MipsISelLowering.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#include "MipsISelLowering.h"
15#include "InstPrinter/MipsInstPrinter.h"
16#include "MCTargetDesc/MipsBaseInfo.h"
17#include "MipsMachineFunction.h"
18#include "MipsSubtarget.h"
19#include "MipsTargetMachine.h"
20#include "MipsTargetObjectFile.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/ADT/StringSwitch.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37#include <cctype>
38
39using namespace llvm;
40
41#define DEBUG_TYPE "mips-lower"
42
43STATISTIC(NumTailCalls, "Number of tail calls");
44
45static cl::opt<bool>
46LargeGOT("mxgot", cl::Hidden,
47         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
48
49static cl::opt<bool>
50NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
51               cl::desc("MIPS: Don't trap on integer division by zero."),
52               cl::init(false));
53
54cl::opt<bool>
55EnableMipsFastISel("mips-fast-isel", cl::Hidden,
56  cl::desc("Allow mips-fast-isel to be used"),
57  cl::init(false));
58
59static const MCPhysReg O32IntRegs[4] = {
60  Mips::A0, Mips::A1, Mips::A2, Mips::A3
61};
62
63static const MCPhysReg Mips64IntRegs[8] = {
64  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
65  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
66};
67
68static const MCPhysReg Mips64DPRegs[8] = {
69  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
70  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
71};
72
73// If I is a shifted mask, set the size (Size) and the first bit of the
74// mask (Pos), and return true.
75// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
76static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
77  if (!isShiftedMask_64(I))
78    return false;
79
80  Size = CountPopulation_64(I);
81  Pos = countTrailingZeros(I);
82  return true;
83}
84
85SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
86  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
87  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
88}
89
90SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
91                                          SelectionDAG &DAG,
92                                          unsigned Flag) const {
93  return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
94}
95
96SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
97                                          SelectionDAG &DAG,
98                                          unsigned Flag) const {
99  return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
100}
101
102SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
103                                          SelectionDAG &DAG,
104                                          unsigned Flag) const {
105  return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
106}
107
108SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
109                                          SelectionDAG &DAG,
110                                          unsigned Flag) const {
111  return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
112}
113
114SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
115                                          SelectionDAG &DAG,
116                                          unsigned Flag) const {
117  return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
118                                   N->getOffset(), Flag);
119}
120
121const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
122  switch (Opcode) {
123  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
124  case MipsISD::TailCall:          return "MipsISD::TailCall";
125  case MipsISD::Hi:                return "MipsISD::Hi";
126  case MipsISD::Lo:                return "MipsISD::Lo";
127  case MipsISD::GPRel:             return "MipsISD::GPRel";
128  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
129  case MipsISD::Ret:               return "MipsISD::Ret";
130  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
131  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
132  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
133  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
134  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
135  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
136  case MipsISD::MFHI:              return "MipsISD::MFHI";
137  case MipsISD::MFLO:              return "MipsISD::MFLO";
138  case MipsISD::MTLOHI:            return "MipsISD::MTLOHI";
139  case MipsISD::Mult:              return "MipsISD::Mult";
140  case MipsISD::Multu:             return "MipsISD::Multu";
141  case MipsISD::MAdd:              return "MipsISD::MAdd";
142  case MipsISD::MAddu:             return "MipsISD::MAddu";
143  case MipsISD::MSub:              return "MipsISD::MSub";
144  case MipsISD::MSubu:             return "MipsISD::MSubu";
145  case MipsISD::DivRem:            return "MipsISD::DivRem";
146  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
147  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
148  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
149  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
150  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
151  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
152  case MipsISD::Sync:              return "MipsISD::Sync";
153  case MipsISD::Ext:               return "MipsISD::Ext";
154  case MipsISD::Ins:               return "MipsISD::Ins";
155  case MipsISD::LWL:               return "MipsISD::LWL";
156  case MipsISD::LWR:               return "MipsISD::LWR";
157  case MipsISD::SWL:               return "MipsISD::SWL";
158  case MipsISD::SWR:               return "MipsISD::SWR";
159  case MipsISD::LDL:               return "MipsISD::LDL";
160  case MipsISD::LDR:               return "MipsISD::LDR";
161  case MipsISD::SDL:               return "MipsISD::SDL";
162  case MipsISD::SDR:               return "MipsISD::SDR";
163  case MipsISD::EXTP:              return "MipsISD::EXTP";
164  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
165  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
166  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
167  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
168  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
169  case MipsISD::SHILO:             return "MipsISD::SHILO";
170  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
171  case MipsISD::MULT:              return "MipsISD::MULT";
172  case MipsISD::MULTU:             return "MipsISD::MULTU";
173  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
174  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
175  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
176  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
177  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
178  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
179  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
180  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
181  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
182  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
183  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
184  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
185  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
186  case MipsISD::VCEQ:              return "MipsISD::VCEQ";
187  case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
188  case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
189  case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
190  case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
191  case MipsISD::VSMAX:             return "MipsISD::VSMAX";
192  case MipsISD::VSMIN:             return "MipsISD::VSMIN";
193  case MipsISD::VUMAX:             return "MipsISD::VUMAX";
194  case MipsISD::VUMIN:             return "MipsISD::VUMIN";
195  case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
196  case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
197  case MipsISD::VNOR:              return "MipsISD::VNOR";
198  case MipsISD::VSHF:              return "MipsISD::VSHF";
199  case MipsISD::SHF:               return "MipsISD::SHF";
200  case MipsISD::ILVEV:             return "MipsISD::ILVEV";
201  case MipsISD::ILVOD:             return "MipsISD::ILVOD";
202  case MipsISD::ILVL:              return "MipsISD::ILVL";
203  case MipsISD::ILVR:              return "MipsISD::ILVR";
204  case MipsISD::PCKEV:             return "MipsISD::PCKEV";
205  case MipsISD::PCKOD:             return "MipsISD::PCKOD";
206  case MipsISD::INSVE:             return "MipsISD::INSVE";
207  default:                         return nullptr;
208  }
209}
210
211MipsTargetLowering::MipsTargetLowering(MipsTargetMachine &TM)
212    : TargetLowering(TM, new MipsTargetObjectFile()),
213      Subtarget(&TM.getSubtarget<MipsSubtarget>()) {
214  // Mips does not have i1 type, so use i32 for
215  // setcc operations results (slt, sgt, ...).
216  setBooleanContents(ZeroOrOneBooleanContent);
217  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
218
219  // Load extented operations for i1 types must be promoted
220  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
221  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
222  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
223
224  // MIPS doesn't have extending float->double load/store
225  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
226  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
227
228  // Used by legalize types to correctly generate the setcc result.
229  // Without this, every float setcc comes with a AND/OR with the result,
230  // we don't want this, since the fpcmp result goes to a flag register,
231  // which is used implicitly by brcond and select operations.
232  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
233
234  // Mips Custom Operations
235  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
236  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
237  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
238  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
239  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
240  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
241  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
242  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
243  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
244  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
245  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
246  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
247  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
248  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
249  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
250  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
251  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
252  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
253
254  if (isGP64bit()) {
255    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
256    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
257    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
258    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
259    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
260    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
261    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
262    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
263    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
264  }
265
266  if (!isGP64bit()) {
267    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
268    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
269    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
270  }
271
272  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
273  if (isGP64bit())
274    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
275
276  setOperationAction(ISD::SDIV, MVT::i32, Expand);
277  setOperationAction(ISD::SREM, MVT::i32, Expand);
278  setOperationAction(ISD::UDIV, MVT::i32, Expand);
279  setOperationAction(ISD::UREM, MVT::i32, Expand);
280  setOperationAction(ISD::SDIV, MVT::i64, Expand);
281  setOperationAction(ISD::SREM, MVT::i64, Expand);
282  setOperationAction(ISD::UDIV, MVT::i64, Expand);
283  setOperationAction(ISD::UREM, MVT::i64, Expand);
284
285  // Operations not directly supported by Mips.
286  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
287  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
288  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
289  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
290  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
291  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
292  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
293  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
294  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
295  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
296  if (Subtarget->hasCnMips()) {
297    setOperationAction(ISD::CTPOP,           MVT::i32,   Legal);
298    setOperationAction(ISD::CTPOP,           MVT::i64,   Legal);
299  } else {
300    setOperationAction(ISD::CTPOP,           MVT::i32,   Expand);
301    setOperationAction(ISD::CTPOP,           MVT::i64,   Expand);
302  }
303  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
304  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
305  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
306  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
307  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
308  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
309  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
310  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
311  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
312  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
313
314  if (!Subtarget->hasMips32r2())
315    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
316
317  if (!Subtarget->hasMips64r2())
318    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
319
320  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
321  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
322  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
323  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
324  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
325  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
326  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
327  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
328  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
329  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
330  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
331  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
332  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
333  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
334  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
335  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
336  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
337
338  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
339
340  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
341  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
342  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
343
344  // Use the default for now
345  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
346  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
347
348  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
349  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
350  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
351  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
352
353  setInsertFencesForAtomic(true);
354
355  if (!Subtarget->hasMips32r2()) {
356    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
357    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
358  }
359
360  // MIPS16 lacks MIPS32's clz and clo instructions.
361  if (!Subtarget->hasMips32() || Subtarget->inMips16Mode())
362    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
363  if (!Subtarget->hasMips64())
364    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
365
366  if (!Subtarget->hasMips32r2())
367    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
368  if (!Subtarget->hasMips64r2())
369    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
370
371  if (isGP64bit()) {
372    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
373    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
374    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
375    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
376  }
377
378  setOperationAction(ISD::TRAP, MVT::Other, Legal);
379
380  setTargetDAGCombine(ISD::SDIVREM);
381  setTargetDAGCombine(ISD::UDIVREM);
382  setTargetDAGCombine(ISD::SELECT);
383  setTargetDAGCombine(ISD::AND);
384  setTargetDAGCombine(ISD::OR);
385  setTargetDAGCombine(ISD::ADD);
386
387  setMinFunctionAlignment(isGP64bit() ? 3 : 2);
388
389  setStackPointerRegisterToSaveRestore(isN64() ? Mips::SP_64 : Mips::SP);
390
391  setExceptionPointerRegister(isN64() ? Mips::A0_64 : Mips::A0);
392  setExceptionSelectorRegister(isN64() ? Mips::A1_64 : Mips::A1);
393
394  MaxStoresPerMemcpy = 16;
395
396  isMicroMips = Subtarget->inMicroMipsMode();
397}
398
399const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
400  if (TM.getSubtargetImpl()->inMips16Mode())
401    return llvm::createMips16TargetLowering(TM);
402
403  return llvm::createMipsSETargetLowering(TM);
404}
405
406// Create a fast isel object.
407FastISel *
408MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
409                                  const TargetLibraryInfo *libInfo) const {
410  if (!EnableMipsFastISel)
411    return TargetLowering::createFastISel(funcInfo, libInfo);
412  return Mips::createFastISel(funcInfo, libInfo);
413}
414
415EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
416  if (!VT.isVector())
417    return MVT::i32;
418  return VT.changeVectorElementTypeToInteger();
419}
420
421static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
422                                    TargetLowering::DAGCombinerInfo &DCI,
423                                    const MipsSubtarget *Subtarget) {
424  if (DCI.isBeforeLegalizeOps())
425    return SDValue();
426
427  EVT Ty = N->getValueType(0);
428  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
429  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
430  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
431                                                  MipsISD::DivRemU16;
432  SDLoc DL(N);
433
434  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
435                               N->getOperand(0), N->getOperand(1));
436  SDValue InChain = DAG.getEntryNode();
437  SDValue InGlue = DivRem;
438
439  // insert MFLO
440  if (N->hasAnyUseOfValue(0)) {
441    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
442                                            InGlue);
443    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
444    InChain = CopyFromLo.getValue(1);
445    InGlue = CopyFromLo.getValue(2);
446  }
447
448  // insert MFHI
449  if (N->hasAnyUseOfValue(1)) {
450    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
451                                            HI, Ty, InGlue);
452    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
453  }
454
455  return SDValue();
456}
457
458static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
459  switch (CC) {
460  default: llvm_unreachable("Unknown fp condition code!");
461  case ISD::SETEQ:
462  case ISD::SETOEQ: return Mips::FCOND_OEQ;
463  case ISD::SETUNE: return Mips::FCOND_UNE;
464  case ISD::SETLT:
465  case ISD::SETOLT: return Mips::FCOND_OLT;
466  case ISD::SETGT:
467  case ISD::SETOGT: return Mips::FCOND_OGT;
468  case ISD::SETLE:
469  case ISD::SETOLE: return Mips::FCOND_OLE;
470  case ISD::SETGE:
471  case ISD::SETOGE: return Mips::FCOND_OGE;
472  case ISD::SETULT: return Mips::FCOND_ULT;
473  case ISD::SETULE: return Mips::FCOND_ULE;
474  case ISD::SETUGT: return Mips::FCOND_UGT;
475  case ISD::SETUGE: return Mips::FCOND_UGE;
476  case ISD::SETUO:  return Mips::FCOND_UN;
477  case ISD::SETO:   return Mips::FCOND_OR;
478  case ISD::SETNE:
479  case ISD::SETONE: return Mips::FCOND_ONE;
480  case ISD::SETUEQ: return Mips::FCOND_UEQ;
481  }
482}
483
484
485/// This function returns true if the floating point conditional branches and
486/// conditional moves which use condition code CC should be inverted.
487static bool invertFPCondCodeUser(Mips::CondCode CC) {
488  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
489    return false;
490
491  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
492         "Illegal Condition Code");
493
494  return true;
495}
496
497// Creates and returns an FPCmp node from a setcc node.
498// Returns Op if setcc is not a floating point comparison.
