MipsISelLowering.cpp revision d5a336cdb5ed691b0288c8d4aa4c5b1899b7e39b
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include <set>
16#include "MipsISelLowering.h"
17#include "InstPrinter/MipsInstPrinter.h"
18#include "MCTargetDesc/MipsBaseInfo.h"
19#include "MipsMachineFunction.h"
20#include "MipsSubtarget.h"
21#include "MipsTargetMachine.h"
22#include "MipsTargetObjectFile.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/CodeGen/CallingConvLower.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/SelectionDAGISel.h"
30#include "llvm/CodeGen/ValueTypes.h"
31#include "llvm/IR/CallingConv.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/GlobalVariable.h"
35#include "llvm/IR/Intrinsics.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/raw_ostream.h"
40
41using namespace llvm;
42
43STATISTIC(NumTailCalls, "Number of tail calls");
44
45static cl::opt<bool>
46EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
47                    cl::desc("MIPS: Enable tail calls."), cl::init(false));
48
49static cl::opt<bool>
50LargeGOT("mxgot", cl::Hidden,
51         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
52
53static cl::opt<bool>
54Mips16HardFloat("mips16-hard-float", cl::NotHidden,
55                cl::desc("MIPS: mips16 hard float enable."),
56                cl::init(false));
57
58
59
60static const uint16_t O32IntRegs[4] = {
61  Mips::A0, Mips::A1, Mips::A2, Mips::A3
62};
63
64static const uint16_t Mips64IntRegs[8] = {
65  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
66  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
67};
68
69static const uint16_t Mips64DPRegs[8] = {
70  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
71  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
72};
73
74// If I is a shifted mask, set the size (Size) and the first bit of the
75// mask (Pos), and return true.
76// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
77static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
78  if (!isShiftedMask_64(I))
79     return false;
80
81  Size = CountPopulation_64(I);
82  Pos = CountTrailingZeros_64(I);
83  return true;
84}
85
86static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
87  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
88  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
89}
90
91static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
92  EVT Ty = Op.getValueType();
93
94  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
95    return DAG.getTargetGlobalAddress(N->getGlobal(), Op.getDebugLoc(), Ty, 0,
96                                      Flag);
97  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
98    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
99  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
100    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
101  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
102    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
103  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
104    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
105                                     N->getOffset(), Flag);
106
107  llvm_unreachable("Unexpected node type.");
108  return SDValue();
109}
110
111static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
112  DebugLoc DL = Op.getDebugLoc();
113  EVT Ty = Op.getValueType();
114  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
115  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
116  return DAG.getNode(ISD::ADD, DL, Ty,
117                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
118                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
119}
120
121static SDValue getAddrLocal(SDValue Op, SelectionDAG &DAG, bool HasMips64) {
122  DebugLoc DL = Op.getDebugLoc();
123  EVT Ty = Op.getValueType();
124  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
125  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, GetGlobalReg(DAG, Ty),
126                            getTargetNode(Op, DAG, GOTFlag));
127  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
128                             MachinePointerInfo::getGOT(), false, false, false,
129                             0);
130  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
131  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
132  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
133}
134
135static SDValue getAddrGlobal(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
136  DebugLoc DL = Op.getDebugLoc();
137  EVT Ty = Op.getValueType();
138  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, GetGlobalReg(DAG, Ty),
139                            getTargetNode(Op, DAG, Flag));
140  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
141                     MachinePointerInfo::getGOT(), false, false, false, 0);
142}
143
144static SDValue getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
145                                     unsigned HiFlag, unsigned LoFlag) {
146  DebugLoc DL = Op.getDebugLoc();
147  EVT Ty = Op.getValueType();
148  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
149  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, GetGlobalReg(DAG, Ty));
150  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
151                                getTargetNode(Op, DAG, LoFlag));
152  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
153                     MachinePointerInfo::getGOT(), false, false, false, 0);
154}
155
156const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
157  switch (Opcode) {
158  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
159  case MipsISD::TailCall:          return "MipsISD::TailCall";
160  case MipsISD::Hi:                return "MipsISD::Hi";
161  case MipsISD::Lo:                return "MipsISD::Lo";
162  case MipsISD::GPRel:             return "MipsISD::GPRel";
163  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
164  case MipsISD::Ret:               return "MipsISD::Ret";
165  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
166  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
167  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
168  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
169  case MipsISD::FPRound:           return "MipsISD::FPRound";
170  case MipsISD::MAdd:              return "MipsISD::MAdd";
171  case MipsISD::MAddu:             return "MipsISD::MAddu";
172  case MipsISD::MSub:              return "MipsISD::MSub";
173  case MipsISD::MSubu:             return "MipsISD::MSubu";
174  case MipsISD::DivRem:            return "MipsISD::DivRem";
175  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
176  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
177  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
178  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
179  case MipsISD::Sync:              return "MipsISD::Sync";
180  case MipsISD::Ext:               return "MipsISD::Ext";
181  case MipsISD::Ins:               return "MipsISD::Ins";
182  case MipsISD::LWL:               return "MipsISD::LWL";
183  case MipsISD::LWR:               return "MipsISD::LWR";
184  case MipsISD::SWL:               return "MipsISD::SWL";
185  case MipsISD::SWR:               return "MipsISD::SWR";
186  case MipsISD::LDL:               return "MipsISD::LDL";
187  case MipsISD::LDR:               return "MipsISD::LDR";
188  case MipsISD::SDL:               return "MipsISD::SDL";
189  case MipsISD::SDR:               return "MipsISD::SDR";
190  case MipsISD::EXTP:              return "MipsISD::EXTP";
191  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
192  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
193  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
194  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
195  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
196  case MipsISD::SHILO:             return "MipsISD::SHILO";
197  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
198  case MipsISD::MULT:              return "MipsISD::MULT";
199  case MipsISD::MULTU:             return "MipsISD::MULTU";
200  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSPDSP";
201  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
202  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
203  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
204  default:                         return NULL;
205  }
206}
207
208namespace {
209  struct eqstr {
210    bool operator()(const char *s1, const char *s2) const
211    {
212      return strcmp(s1, s2) == 0;
213    }
214  };
215
216  std::set<const char*, eqstr> noHelperNeeded;
217
218  const char* addToNoHelperNeeded(const char* s) {
219    noHelperNeeded.insert(s);
220    return s;
221  }
222
223}
224
225void MipsTargetLowering::setMips16HardFloatLibCalls() {
226  setLibcallName(RTLIB::ADD_F32, addToNoHelperNeeded("__mips16_addsf3"));
227  setLibcallName(RTLIB::ADD_F64, addToNoHelperNeeded("__mips16_adddf3"));
228  setLibcallName(RTLIB::SUB_F32, addToNoHelperNeeded("__mips16_subsf3"));
229  setLibcallName(RTLIB::SUB_F64, addToNoHelperNeeded("__mips16_subdf3"));
230  setLibcallName(RTLIB::MUL_F32, addToNoHelperNeeded("__mips16_mulsf3"));
231  setLibcallName(RTLIB::MUL_F64, addToNoHelperNeeded("__mips16_muldf3"));
232  setLibcallName(RTLIB::DIV_F32, addToNoHelperNeeded("__mips16_divsf3"));
233  setLibcallName(RTLIB::DIV_F64, addToNoHelperNeeded("__mips16_divdf3"));
234  setLibcallName(RTLIB::FPEXT_F32_F64,
235                 addToNoHelperNeeded("__mips16_extendsfdf2"));
236  setLibcallName(RTLIB::FPROUND_F64_F32,
237                 addToNoHelperNeeded("__mips16_truncdfsf2"));
238  setLibcallName(RTLIB::FPTOSINT_F32_I32,
239                 addToNoHelperNeeded("__mips16_fix_truncsfsi"));
240  setLibcallName(RTLIB::FPTOSINT_F64_I32,
241                 addToNoHelperNeeded("__mips16_fix_truncdfsi"));
242  setLibcallName(RTLIB::SINTTOFP_I32_F32,
243                 addToNoHelperNeeded("__mips16_floatsisf"));
244  setLibcallName(RTLIB::SINTTOFP_I32_F64,
245                 addToNoHelperNeeded("__mips16_floatsidf"));
246  setLibcallName(RTLIB::UINTTOFP_I32_F32,
247                 addToNoHelperNeeded("__mips16_floatunsisf"));
248  setLibcallName(RTLIB::UINTTOFP_I32_F64,
249                 addToNoHelperNeeded("__mips16_floatunsidf"));
250  setLibcallName(RTLIB::OEQ_F32, addToNoHelperNeeded("__mips16_eqsf2"));
251  setLibcallName(RTLIB::OEQ_F64, addToNoHelperNeeded("__mips16_eqdf2"));
252  setLibcallName(RTLIB::UNE_F32, addToNoHelperNeeded("__mips16_nesf2"));
253  setLibcallName(RTLIB::UNE_F64, addToNoHelperNeeded("__mips16_nedf2"));
254  setLibcallName(RTLIB::OGE_F32, addToNoHelperNeeded("__mips16_gesf2"));
255  setLibcallName(RTLIB::OGE_F64, addToNoHelperNeeded("__mips16_gedf2"));
256  setLibcallName(RTLIB::OLT_F32, addToNoHelperNeeded("__mips16_ltsf2"));
257  setLibcallName(RTLIB::OLT_F64, addToNoHelperNeeded("__mips16_ltdf2"));
258  setLibcallName(RTLIB::OLE_F32, addToNoHelperNeeded("__mips16_lesf2"));
259  setLibcallName(RTLIB::OLE_F64, addToNoHelperNeeded("__mips16_ledf2"));
260  setLibcallName(RTLIB::OGT_F32, addToNoHelperNeeded("__mips16_gtsf2"));
261  setLibcallName(RTLIB::OGT_F64, addToNoHelperNeeded("__mips16_gtdf2"));
262  setLibcallName(RTLIB::UO_F32, addToNoHelperNeeded("__mips16_unordsf2"));
263  setLibcallName(RTLIB::UO_F64, addToNoHelperNeeded("__mips16_unorddf2"));
264  setLibcallName(RTLIB::O_F32, addToNoHelperNeeded("__mips16_unordsf2"));
265  setLibcallName(RTLIB::O_F64, addToNoHelperNeeded("__mips16_unorddf2"));
266}
267
268MipsTargetLowering::
269MipsTargetLowering(MipsTargetMachine &TM)
270  : TargetLowering(TM, new MipsTargetObjectFile()),
271    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
272    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
273    IsO32(Subtarget->isABI_O32()) {
274
275  // Mips does not have i1 type, so use i32 for
276  // setcc operations results (slt, sgt, ...).
277  setBooleanContents(ZeroOrOneBooleanContent);
278  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
279
280  // Set up the register classes
281  addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
282
283  if (HasMips64)
284    addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
285
286  if (Subtarget->inMips16Mode()) {
287    addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
288    if (Mips16HardFloat)
289      setMips16HardFloatLibCalls();
290  }
291
292  if (Subtarget->hasDSP()) {
293    MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
294
295    for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
296      addRegisterClass(VecTys[i], &Mips::DSPRegsRegClass);
297
298      // Expand all builtin opcodes.
299      for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
300        setOperationAction(Opc, VecTys[i], Expand);
301
302      setOperationAction(ISD::LOAD, VecTys[i], Legal);
303      setOperationAction(ISD::STORE, VecTys[i], Legal);
304      setOperationAction(ISD::BITCAST, VecTys[i], Legal);
305    }
306  }
307
308  if (!TM.Options.UseSoftFloat) {
309    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
310
311    // When dealing with single precision only, use libcalls
312    if (!Subtarget->isSingleFloat()) {
313      if (HasMips64)
314        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
315      else
316        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
317    }
318  }
319
320  // Load extented operations for i1 types must be promoted
321  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
322  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
323  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
324
325  // MIPS doesn't have extending float->double load/store
326  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
327  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
328
329  // Used by legalize types to correctly generate the setcc result.
330  // Without this, every float setcc comes with a AND/OR with the result,
331  // we don't want this, since the fpcmp result goes to a flag register,
332  // which is used implicitly by brcond and select operations.
333  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
334
335  // Mips Custom Operations
336  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
337  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
338  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
339  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
340  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
341  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
342  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
343  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
344  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
345  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
346  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
347  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
348  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
349  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
350  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
351  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
352  if (Subtarget->inMips16Mode()) {
353    setOperationAction(ISD::MEMBARRIER,         MVT::Other, Expand);
354    setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Expand);
355  }
356  else {
357    setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
358    setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
359  }
360  if (!Subtarget->inMips16Mode()) {
361    setOperationAction(ISD::LOAD,               MVT::i32, Custom);
362    setOperationAction(ISD::STORE,              MVT::i32, Custom);
363  }
364
365  if (!TM.Options.NoNaNsFPMath) {
366    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
367    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
368  }
369
370  if (HasMips64) {
371    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
372    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
373    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
374    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
375    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
376    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
377    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
378    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
379  }
380
381  if (!HasMips64) {
382    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
383    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
384    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
385  }
386
387  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
388  if (HasMips64)
389    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
390
391  setOperationAction(ISD::SDIV, MVT::i32, Expand);
392  setOperationAction(ISD::SREM, MVT::i32, Expand);
393  setOperationAction(ISD::UDIV, MVT::i32, Expand);
394  setOperationAction(ISD::UREM, MVT::i32, Expand);
395  setOperationAction(ISD::SDIV, MVT::i64, Expand);
396  setOperationAction(ISD::SREM, MVT::i64, Expand);
397  setOperationAction(ISD::UDIV, MVT::i64, Expand);
398  setOperationAction(ISD::UREM, MVT::i64, Expand);
399
400  // Operations not directly supported by Mips.
401  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
402  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
403  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
404  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
405  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
406  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
407  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
408  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
409  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
410  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
411  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
412  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
413  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
414  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
415  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
416  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
417  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
418  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
419  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
420  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
421
422  if (!Subtarget->hasMips32r2())
423    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
424
425  if (!Subtarget->hasMips64r2())
426    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
427
428  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
429  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
430  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
431  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
432  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
433  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
434  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
435  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
436  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
437  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
438  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
439  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
440  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
441  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
442  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
443
444  if (!TM.Options.NoNaNsFPMath) {
445    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
446    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
447  }
448
449  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
450  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
451  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
452  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
453
454  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
455  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
456  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
457
458  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
459  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
460
461  // Use the default for now
462  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
463  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
464
465  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
466  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
467  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
468  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
469
470  if (Subtarget->inMips16Mode()) {
471    setOperationAction(ISD::ATOMIC_CMP_SWAP,       MVT::i32,    Expand);
472    setOperationAction(ISD::ATOMIC_SWAP,           MVT::i32,    Expand);
473    setOperationAction(ISD::ATOMIC_LOAD_ADD,       MVT::i32,    Expand);
474    setOperationAction(ISD::ATOMIC_LOAD_SUB,       MVT::i32,    Expand);
475    setOperationAction(ISD::ATOMIC_LOAD_AND,       MVT::i32,    Expand);
476    setOperationAction(ISD::ATOMIC_LOAD_OR,        MVT::i32,    Expand);
477    setOperationAction(ISD::ATOMIC_LOAD_XOR,       MVT::i32,    Expand);
478    setOperationAction(ISD::ATOMIC_LOAD_NAND,      MVT::i32,    Expand);
479    setOperationAction(ISD::ATOMIC_LOAD_MIN,       MVT::i32,    Expand);
480    setOperationAction(ISD::ATOMIC_LOAD_MAX,       MVT::i32,    Expand);
481    setOperationAction(ISD::ATOMIC_LOAD_UMIN,      MVT::i32,    Expand);
482    setOperationAction(ISD::ATOMIC_LOAD_UMAX,      MVT::i32,    Expand);
483  }
484
485  setInsertFencesForAtomic(true);
486
487  if (!Subtarget->hasSEInReg()) {
488    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
489    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
490  }
491
492  if (!Subtarget->hasBitCount()) {
493    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
494    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
495  }
496
497  if (!Subtarget->hasSwap()) {
498    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
499    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
500  }
501
502  if (HasMips64) {
503    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
504    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
505    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
506    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
507  }
508
509  setTargetDAGCombine(ISD::ADDE);
510  setTargetDAGCombine(ISD::SUBE);
511  setTargetDAGCombine(ISD::SDIVREM);
512  setTargetDAGCombine(ISD::UDIVREM);
513  setTargetDAGCombine(ISD::SELECT);
514  setTargetDAGCombine(ISD::AND);
515  setTargetDAGCombine(ISD::OR);
516  setTargetDAGCombine(ISD::ADD);
517
518  setMinFunctionAlignment(HasMips64 ? 3 : 2);
519
520  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
521  computeRegisterProperties();
522
523  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
524  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
525
526  maxStoresPerMemcpy = 16;
527}
528
529bool
530MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
531  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
532
533  if (Subtarget->inMips16Mode())
534    return false;
535
536  switch (SVT) {
537  case MVT::i64:
538  case MVT::i32:
539    if (Fast)
540      *Fast = true;
541    return true;
542  default:
543    return false;
544  }
545}
546
547EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
548  if (!VT.isVector())
549    return MVT::i32;
550  return VT.changeVectorElementTypeToInteger();
551}
552
553// SelectMadd -
554// Transforms a subgraph in CurDAG if the following pattern is found:
555//  (addc multLo, Lo0), (adde multHi, Hi0),
556// where,
557//  multHi/Lo: product of multiplication
558//  Lo0: initial value of Lo register
559//  Hi0: initial value of Hi register
560// Return true if pattern matching was successful.
