  SDValue InGlue = DivRem;
427
428  // insert MFLO
429  if (N->hasAnyUseOfValue(0)) {
430    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
431                                            InGlue);
432    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
433    InChain = CopyFromLo.getValue(1);
434    InGlue = CopyFromLo.getValue(2);
435  }
436
437  // insert MFHI
438  if (N->hasAnyUseOfValue(1)) {
439    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
440                                            HI, Ty, InGlue);
441    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
442  }
443
444  return SDValue();
445}
446
447static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
448  switch (CC) {
449  default: llvm_unreachable("Unknown fp condition code!");
450  case ISD::SETEQ:
451  case ISD::SETOEQ: return Mips::FCOND_OEQ;
452  case ISD::SETUNE: return Mips::FCOND_UNE;
453  case ISD::SETLT:
454  case ISD::SETOLT: return Mips::FCOND_OLT;
455  case ISD::SETGT:
456  case ISD::SETOGT: return Mips::FCOND_OGT;
457  case ISD::SETLE:
458  case ISD::SETOLE: return Mips::FCOND_OLE;
459  case ISD::SETGE:
460  case ISD::SETOGE: return Mips::FCOND_OGE;
461  case ISD::SETULT: return Mips::FCOND_ULT;
462  case ISD::SETULE: return Mips::FCOND_ULE;
463  case ISD::SETUGT: return Mips::FCOND_UGT;
464  case ISD::SETUGE: return Mips::FCOND_UGE;
465  case ISD::SETUO:  return Mips::FCOND_UN;
466  case ISD::SETO:   return Mips::FCOND_OR;
467  case ISD::SETNE:
468  case ISD::SETONE: return Mips::FCOND_ONE;
469  case ISD::SETUEQ: return Mips::FCOND_UEQ;
470  }
471}
472
473
474/// This function returns true if the floating point conditional branches and
475/// conditional moves which use condition code CC should be inverted.
476static bool invertFPCondCodeUser(Mips::CondCode CC) {
477  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
478    return false;
479
480  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
481         "Illegal Condition Code");
482
483  return true;
484}
485
486// Creates and returns an FPCmp node from a setcc node.
487// Returns Op if setcc is not a floating point comparison.
488static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
489  // must be a SETCC node
490  if (Op.getOpcode() != ISD::SETCC)
491    return Op;
492
493  SDValue LHS = Op.getOperand(0);
494
495  if (!LHS.getValueType().isFloatingPoint())
496    return Op;
497
498  SDValue RHS = Op.getOperand(1);
499  SDLoc DL(Op);
500
501  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
502  // node if necessary.
503  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
504
505  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
506                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
507}
508
509// Creates and returns a CMovFPT/F node.
510static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
511                            SDValue False, SDLoc DL) {
512  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
513  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
514  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
515
516  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
517                     True.getValueType(), True, FCC0, False, Cond);
518}
519
520static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
521                                    TargetLowering::DAGCombinerInfo &DCI,
522                                    const MipsSubtarget *Subtarget) {
523  if (DCI.isBeforeLegalizeOps())
524    return SDValue();
525
526  SDValue SetCC = N->getOperand(0);
527
528  if ((SetCC.getOpcode() != ISD::SETCC) ||
529      !SetCC.getOperand(0).getValueType().isInteger())
530    return SDValue();
531
532  SDValue False = N->getOperand(2);
533  EVT FalseTy = False.getValueType();
534
535  if (!FalseTy.isInteger())
536    return SDValue();
537
538  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
539
540  if (!CN || CN->getZExtValue())
541    return SDValue();
542
543  const SDLoc DL(N);
544  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
545  SDValue True = N->getOperand(1);
546
547  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
548                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
549
550  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
551}
552
553static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
554                                 TargetLowering::DAGCombinerInfo &DCI,
555                                 const MipsSubtarget *Subtarget) {
556  // Pattern match EXT.
557  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
558  //  => ext $dst, $src, size, pos
559  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasExtractInsert())
560    return SDValue();
561
562  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
563  unsigned ShiftRightOpc = ShiftRight.getOpcode();
564
565  // Op's first operand must be a shift right.
566  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
567    return SDValue();
568
569  // The second operand of the shift must be an immediate.
570  ConstantSDNode *CN;
571  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
572    return SDValue();
573
574  uint64_t Pos = CN->getZExtValue();
575  uint64_t SMPos, SMSize;
576
577  // Op's second operand must be a shifted mask.
578  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
579      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
580    return SDValue();
581
582  // Return if the shifted mask does not start at bit 0 or the sum of its size
583  // and Pos exceeds the word's size.
584  EVT ValTy = N->getValueType(0);
585  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
586    return SDValue();
587
588  return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
589                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
590                     DAG.getConstant(SMSize, MVT::i32));
591}
592
593static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
594                                TargetLowering::DAGCombinerInfo &DCI,
595                                const MipsSubtarget *Subtarget) {
596  // Pattern match INS.
597  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
598  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
599  //  => ins $dst, $src, size, pos, $src1
600  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasExtractInsert())
601    return SDValue();
602
603  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
604  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
605  ConstantSDNode *CN;
606
607  // See if Op's first operand matches (and $src1 , mask0).
608  if (And0.getOpcode() != ISD::AND)
609    return SDValue();
610
611  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
612      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
613    return SDValue();
614
615  // See if Op's second operand matches (and (shl $src, pos), mask1).
616  if (And1.getOpcode() != ISD::AND)
617    return SDValue();
618
619  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
620      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
621    return SDValue();
622
623  // The shift masks must have the same position and size.
624  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
625    return SDValue();
626
627  SDValue Shl = And1.getOperand(0);
628  if (Shl.getOpcode() != ISD::SHL)
629    return SDValue();
630
631  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
632    return SDValue();
633
634  unsigned Shamt = CN->getZExtValue();
635
636  // Return if the shift amount and the first bit position of mask are not the
637  // same.
638  EVT ValTy = N->getValueType(0);
639  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
640    return SDValue();
641
642  return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
643                     DAG.getConstant(SMPos0, MVT::i32),
644                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
645}
646
647static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
648                                 TargetLowering::DAGCombinerInfo &DCI,
649                                 const MipsSubtarget *Subtarget) {
650  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
651
652  if (DCI.isBeforeLegalizeOps())
653    return SDValue();
654
655  SDValue Add = N->getOperand(1);
656
657  if (Add.getOpcode() != ISD::ADD)
658    return SDValue();
659
660  SDValue Lo = Add.getOperand(1);
661
662  if ((Lo.getOpcode() != MipsISD::Lo) ||
663      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
664    return SDValue();
665
666  EVT ValTy = N->getValueType(0);
667  SDLoc DL(N);
668
669  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
670                             Add.getOperand(0));
671  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
672}
673
674SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
675  const {
676  SelectionDAG &DAG = DCI.DAG;
677  unsigned Opc = N->getOpcode();
678
679  switch (Opc) {
680  default: break;
681  case ISD::SDIVREM:
682  case ISD::UDIVREM:
683    return performDivRemCombine(N, DAG, DCI, Subtarget);
684  case ISD::SELECT:
685    return performSELECTCombine(N, DAG, DCI, Subtarget);
686  case ISD::AND:
687    return performANDCombine(N, DAG, DCI, Subtarget);
688  case ISD::OR:
689    return performORCombine(N, DAG, DCI, Subtarget);
690  case ISD::ADD:
691    return performADDCombine(N, DAG, DCI, Subtarget);
692  }
693
694  return SDValue();
695}
696
697void
698MipsTargetLowering::LowerOperationWrapper(SDNode *N,
699                                          SmallVectorImpl<SDValue> &Results,
700                                          SelectionDAG &DAG) const {
701  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
702
703  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
704    Results.push_back(Res.getValue(I));
705}
706
707void
708MipsTargetLowering::ReplaceNodeResults(SDNode *N,
709                                       SmallVectorImpl<SDValue> &Results,
710                                       SelectionDAG &DAG) const {
711  return LowerOperationWrapper(N, Results, DAG);
712}
713
714SDValue MipsTargetLowering::
715LowerOperation(SDValue Op, SelectionDAG &DAG) const
716{
717  switch (Op.getOpcode())
718  {
719  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
720  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
721  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
722  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
723  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
724  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
725  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
726  case ISD::SELECT:             return lowerSELECT(Op, DAG);
727  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
728  case ISD::SETCC:              return lowerSETCC(Op, DAG);
729  case ISD::VASTART:            return lowerVASTART(Op, DAG);
730  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
731  case ISD::FABS:               return lowerFABS(Op, DAG);
732  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
733  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
734  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
735  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
736  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
737  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
738  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
739  case ISD::LOAD:               return lowerLOAD(Op, DAG);
740  case ISD::STORE:              return lowerSTORE(Op, DAG);
741  case ISD::ADD:                return lowerADD(Op, DAG);
742  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
743  }
744  return SDValue();
745}
746
747//===----------------------------------------------------------------------===//
748//  Lower helper functions
749//===----------------------------------------------------------------------===//
750
751// addLiveIn - This helper function adds the specified physical register to the
752// MachineFunction as a live in value.  It also creates a corresponding
753// virtual register for it.
754static unsigned
755addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
756{
757  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
758  MF.getRegInfo().addLiveIn(PReg, VReg);
759  return VReg;
760}
761
762static MachineBasicBlock *expandPseudoDIV(MachineInstr *MI,
763                                          MachineBasicBlock &MBB,
764                                          const TargetInstrInfo &TII,
765                                          bool Is64Bit) {
766  if (NoZeroDivCheck)
767    return &MBB;
768
769  // Insert instruction "teq $divisor_reg, $zero, 7".
770  MachineBasicBlock::iterator I(MI);
771  MachineInstrBuilder MIB;
772  MachineOperand &Divisor = MI->getOperand(2);
773  MIB = BuildMI(MBB, llvm::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
774    .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
775    .addReg(Mips::ZERO).addImm(7);
776
777  // Use the 32-bit sub-register if this is a 64-bit division.
778  if (Is64Bit)
779    MIB->getOperand(0).setSubReg(Mips::sub_32);
780
781  // Clear Divisor's kill flag.