499static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
500  // must be a SETCC node
501  if (Op.getOpcode() != ISD::SETCC)
502    return Op;
503
504  SDValue LHS = Op.getOperand(0);
505
506  if (!LHS.getValueType().isFloatingPoint())
507    return Op;
508
509  SDValue RHS = Op.getOperand(1);
510  SDLoc DL(Op);
511
512  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
513  // node if necessary.
514  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
515
516  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
517                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
518}
519
520// Creates and returns a CMovFPT/F node.
521static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
522                            SDValue False, SDLoc DL) {
523  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
524  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
525  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
526
527  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
528                     True.getValueType(), True, FCC0, False, Cond);
529}
530
531static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
532                                    TargetLowering::DAGCombinerInfo &DCI,
533                                    const MipsSubtarget *Subtarget) {
534  if (DCI.isBeforeLegalizeOps())
535    return SDValue();
536
537  SDValue SetCC = N->getOperand(0);
538
539  if ((SetCC.getOpcode() != ISD::SETCC) ||
540      !SetCC.getOperand(0).getValueType().isInteger())
541    return SDValue();
542
543  SDValue False = N->getOperand(2);
544  EVT FalseTy = False.getValueType();
545
546  if (!FalseTy.isInteger())
547    return SDValue();
548
549  ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
550
551  // If the RHS (False) is 0, we swap the order of the operands
552  // of ISD::SELECT (obviously also inverting the condition) so that we can
553  // take advantage of conditional moves using the $0 register.
554  // Example:
555  //   return (a != 0) ? x : 0;
556  //     load $reg, x
557  //     movz $reg, $0, a
558  if (!FalseC)
559    return SDValue();
560
561  const SDLoc DL(N);
562
563  if (!FalseC->getZExtValue()) {
564    ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
565    SDValue True = N->getOperand(1);
566
567    SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
568                         SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
569
570    return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
571  }
572
573  // If both operands are integer constants there's a possibility that we
574  // can do some interesting optimizations.
575  SDValue True = N->getOperand(1);
576  ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
577
578  if (!TrueC || !True.getValueType().isInteger())
579    return SDValue();
580
581  // We'll also ignore MVT::i64 operands as this optimizations proves
582  // to be ineffective because of the required sign extensions as the result
583  // of a SETCC operator is always MVT::i32 for non-vector types.
584  if (True.getValueType() == MVT::i64)
585    return SDValue();
586
587  int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
588
589  // 1)  (a < x) ? y : y-1
590  //  slti $reg1, a, x
591  //  addiu $reg2, $reg1, y-1
592  if (Diff == 1)
593    return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
594
595  // 2)  (a < x) ? y-1 : y
596  //  slti $reg1, a, x
597  //  xor $reg1, $reg1, 1
598  //  addiu $reg2, $reg1, y-1
599  if (Diff == -1) {
600    ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
601    SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
602                         SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
603    return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
604  }
605
606  // Couldn't optimize.
607  return SDValue();
608}
609
610static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
611                                 TargetLowering::DAGCombinerInfo &DCI,
612                                 const MipsSubtarget *Subtarget) {
613  // Pattern match EXT.
614  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
615  //  => ext $dst, $src, size, pos
616  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasExtractInsert())
617    return SDValue();
618
619  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
620  unsigned ShiftRightOpc = ShiftRight.getOpcode();
621
622  // Op's first operand must be a shift right.
623  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
624    return SDValue();
625
626  // The second operand of the shift must be an immediate.
627  ConstantSDNode *CN;
628  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
629    return SDValue();
630
631  uint64_t Pos = CN->getZExtValue();
632  uint64_t SMPos, SMSize;
633
634  // Op's second operand must be a shifted mask.
635  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
636      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
637    return SDValue();
638
639  // Return if the shifted mask does not start at bit 0 or the sum of its size
640  // and Pos exceeds the word's size.
641  EVT ValTy = N->getValueType(0);
642  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
643    return SDValue();
644
645  return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
646                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
647                     DAG.getConstant(SMSize, MVT::i32));
648}
649
650static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
651                                TargetLowering::DAGCombinerInfo &DCI,
652                                const MipsSubtarget *Subtarget) {
653  // Pattern match INS.
654  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
655  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
656  //  => ins $dst, $src, size, pos, $src1
657  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasExtractInsert())
658    return SDValue();
659
660  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
661  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
662  ConstantSDNode *CN;
663
664  // See if Op's first operand matches (and $src1 , mask0).
665  if (And0.getOpcode() != ISD::AND)
666    return SDValue();
667
668  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
669      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
670    return SDValue();
671
672  // See if Op's second operand matches (and (shl $src, pos), mask1).
673  if (And1.getOpcode() != ISD::AND)
674    return SDValue();
675
676  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
677      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
678    return SDValue();
679
680  // The shift masks must have the same position and size.
681  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
682    return SDValue();
683
684  SDValue Shl = And1.getOperand(0);
685  if (Shl.getOpcode() != ISD::SHL)
686    return SDValue();
687
688  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
689    return SDValue();
690
691  unsigned Shamt = CN->getZExtValue();
692
693  // Return if the shift amount and the first bit position of mask are not the
694  // same.
695  EVT ValTy = N->getValueType(0);
696  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
697    return SDValue();
698
699  return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
700                     DAG.getConstant(SMPos0, MVT::i32),
701                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
702}
703
704static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
705                                 TargetLowering::DAGCombinerInfo &DCI,
706                                 const MipsSubtarget *Subtarget) {
707  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
708
709  if (DCI.isBeforeLegalizeOps())
710    return SDValue();
711
712  SDValue Add = N->getOperand(1);
713
714  if (Add.getOpcode() != ISD::ADD)
715    return SDValue();
716
717  SDValue Lo = Add.getOperand(1);
718
719  if ((Lo.getOpcode() != MipsISD::Lo) ||
720      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
721    return SDValue();
722
723  EVT ValTy = N->getValueType(0);
724  SDLoc DL(N);
725
726  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
727                             Add.getOperand(0));
728  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
729}
730
731SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
732  const {
733  SelectionDAG &DAG = DCI.DAG;
734  unsigned Opc = N->getOpcode();
735
736  switch (Opc) {
737  default: break;
738  case ISD::SDIVREM:
739  case ISD::UDIVREM:
740    return performDivRemCombine(N, DAG, DCI, Subtarget);
741  case ISD::SELECT:
742    return performSELECTCombine(N, DAG, DCI, Subtarget);
743  case ISD::AND:
744    return performANDCombine(N, DAG, DCI, Subtarget);
745  case ISD::OR:
746    return performORCombine(N, DAG, DCI, Subtarget);
747  case ISD::ADD:
748    return performADDCombine(N, DAG, DCI, Subtarget);
749  }
750
751  return SDValue();
752}
753
754void
755MipsTargetLowering::LowerOperationWrapper(SDNode *N,
756                                          SmallVectorImpl<SDValue> &Results,
757                                          SelectionDAG &DAG) const {
758  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
759
760  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
761    Results.push_back(Res.getValue(I));
762}
763
764void
765MipsTargetLowering::ReplaceNodeResults(SDNode *N,
766                                       SmallVectorImpl<SDValue> &Results,
767                                       SelectionDAG &DAG) const {
768  return LowerOperationWrapper(N, Results, DAG);
769}
770
771SDValue MipsTargetLowering::
772LowerOperation(SDValue Op, SelectionDAG &DAG) const
773{
774  switch (Op.getOpcode())
775  {
776  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
777  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
778  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
779  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
780  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
781  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
782  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
783  case ISD::SELECT:             return lowerSELECT(Op, DAG);
784  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
785  case ISD::SETCC:              return lowerSETCC(Op, DAG);
786  case ISD::VASTART:            return lowerVASTART(Op, DAG);
787  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
788  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
789  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
790  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
791  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
792  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
793  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
794  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
795  case ISD::LOAD:               return lowerLOAD(Op, DAG);
796  case ISD::STORE:              return lowerSTORE(Op, DAG);
797  case ISD::ADD:                return lowerADD(Op, DAG);
798  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
799  }
800  return SDValue();
801}
802
803//===----------------------------------------------------------------------===//
804//  Lower helper functions
805//===----------------------------------------------------------------------===//
806
807// addLiveIn - This helper function adds the specified physical register to the
808// MachineFunction as a live in value.  It also creates a corresponding
809// virtual register for it.
810static unsigned
811addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
812{
813  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
814  MF.getRegInfo().addLiveIn(PReg, VReg);
815  return VReg;
816}
817
818static MachineBasicBlock *expandPseudoDIV(MachineInstr *MI,
819                                          MachineBasicBlock &MBB,
820                                          const TargetInstrInfo &TII,
821                                          bool Is64Bit) {
822  if (NoZeroDivCheck)
823    return &MBB;
824
825  // Insert instruction "teq $divisor_reg, $zero, 7".
826  MachineBasicBlock::iterator I(MI);
827  MachineInstrBuilder MIB;
828  MachineOperand &Divisor = MI->getOperand(2);
829  MIB = BuildMI(MBB, std::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
830    .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
831    .addReg(Mips::ZERO).addImm(7);
832
833  // Use the 32-bit sub-register if this is a 64-bit division.
834  if (Is64Bit)
835    MIB->getOperand(0).setSubReg(Mips::sub_32);
836
837  // Clear Divisor's kill flag.
838  Divisor.setIsKill(false);
839  return &MBB;
840}
841
842MachineBasicBlock *
843MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
844                                                MachineBasicBlock *BB) const {
845  switch (MI->getOpcode()) {
846  default:
847    llvm_unreachable("Unexpected instr type to insert");
848  case Mips::ATOMIC_LOAD_ADD_I8:
849    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
850  case Mips::ATOMIC_LOAD_ADD_I16:
851    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
852  case Mips::ATOMIC_LOAD_ADD_I32:
853    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
854  case Mips::ATOMIC_LOAD_ADD_I64:
855    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
856
857  case Mips::ATOMIC_LOAD_AND_I8:
858    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
859  case Mips::ATOMIC_LOAD_AND_I16:
860    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
861  case Mips::ATOMIC_LOAD_AND_I32:
862    return emitAtomicBinary(MI, BB, 4, Mips::AND);
863  case Mips::ATOMIC_LOAD_AND_I64:
864    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
865
866  case Mips::ATOMIC_LOAD_OR_I8:
867    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
868  case Mips::ATOMIC_LOAD_OR_I16:
869    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
870  case Mips::ATOMIC_LOAD_OR_I32:
871    return emitAtomicBinary(MI, BB, 4, Mips::OR);
872  case Mips::ATOMIC_LOAD_OR_I64:
873    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
874
875  case Mips::ATOMIC_LOAD_XOR_I8:
876    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
877  case Mips::ATOMIC_LOAD_XOR_I16:
878    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
879  case Mips::ATOMIC_LOAD_XOR_I32:
880    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
881  case Mips::ATOMIC_LOAD_XOR_I64:
882    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
883
884  case Mips::ATOMIC_LOAD_NAND_I8:
885    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
886  case Mips::ATOMIC_LOAD_NAND_I16:
887    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
888  case Mips::ATOMIC_LOAD_NAND_I32:
889    return emitAtomicBinary(MI, BB, 4, 0, true);
890  case Mips::ATOMIC_LOAD_NAND_I64:
891    return emitAtomicBinary(MI, BB, 8, 0, true);
892
893  case Mips::ATOMIC_LOAD_SUB_I8:
894    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
895  case Mips::ATOMIC_LOAD_SUB_I16:
896    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
897  case Mips::ATOMIC_LOAD_SUB_I32:
898    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
899  case Mips::ATOMIC_LOAD_SUB_I64:
900    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
901
902  case Mips::ATOMIC_SWAP_I8:
903    return emitAtomicBinaryPartword(MI, BB, 1, 0);
904  case Mips::ATOMIC_SWAP_I16:
905    return emitAtomicBinaryPartword(MI, BB, 2, 0);
906  case Mips::ATOMIC_SWAP_I32:
907    return emitAtomicBinary(MI, BB, 4, 0);
908  case Mips::ATOMIC_SWAP_I64:
909    return emitAtomicBinary(MI, BB, 8, 0);
910
911  case Mips::ATOMIC_CMP_SWAP_I8:
912    return emitAtomicCmpSwapPartword(MI, BB, 1);
913  case Mips::ATOMIC_CMP_SWAP_I16:
914    return emitAtomicCmpSwapPartword(MI, BB, 2);
915  case Mips::ATOMIC_CMP_SWAP_I32:
916    return emitAtomicCmpSwap(MI, BB, 4);
917  case Mips::ATOMIC_CMP_SWAP_I64:
918    return emitAtomicCmpSwap(MI, BB, 8);
919  case Mips::PseudoSDIV:
920  case Mips::PseudoUDIV:
921    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), false);
922  case Mips::PseudoDSDIV:
923  case Mips::PseudoDUDIV:
924    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), true);
925  }
926}
927
928// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
929// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
930MachineBasicBlock *
931MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
932                                     unsigned Size, unsigned BinOpcode,
933                                     bool Nand) const {
934  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
935
936  MachineFunction *MF = BB->getParent();
937  MachineRegisterInfo &RegInfo = MF->getRegInfo();
938  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
939  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
940  DebugLoc DL = MI->getDebugLoc();
941  unsigned LL, SC, AND, NOR, ZERO, BEQ;
942
943  if (Size == 4) {
944    LL = isMicroMips ? Mips::LL_MM : Mips::LL;
945    SC = isMicroMips ? Mips::SC_MM : Mips::SC;
946    AND = Mips::AND;
947    NOR = Mips::NOR;
948    ZERO = Mips::ZERO;
949    BEQ = Mips::BEQ;
950  }
951  else {
952    LL = Mips::LLD;
953    SC = Mips::SCD;
954    AND = Mips::AND64;
955    NOR = Mips::NOR64;
956    ZERO = Mips::ZERO_64;
957    BEQ = Mips::BEQ64;
958  }
959
960  unsigned OldVal = MI->getOperand(0).getReg();
961  unsigned Ptr = MI->getOperand(1).getReg();
962  unsigned Incr = MI->getOperand(2).getReg();
963
964  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
965  unsigned AndRes = RegInfo.createVirtualRegister(RC);
966  unsigned Success = RegInfo.createVirtualRegister(RC);
967
968  // insert new blocks after the current block
969  const BasicBlock *LLVM_BB = BB->getBasicBlock();
970  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
971  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
972  MachineFunction::iterator It = BB;
973  ++It;
974  MF->insert(It, loopMBB);
975  MF->insert(It, exitMBB);
976
977  // Transfer the remainder of BB and its successor edges to exitMBB.
