MipsISelLowering.cpp revision dfb8dbb4fd97140aa9bf6b9dadbca25665144c09
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "mips-lower"
16#include "MipsISelLowering.h"
17#include "MipsMachineFunction.h"
18#include "MipsTargetMachine.h"
19#include "MipsTargetObjectFile.h"
20#include "MipsSubtarget.h"
21#include "InstPrinter/MipsInstPrinter.h"
22#include "MCTargetDesc/MipsBaseInfo.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/CallingConv.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38
39using namespace llvm;
40
41// If I is a shifted mask, set the size (Size) and the first bit of the
42// mask (Pos), and return true.
43// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
44static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
45  if (!isShiftedMask_64(I))
46     return false;
47
48  Size = CountPopulation_64(I);
49  Pos = CountTrailingZeros_64(I);
50  return true;
51}
52
53static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
54  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
55  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
56}
57
58const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
59  switch (Opcode) {
60  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
61  case MipsISD::Hi:                return "MipsISD::Hi";
62  case MipsISD::Lo:                return "MipsISD::Lo";
63  case MipsISD::GPRel:             return "MipsISD::GPRel";
64  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
65  case MipsISD::Ret:               return "MipsISD::Ret";
66  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
67  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
68  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
69  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
70  case MipsISD::FPRound:           return "MipsISD::FPRound";
71  case MipsISD::MAdd:              return "MipsISD::MAdd";
72  case MipsISD::MAddu:             return "MipsISD::MAddu";
73  case MipsISD::MSub:              return "MipsISD::MSub";
74  case MipsISD::MSubu:             return "MipsISD::MSubu";
75  case MipsISD::DivRem:            return "MipsISD::DivRem";
76  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
77  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
78  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
79  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
80  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
81  case MipsISD::Sync:              return "MipsISD::Sync";
82  case MipsISD::Ext:               return "MipsISD::Ext";
83  case MipsISD::Ins:               return "MipsISD::Ins";
84  case MipsISD::LWL:               return "MipsISD::LWL";
85  case MipsISD::LWR:               return "MipsISD::LWR";
86  case MipsISD::SWL:               return "MipsISD::SWL";
87  case MipsISD::SWR:               return "MipsISD::SWR";
88  case MipsISD::LDL:               return "MipsISD::LDL";
89  case MipsISD::LDR:               return "MipsISD::LDR";
90  case MipsISD::SDL:               return "MipsISD::SDL";
91  case MipsISD::SDR:               return "MipsISD::SDR";
92  case MipsISD::EXTP:              return "MipsISD::EXTP";
93  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
94  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
95  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
96  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
97  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
98  case MipsISD::SHILO:             return "MipsISD::SHILO";
99  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
100  case MipsISD::MULT:              return "MipsISD::MULT";
101  case MipsISD::MULTU:             return "MipsISD::MULTU";
102  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSPDSP";
103  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
104  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
105  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
106  default:                         return NULL;
107  }
108}
109
110MipsTargetLowering::
111MipsTargetLowering(MipsTargetMachine &TM)
112  : TargetLowering(TM, new MipsTargetObjectFile()),
113    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
114    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
115    IsO32(Subtarget->isABI_O32()) {
116
117  // Mips does not have i1 type, so use i32 for
118  // setcc operations results (slt, sgt, ...).
119  setBooleanContents(ZeroOrOneBooleanContent);
120  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
121
122  // Set up the register classes
123  addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
124
125  if (HasMips64)
126    addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
127
128  if (Subtarget->inMips16Mode()) {
129    addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
130  }
131
132  if (Subtarget->hasDSP()) {
133    MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
134
135    for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
136      addRegisterClass(VecTys[i], &Mips::DSPRegsRegClass);
137
138      // Expand all builtin opcodes.
139      for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
140        setOperationAction(Opc, VecTys[i], Expand);
141
142      setOperationAction(ISD::LOAD, VecTys[i], Legal);
143      setOperationAction(ISD::STORE, VecTys[i], Legal);
144      setOperationAction(ISD::BITCAST, VecTys[i], Legal);
145    }
146  }
147
148  if (!TM.Options.UseSoftFloat) {
149    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
150
151    // When dealing with single precision only, use libcalls
152    if (!Subtarget->isSingleFloat()) {
153      if (HasMips64)
154        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
155      else
156        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
157    }
158  }
159
160  // Load extented operations for i1 types must be promoted
161  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
162  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
163  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
164
165  // MIPS doesn't have extending float->double load/store
166  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
167  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
168
169  // Used by legalize types to correctly generate the setcc result.