782  Divisor.setIsKill(false);
783  return &MBB;
784}
785
786MachineBasicBlock *
787MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
788                                                MachineBasicBlock *BB) const {
789  switch (MI->getOpcode()) {
790  default:
791    llvm_unreachable("Unexpected instr type to insert");
792  case Mips::ATOMIC_LOAD_ADD_I8:
793    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
794  case Mips::ATOMIC_LOAD_ADD_I16:
795    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
796  case Mips::ATOMIC_LOAD_ADD_I32:
797    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
798  case Mips::ATOMIC_LOAD_ADD_I64:
799    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
800
801  case Mips::ATOMIC_LOAD_AND_I8:
802    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
803  case Mips::ATOMIC_LOAD_AND_I16:
804    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
805  case Mips::ATOMIC_LOAD_AND_I32:
806    return emitAtomicBinary(MI, BB, 4, Mips::AND);
807  case Mips::ATOMIC_LOAD_AND_I64:
808    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
809
810  case Mips::ATOMIC_LOAD_OR_I8:
811    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
812  case Mips::ATOMIC_LOAD_OR_I16:
813    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
814  case Mips::ATOMIC_LOAD_OR_I32:
815    return emitAtomicBinary(MI, BB, 4, Mips::OR);
816  case Mips::ATOMIC_LOAD_OR_I64:
817    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
818
819  case Mips::ATOMIC_LOAD_XOR_I8:
820    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
821  case Mips::ATOMIC_LOAD_XOR_I16:
822    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
823  case Mips::ATOMIC_LOAD_XOR_I32:
824    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
825  case Mips::ATOMIC_LOAD_XOR_I64:
826    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
827
828  case Mips::ATOMIC_LOAD_NAND_I8:
829    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
830  case Mips::ATOMIC_LOAD_NAND_I16:
831    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
832  case Mips::ATOMIC_LOAD_NAND_I32:
833    return emitAtomicBinary(MI, BB, 4, 0, true);
834  case Mips::ATOMIC_LOAD_NAND_I64:
835    return emitAtomicBinary(MI, BB, 8, 0, true);
836
837  case Mips::ATOMIC_LOAD_SUB_I8:
838    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
839  case Mips::ATOMIC_LOAD_SUB_I16:
840    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
841  case Mips::ATOMIC_LOAD_SUB_I32:
842    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
843  case Mips::ATOMIC_LOAD_SUB_I64:
844    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
845
846  case Mips::ATOMIC_SWAP_I8:
847    return emitAtomicBinaryPartword(MI, BB, 1, 0);
848  case Mips::ATOMIC_SWAP_I16:
849    return emitAtomicBinaryPartword(MI, BB, 2, 0);
850  case Mips::ATOMIC_SWAP_I32:
851    return emitAtomicBinary(MI, BB, 4, 0);
852  case Mips::ATOMIC_SWAP_I64:
853    return emitAtomicBinary(MI, BB, 8, 0);
854
855  case Mips::ATOMIC_CMP_SWAP_I8:
856    return emitAtomicCmpSwapPartword(MI, BB, 1);
857  case Mips::ATOMIC_CMP_SWAP_I16:
858    return emitAtomicCmpSwapPartword(MI, BB, 2);
859  case Mips::ATOMIC_CMP_SWAP_I32:
860    return emitAtomicCmpSwap(MI, BB, 4);
861  case Mips::ATOMIC_CMP_SWAP_I64:
862    return emitAtomicCmpSwap(MI, BB, 8);
863  case Mips::PseudoSDIV:
864  case Mips::PseudoUDIV:
865    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), false);
866  case Mips::PseudoDSDIV:
867  case Mips::PseudoDUDIV:
868    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), true);
869  }
870}
871
872// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
873// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
874MachineBasicBlock *
875MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
876                                     unsigned Size, unsigned BinOpcode,
877                                     bool Nand) const {
878  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
879
880  MachineFunction *MF = BB->getParent();
881  MachineRegisterInfo &RegInfo = MF->getRegInfo();
882  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
883  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
884  DebugLoc DL = MI->getDebugLoc();
885  unsigned LL, SC, AND, NOR, ZERO, BEQ;
886
887  if (Size == 4) {
888    LL = Mips::LL;
889    SC = Mips::SC;
890    AND = Mips::AND;
891    NOR = Mips::NOR;
892    ZERO = Mips::ZERO;
893    BEQ = Mips::BEQ;
894  }
895  else {
896    LL = Mips::LLD;
897    SC = Mips::SCD;
898    AND = Mips::AND64;
899    NOR = Mips::NOR64;
900    ZERO = Mips::ZERO_64;
901    BEQ = Mips::BEQ64;
902  }
903
904  unsigned OldVal = MI->getOperand(0).getReg();
905  unsigned Ptr = MI->getOperand(1).getReg();
906  unsigned Incr = MI->getOperand(2).getReg();
907
908  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
909  unsigned AndRes = RegInfo.createVirtualRegister(RC);
910  unsigned Success = RegInfo.createVirtualRegister(RC);
911
912  // insert new blocks after the current block
913  const BasicBlock *LLVM_BB = BB->getBasicBlock();
914  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
915  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
916  MachineFunction::iterator It = BB;
917  ++It;
918  MF->insert(It, loopMBB);
919  MF->insert(It, exitMBB);
920
921  // Transfer the remainder of BB and its successor edges to exitMBB.
922  exitMBB->splice(exitMBB->begin(), BB,
923                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
924  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
925
926  //  thisMBB:
927  //    ...
928  //    fallthrough --> loopMBB
929  BB->addSuccessor(loopMBB);
930  loopMBB->addSuccessor(loopMBB);
931  loopMBB->addSuccessor(exitMBB);
932
933  //  loopMBB:
934  //    ll oldval, 0(ptr)
935  //    <binop> storeval, oldval, incr
936  //    sc success, storeval, 0(ptr)
937  //    beq success, $0, loopMBB
938  BB = loopMBB;
939  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
940  if (Nand) {
941    //  and andres, oldval, incr
942    //  nor storeval, $0, andres
943    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
944    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
945  } else if (BinOpcode) {
946    //  <binop> storeval, oldval, incr
947    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
948  } else {
949    StoreVal = Incr;
950  }
951  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
952  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
953
954  MI->eraseFromParent(); // The instruction is gone now.
955
956  return exitMBB;
957}
958
959MachineBasicBlock *
960MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
961                                             MachineBasicBlock *BB,
962                                             unsigned Size, unsigned BinOpcode,
963                                             bool Nand) const {
964  assert((Size == 1 || Size == 2) &&
965         "Unsupported size for EmitAtomicBinaryPartial.");
966
967  MachineFunction *MF = BB->getParent();
968  MachineRegisterInfo &RegInfo = MF->getRegInfo();
969  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
970  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
971  DebugLoc DL = MI->getDebugLoc();
972
973  unsigned Dest = MI->getOperand(0).getReg();
974  unsigned Ptr = MI->getOperand(1).getReg();
975  unsigned Incr = MI->getOperand(2).getReg();
976
977  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
978  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
979  unsigned Mask = RegInfo.createVirtualRegister(RC);
980  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
981  unsigned NewVal = RegInfo.createVirtualRegister(RC);
982  unsigned OldVal = RegInfo.createVirtualRegister(RC);
983  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
984  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
985  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
986  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
987  unsigned AndRes = RegInfo.createVirtualRegister(RC);
988  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
989  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
990  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
991  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
992  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
993  unsigned SllRes = RegInfo.createVirtualRegister(RC);
994  unsigned Success = RegInfo.createVirtualRegister(RC);
995
996  // insert new blocks after the current block
997  const BasicBlock *LLVM_BB = BB->getBasicBlock();
998  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
999  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1000  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1001  MachineFunction::iterator It = BB;
1002  ++It;
1003  MF->insert(It, loopMBB);
1004  MF->insert(It, sinkMBB);
1005  MF->insert(It, exitMBB);
1006
1007  // Transfer the remainder of BB and its successor edges to exitMBB.
1008  exitMBB->splice(exitMBB->begin(), BB,
1009                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1010  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1011
1012  BB->addSuccessor(loopMBB);
1013  loopMBB->addSuccessor(loopMBB);
1014  loopMBB->addSuccessor(sinkMBB);
1015  sinkMBB->addSuccessor(exitMBB);
1016
1017  //  thisMBB:
1018  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1019  //    and     alignedaddr,ptr,masklsb2
1020  //    andi    ptrlsb2,ptr,3
1021  //    sll     shiftamt,ptrlsb2,3
1022  //    ori     maskupper,$0,255               # 0xff
1023  //    sll     mask,maskupper,shiftamt
1024  //    nor     mask2,$0,mask
1025  //    sll     incr2,incr,shiftamt
1026
1027  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1028  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1029    .addReg(Mips::ZERO).addImm(-4);
1030  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1031    .addReg(Ptr).addReg(MaskLSB2);
1032  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1033  if (Subtarget->isLittle()) {
1034    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1035  } else {
1036    unsigned Off = RegInfo.createVirtualRegister(RC);
1037    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1038      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1039    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1040  }
1041  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1042    .addReg(Mips::ZERO).addImm(MaskImm);
1043  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1044    .addReg(MaskUpper).addReg(ShiftAmt);
1045  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1046  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1047
1048  // atomic.load.binop
1049  // loopMBB:
1050  //   ll      oldval,0(alignedaddr)
1051  //   binop   binopres,oldval,incr2
1052  //   and     newval,binopres,mask
1053  //   and     maskedoldval0,oldval,mask2
1054  //   or      storeval,maskedoldval0,newval
1055  //   sc      success,storeval,0(alignedaddr)
1056  //   beq     success,$0,loopMBB
1057
1058  // atomic.swap
1059  // loopMBB:
1060  //   ll      oldval,0(alignedaddr)
1061  //   and     newval,incr2,mask
1062  //   and     maskedoldval0,oldval,mask2
1063  //   or      storeval,maskedoldval0,newval
1064  //   sc      success,storeval,0(alignedaddr)
1065  //   beq     success,$0,loopMBB
1066
1067  BB = loopMBB;
1068  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1069  if (Nand) {
1070    //  and andres, oldval, incr2
1071    //  nor binopres, $0, andres
1072    //  and newval, binopres, mask
1073    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1074    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1075      .addReg(Mips::ZERO).addReg(AndRes);
1076    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1077  } else if (BinOpcode) {
1078    //  <binop> binopres, oldval, incr2
1079    //  and newval, binopres, mask
1080    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1081    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1082  } else { // atomic.swap
1083    //  and newval, incr2, mask
1084    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1085  }
1086
1087  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1088    .addReg(OldVal).addReg(Mask2);
1089  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1090    .addReg(MaskedOldVal0).addReg(NewVal);
1091  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1092    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1093  BuildMI(BB, DL, TII->get(Mips::BEQ))
1094    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1095
1096  //  sinkMBB:
1097  //    and     maskedoldval1,oldval,mask
1098  //    srl     srlres,maskedoldval1,shiftamt
1099  //    sll     sllres,srlres,24
1100  //    sra     dest,sllres,24
1101  BB = sinkMBB;
1102  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1103
1104  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1105    .addReg(OldVal).addReg(Mask);
1106  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1107      .addReg(MaskedOldVal1).addReg(ShiftAmt);
1108  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1109      .addReg(SrlRes).addImm(ShiftImm);
1110  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1111      .addReg(SllRes).addImm(ShiftImm);
1112
1113  MI->eraseFromParent(); // The instruction is gone now.
1114
1115  return exitMBB;
1116}
1117
1118MachineBasicBlock * MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1119                                                          MachineBasicBlock *BB,
1120                                                          unsigned Size) const {
1121  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1122
1123  MachineFunction *MF = BB->getParent();
1124  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1125  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1126  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1127  DebugLoc DL = MI->getDebugLoc();
1128  unsigned LL, SC, ZERO, BNE, BEQ;
1129
1130  if (Size == 4) {
1131    LL = Mips::LL;
1132    SC = Mips::SC;
1133    ZERO = Mips::ZERO;
1134    BNE = Mips::BNE;
1135    BEQ = Mips::BEQ;
1136  } else {
1137    LL = Mips::LLD;
1138    SC = Mips::SCD;
1139    ZERO = Mips::ZERO_64;
1140    BNE = Mips::BNE64;
1141    BEQ = Mips::BEQ64;
1142  }
1143
1144  unsigned Dest    = MI->getOperand(0).getReg();
1145  unsigned Ptr     = MI->getOperand(1).getReg();
1146  unsigned OldVal  = MI->getOperand(2).getReg();
1147  unsigned NewVal  = MI->getOperand(3).getReg();
1148
1149  unsigned Success = RegInfo.createVirtualRegister(RC);
1150
1151  // insert new blocks after the current block
1152  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1153  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1154  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1155  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1156  MachineFunction::iterator It = BB;
1157  ++It;
1158  MF->insert(It, loop1MBB);
1159  MF->insert(It, loop2MBB);
1160  MF->insert(It, exitMBB);
1161
1162  // Transfer the remainder of BB and its successor edges to exitMBB.
1163  exitMBB->splice(exitMBB->begin(), BB,
1164                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1165  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1166
1167  //  thisMBB:
1168  //    ...