978  exitMBB->splice(exitMBB->begin(), BB,
979                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
980  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
981
982  //  thisMBB:
983  //    ...
984  //    fallthrough --> loopMBB
985  BB->addSuccessor(loopMBB);
986  loopMBB->addSuccessor(loopMBB);
987  loopMBB->addSuccessor(exitMBB);
988
989  //  loopMBB:
990  //    ll oldval, 0(ptr)
991  //    <binop> storeval, oldval, incr
992  //    sc success, storeval, 0(ptr)
993  //    beq success, $0, loopMBB
994  BB = loopMBB;
995  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
996  if (Nand) {
997    //  and andres, oldval, incr
998    //  nor storeval, $0, andres
999    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1000    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1001  } else if (BinOpcode) {
1002    //  <binop> storeval, oldval, incr
1003    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1004  } else {
1005    StoreVal = Incr;
1006  }
1007  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1008  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1009
1010  MI->eraseFromParent(); // The instruction is gone now.
1011
1012  return exitMBB;
1013}
1014
1015MachineBasicBlock *
1016MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
1017                                             MachineBasicBlock *BB,
1018                                             unsigned Size, unsigned BinOpcode,
1019                                             bool Nand) const {
1020  assert((Size == 1 || Size == 2) &&
1021         "Unsupported size for EmitAtomicBinaryPartial.");
1022
1023  MachineFunction *MF = BB->getParent();
1024  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1025  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1026  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1027  DebugLoc DL = MI->getDebugLoc();
1028
1029  unsigned Dest = MI->getOperand(0).getReg();
1030  unsigned Ptr = MI->getOperand(1).getReg();
1031  unsigned Incr = MI->getOperand(2).getReg();
1032
1033  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1034  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1035  unsigned Mask = RegInfo.createVirtualRegister(RC);
1036  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1037  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1038  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1039  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1040  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1041  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1042  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1043  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1044  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1045  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1046  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1047  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1048  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1049  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1050  unsigned Success = RegInfo.createVirtualRegister(RC);
1051
1052  // insert new blocks after the current block
1053  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1054  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1055  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1056  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1057  MachineFunction::iterator It = BB;
1058  ++It;
1059  MF->insert(It, loopMBB);
1060  MF->insert(It, sinkMBB);
1061  MF->insert(It, exitMBB);
1062
1063  // Transfer the remainder of BB and its successor edges to exitMBB.
1064  exitMBB->splice(exitMBB->begin(), BB,
1065                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1066  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1067
1068  BB->addSuccessor(loopMBB);
1069  loopMBB->addSuccessor(loopMBB);
1070  loopMBB->addSuccessor(sinkMBB);
1071  sinkMBB->addSuccessor(exitMBB);
1072
1073  //  thisMBB:
1074  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1075  //    and     alignedaddr,ptr,masklsb2
1076  //    andi    ptrlsb2,ptr,3
1077  //    sll     shiftamt,ptrlsb2,3
1078  //    ori     maskupper,$0,255               # 0xff
1079  //    sll     mask,maskupper,shiftamt
1080  //    nor     mask2,$0,mask
1081  //    sll     incr2,incr,shiftamt
1082
1083  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1084  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1085    .addReg(Mips::ZERO).addImm(-4);
1086  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1087    .addReg(Ptr).addReg(MaskLSB2);
1088  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1089  if (Subtarget->isLittle()) {
1090    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1091  } else {
1092    unsigned Off = RegInfo.createVirtualRegister(RC);
1093    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1094      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1095    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1096  }
1097  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1098    .addReg(Mips::ZERO).addImm(MaskImm);
1099  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1100    .addReg(MaskUpper).addReg(ShiftAmt);
1101  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1102  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1103
1104  // atomic.load.binop
1105  // loopMBB:
1106  //   ll      oldval,0(alignedaddr)
1107  //   binop   binopres,oldval,incr2
1108  //   and     newval,binopres,mask
1109  //   and     maskedoldval0,oldval,mask2
1110  //   or      storeval,maskedoldval0,newval
1111  //   sc      success,storeval,0(alignedaddr)
1112  //   beq     success,$0,loopMBB
1113
1114  // atomic.swap
1115  // loopMBB:
1116  //   ll      oldval,0(alignedaddr)
1117  //   and     newval,incr2,mask
1118  //   and     maskedoldval0,oldval,mask2
1119  //   or      storeval,maskedoldval0,newval
1120  //   sc      success,storeval,0(alignedaddr)
1121  //   beq     success,$0,loopMBB
1122
1123  BB = loopMBB;
1124  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1125  if (Nand) {
1126    //  and andres, oldval, incr2
1127    //  nor binopres, $0, andres
1128    //  and newval, binopres, mask
1129    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1130    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1131      .addReg(Mips::ZERO).addReg(AndRes);
1132    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1133  } else if (BinOpcode) {
1134    //  <binop> binopres, oldval, incr2
1135    //  and newval, binopres, mask
1136    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1137    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1138  } else { // atomic.swap
1139    //  and newval, incr2, mask
1140    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1141  }
1142
1143  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1144    .addReg(OldVal).addReg(Mask2);
1145  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1146    .addReg(MaskedOldVal0).addReg(NewVal);
1147  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1148    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1149  BuildMI(BB, DL, TII->get(Mips::BEQ))
1150    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1151
1152  //  sinkMBB:
1153  //    and     maskedoldval1,oldval,mask
1154  //    srl     srlres,maskedoldval1,shiftamt
1155  //    sll     sllres,srlres,24
1156  //    sra     dest,sllres,24
1157  BB = sinkMBB;
1158  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1159
1160  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1161    .addReg(OldVal).addReg(Mask);
1162  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1163      .addReg(MaskedOldVal1).addReg(ShiftAmt);
1164  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1165      .addReg(SrlRes).addImm(ShiftImm);
1166  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1167      .addReg(SllRes).addImm(ShiftImm);
1168
1169  MI->eraseFromParent(); // The instruction is gone now.
1170
1171  return exitMBB;
1172}
1173
1174MachineBasicBlock * MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1175                                                          MachineBasicBlock *BB,
1176                                                          unsigned Size) const {
1177  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1178
1179  MachineFunction *MF = BB->getParent();
1180  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1181  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1182  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1183  DebugLoc DL = MI->getDebugLoc();
1184  unsigned LL, SC, ZERO, BNE, BEQ;
1185
1186  if (Size == 4) {
1187    LL = isMicroMips ? Mips::LL_MM : Mips::LL;
1188    SC = isMicroMips ? Mips::SC_MM : Mips::SC;
1189    ZERO = Mips::ZERO;
1190    BNE = Mips::BNE;
1191    BEQ = Mips::BEQ;
1192  } else {
1193    LL = Mips::LLD;
1194    SC = Mips::SCD;
1195    ZERO = Mips::ZERO_64;
1196    BNE = Mips::BNE64;
1197    BEQ = Mips::BEQ64;
1198  }
1199
1200  unsigned Dest    = MI->getOperand(0).getReg();
1201  unsigned Ptr     = MI->getOperand(1).getReg();
1202  unsigned OldVal  = MI->getOperand(2).getReg();
1203  unsigned NewVal  = MI->getOperand(3).getReg();
1204
1205  unsigned Success = RegInfo.createVirtualRegister(RC);
1206
1207  // insert new blocks after the current block
1208  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1209  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1210  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1211  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1212  MachineFunction::iterator It = BB;
1213  ++It;
1214  MF->insert(It, loop1MBB);
1215  MF->insert(It, loop2MBB);
1216  MF->insert(It, exitMBB);
1217
1218  // Transfer the remainder of BB and its successor edges to exitMBB.
1219  exitMBB->splice(exitMBB->begin(), BB,
1220                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1221  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1222
1223  //  thisMBB:
1224  //    ...
1225  //    fallthrough --> loop1MBB
1226  BB->addSuccessor(loop1MBB);
1227  loop1MBB->addSuccessor(exitMBB);
1228  loop1MBB->addSuccessor(loop2MBB);
1229  loop2MBB->addSuccessor(loop1MBB);
1230  loop2MBB->addSuccessor(exitMBB);
1231
1232  // loop1MBB:
1233  //   ll dest, 0(ptr)
1234  //   bne dest, oldval, exitMBB
1235  BB = loop1MBB;
1236  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1237  BuildMI(BB, DL, TII->get(BNE))
1238    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1239
1240  // loop2MBB:
1241  //   sc success, newval, 0(ptr)
1242  //   beq success, $0, loop1MBB
1243  BB = loop2MBB;
1244  BuildMI(BB, DL, TII->get(SC), Success)
1245    .addReg(NewVal).addReg(Ptr).addImm(0);
1246  BuildMI(BB, DL, TII->get(BEQ))
1247    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1248
1249  MI->eraseFromParent(); // The instruction is gone now.
1250
1251  return exitMBB;
1252}
1253
1254MachineBasicBlock *
1255MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1256                                              MachineBasicBlock *BB,
1257                                              unsigned Size) const {
1258  assert((Size == 1 || Size == 2) &&
1259      "Unsupported size for EmitAtomicCmpSwapPartial.");
1260
1261  MachineFunction *MF = BB->getParent();
1262  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1263  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1264  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1265  DebugLoc DL = MI->getDebugLoc();
1266
1267  unsigned Dest    = MI->getOperand(0).getReg();
1268  unsigned Ptr     = MI->getOperand(1).getReg();
1269  unsigned CmpVal  = MI->getOperand(2).getReg();
1270  unsigned NewVal  = MI->getOperand(3).getReg();
1271
1272  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1273  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1274  unsigned Mask = RegInfo.createVirtualRegister(RC);
1275  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1276  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1277  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1278  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1279  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1280  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1281  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1282  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1283  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1284  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1285  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1286  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1287  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1288  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1289  unsigned Success = RegInfo.createVirtualRegister(RC);
1290
1291  // insert new blocks after the current block
1292  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1293  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1294  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1295  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1296  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1297  MachineFunction::iterator It = BB;
1298  ++It;
1299  MF->insert(It, loop1MBB);
1300  MF->insert(It, loop2MBB);
1301  MF->insert(It, sinkMBB);
1302  MF->insert(It, exitMBB);
1303
1304  // Transfer the remainder of BB and its successor edges to exitMBB.
1305  exitMBB->splice(exitMBB->begin(), BB,
1306                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1307  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1308
1309  BB->addSuccessor(loop1MBB);
1310  loop1MBB->addSuccessor(sinkMBB);
1311  loop1MBB->addSuccessor(loop2MBB);
1312  loop2MBB->addSuccessor(loop1MBB);
1313  loop2MBB->addSuccessor(sinkMBB);
1314  sinkMBB->addSuccessor(exitMBB);
1315
1316  // FIXME: computation of newval2 can be moved to loop2MBB.
1317  //  thisMBB:
1318  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1319  //    and     alignedaddr,ptr,masklsb2
1320  //    andi    ptrlsb2,ptr,3
1321  //    sll     shiftamt,ptrlsb2,3
1322  //    ori     maskupper,$0,255               # 0xff
1323  //    sll     mask,maskupper,shiftamt
1324  //    nor     mask2,$0,mask
1325  //    andi    maskedcmpval,cmpval,255
1326  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1327  //    andi    maskednewval,newval,255
1328  //    sll     shiftednewval,maskednewval,shiftamt
1329  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1330  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1331    .addReg(Mips::ZERO).addImm(-4);
1332  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1333    .addReg(Ptr).addReg(MaskLSB2);
1334  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1335  if (Subtarget->isLittle()) {
1336    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1337  } else {
1338    unsigned Off = RegInfo.createVirtualRegister(RC);
1339    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1340      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1341    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1342  }
1343  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1344    .addReg(Mips::ZERO).addImm(MaskImm);
1345  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1346    .addReg(MaskUpper).addReg(ShiftAmt);
1347  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1348  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1349    .addReg(CmpVal).addImm(MaskImm);
1350  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1351    .addReg(MaskedCmpVal).addReg(ShiftAmt);
1352  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1353    .addReg(NewVal).addImm(MaskImm);
1354  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1355    .addReg(MaskedNewVal).addReg(ShiftAmt);
1356
1357  //  loop1MBB:
1358  //    ll      oldval,0(alginedaddr)
1359  //    and     maskedoldval0,oldval,mask
1360  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1361  BB = loop1MBB;
1362  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1363  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1364    .addReg(OldVal).addReg(Mask);
1365  BuildMI(BB, DL, TII->get(Mips::BNE))
1366    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1367
1368  //  loop2MBB:
1369  //    and     maskedoldval1,oldval,mask2
1370  //    or      storeval,maskedoldval1,shiftednewval
1371  //    sc      success,storeval,0(alignedaddr)
1372  //    beq     success,$0,loop1MBB
1373  BB = loop2MBB;
1374  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1375    .addReg(OldVal).addReg(Mask2);
1376  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1377    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1378  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1379      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1380  BuildMI(BB, DL, TII->get(Mips::BEQ))
1381      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1382
1383  //  sinkMBB:
1384  //    srl     srlres,maskedoldval0,shiftamt
1385  //    sll     sllres,srlres,24
1386  //    sra     dest,sllres,24
1387  BB = sinkMBB;
1388  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1389
1390  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1391      .addReg(MaskedOldVal0).addReg(ShiftAmt);
1392  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1393      .addReg(SrlRes).addImm(ShiftImm);
1394  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1395      .addReg(SllRes).addImm(ShiftImm);
1396
1397  MI->eraseFromParent();   // The instruction is gone now.
1398
1399  return exitMBB;
1400}
1401
1402//===----------------------------------------------------------------------===//
1403//  Misc Lower Operation implementation
1404//===----------------------------------------------------------------------===//
1405SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1406  SDValue Chain = Op.getOperand(0);
1407  SDValue Table = Op.getOperand(1);
1408  SDValue Index = Op.getOperand(2);
1409  SDLoc DL(Op);
1410  EVT PTy = getPointerTy();
1411  unsigned EntrySize =
1412    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1413
1414  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1415                      DAG.getConstant(EntrySize, PTy));
1416  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1417
1418  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1419  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1420                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1421                        0);
1422  Chain = Addr.getValue(1);
1423
1424  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || isN64()) {
1425    // For PIC, the sequence is:
1426    // BRIND(load(Jumptable + index) + RelocBase)
1427    // RelocBase can be JumpTable, GOT or some sort of global base.