561static bool SelectMadd(SDNode *ADDENode, SelectionDAG *CurDAG) {
562  // ADDENode's second operand must be a flag output of an ADDC node in order
563  // for the matching to be successful.
564  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
565
566  if (ADDCNode->getOpcode() != ISD::ADDC)
567    return false;
568
569  SDValue MultHi = ADDENode->getOperand(0);
570  SDValue MultLo = ADDCNode->getOperand(0);
571  SDNode *MultNode = MultHi.getNode();
572  unsigned MultOpc = MultHi.getOpcode();
573
574  // MultHi and MultLo must be generated by the same node,
575  if (MultLo.getNode() != MultNode)
576    return false;
577
578  // and it must be a multiplication.
579  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
580    return false;
581
582  // MultLo amd MultHi must be the first and second output of MultNode
583  // respectively.
584  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
585    return false;
586
587  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
588  // of the values of MultNode, in which case MultNode will be removed in later
589  // phases.
590  // If there exist users other than ADDENode or ADDCNode, this function returns
591  // here, which will result in MultNode being mapped to a single MULT
592  // instruction node rather than a pair of MULT and MADD instructions being
593  // produced.
594  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
595    return false;
596
597  SDValue Chain = CurDAG->getEntryNode();
598  DebugLoc dl = ADDENode->getDebugLoc();
599
600  // create MipsMAdd(u) node
601  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
602
603  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
604                                 MultNode->getOperand(0),// Factor 0
605                                 MultNode->getOperand(1),// Factor 1
606                                 ADDCNode->getOperand(1),// Lo0
607                                 ADDENode->getOperand(1));// Hi0
608
609  // create CopyFromReg nodes
610  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
611                                              MAdd);
612  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
613                                              Mips::HI, MVT::i32,
614                                              CopyFromLo.getValue(2));
615
616  // replace uses of adde and addc here
617  if (!SDValue(ADDCNode, 0).use_empty())
618    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
619
620  if (!SDValue(ADDENode, 0).use_empty())
621    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
622
623  return true;
624}
625
626// SelectMsub -
627// Transforms a subgraph in CurDAG if the following pattern is found:
628//  (addc Lo0, multLo), (sube Hi0, multHi),
629// where,
630//  multHi/Lo: product of multiplication
631//  Lo0: initial value of Lo register
632//  Hi0: initial value of Hi register
633// Return true if pattern matching was successful.
634static bool SelectMsub(SDNode *SUBENode, SelectionDAG *CurDAG) {
635  // SUBENode's second operand must be a flag output of an SUBC node in order
636  // for the matching to be successful.
637  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
638
639  if (SUBCNode->getOpcode() != ISD::SUBC)
640    return false;
641
642  SDValue MultHi = SUBENode->getOperand(1);
643  SDValue MultLo = SUBCNode->getOperand(1);
644  SDNode *MultNode = MultHi.getNode();
645  unsigned MultOpc = MultHi.getOpcode();
646
647  // MultHi and MultLo must be generated by the same node,
648  if (MultLo.getNode() != MultNode)
649    return false;
650
651  // and it must be a multiplication.
652  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
653    return false;
654
655  // MultLo amd MultHi must be the first and second output of MultNode
656  // respectively.
657  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
658    return false;
659
660  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
661  // of the values of MultNode, in which case MultNode will be removed in later
662  // phases.
663  // If there exist users other than SUBENode or SUBCNode, this function returns
664  // here, which will result in MultNode being mapped to a single MULT
665  // instruction node rather than a pair of MULT and MSUB instructions being
666  // produced.
667  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
668    return false;
669
670  SDValue Chain = CurDAG->getEntryNode();
671  DebugLoc dl = SUBENode->getDebugLoc();
672
673  // create MipsSub(u) node
674  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
675
676  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
677                                 MultNode->getOperand(0),// Factor 0
678                                 MultNode->getOperand(1),// Factor 1
679                                 SUBCNode->getOperand(0),// Lo0
680                                 SUBENode->getOperand(0));// Hi0
681
682  // create CopyFromReg nodes
683  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
684                                              MSub);
685  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
686                                              Mips::HI, MVT::i32,
687                                              CopyFromLo.getValue(2));
688
689  // replace uses of sube and subc here
690  if (!SDValue(SUBCNode, 0).use_empty())
691    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
692
693  if (!SDValue(SUBENode, 0).use_empty())
694    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
695
696  return true;
697}
698
699static SDValue PerformADDECombine(SDNode *N, SelectionDAG &DAG,
700                                  TargetLowering::DAGCombinerInfo &DCI,
701                                  const MipsSubtarget *Subtarget) {
702  if (DCI.isBeforeLegalize())
703    return SDValue();
704
705  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
706      SelectMadd(N, &DAG))
707    return SDValue(N, 0);
708
709  return SDValue();
710}
711
712static SDValue PerformSUBECombine(SDNode *N, SelectionDAG &DAG,
713                                  TargetLowering::DAGCombinerInfo &DCI,
714                                  const MipsSubtarget *Subtarget) {
715  if (DCI.isBeforeLegalize())
716    return SDValue();
717
718  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
719      SelectMsub(N, &DAG))
720    return SDValue(N, 0);
721
722  return SDValue();
723}
724
725static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG &DAG,
726                                    TargetLowering::DAGCombinerInfo &DCI,
727                                    const MipsSubtarget *Subtarget) {
728  if (DCI.isBeforeLegalizeOps())
729    return SDValue();
730
731  EVT Ty = N->getValueType(0);
732  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
733  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
734  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
735                                                  MipsISD::DivRemU;
736  DebugLoc dl = N->getDebugLoc();
737
738  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
739                               N->getOperand(0), N->getOperand(1));
740  SDValue InChain = DAG.getEntryNode();
741  SDValue InGlue = DivRem;
742
743  // insert MFLO
744  if (N->hasAnyUseOfValue(0)) {
745    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
746                                            InGlue);
747    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
748    InChain = CopyFromLo.getValue(1);
749    InGlue = CopyFromLo.getValue(2);
750  }
751
752  // insert MFHI
753  if (N->hasAnyUseOfValue(1)) {
754    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
755                                            HI, Ty, InGlue);
756    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
757  }
758
759  return SDValue();
760}
761
762static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
763  switch (CC) {
764  default: llvm_unreachable("Unknown fp condition code!");
765  case ISD::SETEQ:
766  case ISD::SETOEQ: return Mips::FCOND_OEQ;
767  case ISD::SETUNE: return Mips::FCOND_UNE;
768  case ISD::SETLT:
769  case ISD::SETOLT: return Mips::FCOND_OLT;
770  case ISD::SETGT:
771  case ISD::SETOGT: return Mips::FCOND_OGT;
772  case ISD::SETLE:
773  case ISD::SETOLE: return Mips::FCOND_OLE;
774  case ISD::SETGE:
775  case ISD::SETOGE: return Mips::FCOND_OGE;
776  case ISD::SETULT: return Mips::FCOND_ULT;
777  case ISD::SETULE: return Mips::FCOND_ULE;
778  case ISD::SETUGT: return Mips::FCOND_UGT;
779  case ISD::SETUGE: return Mips::FCOND_UGE;
780  case ISD::SETUO:  return Mips::FCOND_UN;
781  case ISD::SETO:   return Mips::FCOND_OR;
782  case ISD::SETNE:
783  case ISD::SETONE: return Mips::FCOND_ONE;
784  case ISD::SETUEQ: return Mips::FCOND_UEQ;
785  }
786}
787
788
789// Returns true if condition code has to be inverted.
790static bool InvertFPCondCode(Mips::CondCode CC) {
791  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
792    return false;
793
794  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
795         "Illegal Condition Code");
796
797  return true;
798}
799
800// Creates and returns an FPCmp node from a setcc node.
801// Returns Op if setcc is not a floating point comparison.
802static SDValue CreateFPCmp(SelectionDAG &DAG, const SDValue &Op) {
803  // must be a SETCC node
804  if (Op.getOpcode() != ISD::SETCC)
805    return Op;
806
807  SDValue LHS = Op.getOperand(0);
808
809  if (!LHS.getValueType().isFloatingPoint())
810    return Op;
811
812  SDValue RHS = Op.getOperand(1);
813  DebugLoc dl = Op.getDebugLoc();
814
815  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
816  // node if necessary.
817  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
818
819  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
820                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
821}
822
823// Creates and returns a CMovFPT/F node.
824static SDValue CreateCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
825                            SDValue False, DebugLoc DL) {
826  bool invert = InvertFPCondCode((Mips::CondCode)
827                                 cast<ConstantSDNode>(Cond.getOperand(2))
828                                 ->getSExtValue());
829
830  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
831                     True.getValueType(), True, False, Cond);
832}
833
834static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
835                                    TargetLowering::DAGCombinerInfo &DCI,
836                                    const MipsSubtarget *Subtarget) {
837  if (DCI.isBeforeLegalizeOps())
838    return SDValue();
839
840  SDValue SetCC = N->getOperand(0);
841
842  if ((SetCC.getOpcode() != ISD::SETCC) ||
843      !SetCC.getOperand(0).getValueType().isInteger())
844    return SDValue();
845
846  SDValue False = N->getOperand(2);
847  EVT FalseTy = False.getValueType();
848
849  if (!FalseTy.isInteger())
850    return SDValue();
851
852  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
853
854  if (!CN || CN->getZExtValue())
855    return SDValue();
856
857  const DebugLoc DL = N->getDebugLoc();
858  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
859  SDValue True = N->getOperand(1);
860
861  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
862                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
863
864  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
865}
866
867static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
868                                 TargetLowering::DAGCombinerInfo &DCI,
869                                 const MipsSubtarget *Subtarget) {
870  // Pattern match EXT.
871  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
872  //  => ext $dst, $src, size, pos
873  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
874    return SDValue();
875
876  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
877  unsigned ShiftRightOpc = ShiftRight.getOpcode();
878
879  // Op's first operand must be a shift right.
880  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
881    return SDValue();
882
883  // The second operand of the shift must be an immediate.
884  ConstantSDNode *CN;
885  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
886    return SDValue();
887
888  uint64_t Pos = CN->getZExtValue();
889  uint64_t SMPos, SMSize;
890
891  // Op's second operand must be a shifted mask.
892  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
893      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
894    return SDValue();
895
896  // Return if the shifted mask does not start at bit 0 or the sum of its size
897  // and Pos exceeds the word's size.
898  EVT ValTy = N->getValueType(0);
899  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
900    return SDValue();
901
902  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
903                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
904                     DAG.getConstant(SMSize, MVT::i32));
905}
906
907static SDValue PerformORCombine(SDNode *N, SelectionDAG &DAG,
908                                TargetLowering::DAGCombinerInfo &DCI,
909                                const MipsSubtarget *Subtarget) {
910  // Pattern match INS.
911  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
912  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
913  //  => ins $dst, $src, size, pos, $src1
914  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
915    return SDValue();
916
917  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
918  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
919  ConstantSDNode *CN;
920
921  // See if Op's first operand matches (and $src1 , mask0).
922  if (And0.getOpcode() != ISD::AND)
923    return SDValue();
924
925  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
926      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
927    return SDValue();
928
929  // See if Op's second operand matches (and (shl $src, pos), mask1).
930  if (And1.getOpcode() != ISD::AND)
931    return SDValue();
932
933  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
934      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
935    return SDValue();
936
937  // The shift masks must have the same position and size.
938  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
939    return SDValue();
940
941  SDValue Shl = And1.getOperand(0);
942  if (Shl.getOpcode() != ISD::SHL)
943    return SDValue();
944
945  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
946    return SDValue();
947
948  unsigned Shamt = CN->getZExtValue();
949
950  // Return if the shift amount and the first bit position of mask are not the
951  // same.
952  EVT ValTy = N->getValueType(0);
953  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
954    return SDValue();
955
956  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
957                     DAG.getConstant(SMPos0, MVT::i32),
958                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
959}
960
961static SDValue PerformADDCombine(SDNode *N, SelectionDAG &DAG,
962                                 TargetLowering::DAGCombinerInfo &DCI,
963                                 const MipsSubtarget *Subtarget) {
964  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
965
966  if (DCI.isBeforeLegalizeOps())
967    return SDValue();
968
969  SDValue Add = N->getOperand(1);
970
971  if (Add.getOpcode() != ISD::ADD)
972    return SDValue();
973
974  SDValue Lo = Add.getOperand(1);
975
976  if ((Lo.getOpcode() != MipsISD::Lo) ||
977      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
978    return SDValue();
979
980  EVT ValTy = N->getValueType(0);
981  DebugLoc DL = N->getDebugLoc();
982
983  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
984                             Add.getOperand(0));
985  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
986}
987
988SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
989  const {
990  SelectionDAG &DAG = DCI.DAG;
991  unsigned opc = N->getOpcode();
992
993  switch (opc) {
994  default: break;
995  case ISD::ADDE:
996    return PerformADDECombine(N, DAG, DCI, Subtarget);
997  case ISD::SUBE:
998    return PerformSUBECombine(N, DAG, DCI, Subtarget);
999  case ISD::SDIVREM:
1000  case ISD::UDIVREM:
1001    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
1002  case ISD::SELECT:
1003    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
1004  case ISD::AND:
1005    return PerformANDCombine(N, DAG, DCI, Subtarget);
1006  case ISD::OR:
1007    return PerformORCombine(N, DAG, DCI, Subtarget);
1008  case ISD::ADD:
1009    return PerformADDCombine(N, DAG, DCI, Subtarget);
1010  }
1011
1012  return SDValue();
1013}
1014
1015void
1016MipsTargetLowering::LowerOperationWrapper(SDNode *N,
1017                                          SmallVectorImpl<SDValue> &Results,
1018                                          SelectionDAG &DAG) const {
1019  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1020
1021  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1022    Results.push_back(Res.getValue(I));
1023}
1024
1025void
1026MipsTargetLowering::ReplaceNodeResults(SDNode *N,
1027                                       SmallVectorImpl<SDValue> &Results,
1028                                       SelectionDAG &DAG) const {
1029  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1030
1031  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1032    Results.push_back(Res.getValue(I));
1033}
1034
1035SDValue MipsTargetLowering::
1036LowerOperation(SDValue Op, SelectionDAG &DAG) const
1037{
1038  switch (Op.getOpcode())
1039  {
1040    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
1041    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
1042    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
1043    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
1044    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
1045    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
1046    case ISD::SELECT:             return LowerSELECT(Op, DAG);
1047    case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
1048    case ISD::SETCC:              return LowerSETCC(Op, DAG);
1049    case ISD::VASTART:            return LowerVASTART(Op, DAG);
1050    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
1051    case ISD::FABS:               return LowerFABS(Op, DAG);
1052    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
1053    case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
1054    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
1055    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
1056    case ISD::SHL_PARTS:          return LowerShiftLeftParts(Op, DAG);
1057    case ISD::SRA_PARTS:          return LowerShiftRightParts(Op, DAG, true);
1058    case ISD::SRL_PARTS:          return LowerShiftRightParts(Op, DAG, false);
1059    case ISD::LOAD:               return LowerLOAD(Op, DAG);
1060    case ISD::STORE:              return LowerSTORE(Op, DAG);
1061    case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1062    case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
1063    case ISD::ADD:                return LowerADD(Op, DAG);
1064  }
1065  return SDValue();
1066}
1067
1068//===----------------------------------------------------------------------===//
1069//  Lower helper functions
1070//===----------------------------------------------------------------------===//
1071
1072// AddLiveIn - This helper function adds the specified physical register to the
1073// MachineFunction as a live in value.  It also creates a corresponding
1074// virtual register for it.