1169  //    fallthrough --> loop1MBB
1170  BB->addSuccessor(loop1MBB);
1171  loop1MBB->addSuccessor(exitMBB);
1172  loop1MBB->addSuccessor(loop2MBB);
1173  loop2MBB->addSuccessor(loop1MBB);
1174  loop2MBB->addSuccessor(exitMBB);
1175
1176  // loop1MBB:
1177  //   ll dest, 0(ptr)
1178  //   bne dest, oldval, exitMBB
1179  BB = loop1MBB;
1180  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1181  BuildMI(BB, DL, TII->get(BNE))
1182    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1183
1184  // loop2MBB:
1185  //   sc success, newval, 0(ptr)
1186  //   beq success, $0, loop1MBB
1187  BB = loop2MBB;
1188  BuildMI(BB, DL, TII->get(SC), Success)
1189    .addReg(NewVal).addReg(Ptr).addImm(0);
1190  BuildMI(BB, DL, TII->get(BEQ))
1191    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1192
1193  MI->eraseFromParent(); // The instruction is gone now.
1194
1195  return exitMBB;
1196}
1197
1198MachineBasicBlock *
1199MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1200                                              MachineBasicBlock *BB,
1201                                              unsigned Size) const {
1202  assert((Size == 1 || Size == 2) &&
1203      "Unsupported size for EmitAtomicCmpSwapPartial.");
1204
1205  MachineFunction *MF = BB->getParent();
1206  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1207  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1208  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1209  DebugLoc DL = MI->getDebugLoc();
1210
1211  unsigned Dest    = MI->getOperand(0).getReg();
1212  unsigned Ptr     = MI->getOperand(1).getReg();
1213  unsigned CmpVal  = MI->getOperand(2).getReg();
1214  unsigned NewVal  = MI->getOperand(3).getReg();
1215
1216  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1217  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1218  unsigned Mask = RegInfo.createVirtualRegister(RC);
1219  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1220  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1221  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1222  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1223  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1224  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1225  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1226  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1227  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1228  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1229  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1230  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1231  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1232  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1233  unsigned Success = RegInfo.createVirtualRegister(RC);
1234
1235  // insert new blocks after the current block
1236  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1237  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1238  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1239  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1240  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1241  MachineFunction::iterator It = BB;
1242  ++It;
1243  MF->insert(It, loop1MBB);
1244  MF->insert(It, loop2MBB);
1245  MF->insert(It, sinkMBB);
1246  MF->insert(It, exitMBB);
1247
1248  // Transfer the remainder of BB and its successor edges to exitMBB.
1249  exitMBB->splice(exitMBB->begin(), BB,
1250                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1251  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1252
1253  BB->addSuccessor(loop1MBB);
1254  loop1MBB->addSuccessor(sinkMBB);
1255  loop1MBB->addSuccessor(loop2MBB);
1256  loop2MBB->addSuccessor(loop1MBB);
1257  loop2MBB->addSuccessor(sinkMBB);
1258  sinkMBB->addSuccessor(exitMBB);
1259
1260  // FIXME: computation of newval2 can be moved to loop2MBB.
1261  //  thisMBB:
1262  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1263  //    and     alignedaddr,ptr,masklsb2
1264  //    andi    ptrlsb2,ptr,3
1265  //    sll     shiftamt,ptrlsb2,3
1266  //    ori     maskupper,$0,255               # 0xff
1267  //    sll     mask,maskupper,shiftamt
1268  //    nor     mask2,$0,mask
1269  //    andi    maskedcmpval,cmpval,255
1270  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1271  //    andi    maskednewval,newval,255
1272  //    sll     shiftednewval,maskednewval,shiftamt
1273  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1274  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1275    .addReg(Mips::ZERO).addImm(-4);
1276  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1277    .addReg(Ptr).addReg(MaskLSB2);
1278  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1279  if (Subtarget->isLittle()) {
1280    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1281  } else {
1282    unsigned Off = RegInfo.createVirtualRegister(RC);
1283    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1284      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1285    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1286  }
1287  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1288    .addReg(Mips::ZERO).addImm(MaskImm);
1289  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1290    .addReg(MaskUpper).addReg(ShiftAmt);
1291  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1292  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1293    .addReg(CmpVal).addImm(MaskImm);
1294  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1295    .addReg(MaskedCmpVal).addReg(ShiftAmt);
1296  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1297    .addReg(NewVal).addImm(MaskImm);
1298  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1299    .addReg(MaskedNewVal).addReg(ShiftAmt);
1300
1301  //  loop1MBB:
1302  //    ll      oldval,0(alginedaddr)
1303  //    and     maskedoldval0,oldval,mask
1304  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1305  BB = loop1MBB;
1306  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1307  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1308    .addReg(OldVal).addReg(Mask);
1309  BuildMI(BB, DL, TII->get(Mips::BNE))
1310    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1311
1312  //  loop2MBB:
1313  //    and     maskedoldval1,oldval,mask2
1314  //    or      storeval,maskedoldval1,shiftednewval
1315  //    sc      success,storeval,0(alignedaddr)
1316  //    beq     success,$0,loop1MBB
1317  BB = loop2MBB;
1318  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1319    .addReg(OldVal).addReg(Mask2);
1320  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1321    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1322  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1323      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1324  BuildMI(BB, DL, TII->get(Mips::BEQ))
1325      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1326
1327  //  sinkMBB:
1328  //    srl     srlres,maskedoldval0,shiftamt
1329  //    sll     sllres,srlres,24
1330  //    sra     dest,sllres,24
1331  BB = sinkMBB;
1332  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1333
1334  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1335      .addReg(MaskedOldVal0).addReg(ShiftAmt);
1336  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1337      .addReg(SrlRes).addImm(ShiftImm);
1338  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1339      .addReg(SllRes).addImm(ShiftImm);
1340
1341  MI->eraseFromParent();   // The instruction is gone now.
1342
1343  return exitMBB;
1344}
1345
1346//===----------------------------------------------------------------------===//
1347//  Misc Lower Operation implementation
1348//===----------------------------------------------------------------------===//
1349SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1350  SDValue Chain = Op.getOperand(0);
1351  SDValue Table = Op.getOperand(1);
1352  SDValue Index = Op.getOperand(2);
1353  SDLoc DL(Op);
1354  EVT PTy = getPointerTy();
1355  unsigned EntrySize =
1356    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1357
1358  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1359                      DAG.getConstant(EntrySize, PTy));
1360  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1361
1362  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1363  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1364                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1365                        0);
1366  Chain = Addr.getValue(1);
1367
1368  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
1369    // For PIC, the sequence is:
1370    // BRIND(load(Jumptable + index) + RelocBase)
1371    // RelocBase can be JumpTable, GOT or some sort of global base.
1372    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1373                       getPICJumpTableRelocBase(Table, DAG));
1374  }
1375
1376  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1377}
1378
1379SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1380  // The first operand is the chain, the second is the condition, the third is
1381  // the block to branch to if the condition is true.
1382  SDValue Chain = Op.getOperand(0);
1383  SDValue Dest = Op.getOperand(2);
1384  SDLoc DL(Op);
1385
1386  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1387
1388  // Return if flag is not set by a floating point comparison.
1389  if (CondRes.getOpcode() != MipsISD::FPCmp)
1390    return Op;
1391
1392  SDValue CCNode  = CondRes.getOperand(2);
1393  Mips::CondCode CC =
1394    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1395  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1396  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1397  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1398  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1399                     FCC0, Dest, CondRes);
1400}
1401
1402SDValue MipsTargetLowering::
1403lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1404{
1405  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1406
1407  // Return if flag is not set by a floating point comparison.
1408  if (Cond.getOpcode() != MipsISD::FPCmp)
1409    return Op;
1410
1411  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1412                      SDLoc(Op));
1413}
1414
1415SDValue MipsTargetLowering::
1416lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1417{
1418  SDLoc DL(Op);
1419  EVT Ty = Op.getOperand(0).getValueType();
1420  SDValue Cond = DAG.getNode(ISD::SETCC, DL,
1421                             getSetCCResultType(*DAG.getContext(), Ty),
1422                             Op.getOperand(0), Op.getOperand(1),
1423                             Op.getOperand(4));
1424
1425  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1426                     Op.getOperand(3));
1427}
1428
1429SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1430  SDValue Cond = createFPCmp(DAG, Op);
1431
1432  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1433         "Floating point operand expected.");
1434
1435  SDValue True  = DAG.getConstant(1, MVT::i32);
1436  SDValue False = DAG.getConstant(0, MVT::i32);
1437
1438  return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
1439}
1440
1441SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1442                                               SelectionDAG &DAG) const {
1443  // FIXME there isn't actually debug info here
1444  SDLoc DL(Op);
1445  EVT Ty = Op.getValueType();
1446  GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1447  const GlobalValue *GV = N->getGlobal();
1448
1449  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1450    const MipsTargetObjectFile &TLOF =
1451      (const MipsTargetObjectFile&)getObjFileLowering();
1452
1453    // %gp_rel relocation
1454    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1455      SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1456                                              MipsII::MO_GPREL);
1457      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1458                                      DAG.getVTList(MVT::i32), &GA, 1);
1459      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1460      return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1461    }
1462
1463    // %hi/%lo relocation
1464    return getAddrNonPIC(N, Ty, DAG);
1465  }
1466
1467  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1468    return getAddrLocal(N, Ty, DAG, HasMips64);
1469
1470  if (LargeGOT)
1471    return getAddrGlobalLargeGOT(N, Ty, DAG, MipsII::MO_GOT_HI16,
1472                                 MipsII::MO_GOT_LO16, DAG.getEntryNode(),
1473                                 MachinePointerInfo::getGOT());
1474
1475  return getAddrGlobal(N, Ty, DAG,
1476                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16,
1477                       DAG.getEntryNode(), MachinePointerInfo::getGOT());
1478}
1479
1480SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1481                                              SelectionDAG &DAG) const {
1482  BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
1483  EVT Ty = Op.getValueType();
1484
1485  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1486    return getAddrNonPIC(N, Ty, DAG);
1487
1488  return getAddrLocal(N, Ty, DAG, HasMips64);
1489}
1490
1491SDValue MipsTargetLowering::
1492lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1493{
1494  // If the relocation model is PIC, use the General Dynamic TLS Model or
1495  // Local Dynamic TLS model, otherwise use the Initial Exec or
1496  // Local Exec TLS Model.
1497
1498  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1499  SDLoc DL(GA);
1500  const GlobalValue *GV = GA->getGlobal();
1501  EVT PtrVT = getPointerTy();
1502
1503  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1504
1505  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1506    // General Dynamic and Local Dynamic TLS Model.
1507    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1508                                                      : MipsII::MO_TLSGD;
1509
1510    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1511    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1512                                   getGlobalReg(DAG, PtrVT), TGA);
1513    unsigned PtrSize = PtrVT.getSizeInBits();
1514    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1515
1516    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1517
1518    ArgListTy Args;
1519    ArgListEntry Entry;
1520    Entry.Node = Argument;
1521    Entry.Ty = PtrTy;
1522    Args.push_back(Entry);
1523
1524    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1525                  false, false, false, false, 0, CallingConv::C,
1526                  /*IsTailCall=*/false, /*doesNotRet=*/false,
1527                  /*isReturnValueUsed=*/true,
1528                  TlsGetAddr, Args, DAG, DL);
1529    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1530
1531    SDValue Ret = CallResult.first;
1532
1533    if (model != TLSModel::LocalDynamic)
1534      return Ret;
1535
1536    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1537                                               MipsII::MO_DTPREL_HI);
1538    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1539    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1540                                               MipsII::MO_DTPREL_LO);
1541    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1542    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1543    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1544  }
1545
1546  SDValue Offset;
1547  if (model == TLSModel::InitialExec) {
1548    // Initial Exec TLS Model
1549    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1550                                             MipsII::MO_GOTTPREL);
1551    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1552                      TGA);
1553    Offset = DAG.getLoad(PtrVT, DL,
1554                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1555                         false, false, false, 0);
1556  } else {
1557    // Local Exec TLS Model
1558    assert(model == TLSModel::LocalExec);
1559    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1560                                               MipsII::MO_TPREL_HI);
1561    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1562                                               MipsII::MO_TPREL_LO);
1563    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1564    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1565    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1566  }
1567
1568  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1569  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1570}
1571
1572SDValue MipsTargetLowering::
1573lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1574{
1575  JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
1576  EVT Ty = Op.getValueType();
1577
1578  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1579    return getAddrNonPIC(N, Ty, DAG);
1580
1581  return getAddrLocal(N, Ty, DAG, HasMips64);
1582}
1583
1584SDValue MipsTargetLowering::
1585lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1586{
1587  // gp_rel relocation
1588  // FIXME: we should reference the constant pool using small data sections,
1589  // but the asm printer currently doesn't support this feature without
1590  // hacking it. This feature should come soon so we can uncomment the
1591  // stuff below.