1428    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1429                       getPICJumpTableRelocBase(Table, DAG));
1430  }
1431
1432  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1433}
1434
1435SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1436  // The first operand is the chain, the second is the condition, the third is
1437  // the block to branch to if the condition is true.
1438  SDValue Chain = Op.getOperand(0);
1439  SDValue Dest = Op.getOperand(2);
1440  SDLoc DL(Op);
1441
1442  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1443
1444  // Return if flag is not set by a floating point comparison.
1445  if (CondRes.getOpcode() != MipsISD::FPCmp)
1446    return Op;
1447
1448  SDValue CCNode  = CondRes.getOperand(2);
1449  Mips::CondCode CC =
1450    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1451  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1452  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1453  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1454  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1455                     FCC0, Dest, CondRes);
1456}
1457
1458SDValue MipsTargetLowering::
1459lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1460{
1461  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1462
1463  // Return if flag is not set by a floating point comparison.
1464  if (Cond.getOpcode() != MipsISD::FPCmp)
1465    return Op;
1466
1467  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1468                      SDLoc(Op));
1469}
1470
1471SDValue MipsTargetLowering::
1472lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1473{
1474  SDLoc DL(Op);
1475  EVT Ty = Op.getOperand(0).getValueType();
1476  SDValue Cond = DAG.getNode(ISD::SETCC, DL,
1477                             getSetCCResultType(*DAG.getContext(), Ty),
1478                             Op.getOperand(0), Op.getOperand(1),
1479                             Op.getOperand(4));
1480
1481  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1482                     Op.getOperand(3));
1483}
1484
1485SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1486  SDValue Cond = createFPCmp(DAG, Op);
1487
1488  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1489         "Floating point operand expected.");
1490
1491  SDValue True  = DAG.getConstant(1, MVT::i32);
1492  SDValue False = DAG.getConstant(0, MVT::i32);
1493
1494  return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
1495}
1496
1497SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1498                                               SelectionDAG &DAG) const {
1499  // FIXME there isn't actually debug info here
1500  SDLoc DL(Op);
1501  EVT Ty = Op.getValueType();
1502  GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1503  const GlobalValue *GV = N->getGlobal();
1504
1505  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !isN64()) {
1506    const MipsTargetObjectFile &TLOF =
1507      (const MipsTargetObjectFile&)getObjFileLowering();
1508
1509    // %gp_rel relocation
1510    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1511      SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1512                                              MipsII::MO_GPREL);
1513      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1514                                      DAG.getVTList(MVT::i32), GA);
1515      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1516      return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1517    }
1518
1519    // %hi/%lo relocation
1520    return getAddrNonPIC(N, Ty, DAG);
1521  }
1522
1523  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1524    return getAddrLocal(N, Ty, DAG, isN32() || isN64());
1525
1526  if (LargeGOT)
1527    return getAddrGlobalLargeGOT(N, Ty, DAG, MipsII::MO_GOT_HI16,
1528                                 MipsII::MO_GOT_LO16, DAG.getEntryNode(),
1529                                 MachinePointerInfo::getGOT());
1530
1531  return getAddrGlobal(N, Ty, DAG, (isN32() || isN64()) ? MipsII::MO_GOT_DISP
1532                                                        : MipsII::MO_GOT16,
1533                       DAG.getEntryNode(), MachinePointerInfo::getGOT());
1534}
1535
1536SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1537                                              SelectionDAG &DAG) const {
1538  BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
1539  EVT Ty = Op.getValueType();
1540
1541  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !isN64())
1542    return getAddrNonPIC(N, Ty, DAG);
1543
1544  return getAddrLocal(N, Ty, DAG, isN32() || isN64());
1545}
1546
1547SDValue MipsTargetLowering::
1548lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1549{
1550  // If the relocation model is PIC, use the General Dynamic TLS Model or
1551  // Local Dynamic TLS model, otherwise use the Initial Exec or
1552  // Local Exec TLS Model.
1553
1554  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1555  SDLoc DL(GA);
1556  const GlobalValue *GV = GA->getGlobal();
1557  EVT PtrVT = getPointerTy();
1558
1559  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1560
1561  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1562    // General Dynamic and Local Dynamic TLS Model.
1563    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1564                                                      : MipsII::MO_TLSGD;
1565
1566    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1567    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1568                                   getGlobalReg(DAG, PtrVT), TGA);
1569    unsigned PtrSize = PtrVT.getSizeInBits();
1570    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1571
1572    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1573
1574    ArgListTy Args;
1575    ArgListEntry Entry;
1576    Entry.Node = Argument;
1577    Entry.Ty = PtrTy;
1578    Args.push_back(Entry);
1579
1580    TargetLowering::CallLoweringInfo CLI(DAG);
1581    CLI.setDebugLoc(DL).setChain(DAG.getEntryNode())
1582      .setCallee(CallingConv::C, PtrTy, TlsGetAddr, &Args, 0);
1583    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1584
1585    SDValue Ret = CallResult.first;
1586
1587    if (model != TLSModel::LocalDynamic)
1588      return Ret;
1589
1590    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1591                                               MipsII::MO_DTPREL_HI);
1592    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1593    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1594                                               MipsII::MO_DTPREL_LO);
1595    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1596    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1597    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1598  }
1599
1600  SDValue Offset;
1601  if (model == TLSModel::InitialExec) {
1602    // Initial Exec TLS Model
1603    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1604                                             MipsII::MO_GOTTPREL);
1605    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1606                      TGA);
1607    Offset = DAG.getLoad(PtrVT, DL,
1608                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1609                         false, false, false, 0);
1610  } else {
1611    // Local Exec TLS Model
1612    assert(model == TLSModel::LocalExec);
1613    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1614                                               MipsII::MO_TPREL_HI);
1615    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1616                                               MipsII::MO_TPREL_LO);
1617    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1618    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1619    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1620  }
1621
1622  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1623  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1624}
1625
1626SDValue MipsTargetLowering::
1627lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1628{
1629  JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
1630  EVT Ty = Op.getValueType();
1631
1632  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !isN64())
1633    return getAddrNonPIC(N, Ty, DAG);
1634
1635  return getAddrLocal(N, Ty, DAG, isN32() || isN64());
1636}
1637
1638SDValue MipsTargetLowering::
1639lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1640{
1641  // gp_rel relocation
1642  // FIXME: we should reference the constant pool using small data sections,
1643  // but the asm printer currently doesn't support this feature without
1644  // hacking it. This feature should come soon so we can uncomment the
1645  // stuff below.
1646  //if (IsInSmallSection(C->getType())) {
1647  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1648  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1649  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1650  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1651  EVT Ty = Op.getValueType();
1652
1653  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !isN64())
1654    return getAddrNonPIC(N, Ty, DAG);
1655
1656  return getAddrLocal(N, Ty, DAG, isN32() || isN64());
1657}
1658
1659SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1660  MachineFunction &MF = DAG.getMachineFunction();
1661  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1662
1663  SDLoc DL(Op);
1664  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1665                                 getPointerTy());
1666
1667  // vastart just stores the address of the VarArgsFrameIndex slot into the
1668  // memory location argument.
1669  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1670  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1671                      MachinePointerInfo(SV), false, false, 0);
1672}
1673
1674static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
1675                                bool HasExtractInsert) {
1676  EVT TyX = Op.getOperand(0).getValueType();
1677  EVT TyY = Op.getOperand(1).getValueType();
1678  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1679  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1680  SDLoc DL(Op);
1681  SDValue Res;
1682
1683  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1684  // to i32.
1685  SDValue X = (TyX == MVT::f32) ?
1686    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1687    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1688                Const1);
1689  SDValue Y = (TyY == MVT::f32) ?
1690    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1691    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1692                Const1);
1693
1694  if (HasExtractInsert) {
1695    // ext  E, Y, 31, 1  ; extract bit31 of Y
1696    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1697    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1698    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1699  } else {
1700    // sll SllX, X, 1
1701    // srl SrlX, SllX, 1
1702    // srl SrlY, Y, 31
1703    // sll SllY, SrlX, 31
1704    // or  Or, SrlX, SllY
1705    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1706    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1707    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1708    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1709    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1710  }
1711
1712  if (TyX == MVT::f32)
1713    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1714
1715  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1716                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1717  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1718}
1719
1720static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
1721                                bool HasExtractInsert) {
1722  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1723  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1724  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1725  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1726  SDLoc DL(Op);
1727
1728  // Bitcast to integer nodes.
1729  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1730  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1731
1732  if (HasExtractInsert) {
1733    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1734    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1735    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1736                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1737
1738    if (WidthX > WidthY)
1739      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1740    else if (WidthY > WidthX)
1741      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1742
1743    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1744                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1745    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1746  }
1747
1748  // (d)sll SllX, X, 1
1749  // (d)srl SrlX, SllX, 1
1750  // (d)srl SrlY, Y, width(Y)-1
1751  // (d)sll SllY, SrlX, width(Y)-1
1752  // or     Or, SrlX, SllY
1753  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1754  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1755  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1756                             DAG.getConstant(WidthY - 1, MVT::i32));
1757
1758  if (WidthX > WidthY)
1759    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1760  else if (WidthY > WidthX)
1761    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1762
1763  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1764                             DAG.getConstant(WidthX - 1, MVT::i32));
1765  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1766  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1767}
1768
1769SDValue
1770MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1771  if (Subtarget->isGP64bit())
1772    return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasExtractInsert());
1773
1774  return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasExtractInsert());
1775}
1776
1777SDValue MipsTargetLowering::
1778lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1779  // check the depth
1780  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1781         "Frame address can only be determined for current frame.");
1782
1783  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1784  MFI->setFrameAddressIsTaken(true);
1785  EVT VT = Op.getValueType();
1786  SDLoc DL(Op);
1787  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1788                                         isN64() ? Mips::FP_64 : Mips::FP, VT);
1789  return FrameAddr;
1790}
1791
1792SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1793                                            SelectionDAG &DAG) const {
1794  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1795    return SDValue();
1796
1797  // check the depth
1798  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1799         "Return address can be determined only for current frame.");
1800
1801  MachineFunction &MF = DAG.getMachineFunction();
1802  MachineFrameInfo *MFI = MF.getFrameInfo();
1803  MVT VT = Op.getSimpleValueType();
1804  unsigned RA = isN64() ? Mips::RA_64 : Mips::RA;
1805  MFI->setReturnAddressIsTaken(true);
1806
1807  // Return RA, which contains the return address. Mark it an implicit live-in.
1808  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1809  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
1810}
1811
1812// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1813// generated from __builtin_eh_return (offset, handler)
1814// The effect of this is to adjust the stack pointer by "offset"
1815// and then branch to "handler".
1816SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1817                                                                     const {
1818  MachineFunction &MF = DAG.getMachineFunction();
1819  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1820
1821  MipsFI->setCallsEhReturn();
1822  SDValue Chain     = Op.getOperand(0);
1823  SDValue Offset    = Op.getOperand(1);
1824  SDValue Handler   = Op.getOperand(2);
1825  SDLoc DL(Op);
1826  EVT Ty = isN64() ? MVT::i64 : MVT::i32;
1827
1828  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1829  // EH_RETURN nodes, so that instructions are emitted back-to-back.
1830  unsigned OffsetReg = isN64() ? Mips::V1_64 : Mips::V1;
1831  unsigned AddrReg = isN64() ? Mips::V0_64 : Mips::V0;
1832  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1833  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1834  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1835                     DAG.getRegister(OffsetReg, Ty),
1836                     DAG.getRegister(AddrReg, getPointerTy()),
1837                     Chain.getValue(1));
1838}
1839
1840SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1841                                              SelectionDAG &DAG) const {
1842  // FIXME: Need pseudo-fence for 'singlethread' fences
1843  // FIXME: Set SType for weaker fences where supported/appropriate.