1075static unsigned
1076AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
1077{
1078  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1079  MF.getRegInfo().addLiveIn(PReg, VReg);
1080  return VReg;
1081}
1082
1083// Get fp branch code (not opcode) from condition code.
1084static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
1085  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
1086    return Mips::BRANCH_T;
1087
1088  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
1089         "Invalid CondCode.");
1090
1091  return Mips::BRANCH_F;
1092}
1093
1094/*
1095static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
1096                                        DebugLoc dl,
1097                                        const MipsSubtarget *Subtarget,
1098                                        const TargetInstrInfo *TII,
1099                                        bool isFPCmp, unsigned Opc) {
1100  // There is no need to expand CMov instructions if target has
1101  // conditional moves.
1102  if (Subtarget->hasCondMov())
1103    return BB;
1104
1105  // To "insert" a SELECT_CC instruction, we actually have to insert the
1106  // diamond control-flow pattern.  The incoming instruction knows the
1107  // destination vreg to set, the condition code register to branch on, the
1108  // true/false values to select between, and a branch opcode to use.
1109  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1110  MachineFunction::iterator It = BB;
1111  ++It;
1112
1113  //  thisMBB:
1114  //  ...
1115  //   TrueVal = ...
1116  //   setcc r1, r2, r3
1117  //   bNE   r1, r0, copy1MBB
1118  //   fallthrough --> copy0MBB
1119  MachineBasicBlock *thisMBB  = BB;
1120  MachineFunction *F = BB->getParent();
1121  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1122  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
1123  F->insert(It, copy0MBB);
1124  F->insert(It, sinkMBB);
1125
1126  // Transfer the remainder of BB and its successor edges to sinkMBB.
1127  sinkMBB->splice(sinkMBB->begin(), BB,
1128                  llvm::next(MachineBasicBlock::iterator(MI)),
1129                  BB->end());
1130  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1131
1132  // Next, add the true and fallthrough blocks as its successors.
1133  BB->addSuccessor(copy0MBB);
1134  BB->addSuccessor(sinkMBB);
1135
1136  // Emit the right instruction according to the type of the operands compared
1137  if (isFPCmp)
1138    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
1139  else
1140    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
1141      .addReg(Mips::ZERO).addMBB(sinkMBB);
1142
1143  //  copy0MBB:
1144  //   %FalseValue = ...
1145  //   # fallthrough to sinkMBB
1146  BB = copy0MBB;
1147
1148  // Update machine-CFG edges
1149  BB->addSuccessor(sinkMBB);
1150
1151  //  sinkMBB:
1152  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
1153  //  ...
1154  BB = sinkMBB;
1155
1156  if (isFPCmp)
1157    BuildMI(*BB, BB->begin(), dl,
1158            TII->get(Mips::PHI), MI->getOperand(0).getReg())
1159      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
1160      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
1161  else
1162    BuildMI(*BB, BB->begin(), dl,
1163            TII->get(Mips::PHI), MI->getOperand(0).getReg())
1164      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
1165      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
1166
1167  MI->eraseFromParent();   // The pseudo instruction is gone now.
1168  return BB;
1169}
1170*/
1171
1172MachineBasicBlock *
1173MipsTargetLowering::EmitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
1174  // $bb:
1175  //  bposge32_pseudo $vr0
1176  //  =>
1177  // $bb:
1178  //  bposge32 $tbb
1179  // $fbb:
1180  //  li $vr2, 0
1181  //  b $sink
1182  // $tbb:
1183  //  li $vr1, 1
1184  // $sink:
1185  //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
1186
1187  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
1188  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1189  const TargetRegisterClass *RC = &Mips::CPURegsRegClass;
1190  DebugLoc DL = MI->getDebugLoc();
1191  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1192  MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB));
1193  MachineFunction *F = BB->getParent();
1194  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
1195  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
1196  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
1197  F->insert(It, FBB);
1198  F->insert(It, TBB);
1199  F->insert(It, Sink);
1200
1201  // Transfer the remainder of BB and its successor edges to Sink.
1202  Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)),
1203               BB->end());
1204  Sink->transferSuccessorsAndUpdatePHIs(BB);
1205
1206  // Add successors.
1207  BB->addSuccessor(FBB);
1208  BB->addSuccessor(TBB);
1209  FBB->addSuccessor(Sink);
1210  TBB->addSuccessor(Sink);
1211
1212  // Insert the real bposge32 instruction to $BB.
1213  BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
1214
1215  // Fill $FBB.
1216  unsigned VR2 = RegInfo.createVirtualRegister(RC);
1217  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
1218    .addReg(Mips::ZERO).addImm(0);
1219  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
1220
1221  // Fill $TBB.
1222  unsigned VR1 = RegInfo.createVirtualRegister(RC);
1223  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
1224    .addReg(Mips::ZERO).addImm(1);
1225
1226  // Insert phi function to $Sink.
1227  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
1228          MI->getOperand(0).getReg())
1229    .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
1230
1231  MI->eraseFromParent();   // The pseudo instruction is gone now.
1232  return Sink;
1233}
1234
1235MachineBasicBlock *
1236MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1237                                                MachineBasicBlock *BB) const {
1238  switch (MI->getOpcode()) {
1239  default: llvm_unreachable("Unexpected instr type to insert");
1240  case Mips::ATOMIC_LOAD_ADD_I8:
1241  case Mips::ATOMIC_LOAD_ADD_I8_P8:
1242    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
1243  case Mips::ATOMIC_LOAD_ADD_I16:
1244  case Mips::ATOMIC_LOAD_ADD_I16_P8:
1245    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
1246  case Mips::ATOMIC_LOAD_ADD_I32:
1247  case Mips::ATOMIC_LOAD_ADD_I32_P8:
1248    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
1249  case Mips::ATOMIC_LOAD_ADD_I64:
1250  case Mips::ATOMIC_LOAD_ADD_I64_P8:
1251    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
1252
1253  case Mips::ATOMIC_LOAD_AND_I8:
1254  case Mips::ATOMIC_LOAD_AND_I8_P8:
1255    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
1256  case Mips::ATOMIC_LOAD_AND_I16:
1257  case Mips::ATOMIC_LOAD_AND_I16_P8:
1258    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
1259  case Mips::ATOMIC_LOAD_AND_I32:
1260  case Mips::ATOMIC_LOAD_AND_I32_P8:
1261    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
1262  case Mips::ATOMIC_LOAD_AND_I64:
1263  case Mips::ATOMIC_LOAD_AND_I64_P8:
1264    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
1265
1266  case Mips::ATOMIC_LOAD_OR_I8:
1267  case Mips::ATOMIC_LOAD_OR_I8_P8:
1268    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
1269  case Mips::ATOMIC_LOAD_OR_I16:
1270  case Mips::ATOMIC_LOAD_OR_I16_P8:
1271    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
1272  case Mips::ATOMIC_LOAD_OR_I32:
1273  case Mips::ATOMIC_LOAD_OR_I32_P8:
1274    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
1275  case Mips::ATOMIC_LOAD_OR_I64:
1276  case Mips::ATOMIC_LOAD_OR_I64_P8:
1277    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
1278
1279  case Mips::ATOMIC_LOAD_XOR_I8:
1280  case Mips::ATOMIC_LOAD_XOR_I8_P8:
1281    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
1282  case Mips::ATOMIC_LOAD_XOR_I16:
1283  case Mips::ATOMIC_LOAD_XOR_I16_P8:
1284    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
1285  case Mips::ATOMIC_LOAD_XOR_I32:
1286  case Mips::ATOMIC_LOAD_XOR_I32_P8:
1287    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
1288  case Mips::ATOMIC_LOAD_XOR_I64:
1289  case Mips::ATOMIC_LOAD_XOR_I64_P8:
1290    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
1291
1292  case Mips::ATOMIC_LOAD_NAND_I8:
1293  case Mips::ATOMIC_LOAD_NAND_I8_P8:
1294    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
1295  case Mips::ATOMIC_LOAD_NAND_I16:
1296  case Mips::ATOMIC_LOAD_NAND_I16_P8:
1297    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
1298  case Mips::ATOMIC_LOAD_NAND_I32:
1299  case Mips::ATOMIC_LOAD_NAND_I32_P8:
1300    return EmitAtomicBinary(MI, BB, 4, 0, true);
1301  case Mips::ATOMIC_LOAD_NAND_I64:
1302  case Mips::ATOMIC_LOAD_NAND_I64_P8:
1303    return EmitAtomicBinary(MI, BB, 8, 0, true);
1304
1305  case Mips::ATOMIC_LOAD_SUB_I8:
1306  case Mips::ATOMIC_LOAD_SUB_I8_P8:
1307    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
1308  case Mips::ATOMIC_LOAD_SUB_I16:
1309  case Mips::ATOMIC_LOAD_SUB_I16_P8:
1310    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
1311  case Mips::ATOMIC_LOAD_SUB_I32:
1312  case Mips::ATOMIC_LOAD_SUB_I32_P8:
1313    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
1314  case Mips::ATOMIC_LOAD_SUB_I64:
1315  case Mips::ATOMIC_LOAD_SUB_I64_P8:
1316    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
1317
1318  case Mips::ATOMIC_SWAP_I8:
1319  case Mips::ATOMIC_SWAP_I8_P8:
1320    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
1321  case Mips::ATOMIC_SWAP_I16:
1322  case Mips::ATOMIC_SWAP_I16_P8:
1323    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
1324  case Mips::ATOMIC_SWAP_I32:
1325  case Mips::ATOMIC_SWAP_I32_P8:
1326    return EmitAtomicBinary(MI, BB, 4, 0);
1327  case Mips::ATOMIC_SWAP_I64:
1328  case Mips::ATOMIC_SWAP_I64_P8:
1329    return EmitAtomicBinary(MI, BB, 8, 0);
1330
1331  case Mips::ATOMIC_CMP_SWAP_I8:
1332  case Mips::ATOMIC_CMP_SWAP_I8_P8:
1333    return EmitAtomicCmpSwapPartword(MI, BB, 1);
1334  case Mips::ATOMIC_CMP_SWAP_I16:
1335  case Mips::ATOMIC_CMP_SWAP_I16_P8:
1336    return EmitAtomicCmpSwapPartword(MI, BB, 2);
1337  case Mips::ATOMIC_CMP_SWAP_I32:
1338  case Mips::ATOMIC_CMP_SWAP_I32_P8:
1339    return EmitAtomicCmpSwap(MI, BB, 4);
1340  case Mips::ATOMIC_CMP_SWAP_I64:
1341  case Mips::ATOMIC_CMP_SWAP_I64_P8:
1342    return EmitAtomicCmpSwap(MI, BB, 8);
1343  case Mips::BPOSGE32_PSEUDO:
1344    return EmitBPOSGE32(MI, BB);
1345  }
1346}
1347
1348// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1349// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1350MachineBasicBlock *
1351MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1352                                     unsigned Size, unsigned BinOpcode,
1353                                     bool Nand) const {
1354  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1355
1356  MachineFunction *MF = BB->getParent();
1357  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1358  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1359  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1360  DebugLoc dl = MI->getDebugLoc();
1361  unsigned LL, SC, AND, NOR, ZERO, BEQ;
1362
1363  if (Size == 4) {
1364    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1365    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1366    AND = Mips::AND;
1367    NOR = Mips::NOR;
1368    ZERO = Mips::ZERO;
1369    BEQ = Mips::BEQ;
1370  }
1371  else {
1372    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1373    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1374    AND = Mips::AND64;
1375    NOR = Mips::NOR64;
1376    ZERO = Mips::ZERO_64;
1377    BEQ = Mips::BEQ64;
1378  }
1379
1380  unsigned OldVal = MI->getOperand(0).getReg();
1381  unsigned Ptr = MI->getOperand(1).getReg();
1382  unsigned Incr = MI->getOperand(2).getReg();
1383
1384  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1385  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1386  unsigned Success = RegInfo.createVirtualRegister(RC);
1387
1388  // insert new blocks after the current block
1389  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1390  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1391  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1392  MachineFunction::iterator It = BB;
1393  ++It;
1394  MF->insert(It, loopMBB);
1395  MF->insert(It, exitMBB);
1396
1397  // Transfer the remainder of BB and its successor edges to exitMBB.
1398  exitMBB->splice(exitMBB->begin(), BB,
1399                  llvm::next(MachineBasicBlock::iterator(MI)),
1400                  BB->end());
1401  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1402
1403  //  thisMBB:
1404  //    ...
1405  //    fallthrough --> loopMBB
1406  BB->addSuccessor(loopMBB);
1407  loopMBB->addSuccessor(loopMBB);
1408  loopMBB->addSuccessor(exitMBB);
1409
1410  //  loopMBB:
1411  //    ll oldval, 0(ptr)
1412  //    <binop> storeval, oldval, incr
1413  //    sc success, storeval, 0(ptr)
1414  //    beq success, $0, loopMBB
1415  BB = loopMBB;
1416  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1417  if (Nand) {
1418    //  and andres, oldval, incr
1419    //  nor storeval, $0, andres
1420    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1421    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1422  } else if (BinOpcode) {
1423    //  <binop> storeval, oldval, incr
1424    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1425  } else {
1426    StoreVal = Incr;
1427  }
1428  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1429  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1430
1431  MI->eraseFromParent();   // The instruction is gone now.
1432
1433  return exitMBB;
1434}
1435
1436MachineBasicBlock *
1437MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1438                                             MachineBasicBlock *BB,
1439                                             unsigned Size, unsigned BinOpcode,
1440                                             bool Nand) const {
1441  assert((Size == 1 || Size == 2) &&
1442      "Unsupported size for EmitAtomicBinaryPartial.");
1443
1444  MachineFunction *MF = BB->getParent();
1445  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1446  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1447  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1448  DebugLoc dl = MI->getDebugLoc();
1449  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1450  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1451
1452  unsigned Dest = MI->getOperand(0).getReg();
1453  unsigned Ptr = MI->getOperand(1).getReg();
1454  unsigned Incr = MI->getOperand(2).getReg();
1455
1456  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1457  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1458  unsigned Mask = RegInfo.createVirtualRegister(RC);
1459  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1460  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1461  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1462  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1463  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1464  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1465  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1466  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1467  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1468  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1469  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1470  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1471  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1472  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1473  unsigned Success = RegInfo.createVirtualRegister(RC);
1474
1475  // insert new blocks after the current block
1476  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1477  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1478  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1479  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1480  MachineFunction::iterator It = BB;
1481  ++It;
1482  MF->insert(It, loopMBB);
1483  MF->insert(It, sinkMBB);
1484  MF->insert(It, exitMBB);
1485
1486  // Transfer the remainder of BB and its successor edges to exitMBB.