1592  //if (IsInSmallSection(C->getType())) {
1593  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1594  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1595  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1596  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1597  EVT Ty = Op.getValueType();
1598
1599  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1600    return getAddrNonPIC(N, Ty, DAG);
1601
1602  return getAddrLocal(N, Ty, DAG, HasMips64);
1603}
1604
1605SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1606  MachineFunction &MF = DAG.getMachineFunction();
1607  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1608
1609  SDLoc DL(Op);
1610  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1611                                 getPointerTy());
1612
1613  // vastart just stores the address of the VarArgsFrameIndex slot into the
1614  // memory location argument.
1615  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1616  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1617                      MachinePointerInfo(SV), false, false, 0);
1618}
1619
1620static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
1621                                bool HasExtractInsert) {
1622  EVT TyX = Op.getOperand(0).getValueType();
1623  EVT TyY = Op.getOperand(1).getValueType();
1624  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1625  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1626  SDLoc DL(Op);
1627  SDValue Res;
1628
1629  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1630  // to i32.
1631  SDValue X = (TyX == MVT::f32) ?
1632    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1633    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1634                Const1);
1635  SDValue Y = (TyY == MVT::f32) ?
1636    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1637    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1638                Const1);
1639
1640  if (HasExtractInsert) {
1641    // ext  E, Y, 31, 1  ; extract bit31 of Y
1642    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1643    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1644    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1645  } else {
1646    // sll SllX, X, 1
1647    // srl SrlX, SllX, 1
1648    // srl SrlY, Y, 31
1649    // sll SllY, SrlX, 31
1650    // or  Or, SrlX, SllY
1651    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1652    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1653    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1654    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1655    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1656  }
1657
1658  if (TyX == MVT::f32)
1659    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1660
1661  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1662                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1663  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1664}
1665
1666static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
1667                                bool HasExtractInsert) {
1668  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1669  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1670  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1671  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1672  SDLoc DL(Op);
1673
1674  // Bitcast to integer nodes.
1675  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1676  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1677
1678  if (HasExtractInsert) {
1679    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1680    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1681    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1682                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1683
1684    if (WidthX > WidthY)
1685      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1686    else if (WidthY > WidthX)
1687      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1688
1689    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1690                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1691    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1692  }
1693
1694  // (d)sll SllX, X, 1
1695  // (d)srl SrlX, SllX, 1
1696  // (d)srl SrlY, Y, width(Y)-1
1697  // (d)sll SllY, SrlX, width(Y)-1
1698  // or     Or, SrlX, SllY
1699  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1700  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1701  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1702                             DAG.getConstant(WidthY - 1, MVT::i32));
1703
1704  if (WidthX > WidthY)
1705    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1706  else if (WidthY > WidthX)
1707    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1708
1709  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1710                             DAG.getConstant(WidthX - 1, MVT::i32));
1711  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1712  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1713}
1714
1715SDValue
1716MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1717  if (Subtarget->hasMips64())
1718    return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasExtractInsert());
1719
1720  return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasExtractInsert());
1721}
1722
1723static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG,
1724                           bool HasExtractInsert) {
1725  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1726  SDLoc DL(Op);
1727
1728  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1729  // to i32.
1730  SDValue X = (Op.getValueType() == MVT::f32) ?
1731    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1732    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1733                Const1);
1734
1735  // Clear MSB.
1736  if (HasExtractInsert)
1737    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1738                      DAG.getRegister(Mips::ZERO, MVT::i32),
1739                      DAG.getConstant(31, MVT::i32), Const1, X);
1740  else {
1741    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1742    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1743  }
1744
1745  if (Op.getValueType() == MVT::f32)
1746    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1747
1748  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1749                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1750  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1751}
1752
1753static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG,
1754                           bool HasExtractInsert) {
1755  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1756  SDLoc DL(Op);
1757
1758  // Bitcast to integer node.
1759  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1760
1761  // Clear MSB.
1762  if (HasExtractInsert)
1763    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1764                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1765                      DAG.getConstant(63, MVT::i32), Const1, X);
1766  else {
1767    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1768    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1769  }
1770
1771  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1772}
1773
1774SDValue
1775MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
1776  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1777    return lowerFABS64(Op, DAG, Subtarget->hasExtractInsert());
1778
1779  return lowerFABS32(Op, DAG, Subtarget->hasExtractInsert());
1780}
1781
1782SDValue MipsTargetLowering::
1783lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1784  // check the depth
1785  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1786         "Frame address can only be determined for current frame.");
1787
1788  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1789  MFI->setFrameAddressIsTaken(true);
1790  EVT VT = Op.getValueType();
1791  SDLoc DL(Op);
1792  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1793                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1794  return FrameAddr;
1795}
1796
1797SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1798                                            SelectionDAG &DAG) const {
1799  // check the depth
1800  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1801         "Return address can be determined only for current frame.");
1802
1803  MachineFunction &MF = DAG.getMachineFunction();
1804  MachineFrameInfo *MFI = MF.getFrameInfo();
1805  MVT VT = Op.getSimpleValueType();
1806  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1807  MFI->setReturnAddressIsTaken(true);
1808
1809  // Return RA, which contains the return address. Mark it an implicit live-in.
1810  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1811  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
1812}
1813
1814// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1815// generated from __builtin_eh_return (offset, handler)
1816// The effect of this is to adjust the stack pointer by "offset"
1817// and then branch to "handler".
1818SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1819                                                                     const {
1820  MachineFunction &MF = DAG.getMachineFunction();
1821  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1822
1823  MipsFI->setCallsEhReturn();
1824  SDValue Chain     = Op.getOperand(0);
1825  SDValue Offset    = Op.getOperand(1);
1826  SDValue Handler   = Op.getOperand(2);
1827  SDLoc DL(Op);
1828  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
1829
1830  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1831  // EH_RETURN nodes, so that instructions are emitted back-to-back.
1832  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
1833  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
1834  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1835  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1836  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1837                     DAG.getRegister(OffsetReg, Ty),
1838                     DAG.getRegister(AddrReg, getPointerTy()),
1839                     Chain.getValue(1));
1840}
1841
1842SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1843                                              SelectionDAG &DAG) const {
1844  // FIXME: Need pseudo-fence for 'singlethread' fences
1845  // FIXME: Set SType for weaker fences where supported/appropriate.
1846  unsigned SType = 0;
1847  SDLoc DL(Op);
1848  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1849                     DAG.getConstant(SType, MVT::i32));
1850}
1851
1852SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1853                                                SelectionDAG &DAG) const {
1854  SDLoc DL(Op);
1855  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1856  SDValue Shamt = Op.getOperand(2);
1857
1858  // if shamt < 32:
1859  //  lo = (shl lo, shamt)
1860  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1861  // else:
1862  //  lo = 0
1863  //  hi = (shl lo, shamt[4:0])
1864  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1865                            DAG.getConstant(-1, MVT::i32));
1866  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1867                                      DAG.getConstant(1, MVT::i32));
1868  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1869                                     Not);
1870  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1871  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1872  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1873  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1874                             DAG.getConstant(0x20, MVT::i32));
1875  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1876                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1877  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1878
1879  SDValue Ops[2] = {Lo, Hi};
1880  return DAG.getMergeValues(Ops, 2, DL);
1881}
1882
1883SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1884                                                 bool IsSRA) const {
1885  SDLoc DL(Op);
1886  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1887  SDValue Shamt = Op.getOperand(2);
1888
1889  // if shamt < 32:
1890  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1891  //  if isSRA:
1892  //    hi = (sra hi, shamt)
1893  //  else:
1894  //    hi = (srl hi, shamt)
1895  // else:
1896  //  if isSRA:
1897  //   lo = (sra hi, shamt[4:0])
1898  //   hi = (sra hi, 31)
1899  //  else:
1900  //   lo = (srl hi, shamt[4:0])
1901  //   hi = 0
1902  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1903                            DAG.getConstant(-1, MVT::i32));
1904  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1905                                     DAG.getConstant(1, MVT::i32));
1906  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1907  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1908  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1909  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1910                                     Hi, Shamt);
1911  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1912                             DAG.getConstant(0x20, MVT::i32));
1913  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1914                                DAG.getConstant(31, MVT::i32));
1915  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1916  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1917                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
1918                   ShiftRightHi);
1919
1920  SDValue Ops[2] = {Lo, Hi};
1921  return DAG.getMergeValues(Ops, 2, DL);
1922}
1923
1924static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
1925                            SDValue Chain, SDValue Src, unsigned Offset) {
1926  SDValue Ptr = LD->getBasePtr();
1927  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
1928  EVT BasePtrVT = Ptr.getValueType();
1929  SDLoc DL(LD);
1930  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1931
1932  if (Offset)
1933    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1934                      DAG.getConstant(Offset, BasePtrVT));
1935
1936  SDValue Ops[] = { Chain, Ptr, Src };
1937  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
1938                                 LD->getMemOperand());
1939}
1940
1941// Expand an unaligned 32 or 64-bit integer load node.
1942SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1943  LoadSDNode *LD = cast<LoadSDNode>(Op);
1944  EVT MemVT = LD->getMemoryVT();
1945
1946  // Return if load is aligned or if MemVT is neither i32 nor i64.
1947  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
1948      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
1949    return SDValue();
1950
1951  bool IsLittle = Subtarget->isLittle();
1952  EVT VT = Op.getValueType();
1953  ISD::LoadExtType ExtType = LD->getExtensionType();
1954  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
1955
1956  assert((VT == MVT::i32) || (VT == MVT::i64));
1957
1958  // Expand
1959  //  (set dst, (i64 (load baseptr)))
1960  // to
1961  //  (set tmp, (ldl (add baseptr, 7), undef))
1962  //  (set dst, (ldr baseptr, tmp))
1963  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
1964    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
1965                               IsLittle ? 7 : 0);
1966    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
1967                        IsLittle ? 0 : 7);
1968  }
1969
1970  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
1971                             IsLittle ? 3 : 0);
1972  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
1973                             IsLittle ? 0 : 3);
1974
1975  // Expand
1976  //  (set dst, (i32 (load baseptr))) or
1977  //  (set dst, (i64 (sextload baseptr))) or
1978  //  (set dst, (i64 (extload baseptr)))
1979  // to
1980  //  (set tmp, (lwl (add baseptr, 3), undef))
1981  //  (set dst, (lwr baseptr, tmp))
1982  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
1983      (ExtType == ISD::EXTLOAD))
1984    return LWR;
1985
1986  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
1987
1988  // Expand
1989  //  (set dst, (i64 (zextload baseptr)))
1990  // to
1991  //  (set tmp0, (lwl (add baseptr, 3), undef))
1992  //  (set tmp1, (lwr baseptr, tmp0))
1993  //  (set tmp2, (shl tmp1, 32))
1994  //  (set dst, (srl tmp2, 32))
1995  SDLoc DL(LD);
1996  SDValue Const32 = DAG.getConstant(32, MVT::i32);
1997  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
1998  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
1999  SDValue Ops[] = { SRL, LWR.getValue(1) };
2000  return DAG.getMergeValues(Ops, 2, DL);
2001}
2002
2003static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2004                             SDValue Chain, unsigned Offset) {
2005  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2006  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2007  SDLoc DL(SD);
2008  SDVTList VTList = DAG.getVTList(MVT::Other);
2009
2010  if (Offset)
2011    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2012                      DAG.getConstant(Offset, BasePtrVT));
2013
2014  SDValue Ops[] = { Chain, Value, Ptr };
2015  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2016                                 SD->getMemOperand());
2017}
2018
2019// Expand an unaligned 32 or 64-bit integer store node.