1844  unsigned SType = 0;
1845  SDLoc DL(Op);
1846  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1847                     DAG.getConstant(SType, MVT::i32));
1848}
1849
1850SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1851                                                SelectionDAG &DAG) const {
1852  SDLoc DL(Op);
1853  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1854  SDValue Shamt = Op.getOperand(2);
1855
1856  // if shamt < 32:
1857  //  lo = (shl lo, shamt)
1858  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1859  // else:
1860  //  lo = 0
1861  //  hi = (shl lo, shamt[4:0])
1862  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1863                            DAG.getConstant(-1, MVT::i32));
1864  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1865                                      DAG.getConstant(1, MVT::i32));
1866  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1867                                     Not);
1868  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1869  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1870  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1871  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1872                             DAG.getConstant(0x20, MVT::i32));
1873  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1874                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1875  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1876
1877  SDValue Ops[2] = {Lo, Hi};
1878  return DAG.getMergeValues(Ops, DL);
1879}
1880
1881SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1882                                                 bool IsSRA) const {
1883  SDLoc DL(Op);
1884  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1885  SDValue Shamt = Op.getOperand(2);
1886
1887  // if shamt < 32:
1888  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1889  //  if isSRA:
1890  //    hi = (sra hi, shamt)
1891  //  else:
1892  //    hi = (srl hi, shamt)
1893  // else:
1894  //  if isSRA:
1895  //   lo = (sra hi, shamt[4:0])
1896  //   hi = (sra hi, 31)
1897  //  else:
1898  //   lo = (srl hi, shamt[4:0])
1899  //   hi = 0
1900  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1901                            DAG.getConstant(-1, MVT::i32));
1902  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1903                                     DAG.getConstant(1, MVT::i32));
1904  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1905  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1906  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1907  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1908                                     Hi, Shamt);
1909  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1910                             DAG.getConstant(0x20, MVT::i32));
1911  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1912                                DAG.getConstant(31, MVT::i32));
1913  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1914  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1915                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
1916                   ShiftRightHi);
1917
1918  SDValue Ops[2] = {Lo, Hi};
1919  return DAG.getMergeValues(Ops, DL);
1920}
1921
1922static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
1923                            SDValue Chain, SDValue Src, unsigned Offset) {
1924  SDValue Ptr = LD->getBasePtr();
1925  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
1926  EVT BasePtrVT = Ptr.getValueType();
1927  SDLoc DL(LD);
1928  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1929
1930  if (Offset)
1931    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1932                      DAG.getConstant(Offset, BasePtrVT));
1933
1934  SDValue Ops[] = { Chain, Ptr, Src };
1935  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
1936                                 LD->getMemOperand());
1937}
1938
1939// Expand an unaligned 32 or 64-bit integer load node.
1940SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1941  LoadSDNode *LD = cast<LoadSDNode>(Op);
1942  EVT MemVT = LD->getMemoryVT();
1943
1944  if (Subtarget->systemSupportsUnalignedAccess())
1945    return Op;
1946
1947  // Return if load is aligned or if MemVT is neither i32 nor i64.
1948  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
1949      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
1950    return SDValue();
1951
1952  bool IsLittle = Subtarget->isLittle();
1953  EVT VT = Op.getValueType();
1954  ISD::LoadExtType ExtType = LD->getExtensionType();
1955  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
1956
1957  assert((VT == MVT::i32) || (VT == MVT::i64));
1958
1959  // Expand
1960  //  (set dst, (i64 (load baseptr)))
1961  // to
1962  //  (set tmp, (ldl (add baseptr, 7), undef))
1963  //  (set dst, (ldr baseptr, tmp))
1964  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
1965    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
1966                               IsLittle ? 7 : 0);
1967    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
1968                        IsLittle ? 0 : 7);
1969  }
1970
1971  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
1972                             IsLittle ? 3 : 0);
1973  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
1974                             IsLittle ? 0 : 3);
1975
1976  // Expand
1977  //  (set dst, (i32 (load baseptr))) or
1978  //  (set dst, (i64 (sextload baseptr))) or
1979  //  (set dst, (i64 (extload baseptr)))
1980  // to
1981  //  (set tmp, (lwl (add baseptr, 3), undef))
1982  //  (set dst, (lwr baseptr, tmp))
1983  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
1984      (ExtType == ISD::EXTLOAD))
1985    return LWR;
1986
1987  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
1988
1989  // Expand
1990  //  (set dst, (i64 (zextload baseptr)))
1991  // to
1992  //  (set tmp0, (lwl (add baseptr, 3), undef))
1993  //  (set tmp1, (lwr baseptr, tmp0))
1994  //  (set tmp2, (shl tmp1, 32))
1995  //  (set dst, (srl tmp2, 32))
1996  SDLoc DL(LD);
1997  SDValue Const32 = DAG.getConstant(32, MVT::i32);
1998  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
1999  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2000  SDValue Ops[] = { SRL, LWR.getValue(1) };
2001  return DAG.getMergeValues(Ops, DL);
2002}
2003
2004static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2005                             SDValue Chain, unsigned Offset) {
2006  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2007  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2008  SDLoc DL(SD);
2009  SDVTList VTList = DAG.getVTList(MVT::Other);
2010
2011  if (Offset)
2012    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2013                      DAG.getConstant(Offset, BasePtrVT));
2014
2015  SDValue Ops[] = { Chain, Value, Ptr };
2016  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2017                                 SD->getMemOperand());
2018}
2019
2020// Expand an unaligned 32 or 64-bit integer store node.
2021static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2022                                      bool IsLittle) {
2023  SDValue Value = SD->getValue(), Chain = SD->getChain();
2024  EVT VT = Value.getValueType();
2025
2026  // Expand
2027  //  (store val, baseptr) or
2028  //  (truncstore val, baseptr)
2029  // to
2030  //  (swl val, (add baseptr, 3))
2031  //  (swr val, baseptr)
2032  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2033    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2034                                IsLittle ? 3 : 0);
2035    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2036  }
2037
2038  assert(VT == MVT::i64);
2039
2040  // Expand
2041  //  (store val, baseptr)
2042  // to
2043  //  (sdl val, (add baseptr, 7))
2044  //  (sdr val, baseptr)
2045  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2046  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2047}
2048
2049// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2050static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2051  SDValue Val = SD->getValue();
2052
2053  if (Val.getOpcode() != ISD::FP_TO_SINT)
2054    return SDValue();
2055
2056  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2057  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2058                           Val.getOperand(0));
2059
2060  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2061                      SD->getPointerInfo(), SD->isVolatile(),
2062                      SD->isNonTemporal(), SD->getAlignment());
2063}
2064
2065SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2066  StoreSDNode *SD = cast<StoreSDNode>(Op);
2067  EVT MemVT = SD->getMemoryVT();
2068
2069  // Lower unaligned integer stores.
2070  if (!Subtarget->systemSupportsUnalignedAccess() &&
2071      (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2072      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2073    return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
2074
2075  return lowerFP_TO_SINT_STORE(SD, DAG);
2076}
2077
2078SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2079  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2080      || cast<ConstantSDNode>
2081        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2082      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2083    return SDValue();
2084
2085  // The pattern
2086  //   (add (frameaddr 0), (frame_to_args_offset))
2087  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2088  //   (add FrameObject, 0)
2089  // where FrameObject is a fixed StackObject with offset 0 which points to
2090  // the old stack pointer.
2091  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2092  EVT ValTy = Op->getValueType(0);
2093  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2094  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2095  return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
2096                     DAG.getConstant(0, ValTy));
2097}
2098
2099SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2100                                            SelectionDAG &DAG) const {
2101  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2102  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2103                              Op.getOperand(0));
2104  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2105}
2106
2107//===----------------------------------------------------------------------===//
2108//                      Calling Convention Implementation
2109//===----------------------------------------------------------------------===//
2110
2111//===----------------------------------------------------------------------===//
2112// TODO: Implement a generic logic using tblgen that can support this.
2113// Mips O32 ABI rules:
2114// ---
2115// i32 - Passed in A0, A1, A2, A3 and stack
2116// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2117//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2118// f64 - Only passed in two aliased f32 registers if no int reg has been used
2119//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2120//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2121//       go to stack.
2122//
2123//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2124//===----------------------------------------------------------------------===//
2125
2126static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2127                       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2128                       CCState &State, const MCPhysReg *F64Regs) {
2129
2130  static const unsigned IntRegsSize = 4, FloatRegsSize = 2;
2131
2132  static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
2133  static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
2134
2135  // Do not process byval args here.
2136  if (ArgFlags.isByVal())
2137    return true;
2138
2139  // Promote i8 and i16
2140  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2141    LocVT = MVT::i32;
2142    if (ArgFlags.isSExt())
2143      LocInfo = CCValAssign::SExt;
2144    else if (ArgFlags.isZExt())
2145      LocInfo = CCValAssign::ZExt;
2146    else
2147      LocInfo = CCValAssign::AExt;
2148  }
2149
2150  unsigned Reg;
2151
2152  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2153  // is true: function is vararg, argument is 3rd or higher, there is previous
2154  // argument which is not f32 or f64.
2155  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2156      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2157  unsigned OrigAlign = ArgFlags.getOrigAlign();
2158  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2159
2160  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2161    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2162    // If this is the first part of an i64 arg,
2163    // the allocated register must be either A0 or A2.
2164    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2165      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2166    LocVT = MVT::i32;
2167  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2168    // Allocate int register and shadow next int register. If first
2169    // available register is Mips::A1 or Mips::A3, shadow it too.
2170    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2171    if (Reg == Mips::A1 || Reg == Mips::A3)
2172      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2173    State.AllocateReg(IntRegs, IntRegsSize);
2174    LocVT = MVT::i32;
2175  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2176    // we are guaranteed to find an available float register
2177    if (ValVT == MVT::f32) {
2178      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2179      // Shadow int register
2180      State.AllocateReg(IntRegs, IntRegsSize);
2181    } else {
2182      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2183      // Shadow int registers
2184      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2185      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2186        State.AllocateReg(IntRegs, IntRegsSize);
2187      State.AllocateReg(IntRegs, IntRegsSize);
2188    }
2189  } else
2190    llvm_unreachable("Cannot handle this ValVT.");
2191
2192  if (!Reg) {
2193    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2194                                          OrigAlign);
2195    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2196  } else
2197    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2198
2199  return false;
2200}
2201
2202static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2203                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2204                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2205  static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
2206
2207  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2208}
2209
2210static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2211                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2212                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2213  static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
2214
2215  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2216}
2217
2218#include "MipsGenCallingConv.inc"
2219
2220//===----------------------------------------------------------------------===//
2221//                  Call Calling Convention Implementation
2222//===----------------------------------------------------------------------===//
2223
2224// Return next O32 integer argument register.
2225static unsigned getNextIntArgReg(unsigned Reg) {
2226  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2227  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2228}
2229
2230SDValue
2231MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2232                                   SDValue Chain, SDValue Arg, SDLoc DL,
2233                                   bool IsTailCall, SelectionDAG &DAG) const {
2234  if (!IsTailCall) {
2235    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2236                                 DAG.getIntPtrConstant(Offset));
2237    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2238                        false, 0);
2239  }
2240
2241  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2242  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2243  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2244  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2245                      /*isVolatile=*/ true, false, 0);
2246}
2247
2248void MipsTargetLowering::
2249getOpndList(SmallVectorImpl<SDValue> &Ops,
2250            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2251            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2252            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2253  // Insert node "GP copy globalreg" before call to function.
2254  //
2255  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2256  // in PIC mode) allow symbols to be resolved via lazy binding.
2257  // The lazy binding stub requires GP to point to the GOT.
2258  if (IsPICCall && !InternalLinkage) {
2259    unsigned GPReg = isN64() ? Mips::GP_64 : Mips::GP;
2260    EVT Ty = isN64() ? MVT::i64 : MVT::i32;
2261    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2262  }
2263
2264  // Build a sequence of copy-to-reg nodes chained together with token
2265  // chain and flag operands which copy the outgoing args into registers.
2266  // The InFlag in necessary since all emitted instructions must be
2267  // stuck together.
2268  SDValue InFlag;
2269
2270  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2271    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2272                                 RegsToPass[i].second, InFlag);
2273    InFlag = Chain.getValue(1);
2274  }
2275
2276  // Add argument registers to the end of the list so that they are
2277  // known live into the call.
2278  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2279    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2280                                      RegsToPass[i].second.getValueType()));
2281
2282  // Add a register mask operand representing the call-preserved registers.
2283  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2284  const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2285  assert(Mask && "Missing call preserved mask for calling convention");
2286  if (Subtarget->inMips16HardFloat()) {
2287    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2288      llvm::StringRef Sym = G->getGlobal()->getName();
2289      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2290      if (F && F->hasFnAttribute("__Mips16RetHelper")) {
2291        Mask = MipsRegisterInfo::getMips16RetHelperMask();
2292      }
2293    }
2294  }
2295  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2296
2297  if (InFlag.getNode())
2298    Ops.push_back(InFlag);
2299}
2300
2301/// LowerCall - functions arguments are copied from virtual regs to
2302/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2303SDValue
2304MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2305                              SmallVectorImpl<SDValue> &InVals) const {
2306  SelectionDAG &DAG                     = CLI.DAG;
2307  SDLoc DL                              = CLI.DL;
2308  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2309  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2310  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2311  SDValue Chain                         = CLI.Chain;
2312  SDValue Callee                        = CLI.Callee;
2313  bool &IsTailCall                      = CLI.IsTailCall;
2314  CallingConv::ID CallConv              = CLI.CallConv;
2315  bool IsVarArg                         = CLI.IsVarArg;
2316
2317  MachineFunction &MF = DAG.getMachineFunction();
2318  MachineFrameInfo *MFI = MF.getFrameInfo();
2319  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2320  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2321  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2322
2323  // Analyze operands of the call, assigning locations to each operand.
2324  SmallVector<CCValAssign, 16> ArgLocs;
2325  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2326                 getTargetMachine(), ArgLocs, *DAG.getContext());
2327  MipsCC::SpecialCallingConvType SpecialCallingConv =
2328    getSpecialCallingConv(Callee);
2329  MipsCC MipsCCInfo(CallConv, isO32(), Subtarget->isFP64bit(), CCInfo,
2330                    SpecialCallingConv);
2331
2332  MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2333                                 Subtarget->mipsSEUsesSoftFloat(),
2334                                 Callee.getNode(), CLI.getArgs());
2335
2336  // Get a count of how many bytes are to be pushed on the stack.