1487  exitMBB->splice(exitMBB->begin(), BB,
1488                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1489  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1490
1491  BB->addSuccessor(loopMBB);
1492  loopMBB->addSuccessor(loopMBB);
1493  loopMBB->addSuccessor(sinkMBB);
1494  sinkMBB->addSuccessor(exitMBB);
1495
1496  //  thisMBB:
1497  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1498  //    and     alignedaddr,ptr,masklsb2
1499  //    andi    ptrlsb2,ptr,3
1500  //    sll     shiftamt,ptrlsb2,3
1501  //    ori     maskupper,$0,255               # 0xff
1502  //    sll     mask,maskupper,shiftamt
1503  //    nor     mask2,$0,mask
1504  //    sll     incr2,incr,shiftamt
1505
1506  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1507  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1508    .addReg(Mips::ZERO).addImm(-4);
1509  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1510    .addReg(Ptr).addReg(MaskLSB2);
1511  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1512  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1513  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1514    .addReg(Mips::ZERO).addImm(MaskImm);
1515  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1516    .addReg(ShiftAmt).addReg(MaskUpper);
1517  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1518  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1519
1520  // atomic.load.binop
1521  // loopMBB:
1522  //   ll      oldval,0(alignedaddr)
1523  //   binop   binopres,oldval,incr2
1524  //   and     newval,binopres,mask
1525  //   and     maskedoldval0,oldval,mask2
1526  //   or      storeval,maskedoldval0,newval
1527  //   sc      success,storeval,0(alignedaddr)
1528  //   beq     success,$0,loopMBB
1529
1530  // atomic.swap
1531  // loopMBB:
1532  //   ll      oldval,0(alignedaddr)
1533  //   and     newval,incr2,mask
1534  //   and     maskedoldval0,oldval,mask2
1535  //   or      storeval,maskedoldval0,newval
1536  //   sc      success,storeval,0(alignedaddr)
1537  //   beq     success,$0,loopMBB
1538
1539  BB = loopMBB;
1540  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1541  if (Nand) {
1542    //  and andres, oldval, incr2
1543    //  nor binopres, $0, andres
1544    //  and newval, binopres, mask
1545    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1546    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1547      .addReg(Mips::ZERO).addReg(AndRes);
1548    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1549  } else if (BinOpcode) {
1550    //  <binop> binopres, oldval, incr2
1551    //  and newval, binopres, mask
1552    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1553    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1554  } else {// atomic.swap
1555    //  and newval, incr2, mask
1556    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1557  }
1558
1559  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1560    .addReg(OldVal).addReg(Mask2);
1561  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1562    .addReg(MaskedOldVal0).addReg(NewVal);
1563  BuildMI(BB, dl, TII->get(SC), Success)
1564    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1565  BuildMI(BB, dl, TII->get(Mips::BEQ))
1566    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1567
1568  //  sinkMBB:
1569  //    and     maskedoldval1,oldval,mask
1570  //    srl     srlres,maskedoldval1,shiftamt
1571  //    sll     sllres,srlres,24
1572  //    sra     dest,sllres,24
1573  BB = sinkMBB;
1574  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1575
1576  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1577    .addReg(OldVal).addReg(Mask);
1578  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1579      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1580  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1581      .addReg(SrlRes).addImm(ShiftImm);
1582  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1583      .addReg(SllRes).addImm(ShiftImm);
1584
1585  MI->eraseFromParent();   // The instruction is gone now.
1586
1587  return exitMBB;
1588}
1589
1590MachineBasicBlock *
1591MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1592                                      MachineBasicBlock *BB,
1593                                      unsigned Size) const {
1594  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1595
1596  MachineFunction *MF = BB->getParent();
1597  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1598  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1599  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1600  DebugLoc dl = MI->getDebugLoc();
1601  unsigned LL, SC, ZERO, BNE, BEQ;
1602
1603  if (Size == 4) {
1604    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1605    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1606    ZERO = Mips::ZERO;
1607    BNE = Mips::BNE;
1608    BEQ = Mips::BEQ;
1609  }
1610  else {
1611    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1612    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1613    ZERO = Mips::ZERO_64;
1614    BNE = Mips::BNE64;
1615    BEQ = Mips::BEQ64;
1616  }
1617
1618  unsigned Dest    = MI->getOperand(0).getReg();
1619  unsigned Ptr     = MI->getOperand(1).getReg();
1620  unsigned OldVal  = MI->getOperand(2).getReg();
1621  unsigned NewVal  = MI->getOperand(3).getReg();
1622
1623  unsigned Success = RegInfo.createVirtualRegister(RC);
1624
1625  // insert new blocks after the current block
1626  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1627  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1628  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1629  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1630  MachineFunction::iterator It = BB;
1631  ++It;
1632  MF->insert(It, loop1MBB);
1633  MF->insert(It, loop2MBB);
1634  MF->insert(It, exitMBB);
1635
1636  // Transfer the remainder of BB and its successor edges to exitMBB.
1637  exitMBB->splice(exitMBB->begin(), BB,
1638                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1639  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1640
1641  //  thisMBB:
1642  //    ...
1643  //    fallthrough --> loop1MBB
1644  BB->addSuccessor(loop1MBB);
1645  loop1MBB->addSuccessor(exitMBB);
1646  loop1MBB->addSuccessor(loop2MBB);
1647  loop2MBB->addSuccessor(loop1MBB);
1648  loop2MBB->addSuccessor(exitMBB);
1649
1650  // loop1MBB:
1651  //   ll dest, 0(ptr)
1652  //   bne dest, oldval, exitMBB
1653  BB = loop1MBB;
1654  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1655  BuildMI(BB, dl, TII->get(BNE))
1656    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1657
1658  // loop2MBB:
1659  //   sc success, newval, 0(ptr)
1660  //   beq success, $0, loop1MBB
1661  BB = loop2MBB;
1662  BuildMI(BB, dl, TII->get(SC), Success)
1663    .addReg(NewVal).addReg(Ptr).addImm(0);
1664  BuildMI(BB, dl, TII->get(BEQ))
1665    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1666
1667  MI->eraseFromParent();   // The instruction is gone now.
1668
1669  return exitMBB;
1670}
1671
1672MachineBasicBlock *
1673MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1674                                              MachineBasicBlock *BB,
1675                                              unsigned Size) const {
1676  assert((Size == 1 || Size == 2) &&
1677      "Unsupported size for EmitAtomicCmpSwapPartial.");
1678
1679  MachineFunction *MF = BB->getParent();
1680  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1681  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1682  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1683  DebugLoc dl = MI->getDebugLoc();
1684  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1685  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1686
1687  unsigned Dest    = MI->getOperand(0).getReg();
1688  unsigned Ptr     = MI->getOperand(1).getReg();
1689  unsigned CmpVal  = MI->getOperand(2).getReg();
1690  unsigned NewVal  = MI->getOperand(3).getReg();
1691
1692  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1693  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1694  unsigned Mask = RegInfo.createVirtualRegister(RC);
1695  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1696  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1697  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1698  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1699  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1700  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1701  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1702  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1703  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1704  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1705  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1706  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1707  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1708  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1709  unsigned Success = RegInfo.createVirtualRegister(RC);
1710
1711  // insert new blocks after the current block
1712  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1713  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1714  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1715  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1716  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1717  MachineFunction::iterator It = BB;
1718  ++It;
1719  MF->insert(It, loop1MBB);
1720  MF->insert(It, loop2MBB);
1721  MF->insert(It, sinkMBB);
1722  MF->insert(It, exitMBB);
1723
1724  // Transfer the remainder of BB and its successor edges to exitMBB.
1725  exitMBB->splice(exitMBB->begin(), BB,
1726                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1727  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1728
1729  BB->addSuccessor(loop1MBB);
1730  loop1MBB->addSuccessor(sinkMBB);
1731  loop1MBB->addSuccessor(loop2MBB);
1732  loop2MBB->addSuccessor(loop1MBB);
1733  loop2MBB->addSuccessor(sinkMBB);
1734  sinkMBB->addSuccessor(exitMBB);
1735
1736  // FIXME: computation of newval2 can be moved to loop2MBB.
1737  //  thisMBB:
1738  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1739  //    and     alignedaddr,ptr,masklsb2
1740  //    andi    ptrlsb2,ptr,3
1741  //    sll     shiftamt,ptrlsb2,3
1742  //    ori     maskupper,$0,255               # 0xff
1743  //    sll     mask,maskupper,shiftamt
1744  //    nor     mask2,$0,mask
1745  //    andi    maskedcmpval,cmpval,255
1746  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1747  //    andi    maskednewval,newval,255
1748  //    sll     shiftednewval,maskednewval,shiftamt
1749  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1750  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1751    .addReg(Mips::ZERO).addImm(-4);
1752  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1753    .addReg(Ptr).addReg(MaskLSB2);
1754  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1755  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1756  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1757    .addReg(Mips::ZERO).addImm(MaskImm);
1758  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1759    .addReg(ShiftAmt).addReg(MaskUpper);
1760  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1761  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1762    .addReg(CmpVal).addImm(MaskImm);
1763  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1764    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1765  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1766    .addReg(NewVal).addImm(MaskImm);
1767  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1768    .addReg(ShiftAmt).addReg(MaskedNewVal);
1769
1770  //  loop1MBB:
1771  //    ll      oldval,0(alginedaddr)
1772  //    and     maskedoldval0,oldval,mask
1773  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1774  BB = loop1MBB;
1775  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1776  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1777    .addReg(OldVal).addReg(Mask);
1778  BuildMI(BB, dl, TII->get(Mips::BNE))
1779    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1780
1781  //  loop2MBB:
1782  //    and     maskedoldval1,oldval,mask2
1783  //    or      storeval,maskedoldval1,shiftednewval
1784  //    sc      success,storeval,0(alignedaddr)
1785  //    beq     success,$0,loop1MBB
1786  BB = loop2MBB;
1787  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1788    .addReg(OldVal).addReg(Mask2);
1789  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1790    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1791  BuildMI(BB, dl, TII->get(SC), Success)
1792      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1793  BuildMI(BB, dl, TII->get(Mips::BEQ))
1794      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1795
1796  //  sinkMBB:
1797  //    srl     srlres,maskedoldval0,shiftamt
1798  //    sll     sllres,srlres,24
1799  //    sra     dest,sllres,24
1800  BB = sinkMBB;
1801  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1802
1803  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1804      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1805  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1806      .addReg(SrlRes).addImm(ShiftImm);
1807  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1808      .addReg(SllRes).addImm(ShiftImm);
1809
1810  MI->eraseFromParent();   // The instruction is gone now.
1811
1812  return exitMBB;
1813}
1814
1815//===----------------------------------------------------------------------===//
1816//  Misc Lower Operation implementation
1817//===----------------------------------------------------------------------===//
1818SDValue MipsTargetLowering::
1819LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1820{
1821  // The first operand is the chain, the second is the condition, the third is
1822  // the block to branch to if the condition is true.
1823  SDValue Chain = Op.getOperand(0);
1824  SDValue Dest = Op.getOperand(2);
1825  DebugLoc dl = Op.getDebugLoc();
1826
1827  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
1828
1829  // Return if flag is not set by a floating point comparison.
1830  if (CondRes.getOpcode() != MipsISD::FPCmp)
1831    return Op;
1832
1833  SDValue CCNode  = CondRes.getOperand(2);
1834  Mips::CondCode CC =
1835    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1836  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
1837
1838  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
1839                     Dest, CondRes);
1840}
1841
1842SDValue MipsTargetLowering::
1843LowerSELECT(SDValue Op, SelectionDAG &DAG) const
1844{
1845  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
1846
1847  // Return if flag is not set by a floating point comparison.
1848  if (Cond.getOpcode() != MipsISD::FPCmp)
1849    return Op;
1850
1851  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1852                      Op.getDebugLoc());
1853}
1854
1855SDValue MipsTargetLowering::
1856LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1857{
1858  DebugLoc DL = Op.getDebugLoc();
1859  EVT Ty = Op.getOperand(0).getValueType();
1860  SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
1861                             Op.getOperand(0), Op.getOperand(1),
1862                             Op.getOperand(4));
1863
1864  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1865                     Op.getOperand(3));
1866}
1867
1868SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1869  SDValue Cond = CreateFPCmp(DAG, Op);
1870
1871  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1872         "Floating point operand expected.");
1873
1874  SDValue True  = DAG.getConstant(1, MVT::i32);
1875  SDValue False = DAG.getConstant(0, MVT::i32);
1876
1877  return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1878}
1879
1880SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
1881                                               SelectionDAG &DAG) const {
1882  // FIXME there isn't actually debug info here
1883  DebugLoc dl = Op.getDebugLoc();
1884  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1885
1886  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1887    const MipsTargetObjectFile &TLOF =
1888      (const MipsTargetObjectFile&)getObjFileLowering();
1889
1890    // %gp_rel relocation
1891    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1892      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1893                                              MipsII::MO_GPREL);
1894      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl,
1895                                      DAG.getVTList(MVT::i32), &GA, 1);
1896      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1897      return DAG.getNode(ISD::ADD, dl, MVT::i32, GPReg, GPRelNode);
1898    }
1899
1900    // %hi/%lo relocation
1901    return getAddrNonPIC(Op, DAG);
1902  }
1903
1904  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1905    return getAddrLocal(Op, DAG, HasMips64);
1906
1907  if (LargeGOT)
1908    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
1909                                 MipsII::MO_GOT_LO16);
1910
1911  return getAddrGlobal(Op, DAG,
1912                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1913}
1914
1915SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
1916                                              SelectionDAG &DAG) const {
1917  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1918    return getAddrNonPIC(Op, DAG);
1919
1920  return getAddrLocal(Op, DAG, HasMips64);
1921}
1922
1923SDValue MipsTargetLowering::
1924LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1925{
1926  // If the relocation model is PIC, use the General Dynamic TLS Model or
1927  // Local Dynamic TLS model, otherwise use the Initial Exec or
1928  // Local Exec TLS Model.
1929
1930  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1931  DebugLoc dl = GA->getDebugLoc();
1932  const GlobalValue *GV = GA->getGlobal();
1933  EVT PtrVT = getPointerTy();
1934
1935  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1936
1937  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1938    // General Dynamic and Local Dynamic TLS Model.
1939    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1940                                                      : MipsII::MO_TLSGD;
1941
1942    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
1943    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
1944                                   GetGlobalReg(DAG, PtrVT), TGA);
1945    unsigned PtrSize = PtrVT.getSizeInBits();
1946    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1947
1948    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1949
1950    ArgListTy Args;
1951    ArgListEntry Entry;
1952    Entry.Node = Argument;
1953    Entry.Ty = PtrTy;
1954    Args.push_back(Entry);
1955
1956    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1957                  false, false, false, false, 0, CallingConv::C,
1958                  /*isTailCall=*/false, /*doesNotRet=*/false,
1959                  /*isReturnValueUsed=*/true,
1960                  TlsGetAddr, Args, DAG, dl);
1961    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1962
1963    SDValue Ret = CallResult.first;
1964
1965    if (model != TLSModel::LocalDynamic)
1966      return Ret;
1967
1968    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1969                                               MipsII::MO_DTPREL_HI);
1970    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1971    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1972                                               MipsII::MO_DTPREL_LO);
1973    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1974    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
1975    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
1976  }
1977
1978  SDValue Offset;
1979  if (model == TLSModel::InitialExec) {
1980    // Initial Exec TLS Model
1981    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1982                                             MipsII::MO_GOTTPREL);
1983    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1984                      TGA);
1985    Offset = DAG.getLoad(PtrVT, dl,
1986                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1987                         false, false, false, 0);
1988  } else {
1989    // Local Exec TLS Model
1990    assert(model == TLSModel::LocalExec);
1991    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1992                                               MipsII::MO_TPREL_HI);
1993    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1994                                               MipsII::MO_TPREL_LO);
1995    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1996    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1997    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1998  }
1999
2000  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
2001  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2002}
2003
2004SDValue MipsTargetLowering::
2005LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
2006{
2007  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
2008    return getAddrNonPIC(Op, DAG);
2009
2010  return getAddrLocal(Op, DAG, HasMips64);
2011}
2012
2013SDValue MipsTargetLowering::
2014LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
2015{
2016  // gp_rel relocation
2017  // FIXME: we should reference the constant pool using small data sections,
2018  // but the asm printer currently doesn't support this feature without
2019  // hacking it. This feature should come soon so we can uncomment the
2020  // stuff below.
2021  //if (IsInSmallSection(C->getType())) {
2022  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
2023  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
2024  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
2025
2026  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
2027    return getAddrNonPIC(Op, DAG);
2028
2029  return getAddrLocal(Op, DAG, HasMips64);
2030}
2031
2032SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2033  MachineFunction &MF = DAG.getMachineFunction();
2034  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2035
2036  DebugLoc dl = Op.getDebugLoc();
2037  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2038                                 getPointerTy());
2039
2040  // vastart just stores the address of the VarArgsFrameIndex slot into the
2041  // memory location argument.