2020static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2021                                      bool IsLittle) {
2022  SDValue Value = SD->getValue(), Chain = SD->getChain();
2023  EVT VT = Value.getValueType();
2024
2025  // Expand
2026  //  (store val, baseptr) or
2027  //  (truncstore val, baseptr)
2028  // to
2029  //  (swl val, (add baseptr, 3))
2030  //  (swr val, baseptr)
2031  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2032    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2033                                IsLittle ? 3 : 0);
2034    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2035  }
2036
2037  assert(VT == MVT::i64);
2038
2039  // Expand
2040  //  (store val, baseptr)
2041  // to
2042  //  (sdl val, (add baseptr, 7))
2043  //  (sdr val, baseptr)
2044  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2045  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2046}
2047
2048// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2049static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2050  SDValue Val = SD->getValue();
2051
2052  if (Val.getOpcode() != ISD::FP_TO_SINT)
2053    return SDValue();
2054
2055  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2056  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2057                           Val.getOperand(0));
2058
2059  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2060                      SD->getPointerInfo(), SD->isVolatile(),
2061                      SD->isNonTemporal(), SD->getAlignment());
2062}
2063
2064SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2065  StoreSDNode *SD = cast<StoreSDNode>(Op);
2066  EVT MemVT = SD->getMemoryVT();
2067
2068  // Lower unaligned integer stores.
2069  if ((SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2070      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2071    return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
2072
2073  return lowerFP_TO_SINT_STORE(SD, DAG);
2074}
2075
2076SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2077  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2078      || cast<ConstantSDNode>
2079        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2080      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2081    return SDValue();
2082
2083  // The pattern
2084  //   (add (frameaddr 0), (frame_to_args_offset))
2085  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2086  //   (add FrameObject, 0)
2087  // where FrameObject is a fixed StackObject with offset 0 which points to
2088  // the old stack pointer.
2089  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2090  EVT ValTy = Op->getValueType(0);
2091  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2092  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2093  return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
2094                     DAG.getConstant(0, ValTy));
2095}
2096
2097SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2098                                            SelectionDAG &DAG) const {
2099  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2100  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2101                              Op.getOperand(0));
2102  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2103}
2104
2105//===----------------------------------------------------------------------===//
2106//                      Calling Convention Implementation
2107//===----------------------------------------------------------------------===//
2108
2109//===----------------------------------------------------------------------===//
2110// TODO: Implement a generic logic using tblgen that can support this.
2111// Mips O32 ABI rules:
2112// ---
2113// i32 - Passed in A0, A1, A2, A3 and stack
2114// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2115//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2116// f64 - Only passed in two aliased f32 registers if no int reg has been used
2117//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2118//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2119//       go to stack.
2120//
2121//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2122//===----------------------------------------------------------------------===//
2123
2124static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2125                       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2126                       CCState &State, const uint16_t *F64Regs) {
2127
2128  static const unsigned IntRegsSize = 4, FloatRegsSize = 2;
2129
2130  static const uint16_t IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
2131  static const uint16_t F32Regs[] = { Mips::F12, Mips::F14 };
2132
2133  // Do not process byval args here.
2134  if (ArgFlags.isByVal())
2135    return true;
2136
2137  // Promote i8 and i16
2138  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2139    LocVT = MVT::i32;
2140    if (ArgFlags.isSExt())
2141      LocInfo = CCValAssign::SExt;
2142    else if (ArgFlags.isZExt())
2143      LocInfo = CCValAssign::ZExt;
2144    else
2145      LocInfo = CCValAssign::AExt;
2146  }
2147
2148  unsigned Reg;
2149
2150  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2151  // is true: function is vararg, argument is 3rd or higher, there is previous
2152  // argument which is not f32 or f64.
2153  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2154      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2155  unsigned OrigAlign = ArgFlags.getOrigAlign();
2156  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2157
2158  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2159    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2160    // If this is the first part of an i64 arg,
2161    // the allocated register must be either A0 or A2.
2162    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2163      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2164    LocVT = MVT::i32;
2165  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2166    // Allocate int register and shadow next int register. If first
2167    // available register is Mips::A1 or Mips::A3, shadow it too.
2168    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2169    if (Reg == Mips::A1 || Reg == Mips::A3)
2170      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2171    State.AllocateReg(IntRegs, IntRegsSize);
2172    LocVT = MVT::i32;
2173  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2174    // we are guaranteed to find an available float register
2175    if (ValVT == MVT::f32) {
2176      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2177      // Shadow int register
2178      State.AllocateReg(IntRegs, IntRegsSize);
2179    } else {
2180      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2181      // Shadow int registers
2182      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2183      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2184        State.AllocateReg(IntRegs, IntRegsSize);
2185      State.AllocateReg(IntRegs, IntRegsSize);
2186    }
2187  } else
2188    llvm_unreachable("Cannot handle this ValVT.");
2189
2190  if (!Reg) {
2191    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2192                                          OrigAlign);
2193    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2194  } else
2195    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2196
2197  return false;
2198}
2199
2200static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2201                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2202                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2203  static const uint16_t F64Regs[] = { Mips::D6, Mips::D7 };
2204
2205  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2206}
2207
2208static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2209                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2210                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2211  static const uint16_t F64Regs[] = { Mips::D12_64, Mips::D12_64 };
2212
2213  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2214}
2215
2216#include "MipsGenCallingConv.inc"
2217
2218//===----------------------------------------------------------------------===//
2219//                  Call Calling Convention Implementation
2220//===----------------------------------------------------------------------===//
2221
2222// Return next O32 integer argument register.
2223static unsigned getNextIntArgReg(unsigned Reg) {
2224  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2225  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2226}
2227
2228SDValue
2229MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2230                                   SDValue Chain, SDValue Arg, SDLoc DL,
2231                                   bool IsTailCall, SelectionDAG &DAG) const {
2232  if (!IsTailCall) {
2233    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2234                                 DAG.getIntPtrConstant(Offset));
2235    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2236                        false, 0);
2237  }
2238
2239  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2240  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2241  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2242  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2243                      /*isVolatile=*/ true, false, 0);
2244}
2245
2246void MipsTargetLowering::
2247getOpndList(SmallVectorImpl<SDValue> &Ops,
2248            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2249            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2250            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2251  // Insert node "GP copy globalreg" before call to function.
2252  //
2253  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2254  // in PIC mode) allow symbols to be resolved via lazy binding.
2255  // The lazy binding stub requires GP to point to the GOT.
2256  if (IsPICCall && !InternalLinkage) {
2257    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2258    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2259    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2260  }
2261
2262  // Build a sequence of copy-to-reg nodes chained together with token
2263  // chain and flag operands which copy the outgoing args into registers.
2264  // The InFlag in necessary since all emitted instructions must be
2265  // stuck together.
2266  SDValue InFlag;
2267
2268  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2269    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2270                                 RegsToPass[i].second, InFlag);
2271    InFlag = Chain.getValue(1);
2272  }
2273
2274  // Add argument registers to the end of the list so that they are
2275  // known live into the call.
2276  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2277    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2278                                      RegsToPass[i].second.getValueType()));
2279
2280  // Add a register mask operand representing the call-preserved registers.
2281  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2282  const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2283  assert(Mask && "Missing call preserved mask for calling convention");
2284  if (Subtarget->inMips16HardFloat()) {
2285    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2286      llvm::StringRef Sym = G->getGlobal()->getName();
2287      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2288      if (F->hasFnAttribute("__Mips16RetHelper")) {
2289        Mask = MipsRegisterInfo::getMips16RetHelperMask();
2290      }
2291    }
2292  }
2293  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2294
2295  if (InFlag.getNode())
2296    Ops.push_back(InFlag);
2297}
2298
2299/// LowerCall - functions arguments are copied from virtual regs to
2300/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2301SDValue
2302MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2303                              SmallVectorImpl<SDValue> &InVals) const {
2304  SelectionDAG &DAG                     = CLI.DAG;
2305  SDLoc DL                              = CLI.DL;
2306  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2307  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2308  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2309  SDValue Chain                         = CLI.Chain;
2310  SDValue Callee                        = CLI.Callee;
2311  bool &IsTailCall                      = CLI.IsTailCall;
2312  CallingConv::ID CallConv              = CLI.CallConv;
2313  bool IsVarArg                         = CLI.IsVarArg;
2314
2315  MachineFunction &MF = DAG.getMachineFunction();
2316  MachineFrameInfo *MFI = MF.getFrameInfo();
2317  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2318  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2319  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2320
2321  // Analyze operands of the call, assigning locations to each operand.
2322  SmallVector<CCValAssign, 16> ArgLocs;
2323  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2324                 getTargetMachine(), ArgLocs, *DAG.getContext());
2325  MipsCC::SpecialCallingConvType SpecialCallingConv =
2326    getSpecialCallingConv(Callee);
2327  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo,
2328                    SpecialCallingConv);
2329
2330  MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2331                                 Subtarget->mipsSEUsesSoftFloat(),
2332                                 Callee.getNode(), CLI.Args);
2333
2334  // Get a count of how many bytes are to be pushed on the stack.
2335  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2336
2337  // Check if it's really possible to do a tail call.
2338  if (IsTailCall)
2339    IsTailCall =
2340      isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2341                                        *MF.getInfo<MipsFunctionInfo>());
2342
2343  if (IsTailCall)
2344    ++NumTailCalls;
2345
2346  // Chain is the output chain of the last Load/Store or CopyToReg node.
2347  // ByValChain is the output chain of the last Memcpy node created for copying
2348  // byval arguments to the stack.
2349  unsigned StackAlignment = TFL->getStackAlignment();
2350  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2351  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2352
2353  if (!IsTailCall)
2354    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2355
2356  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
2357                                        IsN64 ? Mips::SP_64 : Mips::SP,
2358                                        getPointerTy());
2359
2360  // With EABI is it possible to have 16 args on registers.
2361  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2362  SmallVector<SDValue, 8> MemOpChains;
2363  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2364
2365  // Walk the register/memloc assignments, inserting copies/loads.
2366  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2367    SDValue Arg = OutVals[i];
2368    CCValAssign &VA = ArgLocs[i];
2369    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2370    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2371
2372    // ByVal Arg.
2373    if (Flags.isByVal()) {
2374      assert(Flags.getByValSize() &&
2375             "ByVal args of size 0 should have been ignored by front-end.");
2376      assert(ByValArg != MipsCCInfo.byval_end());
2377      assert(!IsTailCall &&
2378             "Do not tail-call optimize if there is a byval argument.");
2379      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2380                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2381      ++ByValArg;
2382      continue;
2383    }
2384
2385    // Promote the value if needed.
2386    switch (VA.getLocInfo()) {
2387    default: llvm_unreachable("Unknown loc info!");
2388    case CCValAssign::Full:
2389      if (VA.isRegLoc()) {
2390        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2391            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2392            (ValVT == MVT::i64 && LocVT == MVT::f64))
2393          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2394        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2395          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2396                                   Arg, DAG.getConstant(0, MVT::i32));
2397          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2398                                   Arg, DAG.getConstant(1, MVT::i32));
2399          if (!Subtarget->isLittle())
2400            std::swap(Lo, Hi);
2401          unsigned LocRegLo = VA.getLocReg();
2402          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2403          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2404          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2405          continue;
2406        }
2407      }
2408      break;
2409    case CCValAssign::SExt:
2410      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2411      break;
2412    case CCValAssign::ZExt:
2413      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2414      break;
2415    case CCValAssign::AExt:
2416      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2417      break;
2418    }
2419
2420    // Arguments that can be passed on register must be kept at
2421    // RegsToPass vector
2422    if (VA.isRegLoc()) {
2423      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2424      continue;
2425    }
2426
2427    // Register can't get to this point...
2428    assert(VA.isMemLoc());
2429
2430    // emit ISD::STORE whichs stores the
2431    // parameter value to a stack Location
2432    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2433                                         Chain, Arg, DL, IsTailCall, DAG));
2434  }
2435
2436  // Transform all store nodes into one single node because all store
2437  // nodes are independent of each other.
2438  if (!MemOpChains.empty())
2439    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2440                        &MemOpChains[0], MemOpChains.size());
2441
2442  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2443  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2444  // node so that legalize doesn't hack it.