2337  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2338
2339  // Check if it's really possible to do a tail call.
2340  if (IsTailCall)
2341    IsTailCall =
2342      isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2343                                        *MF.getInfo<MipsFunctionInfo>());
2344
2345  if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2346    report_fatal_error("failed to perform tail call elimination on a call "
2347                       "site marked musttail");
2348
2349  if (IsTailCall)
2350    ++NumTailCalls;
2351
2352  // Chain is the output chain of the last Load/Store or CopyToReg node.
2353  // ByValChain is the output chain of the last Memcpy node created for copying
2354  // byval arguments to the stack.
2355  unsigned StackAlignment = TFL->getStackAlignment();
2356  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2357  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2358
2359  if (!IsTailCall)
2360    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2361
2362  SDValue StackPtr = DAG.getCopyFromReg(
2363      Chain, DL, isN64() ? Mips::SP_64 : Mips::SP, getPointerTy());
2364
2365  // With EABI is it possible to have 16 args on registers.
2366  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2367  SmallVector<SDValue, 8> MemOpChains;
2368  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2369
2370  // Walk the register/memloc assignments, inserting copies/loads.
2371  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2372    SDValue Arg = OutVals[i];
2373    CCValAssign &VA = ArgLocs[i];
2374    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2375    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2376
2377    // ByVal Arg.
2378    if (Flags.isByVal()) {
2379      assert(Flags.getByValSize() &&
2380             "ByVal args of size 0 should have been ignored by front-end.");
2381      assert(ByValArg != MipsCCInfo.byval_end());
2382      assert(!IsTailCall &&
2383             "Do not tail-call optimize if there is a byval argument.");
2384      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2385                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2386      ++ByValArg;
2387      continue;
2388    }
2389
2390    // Promote the value if needed.
2391    switch (VA.getLocInfo()) {
2392    default: llvm_unreachable("Unknown loc info!");
2393    case CCValAssign::Full:
2394      if (VA.isRegLoc()) {
2395        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2396            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2397            (ValVT == MVT::i64 && LocVT == MVT::f64))
2398          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2399        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2400          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2401                                   Arg, DAG.getConstant(0, MVT::i32));
2402          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2403                                   Arg, DAG.getConstant(1, MVT::i32));
2404          if (!Subtarget->isLittle())
2405            std::swap(Lo, Hi);
2406          unsigned LocRegLo = VA.getLocReg();
2407          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2408          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2409          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2410          continue;
2411        }
2412      }
2413      break;
2414    case CCValAssign::SExt:
2415      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2416      break;
2417    case CCValAssign::ZExt:
2418      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2419      break;
2420    case CCValAssign::AExt:
2421      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2422      break;
2423    }
2424
2425    // Arguments that can be passed on register must be kept at
2426    // RegsToPass vector
2427    if (VA.isRegLoc()) {
2428      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2429      continue;
2430    }
2431
2432    // Register can't get to this point...
2433    assert(VA.isMemLoc());
2434
2435    // emit ISD::STORE whichs stores the
2436    // parameter value to a stack Location
2437    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2438                                         Chain, Arg, DL, IsTailCall, DAG));
2439  }
2440
2441  // Transform all store nodes into one single node because all store
2442  // nodes are independent of each other.
2443  if (!MemOpChains.empty())
2444    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2445
2446  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2447  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2448  // node so that legalize doesn't hack it.
2449  bool IsPICCall = (isN64() || IsPIC); // true if calls are translated to
2450                                       // jalr $25
2451  bool GlobalOrExternal = false, InternalLinkage = false;
2452  SDValue CalleeLo;
2453  EVT Ty = Callee.getValueType();
2454
2455  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2456    if (IsPICCall) {
2457      const GlobalValue *Val = G->getGlobal();
2458      InternalLinkage = Val->hasInternalLinkage();
2459
2460      if (InternalLinkage)
2461        Callee = getAddrLocal(G, Ty, DAG, isN32() || isN64());
2462      else if (LargeGOT)
2463        Callee = getAddrGlobalLargeGOT(G, Ty, DAG, MipsII::MO_CALL_HI16,
2464                                       MipsII::MO_CALL_LO16, Chain,
2465                                       FuncInfo->callPtrInfo(Val));
2466      else
2467        Callee = getAddrGlobal(G, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
2468                               FuncInfo->callPtrInfo(Val));
2469    } else
2470      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2471                                          MipsII::MO_NO_FLAG);
2472    GlobalOrExternal = true;
2473  }
2474  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2475    const char *Sym = S->getSymbol();
2476
2477    if (!isN64() && !IsPIC) // !N64 && static
2478      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(),
2479                                            MipsII::MO_NO_FLAG);
2480    else if (LargeGOT)
2481      Callee = getAddrGlobalLargeGOT(S, Ty, DAG, MipsII::MO_CALL_HI16,
2482                                     MipsII::MO_CALL_LO16, Chain,
2483                                     FuncInfo->callPtrInfo(Sym));
2484    else // N64 || PIC
2485      Callee = getAddrGlobal(S, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
2486                             FuncInfo->callPtrInfo(Sym));
2487
2488    GlobalOrExternal = true;
2489  }
2490
2491  SmallVector<SDValue, 8> Ops(1, Chain);
2492  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2493
2494  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2495              CLI, Callee, Chain);
2496
2497  if (IsTailCall)
2498    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
2499
2500  Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
2501  SDValue InFlag = Chain.getValue(1);
2502
2503  // Create the CALLSEQ_END node.
2504  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2505                             DAG.getIntPtrConstant(0, true), InFlag, DL);
2506  InFlag = Chain.getValue(1);
2507
2508  // Handle result values, copying them out of physregs into vregs that we
2509  // return.
2510  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2511                         Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2512}
2513
2514/// LowerCallResult - Lower the result values of a call into the
2515/// appropriate copies out of appropriate physical registers.
2516SDValue
2517MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2518                                    CallingConv::ID CallConv, bool IsVarArg,
2519                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2520                                    SDLoc DL, SelectionDAG &DAG,
2521                                    SmallVectorImpl<SDValue> &InVals,
2522                                    const SDNode *CallNode,
2523                                    const Type *RetTy) const {
2524  // Assign locations to each value returned by this call.
2525  SmallVector<CCValAssign, 16> RVLocs;
2526  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2527                 getTargetMachine(), RVLocs, *DAG.getContext());
2528  MipsCC MipsCCInfo(CallConv, isO32(), Subtarget->isFP64bit(), CCInfo);
2529
2530  MipsCCInfo.analyzeCallResult(Ins, Subtarget->mipsSEUsesSoftFloat(),
2531                               CallNode, RetTy);
2532
2533  // Copy all of the result registers out of their specified physreg.
2534  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2535    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2536                                     RVLocs[i].getLocVT(), InFlag);
2537    Chain = Val.getValue(1);
2538    InFlag = Val.getValue(2);
2539
2540    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2541      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2542
2543    InVals.push_back(Val);
2544  }
2545
2546  return Chain;
2547}
2548
2549//===----------------------------------------------------------------------===//
2550//             Formal Arguments Calling Convention Implementation
2551//===----------------------------------------------------------------------===//
2552/// LowerFormalArguments - transform physical registers into virtual registers
2553/// and generate load operations for arguments places on the stack.
2554SDValue
2555MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2556                                         CallingConv::ID CallConv,
2557                                         bool IsVarArg,
2558                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2559                                         SDLoc DL, SelectionDAG &DAG,
2560                                         SmallVectorImpl<SDValue> &InVals)
2561                                          const {
2562  MachineFunction &MF = DAG.getMachineFunction();
2563  MachineFrameInfo *MFI = MF.getFrameInfo();
2564  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2565
2566  MipsFI->setVarArgsFrameIndex(0);
2567
2568  // Used with vargs to acumulate store chains.
2569  std::vector<SDValue> OutChains;
2570
2571  // Assign locations to all of the incoming arguments.
2572  SmallVector<CCValAssign, 16> ArgLocs;
2573  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2574                 getTargetMachine(), ArgLocs, *DAG.getContext());
2575  MipsCC MipsCCInfo(CallConv, isO32(), Subtarget->isFP64bit(), CCInfo);
2576  Function::const_arg_iterator FuncArg =
2577    DAG.getMachineFunction().getFunction()->arg_begin();
2578  bool UseSoftFloat = Subtarget->mipsSEUsesSoftFloat();
2579
2580  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2581  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2582                           MipsCCInfo.hasByValArg());
2583
2584  unsigned CurArgIdx = 0;
2585  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2586
2587  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2588    CCValAssign &VA = ArgLocs[i];
2589    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2590    CurArgIdx = Ins[i].OrigArgIndex;
2591    EVT ValVT = VA.getValVT();
2592    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2593    bool IsRegLoc = VA.isRegLoc();
2594
2595    if (Flags.isByVal()) {
2596      assert(Flags.getByValSize() &&
2597             "ByVal args of size 0 should have been ignored by front-end.");
2598      assert(ByValArg != MipsCCInfo.byval_end());
2599      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2600                    MipsCCInfo, *ByValArg);
2601      ++ByValArg;
2602      continue;
2603    }
2604
2605    // Arguments stored on registers
2606    if (IsRegLoc) {
2607      MVT RegVT = VA.getLocVT();
2608      unsigned ArgReg = VA.getLocReg();
2609      const TargetRegisterClass *RC = getRegClassFor(RegVT);
2610
2611      // Transform the arguments stored on
2612      // physical registers into virtual ones
2613      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2614      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2615
2616      // If this is an 8 or 16-bit value, it has been passed promoted
2617      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2618      // truncate to the right size.
2619      if (VA.getLocInfo() != CCValAssign::Full) {
2620        unsigned Opcode = 0;
2621        if (VA.getLocInfo() == CCValAssign::SExt)
2622          Opcode = ISD::AssertSext;
2623        else if (VA.getLocInfo() == CCValAssign::ZExt)
2624          Opcode = ISD::AssertZext;
2625        if (Opcode)
2626          ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2627                                 DAG.getValueType(ValVT));
2628        ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2629      }
2630
2631      // Handle floating point arguments passed in integer registers and
2632      // long double arguments passed in floating point registers.
2633      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2634          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2635          (RegVT == MVT::f64 && ValVT == MVT::i64))
2636        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2637      else if (isO32() && RegVT == MVT::i32 && ValVT == MVT::f64) {
2638        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2639                                  getNextIntArgReg(ArgReg), RC);
2640        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2641        if (!Subtarget->isLittle())
2642          std::swap(ArgValue, ArgValue2);
2643        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2644                               ArgValue, ArgValue2);
2645      }
2646
2647      InVals.push_back(ArgValue);
2648    } else { // VA.isRegLoc()
2649
2650      // sanity check
2651      assert(VA.isMemLoc());
2652
2653      // The stack pointer offset is relative to the caller stack frame.
2654      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2655                                      VA.getLocMemOffset(), true);
2656
2657      // Create load nodes to retrieve arguments from the stack
2658      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2659      SDValue Load = DAG.getLoad(ValVT, DL, Chain, FIN,
2660                                 MachinePointerInfo::getFixedStack(FI),
2661                                 false, false, false, 0);
2662      InVals.push_back(Load);
2663      OutChains.push_back(Load.getValue(1));
2664    }
2665  }
2666
2667  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2668    // The mips ABIs for returning structs by value requires that we copy
2669    // the sret argument into $v0 for the return. Save the argument into
2670    // a virtual register so that we can access it from the return points.
2671    if (Ins[i].Flags.isSRet()) {
2672      unsigned Reg = MipsFI->getSRetReturnReg();
2673      if (!Reg) {
2674        Reg = MF.getRegInfo().createVirtualRegister(
2675            getRegClassFor(isN64() ? MVT::i64 : MVT::i32));
2676        MipsFI->setSRetReturnReg(Reg);
2677      }
2678      SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
2679      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2680      break;
2681    }
2682  }
2683
2684  if (IsVarArg)
2685    writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2686
2687  // All stores are grouped in one node to allow the matching between
2688  // the size of Ins and InVals. This only happens when on varg functions
2689  if (!OutChains.empty()) {
2690    OutChains.push_back(Chain);
2691    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
2692  }
2693
2694  return Chain;
2695}
2696
2697//===----------------------------------------------------------------------===//
2698//               Return Value Calling Convention Implementation
2699//===----------------------------------------------------------------------===//
2700
2701bool
2702MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2703                                   MachineFunction &MF, bool IsVarArg,
2704                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2705                                   LLVMContext &Context) const {
2706  SmallVector<CCValAssign, 16> RVLocs;
2707  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2708                 RVLocs, Context);
2709  return CCInfo.CheckReturn(Outs, RetCC_Mips);
2710}
2711
2712SDValue
2713MipsTargetLowering::LowerReturn(SDValue Chain,
2714                                CallingConv::ID CallConv, bool IsVarArg,
2715                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2716                                const SmallVectorImpl<SDValue> &OutVals,
2717                                SDLoc DL, SelectionDAG &DAG) const {
2718  // CCValAssign - represent the assignment of
2719  // the return value to a location
2720  SmallVector<CCValAssign, 16> RVLocs;
2721  MachineFunction &MF = DAG.getMachineFunction();
2722
2723  // CCState - Info about the registers and stack slot.
2724  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2725                 *DAG.getContext());
2726  MipsCC MipsCCInfo(CallConv, isO32(), Subtarget->isFP64bit(), CCInfo);
2727
2728  // Analyze return values.
2729  MipsCCInfo.analyzeReturn(Outs, Subtarget->mipsSEUsesSoftFloat(),
2730                           MF.getFunction()->getReturnType());
2731
2732  SDValue Flag;
2733  SmallVector<SDValue, 4> RetOps(1, Chain);
2734
2735  // Copy the result values into the output registers.