2042  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2043  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
2044                      MachinePointerInfo(SV), false, false, 0);
2045}
2046
2047static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2048  EVT TyX = Op.getOperand(0).getValueType();
2049  EVT TyY = Op.getOperand(1).getValueType();
2050  SDValue Const1 = DAG.getConstant(1, MVT::i32);
2051  SDValue Const31 = DAG.getConstant(31, MVT::i32);
2052  DebugLoc DL = Op.getDebugLoc();
2053  SDValue Res;
2054
2055  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2056  // to i32.
2057  SDValue X = (TyX == MVT::f32) ?
2058    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2059    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2060                Const1);
2061  SDValue Y = (TyY == MVT::f32) ?
2062    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
2063    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
2064                Const1);
2065
2066  if (HasR2) {
2067    // ext  E, Y, 31, 1  ; extract bit31 of Y
2068    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
2069    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
2070    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
2071  } else {
2072    // sll SllX, X, 1
2073    // srl SrlX, SllX, 1
2074    // srl SrlY, Y, 31
2075    // sll SllY, SrlX, 31
2076    // or  Or, SrlX, SllY
2077    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2078    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2079    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
2080    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
2081    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
2082  }
2083
2084  if (TyX == MVT::f32)
2085    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
2086
2087  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2088                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
2089  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2090}
2091
2092static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2093  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
2094  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
2095  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2096  SDValue Const1 = DAG.getConstant(1, MVT::i32);
2097  DebugLoc DL = Op.getDebugLoc();
2098
2099  // Bitcast to integer nodes.
2100  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2101  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2102
2103  if (HasR2) {
2104    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
2105    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
2106    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2107                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
2108
2109    if (WidthX > WidthY)
2110      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2111    else if (WidthY > WidthX)
2112      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2113
2114    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2115                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
2116    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2117  }
2118
2119  // (d)sll SllX, X, 1
2120  // (d)srl SrlX, SllX, 1
2121  // (d)srl SrlY, Y, width(Y)-1
2122  // (d)sll SllY, SrlX, width(Y)-1
2123  // or     Or, SrlX, SllY
2124  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2125  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2126  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2127                             DAG.getConstant(WidthY - 1, MVT::i32));
2128
2129  if (WidthX > WidthY)
2130    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2131  else if (WidthY > WidthX)
2132    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2133
2134  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2135                             DAG.getConstant(WidthX - 1, MVT::i32));
2136  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2137  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2138}
2139
2140SDValue
2141MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2142  if (Subtarget->hasMips64())
2143    return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
2144
2145  return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
2146}
2147
2148static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2149  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2150  DebugLoc DL = Op.getDebugLoc();
2151
2152  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2153  // to i32.
2154  SDValue X = (Op.getValueType() == MVT::f32) ?
2155    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2156    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2157                Const1);
2158
2159  // Clear MSB.
2160  if (HasR2)
2161    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
2162                      DAG.getRegister(Mips::ZERO, MVT::i32),
2163                      DAG.getConstant(31, MVT::i32), Const1, X);
2164  else {
2165    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2166    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2167  }
2168
2169  if (Op.getValueType() == MVT::f32)
2170    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
2171
2172  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2173                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
2174  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2175}
2176
2177static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2178  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2179  DebugLoc DL = Op.getDebugLoc();
2180
2181  // Bitcast to integer node.
2182  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2183
2184  // Clear MSB.
2185  if (HasR2)
2186    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2187                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
2188                      DAG.getConstant(63, MVT::i32), Const1, X);
2189  else {
2190    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2191    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2192  }
2193
2194  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2195}
2196
2197SDValue
2198MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
2199  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
2200    return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
2201
2202  return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
2203}
2204
2205SDValue MipsTargetLowering::
2206LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2207  // check the depth
2208  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2209         "Frame address can only be determined for current frame.");
2210
2211  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2212  MFI->setFrameAddressIsTaken(true);
2213  EVT VT = Op.getValueType();
2214  DebugLoc dl = Op.getDebugLoc();
2215  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2216                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
2217  return FrameAddr;
2218}
2219
2220SDValue MipsTargetLowering::LowerRETURNADDR(SDValue Op,
2221                                            SelectionDAG &DAG) const {
2222  // check the depth
2223  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2224         "Return address can be determined only for current frame.");
2225
2226  MachineFunction &MF = DAG.getMachineFunction();
2227  MachineFrameInfo *MFI = MF.getFrameInfo();
2228  MVT VT = Op.getSimpleValueType();
2229  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
2230  MFI->setReturnAddressIsTaken(true);
2231
2232  // Return RA, which contains the return address. Mark it an implicit live-in.
2233  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2234  return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
2235}
2236
2237// TODO: set SType according to the desired memory barrier behavior.
2238SDValue
2239MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
2240  unsigned SType = 0;
2241  DebugLoc dl = Op.getDebugLoc();
2242  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2243                     DAG.getConstant(SType, MVT::i32));
2244}
2245
2246SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
2247                                              SelectionDAG &DAG) const {
2248  // FIXME: Need pseudo-fence for 'singlethread' fences
2249  // FIXME: Set SType for weaker fences where supported/appropriate.
2250  unsigned SType = 0;
2251  DebugLoc dl = Op.getDebugLoc();
2252  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2253                     DAG.getConstant(SType, MVT::i32));
2254}
2255
2256SDValue MipsTargetLowering::LowerShiftLeftParts(SDValue Op,
2257                                                SelectionDAG &DAG) const {
2258  DebugLoc DL = Op.getDebugLoc();
2259  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2260  SDValue Shamt = Op.getOperand(2);
2261
2262  // if shamt < 32:
2263  //  lo = (shl lo, shamt)
2264  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2265  // else:
2266  //  lo = 0
2267  //  hi = (shl lo, shamt[4:0])
2268  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2269                            DAG.getConstant(-1, MVT::i32));
2270  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
2271                                      DAG.getConstant(1, MVT::i32));
2272  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
2273                                     Not);
2274  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
2275  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2276  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
2277  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2278                             DAG.getConstant(0x20, MVT::i32));
2279  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2280                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
2281  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
2282
2283  SDValue Ops[2] = {Lo, Hi};
2284  return DAG.getMergeValues(Ops, 2, DL);
2285}
2286
2287SDValue MipsTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2288                                                 bool IsSRA) const {
2289  DebugLoc DL = Op.getDebugLoc();
2290  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2291  SDValue Shamt = Op.getOperand(2);
2292
2293  // if shamt < 32:
2294  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2295  //  if isSRA:
2296  //    hi = (sra hi, shamt)
2297  //  else:
2298  //    hi = (srl hi, shamt)
2299  // else:
2300  //  if isSRA:
2301  //   lo = (sra hi, shamt[4:0])
2302  //   hi = (sra hi, 31)
2303  //  else:
2304  //   lo = (srl hi, shamt[4:0])
2305  //   hi = 0
2306  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2307                            DAG.getConstant(-1, MVT::i32));
2308  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
2309                                     DAG.getConstant(1, MVT::i32));
2310  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
2311  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
2312  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2313  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2314                                     Hi, Shamt);
2315  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2316                             DAG.getConstant(0x20, MVT::i32));
2317  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
2318                                DAG.getConstant(31, MVT::i32));
2319  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
2320  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2321                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2322                   ShiftRightHi);
2323
2324  SDValue Ops[2] = {Lo, Hi};
2325  return DAG.getMergeValues(Ops, 2, DL);
2326}
2327
2328static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2329                            SDValue Chain, SDValue Src, unsigned Offset) {
2330  SDValue Ptr = LD->getBasePtr();
2331  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2332  EVT BasePtrVT = Ptr.getValueType();
2333  DebugLoc DL = LD->getDebugLoc();
2334  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2335
2336  if (Offset)
2337    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2338                      DAG.getConstant(Offset, BasePtrVT));
2339
2340  SDValue Ops[] = { Chain, Ptr, Src };
2341  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2342                                 LD->getMemOperand());
2343}
2344
2345// Expand an unaligned 32 or 64-bit integer load node.
2346SDValue MipsTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2347  LoadSDNode *LD = cast<LoadSDNode>(Op);
2348  EVT MemVT = LD->getMemoryVT();
2349
2350  // Return if load is aligned or if MemVT is neither i32 nor i64.
2351  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2352      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2353    return SDValue();
2354
2355  bool IsLittle = Subtarget->isLittle();
2356  EVT VT = Op.getValueType();
2357  ISD::LoadExtType ExtType = LD->getExtensionType();
2358  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2359
2360  assert((VT == MVT::i32) || (VT == MVT::i64));
2361
2362  // Expand
2363  //  (set dst, (i64 (load baseptr)))
2364  // to
2365  //  (set tmp, (ldl (add baseptr, 7), undef))
2366  //  (set dst, (ldr baseptr, tmp))
2367  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2368    SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2369                               IsLittle ? 7 : 0);
2370    return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2371                        IsLittle ? 0 : 7);
2372  }
2373
2374  SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2375                             IsLittle ? 3 : 0);
2376  SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2377                             IsLittle ? 0 : 3);
2378
2379  // Expand
2380  //  (set dst, (i32 (load baseptr))) or
2381  //  (set dst, (i64 (sextload baseptr))) or
2382  //  (set dst, (i64 (extload baseptr)))
2383  // to
2384  //  (set tmp, (lwl (add baseptr, 3), undef))
2385  //  (set dst, (lwr baseptr, tmp))
2386  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2387      (ExtType == ISD::EXTLOAD))
2388    return LWR;
2389
2390  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2391
2392  // Expand
2393  //  (set dst, (i64 (zextload baseptr)))
2394  // to
2395  //  (set tmp0, (lwl (add baseptr, 3), undef))
2396  //  (set tmp1, (lwr baseptr, tmp0))
2397  //  (set tmp2, (shl tmp1, 32))
2398  //  (set dst, (srl tmp2, 32))
2399  DebugLoc DL = LD->getDebugLoc();
2400  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2401  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2402  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2403  SDValue Ops[] = { SRL, LWR.getValue(1) };
2404  return DAG.getMergeValues(Ops, 2, DL);
2405}
2406
2407static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2408                             SDValue Chain, unsigned Offset) {
2409  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2410  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2411  DebugLoc DL = SD->getDebugLoc();
2412  SDVTList VTList = DAG.getVTList(MVT::Other);
2413
2414  if (Offset)
2415    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2416                      DAG.getConstant(Offset, BasePtrVT));
2417
2418  SDValue Ops[] = { Chain, Value, Ptr };
2419  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2420                                 SD->getMemOperand());
2421}
2422
2423// Expand an unaligned 32 or 64-bit integer store node.
2424SDValue MipsTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2425  StoreSDNode *SD = cast<StoreSDNode>(Op);
2426  EVT MemVT = SD->getMemoryVT();
2427
2428  // Return if store is aligned or if MemVT is neither i32 nor i64.
2429  if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2430      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2431    return SDValue();
2432
2433  bool IsLittle = Subtarget->isLittle();
2434  SDValue Value = SD->getValue(), Chain = SD->getChain();
2435  EVT VT = Value.getValueType();
2436
2437  // Expand
2438  //  (store val, baseptr) or
2439  //  (truncstore val, baseptr)
2440  // to
2441  //  (swl val, (add baseptr, 3))
2442  //  (swr val, baseptr)
2443  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2444    SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
2445                                IsLittle ? 3 : 0);
2446    return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2447  }
2448
2449  assert(VT == MVT::i64);
2450
2451  // Expand
2452  //  (store val, baseptr)
2453  // to
2454  //  (sdl val, (add baseptr, 7))
2455  //  (sdr val, baseptr)
2456  SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2457  return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2458}
2459
2460// This function expands mips intrinsic nodes which have 64-bit input operands
2461// or output values.
2462//
2463// out64 = intrinsic-node in64
2464// =>
2465// lo = copy (extract-element (in64, 0))
2466// hi = copy (extract-element (in64, 1))
2467// mips-specific-node
2468// v0 = copy lo
2469// v1 = copy hi
2470// out64 = merge-values (v0, v1)
2471//
2472static SDValue LowerDSPIntr(SDValue Op, SelectionDAG &DAG,
2473                            unsigned Opc, bool HasI64In, bool HasI64Out) {
2474  DebugLoc DL = Op.getDebugLoc();
2475  bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
2476  SDValue Chain = HasChainIn ? Op->getOperand(0) : DAG.getEntryNode();
2477  SmallVector<SDValue, 3> Ops;
2478
2479  if (HasI64In) {
2480    SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2481                               Op->getOperand(1 + HasChainIn),
2482                               DAG.getConstant(0, MVT::i32));
2483    SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2484                               Op->getOperand(1 + HasChainIn),
2485                               DAG.getConstant(1, MVT::i32));
2486
2487    Chain = DAG.getCopyToReg(Chain, DL, Mips::LO, InLo, SDValue());
2488    Chain = DAG.getCopyToReg(Chain, DL, Mips::HI, InHi, Chain.getValue(1));
2489
2490    Ops.push_back(Chain);
2491    Ops.append(Op->op_begin() + HasChainIn + 2, Op->op_end());
2492    Ops.push_back(Chain.getValue(1));
2493  } else {
2494    Ops.push_back(Chain);
2495    Ops.append(Op->op_begin() + HasChainIn + 1, Op->op_end());
2496  }
2497
2498  if (!HasI64Out)
2499    return DAG.getNode(Opc, DL, Op->value_begin(), Op->getNumValues(),
2500                       Ops.begin(), Ops.size());
2501
2502  SDValue Intr = DAG.getNode(Opc, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2503                             Ops.begin(), Ops.size());
2504  SDValue OutLo = DAG.getCopyFromReg(Intr.getValue(0), DL, Mips::LO, MVT::i32,
2505                                     Intr.getValue(1));
2506  SDValue OutHi = DAG.getCopyFromReg(OutLo.getValue(1), DL, Mips::HI, MVT::i32,
2507                                     OutLo.getValue(2));
2508  SDValue Out = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, OutLo, OutHi);
2509
2510  if (!HasChainIn)
2511    return Out;
2512
2513  SDValue Vals[] = { Out, OutHi.getValue(1) };
2514  return DAG.getMergeValues(Vals, 2, DL);
2515}
2516
2517SDValue MipsTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2518                                                    SelectionDAG &DAG) const {
2519  switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
2520  default:
2521    return SDValue();
2522  case Intrinsic::mips_shilo:
2523    return LowerDSPIntr(Op, DAG, MipsISD::SHILO, true, true);
2524  case Intrinsic::mips_dpau_h_qbl:
2525    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL, true, true);
2526  case Intrinsic::mips_dpau_h_qbr:
2527    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR, true, true);
2528  case Intrinsic::mips_dpsu_h_qbl:
2529    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL, true, true);
2530  case Intrinsic::mips_dpsu_h_qbr:
2531    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR, true, true);
2532  case Intrinsic::mips_dpa_w_ph:
2533    return LowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH, true, true);
2534  case Intrinsic::mips_dps_w_ph:
2535    return LowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH, true, true);
2536  case Intrinsic::mips_dpax_w_ph:
2537    return LowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH, true, true);
2538  case Intrinsic::mips_dpsx_w_ph:
2539    return LowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH, true, true);
2540  case Intrinsic::mips_mulsa_w_ph:
2541    return LowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH, true, true);
2542  case Intrinsic::mips_mult:
2543    return LowerDSPIntr(Op, DAG, MipsISD::MULT, false, true);
2544  case Intrinsic::mips_multu:
2545    return LowerDSPIntr(Op, DAG, MipsISD::MULTU, false, true);
2546  case Intrinsic::mips_madd:
2547    return LowerDSPIntr(Op, DAG, MipsISD::MADD_DSP, true, true);
2548  case Intrinsic::mips_maddu:
2549    return LowerDSPIntr(Op, DAG, MipsISD::MADDU_DSP, true, true);
2550  case Intrinsic::mips_msub:
2551    return LowerDSPIntr(Op, DAG, MipsISD::MSUB_DSP, true, true);
2552  case Intrinsic::mips_msubu:
2553    return LowerDSPIntr(Op, DAG, MipsISD::MSUBU_DSP, true, true);
2554  }
2555}
2556
2557SDValue MipsTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
2558                                                   SelectionDAG &DAG) const {
2559  switch (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue()) {
2560  default:
2561    return SDValue();
2562  case Intrinsic::mips_extp:
2563    return LowerDSPIntr(Op, DAG, MipsISD::EXTP, true, false);
2564  case Intrinsic::mips_extpdp:
2565    return LowerDSPIntr(Op, DAG, MipsISD::EXTPDP, true, false);
2566  case Intrinsic::mips_extr_w:
2567    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_W, true, false);
2568  case Intrinsic::mips_extr_r_w:
2569    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W, true, false);
2570  case Intrinsic::mips_extr_rs_w:
2571    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W, true, false);
2572  case Intrinsic::mips_extr_s_h:
2573    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H, true, false);
2574  case Intrinsic::mips_mthlip:
2575    return LowerDSPIntr(Op, DAG, MipsISD::MTHLIP, true, true);
2576  case Intrinsic::mips_mulsaq_s_w_ph:
2577    return LowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH, true, true);
2578  case Intrinsic::mips_maq_s_w_phl:
2579    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL, true, true);
2580  case Intrinsic::mips_maq_s_w_phr:
2581    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR, true, true);
2582  case Intrinsic::mips_maq_sa_w_phl:
2583    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL, true, true);
2584  case Intrinsic::mips_maq_sa_w_phr:
2585    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR, true, true);
2586  case Intrinsic::mips_dpaq_s_w_ph:
2587    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH, true, true);
2588  case Intrinsic::mips_dpsq_s_w_ph:
2589    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH, true, true);
2590  case Intrinsic::mips_dpaq_sa_l_w:
2591    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W, true, true);
2592  case Intrinsic::mips_dpsq_sa_l_w:
2593    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W, true, true);
2594  case Intrinsic::mips_dpaqx_s_w_ph:
2595    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH, true, true);
2596  case Intrinsic::mips_dpaqx_sa_w_ph:
2597    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH, true, true);
2598  case Intrinsic::mips_dpsqx_s_w_ph:
2599    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH, true, true);
2600  case Intrinsic::mips_dpsqx_sa_w_ph:
2601    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH, true, true);
2602  }
2603}
2604
2605SDValue MipsTargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
2606  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2607      || cast<ConstantSDNode>
2608        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2609      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2610    return SDValue();
2611
2612  // The pattern
2613  //   (add (frameaddr 0), (frame_to_args_offset))
2614  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2615  //   (add FrameObject, 0)
2616  // where FrameObject is a fixed StackObject with offset 0 which points to
2617  // the old stack pointer.