2445  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2446  bool GlobalOrExternal = false, InternalLinkage = false;
2447  SDValue CalleeLo;
2448  EVT Ty = Callee.getValueType();
2449
2450  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2451    if (IsPICCall) {
2452      const GlobalValue *Val = G->getGlobal();
2453      InternalLinkage = Val->hasInternalLinkage();
2454
2455      if (InternalLinkage)
2456        Callee = getAddrLocal(G, Ty, DAG, HasMips64);
2457      else if (LargeGOT)
2458        Callee = getAddrGlobalLargeGOT(G, Ty, DAG, MipsII::MO_CALL_HI16,
2459                                       MipsII::MO_CALL_LO16, Chain,
2460                                       FuncInfo->callPtrInfo(Val));
2461      else
2462        Callee = getAddrGlobal(G, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
2463                               FuncInfo->callPtrInfo(Val));
2464    } else
2465      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2466                                          MipsII::MO_NO_FLAG);
2467    GlobalOrExternal = true;
2468  }
2469  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2470    const char *Sym = S->getSymbol();
2471
2472    if (!IsN64 && !IsPIC) // !N64 && static
2473      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(),
2474                                            MipsII::MO_NO_FLAG);
2475    else if (LargeGOT)
2476      Callee = getAddrGlobalLargeGOT(S, Ty, DAG, MipsII::MO_CALL_HI16,
2477                                     MipsII::MO_CALL_LO16, Chain,
2478                                     FuncInfo->callPtrInfo(Sym));
2479    else // N64 || PIC
2480      Callee = getAddrGlobal(S, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
2481                             FuncInfo->callPtrInfo(Sym));
2482
2483    GlobalOrExternal = true;
2484  }
2485
2486  SmallVector<SDValue, 8> Ops(1, Chain);
2487  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2488
2489  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2490              CLI, Callee, Chain);
2491
2492  if (IsTailCall)
2493    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
2494
2495  Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
2496  SDValue InFlag = Chain.getValue(1);
2497
2498  // Create the CALLSEQ_END node.
2499  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2500                             DAG.getIntPtrConstant(0, true), InFlag, DL);
2501  InFlag = Chain.getValue(1);
2502
2503  // Handle result values, copying them out of physregs into vregs that we
2504  // return.
2505  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2506                         Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2507}
2508
2509/// LowerCallResult - Lower the result values of a call into the
2510/// appropriate copies out of appropriate physical registers.
2511SDValue
2512MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2513                                    CallingConv::ID CallConv, bool IsVarArg,
2514                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2515                                    SDLoc DL, SelectionDAG &DAG,
2516                                    SmallVectorImpl<SDValue> &InVals,
2517                                    const SDNode *CallNode,
2518                                    const Type *RetTy) const {
2519  // Assign locations to each value returned by this call.
2520  SmallVector<CCValAssign, 16> RVLocs;
2521  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2522                 getTargetMachine(), RVLocs, *DAG.getContext());
2523  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2524
2525  MipsCCInfo.analyzeCallResult(Ins, Subtarget->mipsSEUsesSoftFloat(),
2526                               CallNode, RetTy);
2527
2528  // Copy all of the result registers out of their specified physreg.
2529  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2530    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2531                                     RVLocs[i].getLocVT(), InFlag);
2532    Chain = Val.getValue(1);
2533    InFlag = Val.getValue(2);
2534
2535    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2536      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2537
2538    InVals.push_back(Val);
2539  }
2540
2541  return Chain;
2542}
2543
2544//===----------------------------------------------------------------------===//
2545//             Formal Arguments Calling Convention Implementation
2546//===----------------------------------------------------------------------===//
2547/// LowerFormalArguments - transform physical registers into virtual registers
2548/// and generate load operations for arguments places on the stack.
2549SDValue
2550MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2551                                         CallingConv::ID CallConv,
2552                                         bool IsVarArg,
2553                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2554                                         SDLoc DL, SelectionDAG &DAG,
2555                                         SmallVectorImpl<SDValue> &InVals)
2556                                          const {
2557  MachineFunction &MF = DAG.getMachineFunction();
2558  MachineFrameInfo *MFI = MF.getFrameInfo();
2559  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2560
2561  MipsFI->setVarArgsFrameIndex(0);
2562
2563  // Used with vargs to acumulate store chains.
2564  std::vector<SDValue> OutChains;
2565
2566  // Assign locations to all of the incoming arguments.
2567  SmallVector<CCValAssign, 16> ArgLocs;
2568  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2569                 getTargetMachine(), ArgLocs, *DAG.getContext());
2570  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2571  Function::const_arg_iterator FuncArg =
2572    DAG.getMachineFunction().getFunction()->arg_begin();
2573  bool UseSoftFloat = Subtarget->mipsSEUsesSoftFloat();
2574
2575  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2576  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2577                           MipsCCInfo.hasByValArg());
2578
2579  unsigned CurArgIdx = 0;
2580  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2581
2582  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2583    CCValAssign &VA = ArgLocs[i];
2584    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2585    CurArgIdx = Ins[i].OrigArgIndex;
2586    EVT ValVT = VA.getValVT();
2587    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2588    bool IsRegLoc = VA.isRegLoc();
2589
2590    if (Flags.isByVal()) {
2591      assert(Flags.getByValSize() &&
2592             "ByVal args of size 0 should have been ignored by front-end.");
2593      assert(ByValArg != MipsCCInfo.byval_end());
2594      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2595                    MipsCCInfo, *ByValArg);
2596      ++ByValArg;
2597      continue;
2598    }
2599
2600    // Arguments stored on registers
2601    if (IsRegLoc) {
2602      MVT RegVT = VA.getLocVT();
2603      unsigned ArgReg = VA.getLocReg();
2604      const TargetRegisterClass *RC = getRegClassFor(RegVT);
2605
2606      // Transform the arguments stored on
2607      // physical registers into virtual ones
2608      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2609      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2610
2611      // If this is an 8 or 16-bit value, it has been passed promoted
2612      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2613      // truncate to the right size.
2614      if (VA.getLocInfo() != CCValAssign::Full) {
2615        unsigned Opcode = 0;
2616        if (VA.getLocInfo() == CCValAssign::SExt)
2617          Opcode = ISD::AssertSext;
2618        else if (VA.getLocInfo() == CCValAssign::ZExt)
2619          Opcode = ISD::AssertZext;
2620        if (Opcode)
2621          ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2622                                 DAG.getValueType(ValVT));
2623        ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2624      }
2625
2626      // Handle floating point arguments passed in integer registers and
2627      // long double arguments passed in floating point registers.
2628      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2629          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2630          (RegVT == MVT::f64 && ValVT == MVT::i64))
2631        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2632      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2633        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2634                                  getNextIntArgReg(ArgReg), RC);
2635        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2636        if (!Subtarget->isLittle())
2637          std::swap(ArgValue, ArgValue2);
2638        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2639                               ArgValue, ArgValue2);
2640      }
2641
2642      InVals.push_back(ArgValue);
2643    } else { // VA.isRegLoc()
2644
2645      // sanity check
2646      assert(VA.isMemLoc());
2647
2648      // The stack pointer offset is relative to the caller stack frame.
2649      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2650                                      VA.getLocMemOffset(), true);
2651
2652      // Create load nodes to retrieve arguments from the stack
2653      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2654      SDValue Load = DAG.getLoad(ValVT, DL, Chain, FIN,
2655                                 MachinePointerInfo::getFixedStack(FI),
2656                                 false, false, false, 0);
2657      InVals.push_back(Load);
2658      OutChains.push_back(Load.getValue(1));
2659    }
2660  }
2661
2662  // The mips ABIs for returning structs by value requires that we copy
2663  // the sret argument into $v0 for the return. Save the argument into
2664  // a virtual register so that we can access it from the return points.
2665  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2666    unsigned Reg = MipsFI->getSRetReturnReg();
2667    if (!Reg) {
2668      Reg = MF.getRegInfo().
2669        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
2670      MipsFI->setSRetReturnReg(Reg);
2671    }
2672    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
2673    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2674  }
2675
2676  if (IsVarArg)
2677    writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2678
2679  // All stores are grouped in one node to allow the matching between
2680  // the size of Ins and InVals. This only happens when on varg functions
2681  if (!OutChains.empty()) {
2682    OutChains.push_back(Chain);
2683    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2684                        &OutChains[0], OutChains.size());
2685  }
2686
2687  return Chain;
2688}
2689
2690//===----------------------------------------------------------------------===//
2691//               Return Value Calling Convention Implementation
2692//===----------------------------------------------------------------------===//
2693
2694bool
2695MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2696                                   MachineFunction &MF, bool IsVarArg,
2697                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2698                                   LLVMContext &Context) const {
2699  SmallVector<CCValAssign, 16> RVLocs;
2700  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2701                 RVLocs, Context);
2702  return CCInfo.CheckReturn(Outs, RetCC_Mips);
2703}
2704
2705SDValue
2706MipsTargetLowering::LowerReturn(SDValue Chain,
2707                                CallingConv::ID CallConv, bool IsVarArg,
2708                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2709                                const SmallVectorImpl<SDValue> &OutVals,
2710                                SDLoc DL, SelectionDAG &DAG) const {
2711  // CCValAssign - represent the assignment of
2712  // the return value to a location
2713  SmallVector<CCValAssign, 16> RVLocs;
2714  MachineFunction &MF = DAG.getMachineFunction();
2715
2716  // CCState - Info about the registers and stack slot.
2717  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2718                 *DAG.getContext());
2719  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2720
2721  // Analyze return values.
2722  MipsCCInfo.analyzeReturn(Outs, Subtarget->mipsSEUsesSoftFloat(),
2723                           MF.getFunction()->getReturnType());
2724
2725  SDValue Flag;
2726  SmallVector<SDValue, 4> RetOps(1, Chain);
2727
2728  // Copy the result values into the output registers.
2729  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2730    SDValue Val = OutVals[i];
2731    CCValAssign &VA = RVLocs[i];
2732    assert(VA.isRegLoc() && "Can only return in registers!");
2733
2734    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2735      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2736
2737    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2738
2739    // Guarantee that all emitted copies are stuck together with flags.
2740    Flag = Chain.getValue(1);
2741    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2742  }
2743
2744  // The mips ABIs for returning structs by value requires that we copy
2745  // the sret argument into $v0 for the return. We saved the argument into
2746  // a virtual register in the entry block, so now we copy the value out
2747  // and into $v0.
2748  if (MF.getFunction()->hasStructRetAttr()) {
2749    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2750    unsigned Reg = MipsFI->getSRetReturnReg();
2751
2752    if (!Reg)
2753      llvm_unreachable("sret virtual register not created in the entry block");
2754    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2755    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
2756
2757    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2758    Flag = Chain.getValue(1);
2759    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2760  }
2761
2762  RetOps[0] = Chain;  // Update chain.
2763
2764  // Add the flag if we have it.
2765  if (Flag.getNode())
2766    RetOps.push_back(Flag);
2767
2768  // Return on Mips is always a "jr $ra"
2769  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
2770}
2771
2772//===----------------------------------------------------------------------===//
2773//                           Mips Inline Assembly Support
2774//===----------------------------------------------------------------------===//
2775
2776/// getConstraintType - Given a constraint letter, return the type of
2777/// constraint it is for this target.
2778MipsTargetLowering::ConstraintType MipsTargetLowering::
2779getConstraintType(const std::string &Constraint) const
2780{
2781  // Mips specific constraints
2782  // GCC config/mips/constraints.md
2783  //
2784  // 'd' : An address register. Equivalent to r
2785  //       unless generating MIPS16 code.
2786  // 'y' : Equivalent to r; retained for
2787  //       backwards compatibility.
2788  // 'c' : A register suitable for use in an indirect
2789  //       jump. This will always be $25 for -mabicalls.
2790  // 'l' : The lo register. 1 word storage.
2791  // 'x' : The hilo register pair. Double word storage.
2792  if (Constraint.size() == 1) {
2793    switch (Constraint[0]) {
2794      default : break;
2795      case 'd':
2796      case 'y':
2797      case 'f':
2798      case 'c':
2799      case 'l':
2800      case 'x':
2801        return C_RegisterClass;
2802      case 'R':
2803        return C_Memory;
2804    }
2805  }
2806  return TargetLowering::getConstraintType(Constraint);
2807}
2808
2809/// Examine constraint type and operand type and determine a weight value.