170  // Without this, every float setcc comes with a AND/OR with the result,
171  // we don't want this, since the fpcmp result goes to a flag register,
172  // which is used implicitly by brcond and select operations.
173  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
174
175  // Mips Custom Operations
176  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
177  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
178  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
179  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
180  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
181  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
182  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
183  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
184  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
185  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
186  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
187  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
188  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
189  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
190  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
191  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
192  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
193  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
194  if (!Subtarget->inMips16Mode()) {
195    setOperationAction(ISD::LOAD,               MVT::i32, Custom);
196    setOperationAction(ISD::STORE,              MVT::i32, Custom);
197  }
198
199  if (!TM.Options.NoNaNsFPMath) {
200    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
201    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
202  }
203
204  if (HasMips64) {
205    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
206    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
207    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
208    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
209    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
210    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
211    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
212    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
213  }
214
215  if (!HasMips64) {
216    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
217    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
218    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
219  }
220
221  setOperationAction(ISD::SDIV, MVT::i32, Expand);
222  setOperationAction(ISD::SREM, MVT::i32, Expand);
223  setOperationAction(ISD::UDIV, MVT::i32, Expand);
224  setOperationAction(ISD::UREM, MVT::i32, Expand);
225  setOperationAction(ISD::SDIV, MVT::i64, Expand);
226  setOperationAction(ISD::SREM, MVT::i64, Expand);
227  setOperationAction(ISD::UDIV, MVT::i64, Expand);
228  setOperationAction(ISD::UREM, MVT::i64, Expand);
229
230  // Operations not directly supported by Mips.
231  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
232  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
233  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
234  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
235  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
236  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
237  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
238  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
239  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
240  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
241  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
242  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
243  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
244  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
245  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
246  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
247  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
248  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
249  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
250  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
251
252  if (!Subtarget->hasMips32r2())
253    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
254
255  if (!Subtarget->hasMips64r2())
256    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
257
258  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
259  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
260  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
261  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
262  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
263  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
264  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
265  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
266  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
267  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
268  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
269  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
270  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
271  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
272  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
273
274  if (!TM.Options.NoNaNsFPMath) {
275    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
276    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
277  }
278
279  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
280  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
281  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
282  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
283
284  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
285  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
286  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
287
288  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
289  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
290
291  // Use the default for now
292  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
293  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
294
295  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
296  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
297  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
298  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
299
300  setInsertFencesForAtomic(true);
301
302  if (!Subtarget->hasSEInReg()) {
303    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
304    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
305  }
306
307  if (!Subtarget->hasBitCount()) {
308    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
309    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
310  }
311
312  if (!Subtarget->hasSwap()) {
313    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
314    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
315  }
316
317  if (HasMips64) {
318    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
319    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
320    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
321    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
322  }
323
324  setTargetDAGCombine(ISD::ADDE);
325  setTargetDAGCombine(ISD::SUBE);
326  setTargetDAGCombine(ISD::SDIVREM);
327  setTargetDAGCombine(ISD::UDIVREM);
328  setTargetDAGCombine(ISD::SELECT);
329  setTargetDAGCombine(ISD::AND);
330  setTargetDAGCombine(ISD::OR);
331  setTargetDAGCombine(ISD::ADD);
332
333  setMinFunctionAlignment(HasMips64 ? 3 : 2);
334
335  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
336  computeRegisterProperties();
337
338  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
339  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
340
341  maxStoresPerMemcpy = 16;
342}
343
344bool MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
345  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
346
347  if (Subtarget->inMips16Mode())
348    return false;
349
350  switch (SVT) {
351  case MVT::i64:
352  case MVT::i32:
353    return true;
354  default:
355    return false;
356  }
357}
358
359EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
360  return MVT::i32;
361}
362
363// SelectMadd -
364// Transforms a subgraph in CurDAG if the following pattern is found:
365//  (addc multLo, Lo0), (adde multHi, Hi0),
366// where,
367//  multHi/Lo: product of multiplication
368//  Lo0: initial value of Lo register
369//  Hi0: initial value of Hi register
370// Return true if pattern matching was successful.