2618  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2619  EVT ValTy = Op->getValueType(0);
2620  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2621  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2622  return DAG.getNode(ISD::ADD, Op->getDebugLoc(), ValTy, InArgsAddr,
2623                     DAG.getConstant(0, ValTy));
2624}
2625
2626//===----------------------------------------------------------------------===//
2627//                      Calling Convention Implementation
2628//===----------------------------------------------------------------------===//
2629
2630//===----------------------------------------------------------------------===//
2631// TODO: Implement a generic logic using tblgen that can support this.
2632// Mips O32 ABI rules:
2633// ---
2634// i32 - Passed in A0, A1, A2, A3 and stack
2635// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2636//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2637// f64 - Only passed in two aliased f32 registers if no int reg has been used
2638//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2639//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2640//       go to stack.
2641//
2642//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2643//===----------------------------------------------------------------------===//
2644
2645static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2646                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2647                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2648
2649  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2650
2651  static const uint16_t IntRegs[] = {
2652      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2653  };
2654  static const uint16_t F32Regs[] = {
2655      Mips::F12, Mips::F14
2656  };
2657  static const uint16_t F64Regs[] = {
2658      Mips::D6, Mips::D7
2659  };
2660
2661  // Do not process byval args here.
2662  if (ArgFlags.isByVal())
2663    return true;
2664
2665  // Promote i8 and i16
2666  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2667    LocVT = MVT::i32;
2668    if (ArgFlags.isSExt())
2669      LocInfo = CCValAssign::SExt;
2670    else if (ArgFlags.isZExt())
2671      LocInfo = CCValAssign::ZExt;
2672    else
2673      LocInfo = CCValAssign::AExt;
2674  }
2675
2676  unsigned Reg;
2677
2678  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2679  // is true: function is vararg, argument is 3rd or higher, there is previous
2680  // argument which is not f32 or f64.
2681  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2682      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2683  unsigned OrigAlign = ArgFlags.getOrigAlign();
2684  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2685
2686  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2687    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2688    // If this is the first part of an i64 arg,
2689    // the allocated register must be either A0 or A2.
2690    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2691      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2692    LocVT = MVT::i32;
2693  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2694    // Allocate int register and shadow next int register. If first
2695    // available register is Mips::A1 or Mips::A3, shadow it too.
2696    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2697    if (Reg == Mips::A1 || Reg == Mips::A3)
2698      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2699    State.AllocateReg(IntRegs, IntRegsSize);
2700    LocVT = MVT::i32;
2701  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2702    // we are guaranteed to find an available float register
2703    if (ValVT == MVT::f32) {
2704      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2705      // Shadow int register
2706      State.AllocateReg(IntRegs, IntRegsSize);
2707    } else {
2708      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2709      // Shadow int registers
2710      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2711      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2712        State.AllocateReg(IntRegs, IntRegsSize);
2713      State.AllocateReg(IntRegs, IntRegsSize);
2714    }
2715  } else
2716    llvm_unreachable("Cannot handle this ValVT.");
2717
2718  if (!Reg) {
2719    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2720                                          OrigAlign);
2721    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2722  } else
2723    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2724
2725  return false;
2726}
2727
2728#include "MipsGenCallingConv.inc"
2729
2730//===----------------------------------------------------------------------===//
2731//                  Call Calling Convention Implementation
2732//===----------------------------------------------------------------------===//
2733
2734static const unsigned O32IntRegsSize = 4;
2735
2736// Return next O32 integer argument register.
2737static unsigned getNextIntArgReg(unsigned Reg) {
2738  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2739  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2740}
2741
2742/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2743/// for tail call optimization.
2744bool MipsTargetLowering::
2745IsEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
2746                                  unsigned NextStackOffset,
2747                                  const MipsFunctionInfo& FI) const {
2748  if (!EnableMipsTailCalls)
2749    return false;
2750
2751  // No tail call optimization for mips16.
2752  if (Subtarget->inMips16Mode())
2753    return false;
2754
2755  // Return false if either the callee or caller has a byval argument.
2756  if (MipsCCInfo.hasByValArg() || FI.hasByvalArg())
2757    return false;
2758
2759  // Return true if the callee's argument area is no larger than the
2760  // caller's.
2761  return NextStackOffset <= FI.getIncomingArgSize();
2762}
2763
2764SDValue
2765MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2766                                   SDValue Chain, SDValue Arg, DebugLoc DL,
2767                                   bool IsTailCall, SelectionDAG &DAG) const {
2768  if (!IsTailCall) {
2769    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2770                                 DAG.getIntPtrConstant(Offset));
2771    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2772                        false, 0);
2773  }
2774
2775  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2776  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2777  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2778  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2779                      /*isVolatile=*/ true, false, 0);
2780}
2781
2782//
2783// The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
2784// cleaner way to do all of this but it will have to wait until the traditional
2785// gcc mechanism is completed.
2786//
2787// For Pic, in order for Mips16 code to call Mips32 code which according the abi
2788// have either arguments or returned values placed in floating point registers,
2789// we use a set of helper functions. (This includes functions which return type
2790//  complex which on Mips are returned in a pair of floating point registers).
2791//
2792// This is an encoding that we inherited from gcc.
2793// In Mips traditional O32, N32 ABI, floating point numbers are passed in
2794// floating point argument registers 1,2 only when the first and optionally
2795// the second arguments are float (sf) or double (df).
2796// For Mips16 we are only concerned with the situations where floating point
2797// arguments are being passed in floating point registers by the ABI, because
2798// Mips16 mode code cannot execute floating point instructions to load those
2799// values and hence helper functions are needed.
2800// The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
2801// the helper function suffixs for these are:
2802//                        0,  1,    5,        9,         2,   6,        10
2803// this suffix can then be calculated as follows:
2804// for a given argument Arg:
2805//     Arg1x, Arg2x = 1 :  Arg is sf
2806//                    2 :  Arg is df
2807//                    0:   Arg is neither sf or df
2808// So this stub is the string for number Arg1x + Arg2x*4.
2809// However not all numbers between 0 and 10 are possible, we check anyway and
2810// assert if the impossible exists.
2811//
2812
2813unsigned int MipsTargetLowering::getMips16HelperFunctionStubNumber
2814  (ArgListTy &Args) const {
2815  unsigned int resultNum = 0;
2816  if (Args.size() >= 1) {
2817    Type *t = Args[0].Ty;
2818    if (t->isFloatTy()) {
2819      resultNum = 1;
2820    }
2821    else if (t->isDoubleTy()) {
2822      resultNum = 2;
2823    }
2824  }
2825  if (resultNum) {
2826    if (Args.size() >=2) {
2827      Type *t = Args[1].Ty;
2828      if (t->isFloatTy()) {
2829        resultNum += 4;
2830      }
2831      else if (t->isDoubleTy()) {
2832        resultNum += 8;
2833      }
2834    }
2835  }
2836  return resultNum;
2837}
2838
2839//
2840// prefixs are attached to stub numbers depending on the return type .
2841// return type: float  sf_
2842//              double df_
2843//              single complex sc_
2844//              double complext dc_
2845//              others  NO PREFIX
2846//
2847//
2848// The full name of a helper function is__mips16_call_stub +
2849//    return type dependent prefix + stub number
2850//
2851//
2852// This is something that probably should be in a different source file and
2853// perhaps done differently but my main purpose is to not waste runtime
2854// on something that we can enumerate in the source. Another possibility is
2855// to have a python script to generate these mapping tables. This will do
2856// for now. There are a whole series of helper function mapping arrays, one
2857// for each return type class as outlined above. There there are 11 possible
2858//  entries. Ones with 0 are ones which should never be selected
2859//
2860// All the arrays are similar except for ones which return neither
2861// sf, df, sc, dc, in which only care about ones which have sf or df as a
2862// first parameter.
2863//
2864#define P_ "__mips16_call_stub_"
2865#define MAX_STUB_NUMBER 10
2866#define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
2867#define T P "0" , T1
2868#define P P_
2869static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
2870  {0, T1 };
2871#undef P
2872#define P P_ "sf_"
2873static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
2874  { T };
2875#undef P
2876#define P P_ "df_"
2877static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
2878  { T };
2879#undef P
2880#define P P_ "sc_"
2881static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
2882  { T };
2883#undef P
2884#define P P_ "dc_"
2885static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
2886  { T };
2887#undef P
2888#undef P_
2889
2890
2891const char* MipsTargetLowering::
2892  getMips16HelperFunction
2893    (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
2894  const unsigned int maxStubNum = 10;
2895  const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
2896  assert(stubNum <= maxStubNum);
2897#ifdef NDEBUG
2898  const bool validStubNum[maxStubNum+1] =
2899    {true, true, true, false, false, true, true, false, false, true, true};
2900  assert(validStubNum[stubNum]);
2901#endif
2902  const char *result;
2903  if (RetTy->isFloatTy()) {
2904    result = sfMips16Helper[stubNum];
2905  }
2906  else if (RetTy ->isDoubleTy()) {
2907    result = dfMips16Helper[stubNum];
2908  }
2909  else if (RetTy->isStructTy()) {
2910    // check if it's complex
2911    if (RetTy->getNumContainedTypes() == 2) {
2912      if ((RetTy->getContainedType(0)->isFloatTy()) &&
2913          (RetTy->getContainedType(1)->isFloatTy())) {
2914        result = scMips16Helper[stubNum];
2915      }
2916      else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
2917               (RetTy->getContainedType(1)->isDoubleTy())) {
2918        result = dcMips16Helper[stubNum];
2919      }
2920    }
2921  }
2922  else {
2923    if (stubNum == 0) {
2924      needHelper = false;
2925      return "";
2926    }
2927    result = vMips16Helper[stubNum];
2928  }
2929  needHelper = true;
2930  return result;
2931}
2932
2933/// LowerCall - functions arguments are copied from virtual regs to
2934/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2935SDValue
2936MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2937                              SmallVectorImpl<SDValue> &InVals) const {
2938  SelectionDAG &DAG                     = CLI.DAG;
2939  DebugLoc &dl                          = CLI.DL;
2940  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2941  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2942  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2943  SDValue Chain                         = CLI.Chain;
2944  SDValue Callee                        = CLI.Callee;
2945  bool &isTailCall                      = CLI.IsTailCall;
2946  CallingConv::ID CallConv              = CLI.CallConv;
2947  bool isVarArg                         = CLI.IsVarArg;
2948
2949  const char* mips16HelperFunction = 0;
2950  bool needMips16Helper = false;
2951
2952  if (Subtarget->inMips16Mode() && getTargetMachine().Options.UseSoftFloat &&
2953      Mips16HardFloat) {
2954    //
2955    // currently we don't have symbols tagged with the mips16 or mips32
2956    // qualifier so we will assume that we don't know what kind it is.
2957    // and generate the helper
2958    //
2959    bool lookupHelper = true;
2960    if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2961      if (noHelperNeeded.find(S->getSymbol()) != noHelperNeeded.end()) {
2962        lookupHelper = false;
2963      }
2964    }
2965    if (lookupHelper) mips16HelperFunction =
2966      getMips16HelperFunction(CLI.RetTy, CLI.Args, needMips16Helper);
2967
2968  }
2969  MachineFunction &MF = DAG.getMachineFunction();
2970  MachineFrameInfo *MFI = MF.getFrameInfo();
2971  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2972  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2973
2974  // Analyze operands of the call, assigning locations to each operand.
2975  SmallVector<CCValAssign, 16> ArgLocs;
2976  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2977                 getTargetMachine(), ArgLocs, *DAG.getContext());
2978  MipsCC MipsCCInfo(CallConv, isVarArg, IsO32, CCInfo);
2979
2980  MipsCCInfo.analyzeCallOperands(Outs);
2981
2982  // Get a count of how many bytes are to be pushed on the stack.
2983  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2984
2985  // Check if it's really possible to do a tail call.
2986  if (isTailCall)
2987    isTailCall =
2988      IsEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2989                                        *MF.getInfo<MipsFunctionInfo>());
2990
2991  if (isTailCall)
2992    ++NumTailCalls;
2993
2994  // Chain is the output chain of the last Load/Store or CopyToReg node.
2995  // ByValChain is the output chain of the last Memcpy node created for copying
2996  // byval arguments to the stack.
2997  unsigned StackAlignment = TFL->getStackAlignment();
2998  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2999  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
3000
3001  if (!isTailCall)
3002    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
3003
3004  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl,
3005                                        IsN64 ? Mips::SP_64 : Mips::SP,
3006                                        getPointerTy());
3007
3008  // With EABI is it possible to have 16 args on registers.
3009  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
3010  SmallVector<SDValue, 8> MemOpChains;
3011  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
3012
3013  // Walk the register/memloc assignments, inserting copies/loads.
3014  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3015    SDValue Arg = OutVals[i];
3016    CCValAssign &VA = ArgLocs[i];
3017    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
3018    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3019
3020    // ByVal Arg.
3021    if (Flags.isByVal()) {
3022      assert(Flags.getByValSize() &&
3023             "ByVal args of size 0 should have been ignored by front-end.");
3024      assert(ByValArg != MipsCCInfo.byval_end());
3025      assert(!isTailCall &&
3026             "Do not tail-call optimize if there is a byval argument.");
3027      passByValArg(Chain, dl, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
3028                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
3029      ++ByValArg;
3030      continue;
3031    }
3032
3033    // Promote the value if needed.