2810/// This object must already have been set up with the operand type
2811/// and the current alternative constraint selected.
2812TargetLowering::ConstraintWeight
2813MipsTargetLowering::getSingleConstraintMatchWeight(
2814    AsmOperandInfo &info, const char *constraint) const {
2815  ConstraintWeight weight = CW_Invalid;
2816  Value *CallOperandVal = info.CallOperandVal;
2817    // If we don't have a value, we can't do a match,
2818    // but allow it at the lowest weight.
2819  if (CallOperandVal == NULL)
2820    return CW_Default;
2821  Type *type = CallOperandVal->getType();
2822  // Look at the constraint type.
2823  switch (*constraint) {
2824  default:
2825    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2826    break;
2827  case 'd':
2828  case 'y':
2829    if (type->isIntegerTy())
2830      weight = CW_Register;
2831    break;
2832  case 'f': // FPU or MSA register
2833    if (Subtarget->hasMSA() && type->isVectorTy() &&
2834        cast<VectorType>(type)->getBitWidth() == 128)
2835      weight = CW_Register;
2836    else if (type->isFloatTy())
2837      weight = CW_Register;
2838    break;
2839  case 'c': // $25 for indirect jumps
2840  case 'l': // lo register
2841  case 'x': // hilo register pair
2842    if (type->isIntegerTy())
2843      weight = CW_SpecificReg;
2844    break;
2845  case 'I': // signed 16 bit immediate
2846  case 'J': // integer zero
2847  case 'K': // unsigned 16 bit immediate
2848  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2849  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2850  case 'O': // signed 15 bit immediate (+- 16383)
2851  case 'P': // immediate in the range of 65535 to 1 (inclusive)
2852    if (isa<ConstantInt>(CallOperandVal))
2853      weight = CW_Constant;
2854    break;
2855  case 'R':
2856    weight = CW_Memory;
2857    break;
2858  }
2859  return weight;
2860}
2861
2862/// This is a helper function to parse a physical register string and split it
2863/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
2864/// that is returned indicates whether parsing was successful. The second flag
2865/// is true if the numeric part exists.
2866static std::pair<bool, bool>
2867parsePhysicalReg(const StringRef &C, std::string &Prefix,
2868                 unsigned long long &Reg) {
2869  if (C.front() != '{' || C.back() != '}')
2870    return std::make_pair(false, false);
2871
2872  // Search for the first numeric character.
2873  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
2874  I = std::find_if(B, E, std::ptr_fun(isdigit));
2875
2876  Prefix.assign(B, I - B);
2877
2878  // The second flag is set to false if no numeric characters were found.
2879  if (I == E)
2880    return std::make_pair(true, false);
2881
2882  // Parse the numeric characters.
2883  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
2884                        true);
2885}
2886
2887std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
2888parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const {
2889  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2890  const TargetRegisterClass *RC;
2891  std::string Prefix;
2892  unsigned long long Reg;
2893
2894  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
2895
2896  if (!R.first)
2897    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2898
2899  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
2900    // No numeric characters follow "hi" or "lo".
2901    if (R.second)
2902      return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2903
2904    RC = TRI->getRegClass(Prefix == "hi" ?
2905                          Mips::HI32RegClassID : Mips::LO32RegClassID);
2906    return std::make_pair(*(RC->begin()), RC);
2907  } else if (Prefix.compare(0, 4, "$msa") == 0) {
2908    // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
2909
2910    // No numeric characters follow the name.
2911    if (R.second)
2912      return std::make_pair((unsigned)0, (const TargetRegisterClass *)0);
2913
2914    Reg = StringSwitch<unsigned long long>(Prefix)
2915              .Case("$msair", Mips::MSAIR)
2916              .Case("$msacsr", Mips::MSACSR)
2917              .Case("$msaaccess", Mips::MSAAccess)
2918              .Case("$msasave", Mips::MSASave)
2919              .Case("$msamodify", Mips::MSAModify)
2920              .Case("$msarequest", Mips::MSARequest)
2921              .Case("$msamap", Mips::MSAMap)
2922              .Case("$msaunmap", Mips::MSAUnmap)
2923              .Default(0);
2924
2925    if (!Reg)
2926      return std::make_pair((unsigned)0, (const TargetRegisterClass *)0);
2927
2928    RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
2929    return std::make_pair(Reg, RC);
2930  }
2931
2932  if (!R.second)
2933    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2934
2935  if (Prefix == "$f") { // Parse $f0-$f31.
2936    // If the size of FP registers is 64-bit or Reg is an even number, select
2937    // the 64-bit register class. Otherwise, select the 32-bit register class.
2938    if (VT == MVT::Other)
2939      VT = (Subtarget->isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
2940
2941    RC = getRegClassFor(VT);
2942
2943    if (RC == &Mips::AFGR64RegClass) {
2944      assert(Reg % 2 == 0);
2945      Reg >>= 1;
2946    }
2947  } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
2948    RC = TRI->getRegClass(Mips::FCCRegClassID);
2949  else if (Prefix == "$w") { // Parse $w0-$w31.
2950    RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
2951  } else { // Parse $0-$31.
2952    assert(Prefix == "$");
2953    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
2954  }
2955
2956  assert(Reg < RC->getNumRegs());
2957  return std::make_pair(*(RC->begin() + Reg), RC);
2958}
2959
2960/// Given a register class constraint, like 'r', if this corresponds directly
2961/// to an LLVM register class, return a register of 0 and the register class
2962/// pointer.
2963std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2964getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
2965{
2966  if (Constraint.size() == 1) {
2967    switch (Constraint[0]) {
2968    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2969    case 'y': // Same as 'r'. Exists for compatibility.
2970    case 'r':
2971      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
2972        if (Subtarget->inMips16Mode())
2973          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
2974        return std::make_pair(0U, &Mips::GPR32RegClass);
2975      }
2976      if (VT == MVT::i64 && !HasMips64)
2977        return std::make_pair(0U, &Mips::GPR32RegClass);
2978      if (VT == MVT::i64 && HasMips64)
2979        return std::make_pair(0U, &Mips::GPR64RegClass);
2980      // This will generate an error message
2981      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2982    case 'f': // FPU or MSA register
2983      if (VT == MVT::v16i8)
2984        return std::make_pair(0U, &Mips::MSA128BRegClass);
2985      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2986        return std::make_pair(0U, &Mips::MSA128HRegClass);
2987      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2988        return std::make_pair(0U, &Mips::MSA128WRegClass);
2989      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2990        return std::make_pair(0U, &Mips::MSA128DRegClass);
2991      else if (VT == MVT::f32)
2992        return std::make_pair(0U, &Mips::FGR32RegClass);
2993      else if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2994        if (Subtarget->isFP64bit())
2995          return std::make_pair(0U, &Mips::FGR64RegClass);
2996        return std::make_pair(0U, &Mips::AFGR64RegClass);
2997      }
2998      break;
2999    case 'c': // register suitable for indirect jump
3000      if (VT == MVT::i32)
3001        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
3002      assert(VT == MVT::i64 && "Unexpected type.");
3003      return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
3004    case 'l': // register suitable for indirect jump
3005      if (VT == MVT::i32)
3006        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
3007      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
3008    case 'x': // register suitable for indirect jump
3009      // Fixme: Not triggering the use of both hi and low
3010      // This will generate an error message
3011      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3012    }
3013  }
3014
3015  std::pair<unsigned, const TargetRegisterClass *> R;
3016  R = parseRegForInlineAsmConstraint(Constraint, VT);
3017
3018  if (R.second)
3019    return R;
3020
3021  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3022}
3023
3024/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3025/// vector.  If it is invalid, don't add anything to Ops.
3026void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3027                                                     std::string &Constraint,
3028                                                     std::vector<SDValue>&Ops,
3029                                                     SelectionDAG &DAG) const {
3030  SDValue Result(0, 0);
3031
3032  // Only support length 1 constraints for now.
3033  if (Constraint.length() > 1) return;
3034
3035  char ConstraintLetter = Constraint[0];
3036  switch (ConstraintLetter) {
3037  default: break; // This will fall through to the generic implementation
3038  case 'I': // Signed 16 bit constant
3039    // If this fails, the parent routine will give an error
3040    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3041      EVT Type = Op.getValueType();
3042      int64_t Val = C->getSExtValue();
3043      if (isInt<16>(Val)) {
3044        Result = DAG.getTargetConstant(Val, Type);
3045        break;
3046      }
3047    }
3048    return;
3049  case 'J': // integer zero
3050    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3051      EVT Type = Op.getValueType();
3052      int64_t Val = C->getZExtValue();
3053      if (Val == 0) {
3054        Result = DAG.getTargetConstant(0, Type);
3055        break;
3056      }
3057    }
3058    return;
3059  case 'K': // unsigned 16 bit immediate
3060    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3061      EVT Type = Op.getValueType();
3062      uint64_t Val = (uint64_t)C->getZExtValue();
3063      if (isUInt<16>(Val)) {
3064        Result = DAG.getTargetConstant(Val, Type);
3065        break;
3066      }
3067    }
3068    return;
3069  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3070    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3071      EVT Type = Op.getValueType();
3072      int64_t Val = C->getSExtValue();
3073      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3074        Result = DAG.getTargetConstant(Val, Type);
3075        break;
3076      }
3077    }
3078    return;
3079  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3080    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3081      EVT Type = Op.getValueType();
3082      int64_t Val = C->getSExtValue();
3083      if ((Val >= -65535) && (Val <= -1)) {
3084        Result = DAG.getTargetConstant(Val, Type);
3085        break;
3086      }
3087    }
3088    return;
3089  case 'O': // signed 15 bit immediate
3090    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3091      EVT Type = Op.getValueType();
3092      int64_t Val = C->getSExtValue();
3093      if ((isInt<15>(Val))) {
3094        Result = DAG.getTargetConstant(Val, Type);
3095        break;
3096      }
3097    }
3098    return;
3099  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3100    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3101      EVT Type = Op.getValueType();
3102      int64_t Val = C->getSExtValue();
3103      if ((Val <= 65535) && (Val >= 1)) {
3104        Result = DAG.getTargetConstant(Val, Type);
3105        break;
3106      }
3107    }
3108    return;
3109  }
3110
3111  if (Result.getNode()) {
3112    Ops.push_back(Result);
3113    return;
3114  }
3115
3116  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3117}
3118
3119bool MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3120                                               Type *Ty) const {
3121  // No global is ever allowed as a base.
3122  if (AM.BaseGV)
3123    return false;
3124
3125  switch (AM.Scale) {
3126  case 0: // "r+i" or just "i", depending on HasBaseReg.
3127    break;
3128  case 1:
3129    if (!AM.HasBaseReg) // allow "r+i".
3130      break;
3131    return false; // disallow "r+r" or "r+r+i".
3132  default:
3133    return false;
3134  }
3135
3136  return true;
3137}
3138
3139bool
3140MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3141  // The Mips target isn't yet aware of offsets.
3142  return false;
3143}
3144
3145EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3146                                            unsigned SrcAlign,
3147                                            bool IsMemset, bool ZeroMemset,
3148                                            bool MemcpyStrSrc,
3149                                            MachineFunction &MF) const {
3150  if (Subtarget->hasMips64())
3151    return MVT::i64;
3152
3153  return MVT::i32;
3154}
3155
3156bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3157  if (VT != MVT::f32 && VT != MVT::f64)
3158    return false;
3159  if (Imm.isNegZero())
3160    return false;
3161  return Imm.isZero();
3162}
3163
3164unsigned MipsTargetLowering::getJumpTableEncoding() const {
3165  if (IsN64)
3166    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3167
3168  return TargetLowering::getJumpTableEncoding();
3169}
3170
3171/// This function returns true if CallSym is a long double emulation routine.