371static bool SelectMadd(SDNode *ADDENode, SelectionDAG *CurDAG) {
372  // ADDENode's second operand must be a flag output of an ADDC node in order
373  // for the matching to be successful.
374  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
375
376  if (ADDCNode->getOpcode() != ISD::ADDC)
377    return false;
378
379  SDValue MultHi = ADDENode->getOperand(0);
380  SDValue MultLo = ADDCNode->getOperand(0);
381  SDNode *MultNode = MultHi.getNode();
382  unsigned MultOpc = MultHi.getOpcode();
383
384  // MultHi and MultLo must be generated by the same node,
385  if (MultLo.getNode() != MultNode)
386    return false;
387
388  // and it must be a multiplication.
389  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
390    return false;
391
392  // MultLo amd MultHi must be the first and second output of MultNode
393  // respectively.
394  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
395    return false;
396
397  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
398  // of the values of MultNode, in which case MultNode will be removed in later
399  // phases.
400  // If there exist users other than ADDENode or ADDCNode, this function returns
401  // here, which will result in MultNode being mapped to a single MULT
402  // instruction node rather than a pair of MULT and MADD instructions being
403  // produced.
404  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
405    return false;
406
407  SDValue Chain = CurDAG->getEntryNode();
408  DebugLoc dl = ADDENode->getDebugLoc();
409
410  // create MipsMAdd(u) node
411  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
412
413  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
414                                 MultNode->getOperand(0),// Factor 0
415                                 MultNode->getOperand(1),// Factor 1
416                                 ADDCNode->getOperand(1),// Lo0
417                                 ADDENode->getOperand(1));// Hi0
418
419  // create CopyFromReg nodes
420  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
421                                              MAdd);
422  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
423                                              Mips::HI, MVT::i32,
424                                              CopyFromLo.getValue(2));
425
426  // replace uses of adde and addc here
427  if (!SDValue(ADDCNode, 0).use_empty())
428    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
429
430  if (!SDValue(ADDENode, 0).use_empty())
431    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
432
433  return true;
434}
435
436// SelectMsub -
437// Transforms a subgraph in CurDAG if the following pattern is found:
438//  (addc Lo0, multLo), (sube Hi0, multHi),
439// where,
440//  multHi/Lo: product of multiplication
441//  Lo0: initial value of Lo register
442//  Hi0: initial value of Hi register
443// Return true if pattern matching was successful.
444static bool SelectMsub(SDNode *SUBENode, SelectionDAG *CurDAG) {
445  // SUBENode's second operand must be a flag output of an SUBC node in order
446  // for the matching to be successful.
447  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
448
449  if (SUBCNode->getOpcode() != ISD::SUBC)
450    return false;
451
452  SDValue MultHi = SUBENode->getOperand(1);
453  SDValue MultLo = SUBCNode->getOperand(1);
454  SDNode *MultNode = MultHi.getNode();
455  unsigned MultOpc = MultHi.getOpcode();
456
457  // MultHi and MultLo must be generated by the same node,
458  if (MultLo.getNode() != MultNode)
459    return false;
460
461  // and it must be a multiplication.
462  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
463    return false;
464
465  // MultLo amd MultHi must be the first and second output of MultNode
466  // respectively.
467  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
468    return false;
469
470  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
471  // of the values of MultNode, in which case MultNode will be removed in later
472  // phases.
473  // If there exist users other than SUBENode or SUBCNode, this function returns
474  // here, which will result in MultNode being mapped to a single MULT
475  // instruction node rather than a pair of MULT and MSUB instructions being
476  // produced.