2736  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2737    SDValue Val = OutVals[i];
2738    CCValAssign &VA = RVLocs[i];
2739    assert(VA.isRegLoc() && "Can only return in registers!");
2740
2741    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2742      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2743
2744    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2745
2746    // Guarantee that all emitted copies are stuck together with flags.
2747    Flag = Chain.getValue(1);
2748    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2749  }
2750
2751  // The mips ABIs for returning structs by value requires that we copy
2752  // the sret argument into $v0 for the return. We saved the argument into
2753  // a virtual register in the entry block, so now we copy the value out
2754  // and into $v0.
2755  if (MF.getFunction()->hasStructRetAttr()) {
2756    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2757    unsigned Reg = MipsFI->getSRetReturnReg();
2758
2759    if (!Reg)
2760      llvm_unreachable("sret virtual register not created in the entry block");
2761    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2762    unsigned V0 = isN64() ? Mips::V0_64 : Mips::V0;
2763
2764    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2765    Flag = Chain.getValue(1);
2766    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2767  }
2768
2769  RetOps[0] = Chain;  // Update chain.
2770
2771  // Add the flag if we have it.
2772  if (Flag.getNode())
2773    RetOps.push_back(Flag);
2774
2775  // Return on Mips is always a "jr $ra"
2776  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
2777}
2778
2779//===----------------------------------------------------------------------===//
2780//                           Mips Inline Assembly Support
2781//===----------------------------------------------------------------------===//
2782
2783/// getConstraintType - Given a constraint letter, return the type of
2784/// constraint it is for this target.
2785MipsTargetLowering::ConstraintType MipsTargetLowering::
2786getConstraintType(const std::string &Constraint) const
2787{
2788  // Mips specific constraints
2789  // GCC config/mips/constraints.md
2790  //
2791  // 'd' : An address register. Equivalent to r
2792  //       unless generating MIPS16 code.
2793  // 'y' : Equivalent to r; retained for
2794  //       backwards compatibility.
2795  // 'c' : A register suitable for use in an indirect
2796  //       jump. This will always be $25 for -mabicalls.
2797  // 'l' : The lo register. 1 word storage.
2798  // 'x' : The hilo register pair. Double word storage.
2799  if (Constraint.size() == 1) {
2800    switch (Constraint[0]) {
2801      default : break;
2802      case 'd':
2803      case 'y':
2804      case 'f':
2805      case 'c':
2806      case 'l':
2807      case 'x':
2808        return C_RegisterClass;
2809      case 'R':
2810        return C_Memory;
2811    }
2812  }
2813  return TargetLowering::getConstraintType(Constraint);
2814}
2815
2816/// Examine constraint type and operand type and determine a weight value.
2817/// This object must already have been set up with the operand type
2818/// and the current alternative constraint selected.
2819TargetLowering::ConstraintWeight
2820MipsTargetLowering::getSingleConstraintMatchWeight(
2821    AsmOperandInfo &info, const char *constraint) const {
2822  ConstraintWeight weight = CW_Invalid;
2823  Value *CallOperandVal = info.CallOperandVal;
2824    // If we don't have a value, we can't do a match,
2825    // but allow it at the lowest weight.
2826  if (!CallOperandVal)
2827    return CW_Default;
2828  Type *type = CallOperandVal->getType();
2829  // Look at the constraint type.
2830  switch (*constraint) {
2831  default:
2832    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2833    break;
2834  case 'd':
2835  case 'y':
2836    if (type->isIntegerTy())
2837      weight = CW_Register;
2838    break;
2839  case 'f': // FPU or MSA register
2840    if (Subtarget->hasMSA() && type->isVectorTy() &&
2841        cast<VectorType>(type)->getBitWidth() == 128)
2842      weight = CW_Register;
2843    else if (type->isFloatTy())
2844      weight = CW_Register;
2845    break;
2846  case 'c': // $25 for indirect jumps
2847  case 'l': // lo register
2848  case 'x': // hilo register pair
2849    if (type->isIntegerTy())
2850      weight = CW_SpecificReg;
2851    break;
2852  case 'I': // signed 16 bit immediate
2853  case 'J': // integer zero
2854  case 'K': // unsigned 16 bit immediate
2855  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2856  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2857  case 'O': // signed 15 bit immediate (+- 16383)
2858  case 'P': // immediate in the range of 65535 to 1 (inclusive)
2859    if (isa<ConstantInt>(CallOperandVal))
2860      weight = CW_Constant;
2861    break;
2862  case 'R':
2863    weight = CW_Memory;
2864    break;
2865  }
2866  return weight;
2867}
2868
2869/// This is a helper function to parse a physical register string and split it
2870/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
2871/// that is returned indicates whether parsing was successful. The second flag
2872/// is true if the numeric part exists.
2873static std::pair<bool, bool>
2874parsePhysicalReg(const StringRef &C, std::string &Prefix,
2875                 unsigned long long &Reg) {
2876  if (C.front() != '{' || C.back() != '}')
2877    return std::make_pair(false, false);
2878
2879  // Search for the first numeric character.
2880  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
2881  I = std::find_if(B, E, std::ptr_fun(isdigit));
2882
2883  Prefix.assign(B, I - B);
2884
2885  // The second flag is set to false if no numeric characters were found.
2886  if (I == E)
2887    return std::make_pair(true, false);
2888
2889  // Parse the numeric characters.
2890  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
2891                        true);
2892}
2893
2894std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
2895parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const {
2896  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2897  const TargetRegisterClass *RC;
2898  std::string Prefix;
2899  unsigned long long Reg;
2900
2901  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
2902
2903  if (!R.first)
2904    return std::make_pair(0U, nullptr);
2905
2906  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
2907    // No numeric characters follow "hi" or "lo".
2908    if (R.second)
2909      return std::make_pair(0U, nullptr);
2910
2911    RC = TRI->getRegClass(Prefix == "hi" ?
2912                          Mips::HI32RegClassID : Mips::LO32RegClassID);
2913    return std::make_pair(*(RC->begin()), RC);
2914  } else if (Prefix.compare(0, 4, "$msa") == 0) {
2915    // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
2916
2917    // No numeric characters follow the name.
2918    if (R.second)
2919      return std::make_pair(0U, nullptr);
2920
2921    Reg = StringSwitch<unsigned long long>(Prefix)
2922              .Case("$msair", Mips::MSAIR)
2923              .Case("$msacsr", Mips::MSACSR)
2924              .Case("$msaaccess", Mips::MSAAccess)
2925              .Case("$msasave", Mips::MSASave)
2926              .Case("$msamodify", Mips::MSAModify)
2927              .Case("$msarequest", Mips::MSARequest)
2928              .Case("$msamap", Mips::MSAMap)
2929              .Case("$msaunmap", Mips::MSAUnmap)
2930              .Default(0);
2931
2932    if (!Reg)
2933      return std::make_pair(0U, nullptr);
2934
2935    RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
2936    return std::make_pair(Reg, RC);
2937  }
2938
2939  if (!R.second)
2940    return std::make_pair(0U, nullptr);
2941
2942  if (Prefix == "$f") { // Parse $f0-$f31.
2943    // If the size of FP registers is 64-bit or Reg is an even number, select
2944    // the 64-bit register class. Otherwise, select the 32-bit register class.
2945    if (VT == MVT::Other)
2946      VT = (Subtarget->isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
2947
2948    RC = getRegClassFor(VT);
2949
2950    if (RC == &Mips::AFGR64RegClass) {
2951      assert(Reg % 2 == 0);
2952      Reg >>= 1;
2953    }
2954  } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
2955    RC = TRI->getRegClass(Mips::FCCRegClassID);
2956  else if (Prefix == "$w") { // Parse $w0-$w31.
2957    RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
2958  } else { // Parse $0-$31.
2959    assert(Prefix == "$");
2960    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
2961  }
2962
2963  assert(Reg < RC->getNumRegs());
2964  return std::make_pair(*(RC->begin() + Reg), RC);
2965}
2966
2967/// Given a register class constraint, like 'r', if this corresponds directly
2968/// to an LLVM register class, return a register of 0 and the register class
2969/// pointer.
2970std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2971getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
2972{
2973  if (Constraint.size() == 1) {
2974    switch (Constraint[0]) {
2975    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2976    case 'y': // Same as 'r'. Exists for compatibility.
2977    case 'r':
2978      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
2979        if (Subtarget->inMips16Mode())
2980          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
2981        return std::make_pair(0U, &Mips::GPR32RegClass);
2982      }
2983      if (VT == MVT::i64 && !isGP64bit())
2984        return std::make_pair(0U, &Mips::GPR32RegClass);
2985      if (VT == MVT::i64 && isGP64bit())
2986        return std::make_pair(0U, &Mips::GPR64RegClass);
2987      // This will generate an error message
2988      return std::make_pair(0U, nullptr);
2989    case 'f': // FPU or MSA register
2990      if (VT == MVT::v16i8)
2991        return std::make_pair(0U, &Mips::MSA128BRegClass);
2992      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
2993        return std::make_pair(0U, &Mips::MSA128HRegClass);
2994      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
2995        return std::make_pair(0U, &Mips::MSA128WRegClass);
2996      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
2997        return std::make_pair(0U, &Mips::MSA128DRegClass);
2998      else if (VT == MVT::f32)
2999        return std::make_pair(0U, &Mips::FGR32RegClass);
3000      else if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3001        if (Subtarget->isFP64bit())
3002          return std::make_pair(0U, &Mips::FGR64RegClass);
3003        return std::make_pair(0U, &Mips::AFGR64RegClass);
3004      }
3005      break;
3006    case 'c': // register suitable for indirect jump
3007      if (VT == MVT::i32)
3008        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
3009      assert(VT == MVT::i64 && "Unexpected type.");
3010      return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
3011    case 'l': // register suitable for indirect jump
3012      if (VT == MVT::i32)
3013        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
3014      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
3015    case 'x': // register suitable for indirect jump
3016      // Fixme: Not triggering the use of both hi and low
3017      // This will generate an error message
3018      return std::make_pair(0U, nullptr);
3019    }
3020  }
3021
3022  std::pair<unsigned, const TargetRegisterClass *> R;
3023  R = parseRegForInlineAsmConstraint(Constraint, VT);
3024
3025  if (R.second)
3026    return R;
3027
3028  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3029}
3030
3031/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3032/// vector.  If it is invalid, don't add anything to Ops.
3033void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3034                                                     std::string &Constraint,
3035                                                     std::vector<SDValue>&Ops,
3036                                                     SelectionDAG &DAG) const {
3037  SDValue Result;
3038
3039  // Only support length 1 constraints for now.
3040  if (Constraint.length() > 1) return;
3041
3042  char ConstraintLetter = Constraint[0];
3043  switch (ConstraintLetter) {
3044  default: break; // This will fall through to the generic implementation
3045  case 'I': // Signed 16 bit constant
3046    // If this fails, the parent routine will give an error
3047    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3048      EVT Type = Op.getValueType();
3049      int64_t Val = C->getSExtValue();
3050      if (isInt<16>(Val)) {
3051        Result = DAG.getTargetConstant(Val, Type);
3052        break;
3053      }
3054    }
3055    return;
3056  case 'J': // integer zero
3057    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3058      EVT Type = Op.getValueType();
3059      int64_t Val = C->getZExtValue();
3060      if (Val == 0) {
3061        Result = DAG.getTargetConstant(0, Type);
3062        break;
3063      }
3064    }
3065    return;
3066  case 'K': // unsigned 16 bit immediate
3067    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3068      EVT Type = Op.getValueType();
3069      uint64_t Val = (uint64_t)C->getZExtValue();
3070      if (isUInt<16>(Val)) {
3071        Result = DAG.getTargetConstant(Val, Type);
3072        break;
3073      }
3074    }
3075    return;
3076  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3077    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3078      EVT Type = Op.getValueType();
3079      int64_t Val = C->getSExtValue();
3080      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3081        Result = DAG.getTargetConstant(Val, Type);
3082        break;
3083      }
3084    }
3085    return;
3086  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3087    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3088      EVT Type = Op.getValueType();
3089      int64_t Val = C->getSExtValue();
3090      if ((Val >= -65535) && (Val <= -1)) {
3091        Result = DAG.getTargetConstant(Val, Type);
3092        break;
3093      }
3094    }
3095    return;
3096  case 'O': // signed 15 bit immediate
3097    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3098      EVT Type = Op.getValueType();
3099      int64_t Val = C->getSExtValue();
3100      if ((isInt<15>(Val))) {
3101        Result = DAG.getTargetConstant(Val, Type);
3102        break;
3103      }
3104    }
3105    return;
3106  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3107    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3108      EVT Type = Op.getValueType();
3109      int64_t Val = C->getSExtValue();
3110      if ((Val <= 65535) && (Val >= 1)) {
3111        Result = DAG.getTargetConstant(Val, Type);
3112        break;
3113      }
3114    }
3115    return;
3116  }
3117
3118  if (Result.getNode()) {
3119    Ops.push_back(Result);
3120    return;
3121  }
3122
3123  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3124}
3125
3126bool MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3127                                               Type *Ty) const {
3128  // No global is ever allowed as a base.
3129  if (AM.BaseGV)
3130    return false;
3131
3132  switch (AM.Scale) {
3133  case 0: // "r+i" or just "i", depending on HasBaseReg.
3134    break;
3135  case 1:
3136    if (!AM.HasBaseReg) // allow "r+i".
3137      break;
3138    return false; // disallow "r+r" or "r+r+i".
3139  default:
3140    return false;
3141  }
3142
3143  return true;
3144}
3145
3146bool
3147MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3148  // The Mips target isn't yet aware of offsets.