3172static bool isF128SoftLibCall(const char *CallSym) {
3173  const char *const LibCalls[] =
3174    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3175     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3176     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3177     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3178     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3179     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3180     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3181     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3182     "truncl"};
3183
3184  const char *const *End = LibCalls + array_lengthof(LibCalls);
3185
3186  // Check that LibCalls is sorted alphabetically.
3187  MipsTargetLowering::LTStr Comp;
3188
3189#ifndef NDEBUG
3190  for (const char *const *I = LibCalls; I < End - 1; ++I)
3191    assert(Comp(*I, *(I + 1)));
3192#endif
3193
3194  return std::binary_search(LibCalls, End, CallSym, Comp);
3195}
3196
3197/// This function returns true if Ty is fp128 or i128 which was originally a
3198/// fp128.
3199static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3200  if (Ty->isFP128Ty())
3201    return true;
3202
3203  const ExternalSymbolSDNode *ES =
3204    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3205
3206  // If the Ty is i128 and the function being called is a long double emulation
3207  // routine, then the original type is f128.
3208  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3209}
3210
3211MipsTargetLowering::MipsCC::SpecialCallingConvType
3212  MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
3213  MipsCC::SpecialCallingConvType SpecialCallingConv =
3214    MipsCC::NoSpecialCallingConv;;
3215  if (Subtarget->inMips16HardFloat()) {
3216    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3217      llvm::StringRef Sym = G->getGlobal()->getName();
3218      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3219      if (F->hasFnAttribute("__Mips16RetHelper")) {
3220        SpecialCallingConv = MipsCC::Mips16RetHelperConv;
3221      }
3222    }
3223  }
3224  return SpecialCallingConv;
3225}
3226
3227MipsTargetLowering::MipsCC::MipsCC(
3228  CallingConv::ID CC, bool IsO32_, bool IsFP64_, CCState &Info,
3229  MipsCC::SpecialCallingConvType SpecialCallingConv_)
3230  : CCInfo(Info), CallConv(CC), IsO32(IsO32_), IsFP64(IsFP64_),
3231    SpecialCallingConv(SpecialCallingConv_){
3232  // Pre-allocate reserved argument area.
3233  CCInfo.AllocateStack(reservedArgArea(), 1);
3234}
3235
3236
3237void MipsTargetLowering::MipsCC::
3238analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3239                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3240                    std::vector<ArgListEntry> &FuncArgs) {
3241  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3242         "CallingConv::Fast shouldn't be used for vararg functions.");
3243
3244  unsigned NumOpnds = Args.size();
3245  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3246
3247  for (unsigned I = 0; I != NumOpnds; ++I) {
3248    MVT ArgVT = Args[I].VT;
3249    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3250    bool R;
3251
3252    if (ArgFlags.isByVal()) {
3253      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3254      continue;
3255    }
3256
3257    if (IsVarArg && !Args[I].IsFixed)
3258      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3259    else {
3260      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3261                           IsSoftFloat);
3262      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3263    }
3264
3265    if (R) {
3266#ifndef NDEBUG
3267      dbgs() << "Call operand #" << I << " has unhandled type "
3268             << EVT(ArgVT).getEVTString();
3269#endif
3270      llvm_unreachable(0);
3271    }
3272  }
3273}
3274
3275void MipsTargetLowering::MipsCC::
3276analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3277                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3278  unsigned NumArgs = Args.size();
3279  llvm::CCAssignFn *FixedFn = fixedArgFn();
3280  unsigned CurArgIdx = 0;
3281
3282  for (unsigned I = 0; I != NumArgs; ++I) {
3283    MVT ArgVT = Args[I].VT;
3284    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3285    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3286    CurArgIdx = Args[I].OrigArgIndex;
3287
3288    if (ArgFlags.isByVal()) {
3289      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3290      continue;
3291    }
3292
3293    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
3294
3295    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3296      continue;
3297
3298#ifndef NDEBUG
3299    dbgs() << "Formal Arg #" << I << " has unhandled type "
3300           << EVT(ArgVT).getEVTString();
3301#endif
3302    llvm_unreachable(0);
3303  }
3304}
3305
3306template<typename Ty>
3307void MipsTargetLowering::MipsCC::
3308analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3309              const SDNode *CallNode, const Type *RetTy) const {
3310  CCAssignFn *Fn;
3311
3312  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3313    Fn = RetCC_F128Soft;
3314  else
3315    Fn = RetCC_Mips;
3316
3317  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3318    MVT VT = RetVals[I].VT;
3319    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3320    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3321
3322    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3323#ifndef NDEBUG
3324      dbgs() << "Call result #" << I << " has unhandled type "
3325             << EVT(VT).getEVTString() << '\n';
3326#endif
3327      llvm_unreachable(0);
3328    }
3329  }
3330}
3331
3332void MipsTargetLowering::MipsCC::
3333analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3334                  const SDNode *CallNode, const Type *RetTy) const {
3335  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3336}
3337
3338void MipsTargetLowering::MipsCC::
3339analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3340              const Type *RetTy) const {
3341  analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
3342}
3343
3344void MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3345                                                MVT LocVT,
3346                                                CCValAssign::LocInfo LocInfo,
3347                                                ISD::ArgFlagsTy ArgFlags) {
3348  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3349
3350  struct ByValArgInfo ByVal;
3351  unsigned RegSize = regSize();
3352  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3353  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3354                            RegSize * 2);
3355
3356  if (useRegsForByval())
3357    allocateRegs(ByVal, ByValSize, Align);
3358
3359  // Allocate space on caller's stack.
3360  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3361                                       Align);
3362  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3363                                    LocInfo));
3364  ByValArgs.push_back(ByVal);
3365}
3366
3367unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3368  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3369}
3370
3371unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3372  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3373}
3374
3375const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
3376  return IsO32 ? O32IntRegs : Mips64IntRegs;
3377}
3378
3379llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3380  if (CallConv == CallingConv::Fast)
3381    return CC_Mips_FastCC;
3382
3383  if (SpecialCallingConv == Mips16RetHelperConv)
3384    return CC_Mips16RetHelper;
3385  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN;
3386}
3387
3388llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3389  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN_VarArg;
3390}
3391
3392const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
3393  return IsO32 ? O32IntRegs : Mips64DPRegs;
3394}
3395
3396void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3397                                              unsigned ByValSize,
3398                                              unsigned Align) {
3399  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3400  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3401  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3402         "Byval argument's size and alignment should be a multiple of"
3403         "RegSize.");
3404
3405  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3406
3407  // If Align > RegSize, the first arg register must be even.
3408  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3409    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3410    ++ByVal.FirstIdx;
3411  }
3412
3413  // Mark the registers allocated.
3414  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3415       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3416    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3417}
3418
3419MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3420                                         const SDNode *CallNode,
3421                                         bool IsSoftFloat) const {
3422  if (IsSoftFloat || IsO32)
3423    return VT;
3424
3425  // Check if the original type was fp128.
3426  if (originalTypeIsF128(OrigTy, CallNode)) {
3427    assert(VT == MVT::i64);
3428    return MVT::f64;
3429  }
3430
3431  return VT;
3432}
3433
3434void MipsTargetLowering::
3435copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
3436              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3437              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3438              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3439  MachineFunction &MF = DAG.getMachineFunction();
3440  MachineFrameInfo *MFI = MF.getFrameInfo();
3441  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3442  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3443  int FrameObjOffset;
3444
3445  if (RegAreaSize)
3446    FrameObjOffset = (int)CC.reservedArgArea() -
3447      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3448  else
3449    FrameObjOffset = ByVal.Address;
3450
3451  // Create frame object.
3452  EVT PtrTy = getPointerTy();
3453  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3454  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3455  InVals.push_back(FIN);
3456
3457  if (!ByVal.NumRegs)
3458    return;
3459
3460  // Copy arg registers.
3461  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3462  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3463
3464  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3465    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3466    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3467    unsigned Offset = I * CC.regSize();
3468    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3469                                   DAG.getConstant(Offset, PtrTy));
3470    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3471                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3472                                 false, false, 0);
3473    OutChains.push_back(Store);
3474  }
3475}
3476
3477// Copy byVal arg to registers and stack.
3478void MipsTargetLowering::
3479passByValArg(SDValue Chain, SDLoc DL,
3480             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3481             SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
3482             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3483             const MipsCC &CC, const ByValArgInfo &ByVal,
3484             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3485  unsigned ByValSize = Flags.getByValSize();
3486  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3487  unsigned RegSize = CC.regSize();
3488  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3489  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3490
3491  if (ByVal.NumRegs) {
3492    const uint16_t *ArgRegs = CC.intArgRegs();
3493    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3494    unsigned I = 0;
3495
3496    // Copy words to registers.
3497    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3498      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3499                                    DAG.getConstant(Offset, PtrTy));
3500      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3501                                    MachinePointerInfo(), false, false, false,
3502                                    Alignment);
3503      MemOpChains.push_back(LoadVal.getValue(1));
3504      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3505      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3506    }
3507
3508    // Return if the struct has been fully copied.
3509    if (ByValSize == Offset)
3510      return;
3511
3512    // Copy the remainder of the byval argument with sub-word loads and shifts.
3513    if (LeftoverBytes) {
3514      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3515             "Size of the remainder should be smaller than RegSize.");
3516      SDValue Val;
3517
3518      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3519           Offset < ByValSize; LoadSize /= 2) {
3520        unsigned RemSize = ByValSize - Offset;
3521
3522        if (RemSize < LoadSize)
3523          continue;
3524
3525        // Load subword.
3526        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3527                                      DAG.getConstant(Offset, PtrTy));
3528        SDValue LoadVal =
3529          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3530                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3531                         false, false, Alignment);
3532        MemOpChains.push_back(LoadVal.getValue(1));
3533
3534        // Shift the loaded value.
3535        unsigned Shamt;
3536
3537        if (isLittle)
3538          Shamt = TotalSizeLoaded;
3539        else
3540          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3541
3542        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3543                                    DAG.getConstant(Shamt, MVT::i32));
3544
3545        if (Val.getNode())
3546          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3547        else
3548          Val = Shift;
3549
3550        Offset += LoadSize;
3551        TotalSizeLoaded += LoadSize;
3552        Alignment = std::min(Alignment, LoadSize);
3553      }
3554
3555      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3556      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3557      return;
3558    }
3559  }
3560
3561  // Copy remainder of byval arg to it with memcpy.
3562  unsigned MemCpySize = ByValSize - Offset;
3563  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3564                            DAG.getConstant(Offset, PtrTy));
3565  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3566                            DAG.getIntPtrConstant(ByVal.Address));
3567  Chain = DAG.getMemcpy(Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, PtrTy),
3568                        Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
3569                        MachinePointerInfo(0), MachinePointerInfo(0));
3570  MemOpChains.push_back(Chain);
3571}
3572
3573void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3574                                         const MipsCC &CC, SDValue Chain,
3575                                         SDLoc DL, SelectionDAG &DAG) const {
3576  unsigned NumRegs = CC.numIntArgRegs();
3577  const uint16_t *ArgRegs = CC.intArgRegs();
3578  const CCState &CCInfo = CC.getCCInfo();
3579  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3580  unsigned RegSize = CC.regSize();
3581  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3582  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3583  MachineFunction &MF = DAG.getMachineFunction();
3584  MachineFrameInfo *MFI = MF.getFrameInfo();
3585  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3586
3587  // Offset of the first variable argument from stack pointer.
3588  int VaArgOffset;
3589
3590  if (NumRegs == Idx)
3591    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3592  else
3593    VaArgOffset = (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3594
3595  // Record the frame index of the first variable argument
3596  // which is a value necessary to VASTART.
3597  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3598  MipsFI->setVarArgsFrameIndex(FI);
3599
3600  // Copy the integer registers that have not been used for argument passing
3601  // to the argument register save area. For O32, the save area is allocated
3602  // in the caller's stack frame, while for N32/64, it is allocated in the
3603  // callee's stack frame.
3604  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3605    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3606    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3607    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3608    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3609    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3610                                 MachinePointerInfo(), false, false, 0);
3611    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3612    OutChains.push_back(Store);
3613  }
3614}
3615