3034    switch (VA.getLocInfo()) {
3035    default: llvm_unreachable("Unknown loc info!");
3036    case CCValAssign::Full:
3037      if (VA.isRegLoc()) {
3038        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
3039            (ValVT == MVT::f64 && LocVT == MVT::i64))
3040          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
3041        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
3042          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
3043                                   Arg, DAG.getConstant(0, MVT::i32));
3044          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
3045                                   Arg, DAG.getConstant(1, MVT::i32));
3046          if (!Subtarget->isLittle())
3047            std::swap(Lo, Hi);
3048          unsigned LocRegLo = VA.getLocReg();
3049          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
3050          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
3051          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
3052          continue;
3053        }
3054      }
3055      break;
3056    case CCValAssign::SExt:
3057      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
3058      break;
3059    case CCValAssign::ZExt:
3060      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
3061      break;
3062    case CCValAssign::AExt:
3063      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
3064      break;
3065    }
3066
3067    // Arguments that can be passed on register must be kept at
3068    // RegsToPass vector
3069    if (VA.isRegLoc()) {
3070      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3071      continue;
3072    }
3073
3074    // Register can't get to this point...
3075    assert(VA.isMemLoc());
3076
3077    // emit ISD::STORE whichs stores the
3078    // parameter value to a stack Location
3079    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
3080                                         Chain, Arg, dl, isTailCall, DAG));
3081  }
3082
3083  // Transform all store nodes into one single node because all store
3084  // nodes are independent of each other.
3085  if (!MemOpChains.empty())
3086    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3087                        &MemOpChains[0], MemOpChains.size());
3088
3089  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3090  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3091  // node so that legalize doesn't hack it.
3092  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
3093  bool GlobalOrExternal = false, InternalLinkage = false;
3094  SDValue CalleeLo;
3095
3096  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3097    if (IsPICCall) {
3098      InternalLinkage = G->getGlobal()->hasInternalLinkage();
3099
3100      if (InternalLinkage)
3101        Callee = getAddrLocal(Callee, DAG, HasMips64);
3102      else if (LargeGOT)
3103        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
3104                                       MipsII::MO_CALL_LO16);
3105      else
3106        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
3107    } else
3108      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
3109                                          MipsII::MO_NO_FLAG);
3110    GlobalOrExternal = true;
3111  }
3112  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3113    if (!IsN64 && !IsPIC) // !N64 && static
3114      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
3115                                            MipsII::MO_NO_FLAG);
3116    else if (LargeGOT)
3117      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
3118                                     MipsII::MO_CALL_LO16);
3119    else if (HasMips64)
3120      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_DISP);
3121    else // O32 & PIC
3122      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
3123
3124    GlobalOrExternal = true;
3125  }
3126
3127  SDValue JumpTarget = Callee;
3128
3129  // T9 should contain the address of the callee function if
3130  // -reloction-model=pic or it is an indirect call.
3131  if (IsPICCall || !GlobalOrExternal) {
3132    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
3133    unsigned V0Reg = Mips::V0;
3134    if (needMips16Helper) {
3135      RegsToPass.push_front(std::make_pair(V0Reg, Callee));
3136      JumpTarget = DAG.getExternalSymbol(
3137        mips16HelperFunction, getPointerTy());
3138      JumpTarget = getAddrGlobal(JumpTarget, DAG, MipsII::MO_GOT);
3139    }
3140    else {
3141      RegsToPass.push_front(std::make_pair(T9Reg, Callee));
3142
3143      if (!Subtarget->inMips16Mode())
3144        JumpTarget = SDValue();
3145    }
3146  }
3147
3148  // Insert node "GP copy globalreg" before call to function.
3149  //
3150  // R_MIPS_CALL* operators (emitted when non-internal functions are called
3151  // in PIC mode) allow symbols to be resolved via lazy binding.
3152  // The lazy binding stub requires GP to point to the GOT.
3153  if (IsPICCall && !InternalLinkage) {
3154    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
3155    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
3156    RegsToPass.push_back(std::make_pair(GPReg, GetGlobalReg(DAG, Ty)));
3157  }
3158
3159  // Build a sequence of copy-to-reg nodes chained together with token
3160  // chain and flag operands which copy the outgoing args into registers.
3161  // The InFlag in necessary since all emitted instructions must be
3162  // stuck together.
3163  SDValue InFlag;
3164
3165  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3166    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3167                             RegsToPass[i].second, InFlag);
3168    InFlag = Chain.getValue(1);
3169  }
3170
3171  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
3172  //             = Chain, Callee, Reg#1, Reg#2, ...
3173  //
3174  // Returns a chain & a flag for retval copy to use.
3175  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3176  SmallVector<SDValue, 8> Ops(1, Chain);
3177
3178  if (JumpTarget.getNode())
3179    Ops.push_back(JumpTarget);
3180
3181  // Add argument registers to the end of the list so that they are
3182  // known live into the call.
3183  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3184    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3185                                  RegsToPass[i].second.getValueType()));
3186
3187  // Add a register mask operand representing the call-preserved registers.
3188  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3189  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3190  assert(Mask && "Missing call preserved mask for calling convention");
3191  Ops.push_back(DAG.getRegisterMask(Mask));
3192
3193  if (InFlag.getNode())
3194    Ops.push_back(InFlag);
3195
3196  if (isTailCall)
3197    return DAG.getNode(MipsISD::TailCall, dl, MVT::Other, &Ops[0], Ops.size());
3198
3199  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
3200  InFlag = Chain.getValue(1);
3201
3202  // Create the CALLSEQ_END node.
3203  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
3204                             DAG.getIntPtrConstant(0, true), InFlag);
3205  InFlag = Chain.getValue(1);
3206
3207  // Handle result values, copying them out of physregs into vregs that we
3208  // return.
3209  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3210                         Ins, dl, DAG, InVals);
3211}
3212
3213/// LowerCallResult - Lower the result values of a call into the
3214/// appropriate copies out of appropriate physical registers.
3215SDValue
3216MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3217                                    CallingConv::ID CallConv, bool isVarArg,
3218                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3219                                    DebugLoc dl, SelectionDAG &DAG,
3220                                    SmallVectorImpl<SDValue> &InVals) const {
3221  // Assign locations to each value returned by this call.
3222  SmallVector<CCValAssign, 16> RVLocs;
3223  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3224                 getTargetMachine(), RVLocs, *DAG.getContext());
3225
3226  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
3227
3228  // Copy all of the result registers out of their specified physreg.
3229  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3230    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
3231                               RVLocs[i].getValVT(), InFlag).getValue(1);
3232    InFlag = Chain.getValue(2);
3233    InVals.push_back(Chain.getValue(0));
3234  }
3235
3236  return Chain;
3237}
3238
3239//===----------------------------------------------------------------------===//
3240//             Formal Arguments Calling Convention Implementation
3241//===----------------------------------------------------------------------===//
3242/// LowerFormalArguments - transform physical registers into virtual registers
3243/// and generate load operations for arguments places on the stack.
3244SDValue
3245MipsTargetLowering::LowerFormalArguments(SDValue Chain,
3246                                         CallingConv::ID CallConv,
3247                                         bool isVarArg,
3248                                      const SmallVectorImpl<ISD::InputArg> &Ins,
3249                                         DebugLoc dl, SelectionDAG &DAG,
3250                                         SmallVectorImpl<SDValue> &InVals)
3251                                          const {
3252  MachineFunction &MF = DAG.getMachineFunction();
3253  MachineFrameInfo *MFI = MF.getFrameInfo();
3254  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3255
3256  MipsFI->setVarArgsFrameIndex(0);
3257
3258  // Used with vargs to acumulate store chains.
3259  std::vector<SDValue> OutChains;
3260
3261  // Assign locations to all of the incoming arguments.
3262  SmallVector<CCValAssign, 16> ArgLocs;
3263  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3264                 getTargetMachine(), ArgLocs, *DAG.getContext());
3265  MipsCC MipsCCInfo(CallConv, isVarArg, IsO32, CCInfo);
3266
3267  MipsCCInfo.analyzeFormalArguments(Ins);
3268  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
3269                           MipsCCInfo.hasByValArg());
3270
3271  Function::const_arg_iterator FuncArg =
3272    DAG.getMachineFunction().getFunction()->arg_begin();
3273  unsigned CurArgIdx = 0;
3274  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
3275
3276  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3277    CCValAssign &VA = ArgLocs[i];
3278    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
3279    CurArgIdx = Ins[i].OrigArgIndex;
3280    EVT ValVT = VA.getValVT();
3281    ISD::ArgFlagsTy Flags = Ins[i].Flags;
3282    bool IsRegLoc = VA.isRegLoc();
3283
3284    if (Flags.isByVal()) {
3285      assert(Flags.getByValSize() &&
3286             "ByVal args of size 0 should have been ignored by front-end.");
3287      assert(ByValArg != MipsCCInfo.byval_end());
3288      copyByValRegs(Chain, dl, OutChains, DAG, Flags, InVals, &*FuncArg,
3289                    MipsCCInfo, *ByValArg);
3290      ++ByValArg;
3291      continue;
3292    }
3293
3294    // Arguments stored on registers
3295    if (IsRegLoc) {
3296      EVT RegVT = VA.getLocVT();
3297      unsigned ArgReg = VA.getLocReg();
3298      const TargetRegisterClass *RC;
3299
3300      if (RegVT == MVT::i32)
3301        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
3302                                        &Mips::CPURegsRegClass;
3303      else if (RegVT == MVT::i64)
3304        RC = &Mips::CPU64RegsRegClass;
3305      else if (RegVT == MVT::f32)
3306        RC = &Mips::FGR32RegClass;
3307      else if (RegVT == MVT::f64)
3308        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
3309      else
3310        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
3311
3312      // Transform the arguments stored on
3313      // physical registers into virtual ones
3314      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3315      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3316
3317      // If this is an 8 or 16-bit value, it has been passed promoted
3318      // to 32 bits.  Insert an assert[sz]ext to capture this, then
3319      // truncate to the right size.
3320      if (VA.getLocInfo() != CCValAssign::Full) {
3321        unsigned Opcode = 0;
3322        if (VA.getLocInfo() == CCValAssign::SExt)
3323          Opcode = ISD::AssertSext;
3324        else if (VA.getLocInfo() == CCValAssign::ZExt)
3325          Opcode = ISD::AssertZext;
3326        if (Opcode)
3327          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
3328                                 DAG.getValueType(ValVT));
3329        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
3330      }
3331
3332      // Handle floating point arguments passed in integer registers.
3333      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3334          (RegVT == MVT::i64 && ValVT == MVT::f64))
3335        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
3336      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
3337        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
3338                                  getNextIntArgReg(ArgReg), RC);
3339        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
3340        if (!Subtarget->isLittle())
3341          std::swap(ArgValue, ArgValue2);
3342        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
3343                               ArgValue, ArgValue2);
3344      }
3345
3346      InVals.push_back(ArgValue);
3347    } else { // VA.isRegLoc()
3348
3349      // sanity check
3350      assert(VA.isMemLoc());
3351
3352      // The stack pointer offset is relative to the caller stack frame.
3353      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
3354                                      VA.getLocMemOffset(), true);
3355
3356      // Create load nodes to retrieve arguments from the stack
3357      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3358      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
3359                                   MachinePointerInfo::getFixedStack(FI),
3360                                   false, false, false, 0));
3361    }
3362  }
3363
3364  // The mips ABIs for returning structs by value requires that we copy
3365  // the sret argument into $v0 for the return. Save the argument into
3366  // a virtual register so that we can access it from the return points.
3367  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3368    unsigned Reg = MipsFI->getSRetReturnReg();
3369    if (!Reg) {
3370      Reg = MF.getRegInfo().
3371        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
3372      MipsFI->setSRetReturnReg(Reg);
3373    }
3374    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
3375    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
3376  }
3377
3378  if (isVarArg)
3379    writeVarArgRegs(OutChains, MipsCCInfo, Chain, dl, DAG);
3380
3381  // All stores are grouped in one node to allow the matching between
3382  // the size of Ins and InVals. This only happens when on varg functions
3383  if (!OutChains.empty()) {
3384    OutChains.push_back(Chain);
3385    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3386                        &OutChains[0], OutChains.size());
3387  }
3388
3389  return Chain;
3390}
3391
3392//===----------------------------------------------------------------------===//
3393//               Return Value Calling Convention Implementation
3394//===----------------------------------------------------------------------===//
3395
3396bool
3397MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3398                                   MachineFunction &MF, bool isVarArg,
3399                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3400                                   LLVMContext &Context) const {
3401  SmallVector<CCValAssign, 16> RVLocs;
3402  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
3403                 RVLocs, Context);
3404  return CCInfo.CheckReturn(Outs, RetCC_Mips);
3405}
3406
3407SDValue
3408MipsTargetLowering::LowerReturn(SDValue Chain,
3409                                CallingConv::ID CallConv, bool isVarArg,
3410                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3411                                const SmallVectorImpl<SDValue> &OutVals,
3412                                DebugLoc dl, SelectionDAG &DAG) const {
3413
3414  // CCValAssign - represent the assignment of
3415  // the return value to a location
3416  SmallVector<CCValAssign, 16> RVLocs;
3417
3418  // CCState - Info about the registers and stack slot.
3419  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3420                 getTargetMachine(), RVLocs, *DAG.getContext());
3421
3422  // Analize return values.
3423  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3424
3425  // If this is the first return lowered for this function, add
3426  // the regs to the liveout set for the function.
3427  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3428    for (unsigned i = 0; i != RVLocs.size(); ++i)
3429      if (RVLocs[i].isRegLoc())
3430        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3431  }
3432
3433  SDValue Flag;
3434
3435  // Copy the result values into the output registers.
3436  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3437    CCValAssign &VA = RVLocs[i];
3438    assert(VA.isRegLoc() && "Can only return in registers!");
3439
3440    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
3441
3442    // guarantee that all emitted copies are
3443    // stuck together, avoiding something bad
3444    Flag = Chain.getValue(1);
3445  }
3446
3447  // The mips ABIs for returning structs by value requires that we copy
3448  // the sret argument into $v0 for the return. We saved the argument into
3449  // a virtual register in the entry block, so now we copy the value out
3450  // and into $v0.
3451  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3452    MachineFunction &MF      = DAG.getMachineFunction();
3453    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3454    unsigned Reg = MipsFI->getSRetReturnReg();
3455
3456    if (!Reg)
3457      llvm_unreachable("sret virtual register not created in the entry block");
3458    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
3459    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
3460
3461    Chain = DAG.getCopyToReg(Chain, dl, V0, Val, Flag);
3462    Flag = Chain.getValue(1);
3463    MF.getRegInfo().addLiveOut(V0);
3464  }
3465
3466  // Return on Mips is always a "jr $ra"
3467  if (Flag.getNode())
3468    return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain, Flag);
3469
3470  // Return Void
3471  return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain);
3472}
3473
3474//===----------------------------------------------------------------------===//
3475//                           Mips Inline Assembly Support
3476//===----------------------------------------------------------------------===//
3477
3478/// getConstraintType - Given a constraint letter, return the type of
3479/// constraint it is for this target.
3480MipsTargetLowering::ConstraintType MipsTargetLowering::
3481getConstraintType(const std::string &Constraint) const
3482{
3483  // Mips specific constrainy
3484  // GCC config/mips/constraints.md
3485  //
3486  // 'd' : An address register. Equivalent to r
3487  //       unless generating MIPS16 code.
3488  // 'y' : Equivalent to r; retained for
3489  //       backwards compatibility.
3490  // 'c' : A register suitable for use in an indirect
3491  //       jump. This will always be $25 for -mabicalls.
3492  // 'l' : The lo register. 1 word storage.
3493  // 'x' : The hilo register pair. Double word storage.
3494  if (Constraint.size() == 1) {
3495    switch (Constraint[0]) {
3496      default : break;
3497      case 'd':
3498      case 'y':
3499      case 'f':
3500      case 'c':
3501      case 'l':
3502      case 'x':
3503        return C_RegisterClass;
3504    }
3505  }
3506  return TargetLowering::getConstraintType(Constraint);
3507}
3508
3509/// Examine constraint type and operand type and determine a weight value.
3510/// This object must already have been set up with the operand type
3511/// and the current alternative constraint selected.
3512TargetLowering::ConstraintWeight
3513MipsTargetLowering::getSingleConstraintMatchWeight(
3514    AsmOperandInfo &info, const char *constraint) const {
3515  ConstraintWeight weight = CW_Invalid;
3516  Value *CallOperandVal = info.CallOperandVal;
3517    // If we don't have a value, we can't do a match,
3518    // but allow it at the lowest weight.