3149  return false;
3150}
3151
3152EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3153                                            unsigned SrcAlign,
3154                                            bool IsMemset, bool ZeroMemset,
3155                                            bool MemcpyStrSrc,
3156                                            MachineFunction &MF) const {
3157  if (Subtarget->hasMips64())
3158    return MVT::i64;
3159
3160  return MVT::i32;
3161}
3162
3163bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3164  if (VT != MVT::f32 && VT != MVT::f64)
3165    return false;
3166  if (Imm.isNegZero())
3167    return false;
3168  return Imm.isZero();
3169}
3170
3171unsigned MipsTargetLowering::getJumpTableEncoding() const {
3172  if (isN64())
3173    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3174
3175  return TargetLowering::getJumpTableEncoding();
3176}
3177
3178/// This function returns true if CallSym is a long double emulation routine.
3179static bool isF128SoftLibCall(const char *CallSym) {
3180  const char *const LibCalls[] =
3181    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3182     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3183     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3184     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3185     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3186     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3187     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3188     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3189     "truncl"};
3190
3191  const char *const *End = LibCalls + array_lengthof(LibCalls);
3192
3193  // Check that LibCalls is sorted alphabetically.
3194  MipsTargetLowering::LTStr Comp;
3195
3196#ifndef NDEBUG
3197  for (const char *const *I = LibCalls; I < End - 1; ++I)
3198    assert(Comp(*I, *(I + 1)));
3199#endif
3200
3201  return std::binary_search(LibCalls, End, CallSym, Comp);
3202}
3203
3204/// This function returns true if Ty is fp128 or i128 which was originally a
3205/// fp128.
3206static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3207  if (Ty->isFP128Ty())
3208    return true;
3209
3210  const ExternalSymbolSDNode *ES =
3211    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3212
3213  // If the Ty is i128 and the function being called is a long double emulation
3214  // routine, then the original type is f128.
3215  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3216}
3217
3218MipsTargetLowering::MipsCC::SpecialCallingConvType
3219  MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
3220  MipsCC::SpecialCallingConvType SpecialCallingConv =
3221    MipsCC::NoSpecialCallingConv;
3222  if (Subtarget->inMips16HardFloat()) {
3223    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3224      llvm::StringRef Sym = G->getGlobal()->getName();
3225      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3226      if (F && F->hasFnAttribute("__Mips16RetHelper")) {
3227        SpecialCallingConv = MipsCC::Mips16RetHelperConv;
3228      }
3229    }
3230  }
3231  return SpecialCallingConv;
3232}
3233
3234MipsTargetLowering::MipsCC::MipsCC(
3235  CallingConv::ID CC, bool IsO32_, bool IsFP64_, CCState &Info,
3236  MipsCC::SpecialCallingConvType SpecialCallingConv_)
3237  : CCInfo(Info), CallConv(CC), IsO32(IsO32_), IsFP64(IsFP64_),
3238    SpecialCallingConv(SpecialCallingConv_){
3239  // Pre-allocate reserved argument area.
3240  CCInfo.AllocateStack(reservedArgArea(), 1);
3241}
3242
3243
3244void MipsTargetLowering::MipsCC::
3245analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3246                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3247                    std::vector<ArgListEntry> &FuncArgs) {
3248  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3249         "CallingConv::Fast shouldn't be used for vararg functions.");
3250
3251  unsigned NumOpnds = Args.size();
3252  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3253
3254  for (unsigned I = 0; I != NumOpnds; ++I) {
3255    MVT ArgVT = Args[I].VT;
3256    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3257    bool R;
3258
3259    if (ArgFlags.isByVal()) {
3260      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3261      continue;
3262    }
3263
3264    if (IsVarArg && !Args[I].IsFixed)
3265      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3266    else {
3267      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3268                           IsSoftFloat);
3269      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3270    }
3271
3272    if (R) {
3273#ifndef NDEBUG
3274      dbgs() << "Call operand #" << I << " has unhandled type "
3275             << EVT(ArgVT).getEVTString();
3276#endif
3277      llvm_unreachable(nullptr);
3278    }
3279  }
3280}
3281
3282void MipsTargetLowering::MipsCC::
3283analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3284                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3285  unsigned NumArgs = Args.size();
3286  llvm::CCAssignFn *FixedFn = fixedArgFn();
3287  unsigned CurArgIdx = 0;
3288
3289  for (unsigned I = 0; I != NumArgs; ++I) {
3290    MVT ArgVT = Args[I].VT;
3291    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3292    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3293    CurArgIdx = Args[I].OrigArgIndex;
3294
3295    if (ArgFlags.isByVal()) {
3296      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3297      continue;
3298    }
3299
3300    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), nullptr, IsSoftFloat);
3301
3302    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3303      continue;
3304
3305#ifndef NDEBUG
3306    dbgs() << "Formal Arg #" << I << " has unhandled type "
3307           << EVT(ArgVT).getEVTString();
3308#endif
3309    llvm_unreachable(nullptr);
3310  }
3311}
3312
3313template<typename Ty>
3314void MipsTargetLowering::MipsCC::
3315analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3316              const SDNode *CallNode, const Type *RetTy) const {
3317  CCAssignFn *Fn;
3318
3319  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3320    Fn = RetCC_F128Soft;
3321  else
3322    Fn = RetCC_Mips;
3323
3324  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3325    MVT VT = RetVals[I].VT;
3326    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3327    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3328
3329    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3330#ifndef NDEBUG
3331      dbgs() << "Call result #" << I << " has unhandled type "
3332             << EVT(VT).getEVTString() << '\n';
3333#endif
3334      llvm_unreachable(nullptr);
3335    }
3336  }
3337}
3338
3339void MipsTargetLowering::MipsCC::
3340analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3341                  const SDNode *CallNode, const Type *RetTy) const {
3342  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3343}
3344
3345void MipsTargetLowering::MipsCC::
3346analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3347              const Type *RetTy) const {
3348  analyzeReturn(Outs, IsSoftFloat, nullptr, RetTy);
3349}
3350
3351void MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3352                                                MVT LocVT,
3353                                                CCValAssign::LocInfo LocInfo,
3354                                                ISD::ArgFlagsTy ArgFlags) {
3355  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3356
3357  struct ByValArgInfo ByVal;
3358  unsigned RegSize = regSize();
3359  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3360  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3361                            RegSize * 2);
3362
3363  if (useRegsForByval())
3364    allocateRegs(ByVal, ByValSize, Align);
3365
3366  // Allocate space on caller's stack.
3367  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3368                                       Align);
3369  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3370                                    LocInfo));
3371  ByValArgs.push_back(ByVal);
3372}
3373
3374unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3375  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3376}
3377
3378unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3379  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3380}
3381
3382const MCPhysReg *MipsTargetLowering::MipsCC::intArgRegs() const {
3383  return IsO32 ? O32IntRegs : Mips64IntRegs;
3384}
3385
3386llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3387  if (CallConv == CallingConv::Fast)
3388    return CC_Mips_FastCC;
3389
3390  if (SpecialCallingConv == Mips16RetHelperConv)
3391    return CC_Mips16RetHelper;
3392  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN;
3393}
3394
3395llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3396  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN_VarArg;
3397}
3398
3399const MCPhysReg *MipsTargetLowering::MipsCC::shadowRegs() const {
3400  return IsO32 ? O32IntRegs : Mips64DPRegs;
3401}
3402
3403void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3404                                              unsigned ByValSize,
3405                                              unsigned Align) {
3406  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3407  const MCPhysReg *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3408  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3409         "Byval argument's size and alignment should be a multiple of"
3410         "RegSize.");
3411
3412  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3413
3414  // If Align > RegSize, the first arg register must be even.
3415  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3416    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3417    ++ByVal.FirstIdx;
3418  }
3419
3420  // Mark the registers allocated.
3421  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3422       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3423    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3424}
3425
3426MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3427                                         const SDNode *CallNode,
3428                                         bool IsSoftFloat) const {
3429  if (IsSoftFloat || IsO32)
3430    return VT;
3431
3432  // Check if the original type was fp128.
3433  if (originalTypeIsF128(OrigTy, CallNode)) {
3434    assert(VT == MVT::i64);
3435    return MVT::f64;
3436  }
3437
3438  return VT;
3439}
3440
3441void MipsTargetLowering::
3442copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
3443              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3444              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3445              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3446  MachineFunction &MF = DAG.getMachineFunction();
3447  MachineFrameInfo *MFI = MF.getFrameInfo();
3448  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3449  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3450  int FrameObjOffset;
3451
3452  if (RegAreaSize)
3453    FrameObjOffset = (int)CC.reservedArgArea() -
3454      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3455  else
3456    FrameObjOffset = ByVal.Address;
3457
3458  // Create frame object.
3459  EVT PtrTy = getPointerTy();
3460  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3461  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3462  InVals.push_back(FIN);
3463
3464  if (!ByVal.NumRegs)
3465    return;
3466
3467  // Copy arg registers.
3468  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3469  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3470
3471  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3472    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3473    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3474    unsigned Offset = I * CC.regSize();
3475    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3476                                   DAG.getConstant(Offset, PtrTy));
3477    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3478                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3479                                 false, false, 0);
3480    OutChains.push_back(Store);
3481  }
3482}
3483
3484// Copy byVal arg to registers and stack.
3485void MipsTargetLowering::
3486passByValArg(SDValue Chain, SDLoc DL,
3487             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3488             SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
3489             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3490             const MipsCC &CC, const ByValArgInfo &ByVal,
3491             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3492  unsigned ByValSizeInBytes = Flags.getByValSize();
3493  unsigned OffsetInBytes = 0; // From beginning of struct
3494  unsigned RegSizeInBytes = CC.regSize();
3495  unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
3496  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
3497
3498  if (ByVal.NumRegs) {
3499    const MCPhysReg *ArgRegs = CC.intArgRegs();
3500    bool LeftoverBytes = (ByVal.NumRegs * RegSizeInBytes > ByValSizeInBytes);
3501    unsigned I = 0;
3502
3503    // Copy words to registers.
3504    for (; I < ByVal.NumRegs - LeftoverBytes;
3505         ++I, OffsetInBytes += RegSizeInBytes) {
3506      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3507                                    DAG.getConstant(OffsetInBytes, PtrTy));
3508      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3509                                    MachinePointerInfo(), false, false, false,
3510                                    Alignment);
3511      MemOpChains.push_back(LoadVal.getValue(1));
3512      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3513      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3514    }
3515
3516    // Return if the struct has been fully copied.
3517    if (ByValSizeInBytes == OffsetInBytes)
3518      return;
3519
3520    // Copy the remainder of the byval argument with sub-word loads and shifts.
3521    if (LeftoverBytes) {
3522      assert((ByValSizeInBytes > OffsetInBytes) &&
3523             (ByValSizeInBytes < OffsetInBytes + RegSizeInBytes) &&
3524             "Size of the remainder should be smaller than RegSizeInBytes.");
3525      SDValue Val;
3526
3527      for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
3528           OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
3529        unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
3530
3531        if (RemainingSizeInBytes < LoadSizeInBytes)
3532          continue;
3533
3534        // Load subword.
3535        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3536                                      DAG.getConstant(OffsetInBytes, PtrTy));
3537        SDValue LoadVal = DAG.getExtLoad(
3538            ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
3539            MVT::getIntegerVT(LoadSizeInBytes * 8), false, false, Alignment);
3540        MemOpChains.push_back(LoadVal.getValue(1));
3541
3542        // Shift the loaded value.
3543        unsigned Shamt;
3544
3545        if (isLittle)
3546          Shamt = TotalBytesLoaded * 8;
3547        else
3548          Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
3549
3550        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3551                                    DAG.getConstant(Shamt, MVT::i32));
3552
3553        if (Val.getNode())
3554          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3555        else
3556          Val = Shift;
3557
3558        OffsetInBytes += LoadSizeInBytes;
3559        TotalBytesLoaded += LoadSizeInBytes;
3560        Alignment = std::min(Alignment, LoadSizeInBytes);
3561      }
3562
3563      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3564      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3565      return;
3566    }
3567  }
3568
3569  // Copy remainder of byval arg to it with memcpy.
3570  unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
3571  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3572                            DAG.getConstant(OffsetInBytes, PtrTy));
3573  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3574                            DAG.getIntPtrConstant(ByVal.Address));
3575  Chain = DAG.getMemcpy(Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, PtrTy),
3576                        Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
3577                        MachinePointerInfo(), MachinePointerInfo());
3578  MemOpChains.push_back(Chain);
3579}
3580
3581void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3582                                         const MipsCC &CC, SDValue Chain,
3583                                         SDLoc DL, SelectionDAG &DAG) const {
3584  unsigned NumRegs = CC.numIntArgRegs();
3585  const MCPhysReg *ArgRegs = CC.intArgRegs();
3586  const CCState &CCInfo = CC.getCCInfo();
3587  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3588  unsigned RegSize = CC.regSize();
3589  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3590  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3591  MachineFunction &MF = DAG.getMachineFunction();
3592  MachineFrameInfo *MFI = MF.getFrameInfo();
3593  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3594
3595  // Offset of the first variable argument from stack pointer.
3596  int VaArgOffset;
3597
3598  if (NumRegs == Idx)
3599    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3600  else
3601    VaArgOffset = (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3602
3603  // Record the frame index of the first variable argument
3604  // which is a value necessary to VASTART.
3605  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3606  MipsFI->setVarArgsFrameIndex(FI);
3607
3608  // Copy the integer registers that have not been used for argument passing
3609  // to the argument register save area. For O32, the save area is allocated
3610  // in the caller's stack frame, while for N32/64, it is allocated in the
3611  // callee's stack frame.
3612  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3613    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3614    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3615    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3616    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3617    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3618                                 MachinePointerInfo(), false, false, 0);
3619    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue((Value*)nullptr);
3620    OutChains.push_back(Store);
3621  }
3622}
3623