3519  if (CallOperandVal == NULL)
3520    return CW_Default;
3521  Type *type = CallOperandVal->getType();
3522  // Look at the constraint type.
3523  switch (*constraint) {
3524  default:
3525    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3526    break;
3527  case 'd':
3528  case 'y':
3529    if (type->isIntegerTy())
3530      weight = CW_Register;
3531    break;
3532  case 'f':
3533    if (type->isFloatTy())
3534      weight = CW_Register;
3535    break;
3536  case 'c': // $25 for indirect jumps
3537  case 'l': // lo register
3538  case 'x': // hilo register pair
3539      if (type->isIntegerTy())
3540      weight = CW_SpecificReg;
3541      break;
3542  case 'I': // signed 16 bit immediate
3543  case 'J': // integer zero
3544  case 'K': // unsigned 16 bit immediate
3545  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3546  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3547  case 'O': // signed 15 bit immediate (+- 16383)
3548  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3549    if (isa<ConstantInt>(CallOperandVal))
3550      weight = CW_Constant;
3551    break;
3552  }
3553  return weight;
3554}
3555
3556/// Given a register class constraint, like 'r', if this corresponds directly
3557/// to an LLVM register class, return a register of 0 and the register class
3558/// pointer.
3559std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3560getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3561{
3562  if (Constraint.size() == 1) {
3563    switch (Constraint[0]) {
3564    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3565    case 'y': // Same as 'r'. Exists for compatibility.
3566    case 'r':
3567      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3568        if (Subtarget->inMips16Mode())
3569          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3570        return std::make_pair(0U, &Mips::CPURegsRegClass);
3571      }
3572      if (VT == MVT::i64 && !HasMips64)
3573        return std::make_pair(0U, &Mips::CPURegsRegClass);
3574      if (VT == MVT::i64 && HasMips64)
3575        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
3576      // This will generate an error message
3577      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3578    case 'f':
3579      if (VT == MVT::f32)
3580        return std::make_pair(0U, &Mips::FGR32RegClass);
3581      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3582        if (Subtarget->isFP64bit())
3583          return std::make_pair(0U, &Mips::FGR64RegClass);
3584        return std::make_pair(0U, &Mips::AFGR64RegClass);
3585      }
3586      break;
3587    case 'c': // register suitable for indirect jump
3588      if (VT == MVT::i32)
3589        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
3590      assert(VT == MVT::i64 && "Unexpected type.");
3591      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
3592    case 'l': // register suitable for indirect jump
3593      if (VT == MVT::i32)
3594        return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
3595      return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
3596    case 'x': // register suitable for indirect jump
3597      // Fixme: Not triggering the use of both hi and low
3598      // This will generate an error message
3599      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3600    }
3601  }
3602  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3603}
3604
3605/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3606/// vector.  If it is invalid, don't add anything to Ops.
3607void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3608                                                     std::string &Constraint,
3609                                                     std::vector<SDValue>&Ops,
3610                                                     SelectionDAG &DAG) const {
3611  SDValue Result(0, 0);
3612
3613  // Only support length 1 constraints for now.
3614  if (Constraint.length() > 1) return;
3615
3616  char ConstraintLetter = Constraint[0];
3617  switch (ConstraintLetter) {
3618  default: break; // This will fall through to the generic implementation
3619  case 'I': // Signed 16 bit constant
3620    // If this fails, the parent routine will give an error
3621    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3622      EVT Type = Op.getValueType();
3623      int64_t Val = C->getSExtValue();
3624      if (isInt<16>(Val)) {
3625        Result = DAG.getTargetConstant(Val, Type);
3626        break;
3627      }
3628    }
3629    return;
3630  case 'J': // integer zero
3631    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3632      EVT Type = Op.getValueType();
3633      int64_t Val = C->getZExtValue();
3634      if (Val == 0) {
3635        Result = DAG.getTargetConstant(0, Type);
3636        break;
3637      }
3638    }
3639    return;
3640  case 'K': // unsigned 16 bit immediate
3641    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3642      EVT Type = Op.getValueType();
3643      uint64_t Val = (uint64_t)C->getZExtValue();
3644      if (isUInt<16>(Val)) {
3645        Result = DAG.getTargetConstant(Val, Type);
3646        break;
3647      }
3648    }
3649    return;
3650  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3651    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3652      EVT Type = Op.getValueType();
3653      int64_t Val = C->getSExtValue();
3654      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3655        Result = DAG.getTargetConstant(Val, Type);
3656        break;
3657      }
3658    }
3659    return;
3660  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3661    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3662      EVT Type = Op.getValueType();
3663      int64_t Val = C->getSExtValue();
3664      if ((Val >= -65535) && (Val <= -1)) {
3665        Result = DAG.getTargetConstant(Val, Type);
3666        break;
3667      }
3668    }
3669    return;
3670  case 'O': // signed 15 bit immediate
3671    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3672      EVT Type = Op.getValueType();
3673      int64_t Val = C->getSExtValue();
3674      if ((isInt<15>(Val))) {
3675        Result = DAG.getTargetConstant(Val, Type);
3676        break;
3677      }
3678    }
3679    return;
3680  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3681    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3682      EVT Type = Op.getValueType();
3683      int64_t Val = C->getSExtValue();
3684      if ((Val <= 65535) && (Val >= 1)) {
3685        Result = DAG.getTargetConstant(Val, Type);
3686        break;
3687      }
3688    }
3689    return;
3690  }
3691
3692  if (Result.getNode()) {
3693    Ops.push_back(Result);
3694    return;
3695  }
3696
3697  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3698}
3699
3700bool
3701MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
3702  // No global is ever allowed as a base.
3703  if (AM.BaseGV)
3704    return false;
3705
3706  switch (AM.Scale) {
3707  case 0: // "r+i" or just "i", depending on HasBaseReg.
3708    break;
3709  case 1:
3710    if (!AM.HasBaseReg) // allow "r+i".
3711      break;
3712    return false; // disallow "r+r" or "r+r+i".
3713  default:
3714    return false;
3715  }
3716
3717  return true;
3718}
3719
3720bool
3721MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3722  // The Mips target isn't yet aware of offsets.
3723  return false;
3724}
3725
3726EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3727                                            unsigned SrcAlign,
3728                                            bool IsMemset, bool ZeroMemset,
3729                                            bool MemcpyStrSrc,
3730                                            MachineFunction &MF) const {
3731  if (Subtarget->hasMips64())
3732    return MVT::i64;
3733
3734  return MVT::i32;
3735}
3736
3737bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3738  if (VT != MVT::f32 && VT != MVT::f64)
3739    return false;
3740  if (Imm.isNegZero())
3741    return false;
3742  return Imm.isZero();
3743}
3744
3745unsigned MipsTargetLowering::getJumpTableEncoding() const {
3746  if (IsN64)
3747    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3748
3749  return TargetLowering::getJumpTableEncoding();
3750}
3751
3752MipsTargetLowering::MipsCC::MipsCC(CallingConv::ID CallConv, bool IsVarArg,
3753                                   bool IsO32, CCState &Info) : CCInfo(Info) {
3754  UseRegsForByval = true;
3755
3756  if (IsO32) {
3757    RegSize = 4;
3758    NumIntArgRegs = array_lengthof(O32IntRegs);
3759    ReservedArgArea = 16;
3760    IntArgRegs = ShadowRegs = O32IntRegs;
3761    FixedFn = VarFn = CC_MipsO32;
3762  } else {
3763    RegSize = 8;
3764    NumIntArgRegs = array_lengthof(Mips64IntRegs);
3765    ReservedArgArea = 0;
3766    IntArgRegs = Mips64IntRegs;
3767    ShadowRegs = Mips64DPRegs;
3768    FixedFn = CC_MipsN;
3769    VarFn = CC_MipsN_VarArg;
3770  }
3771
3772  if (CallConv == CallingConv::Fast) {
3773    assert(!IsVarArg);
3774    UseRegsForByval = false;
3775    ReservedArgArea = 0;
3776    FixedFn = VarFn = CC_Mips_FastCC;
3777  }
3778
3779  // Pre-allocate reserved argument area.
3780  CCInfo.AllocateStack(ReservedArgArea, 1);
3781}
3782
3783void MipsTargetLowering::MipsCC::
3784analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args) {
3785  unsigned NumOpnds = Args.size();
3786
3787  for (unsigned I = 0; I != NumOpnds; ++I) {
3788    MVT ArgVT = Args[I].VT;
3789    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3790    bool R;
3791
3792    if (ArgFlags.isByVal()) {
3793      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3794      continue;
3795    }
3796
3797    if (Args[I].IsFixed)
3798      R = FixedFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3799    else
3800      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3801
3802    if (R) {
3803#ifndef NDEBUG
3804      dbgs() << "Call operand #" << I << " has unhandled type "
3805             << EVT(ArgVT).getEVTString();
3806#endif
3807      llvm_unreachable(0);
3808    }
3809  }
3810}
3811
3812void MipsTargetLowering::MipsCC::
3813analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args) {
3814  unsigned NumArgs = Args.size();
3815
3816  for (unsigned I = 0; I != NumArgs; ++I) {
3817    MVT ArgVT = Args[I].VT;
3818    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3819
3820    if (ArgFlags.isByVal()) {
3821      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3822      continue;
3823    }
3824
3825    if (!FixedFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo))
3826      continue;
3827
3828#ifndef NDEBUG
3829    dbgs() << "Formal Arg #" << I << " has unhandled type "
3830           << EVT(ArgVT).getEVTString();
3831#endif
3832    llvm_unreachable(0);
3833  }
3834}
3835
3836void
3837MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3838                                           MVT LocVT,
3839                                           CCValAssign::LocInfo LocInfo,
3840                                           ISD::ArgFlagsTy ArgFlags) {
3841  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3842
3843  struct ByValArgInfo ByVal;
3844  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3845  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3846                            RegSize * 2);
3847
3848  if (UseRegsForByval)
3849    allocateRegs(ByVal, ByValSize, Align);
3850
3851  // Allocate space on caller's stack.
3852  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3853                                       Align);
3854  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3855                                    LocInfo));
3856  ByValArgs.push_back(ByVal);
3857}
3858
3859void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3860                                              unsigned ByValSize,
3861                                              unsigned Align) {
3862  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3863         "Byval argument's size and alignment should be a multiple of"
3864         "RegSize.");
3865
3866  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3867
3868  // If Align > RegSize, the first arg register must be even.
3869  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3870    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3871    ++ByVal.FirstIdx;
3872  }
3873
3874  // Mark the registers allocated.
3875  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3876       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3877    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3878}
3879
3880void MipsTargetLowering::
3881copyByValRegs(SDValue Chain, DebugLoc DL, std::vector<SDValue> &OutChains,
3882              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3883              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3884              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3885  MachineFunction &MF = DAG.getMachineFunction();
3886  MachineFrameInfo *MFI = MF.getFrameInfo();
3887  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3888  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3889  int FrameObjOffset;
3890
3891  if (RegAreaSize)
3892    FrameObjOffset = (int)CC.reservedArgArea() -
3893      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3894  else
3895    FrameObjOffset = ByVal.Address;
3896
3897  // Create frame object.
3898  EVT PtrTy = getPointerTy();
3899  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3900  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3901  InVals.push_back(FIN);
3902
3903  if (!ByVal.NumRegs)
3904    return;
3905
3906  // Copy arg registers.
3907  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3908  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3909
3910  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3911    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3912    unsigned VReg = AddLiveIn(MF, ArgReg, RC);
3913    unsigned Offset = I * CC.regSize();
3914    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3915                                   DAG.getConstant(Offset, PtrTy));
3916    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3917                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3918                                 false, false, 0);
3919    OutChains.push_back(Store);
3920  }
3921}
3922
3923// Copy byVal arg to registers and stack.
3924void MipsTargetLowering::
3925passByValArg(SDValue Chain, DebugLoc DL,
3926             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3927             SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
3928             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3929             const MipsCC &CC, const ByValArgInfo &ByVal,
3930             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3931  unsigned ByValSize = Flags.getByValSize();
3932  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3933  unsigned RegSize = CC.regSize();
3934  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3935  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3936
3937  if (ByVal.NumRegs) {
3938    const uint16_t *ArgRegs = CC.intArgRegs();
3939    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3940    unsigned I = 0;
3941
3942    // Copy words to registers.
3943    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3944      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3945                                    DAG.getConstant(Offset, PtrTy));
3946      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3947                                    MachinePointerInfo(), false, false, false,
3948                                    Alignment);
3949      MemOpChains.push_back(LoadVal.getValue(1));
3950      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3951      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3952    }
3953
3954    // Return if the struct has been fully copied.
3955    if (ByValSize == Offset)
3956      return;
3957
3958    // Copy the remainder of the byval argument with sub-word loads and shifts.
3959    if (LeftoverBytes) {
3960      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3961             "Size of the remainder should be smaller than RegSize.");
3962      SDValue Val;
3963
3964      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3965           Offset < ByValSize; LoadSize /= 2) {
3966        unsigned RemSize = ByValSize - Offset;
3967
3968        if (RemSize < LoadSize)
3969          continue;
3970
3971        // Load subword.
3972        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3973                                      DAG.getConstant(Offset, PtrTy));
3974        SDValue LoadVal =
3975          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3976                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3977                         false, false, Alignment);
3978        MemOpChains.push_back(LoadVal.getValue(1));
3979
3980        // Shift the loaded value.
3981        unsigned Shamt;
3982
3983        if (isLittle)
3984          Shamt = TotalSizeLoaded;
3985        else
3986          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3987
3988        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3989                                    DAG.getConstant(Shamt, MVT::i32));
3990
3991        if (Val.getNode())
3992          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3993        else
3994          Val = Shift;
3995
3996        Offset += LoadSize;
3997        TotalSizeLoaded += LoadSize;
3998        Alignment = std::min(Alignment, LoadSize);
3999      }
4000
4001      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
4002      RegsToPass.push_back(std::make_pair(ArgReg, Val));
4003      return;
4004    }
4005  }
4006
4007  // Copy remainder of byval arg to it with memcpy.
4008  unsigned MemCpySize = ByValSize - Offset;
4009  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4010                            DAG.getConstant(Offset, PtrTy));
4011  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
4012                            DAG.getIntPtrConstant(ByVal.Address));
4013  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
4014                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
4015                        /*isVolatile=*/false, /*AlwaysInline=*/false,
4016                        MachinePointerInfo(0), MachinePointerInfo(0));
4017  MemOpChains.push_back(Chain);
4018}
4019
4020void
4021MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
4022                                    const MipsCC &CC, SDValue Chain,
4023                                    DebugLoc DL, SelectionDAG &DAG) const {
4024  unsigned NumRegs = CC.numIntArgRegs();
4025  const uint16_t *ArgRegs = CC.intArgRegs();
4026  const CCState &CCInfo = CC.getCCInfo();
4027  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
4028  unsigned RegSize = CC.regSize();
4029  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
4030  const TargetRegisterClass *RC = getRegClassFor(RegTy);
4031  MachineFunction &MF = DAG.getMachineFunction();
4032  MachineFrameInfo *MFI = MF.getFrameInfo();
4033  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
4034
4035  // Offset of the first variable argument from stack pointer.
4036  int VaArgOffset;
4037
4038  if (NumRegs == Idx)
4039    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
4040  else
4041    VaArgOffset =
4042      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
4043
4044  // Record the frame index of the first variable argument
4045  // which is a value necessary to VASTART.
4046  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
4047  MipsFI->setVarArgsFrameIndex(FI);
4048
4049  // Copy the integer registers that have not been used for argument passing
4050  // to the argument register save area. For O32, the save area is allocated
4051  // in the caller's stack frame, while for N32/64, it is allocated in the
4052  // callee's stack frame.
4053  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
4054    unsigned Reg = AddLiveIn(MF, ArgRegs[I], RC);
4055    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
4056    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
4057    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
4058    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
4059                                 MachinePointerInfo(), false, false, 0);
4060    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
4061    OutChains.push_back(Store);
4062  }
4063}
4064