477  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
478    return false;
479
480  SDValue Chain = CurDAG->getEntryNode();
481  DebugLoc dl = SUBENode->getDebugLoc();
482
483  // create MipsSub(u) node
484  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
485
486  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
487                                 MultNode->getOperand(0),// Factor 0
488                                 MultNode->getOperand(1),// Factor 1
489                                 SUBCNode->getOperand(0),// Lo0
490                                 SUBENode->getOperand(0));// Hi0
491
492  // create CopyFromReg nodes
493  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
494                                              MSub);
495  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
496                                              Mips::HI, MVT::i32,
497                                              CopyFromLo.getValue(2));
498
499  // replace uses of sube and subc here
500  if (!SDValue(SUBCNode, 0).use_empty())
501    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
502
503  if (!SDValue(SUBENode, 0).use_empty())
504    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
505
506  return true;
507}
508
509static SDValue PerformADDECombine(SDNode *N, SelectionDAG &DAG,
510                                  TargetLowering::DAGCombinerInfo &DCI,
511                                  const MipsSubtarget *Subtarget) {
512  if (DCI.isBeforeLegalize())
513    return SDValue();
514
515  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
516      SelectMadd(N, &DAG))
517    return SDValue(N, 0);
518
519  return SDValue();
520}
521
522static SDValue PerformSUBECombine(SDNode *N, SelectionDAG &DAG,
523                                  TargetLowering::DAGCombinerInfo &DCI,
524                                  const MipsSubtarget *Subtarget) {
525  if (DCI.isBeforeLegalize())
526    return SDValue();
527
528  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
529      SelectMsub(N, &DAG))
530    return SDValue(N, 0);
531
532  return SDValue();
533}
534
535static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG &DAG,
536                                    TargetLowering::DAGCombinerInfo &DCI,
537                                    const MipsSubtarget *Subtarget) {
538  if (DCI.isBeforeLegalizeOps())
539    return SDValue();
540
541  EVT Ty = N->getValueType(0);
542  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
543  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
544  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
545                                                  MipsISD::DivRemU;
546  DebugLoc dl = N->getDebugLoc();
547
548  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
549                               N->getOperand(0), N->getOperand(1));
550  SDValue InChain = DAG.getEntryNode();
551  SDValue InGlue = DivRem;
552
553  // insert MFLO
554  if (N->hasAnyUseOfValue(0)) {
555    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
556                                            InGlue);
557    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
558    InChain = CopyFromLo.getValue(1);
559    InGlue = CopyFromLo.getValue(2);
560  }
561
562  // insert MFHI
563  if (N->hasAnyUseOfValue(1)) {
564    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
565                                            HI, Ty, InGlue);
566    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
567  }
568
569  return SDValue();
570}
571
572static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
573  switch (CC) {
574  default: llvm_unreachable("Unknown fp condition code!");
575  case ISD::SETEQ:
576  case ISD::SETOEQ: return Mips::FCOND_OEQ;
577  case ISD::SETUNE: return Mips::FCOND_UNE;
578  case ISD::SETLT:
579  case ISD::SETOLT: return Mips::FCOND_OLT;
580  case ISD::SETGT:
581  case ISD::SETOGT: return Mips::FCOND_OGT;
582  case ISD::SETLE:
583  case ISD::SETOLE: return Mips::FCOND_OLE;
584  case ISD::SETGE:
585  case ISD::SETOGE: return Mips::FCOND_OGE;
586  case ISD::SETULT: return Mips::FCOND_ULT;
587  case ISD::SETULE: return Mips::FCOND_ULE;
588  case ISD::SETUGT: return Mips::FCOND_UGT;
589  case ISD::SETUGE: return Mips::FCOND_UGE;
590  case ISD::SETUO:  return Mips::FCOND_UN;
591  case ISD::SETO:   return Mips::FCOND_OR;
592  case ISD::SETNE:
593  case ISD::SETONE: return Mips::FCOND_ONE;
594  case ISD::SETUEQ: return Mips::FCOND_UEQ;
595  }
596}
597
598
599// Returns true if condition code has to be inverted.
600static bool InvertFPCondCode(Mips::CondCode CC) {
601  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
602    return false;
603
604  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
605         "Illegal Condition Code");
606
607  return true;
608}
609
610// Creates and returns an FPCmp node from a setcc node.
611// Returns Op if setcc is not a floating point comparison.
612static SDValue CreateFPCmp(SelectionDAG &DAG, const SDValue &Op) {
613  // must be a SETCC node
614  if (Op.getOpcode() != ISD::SETCC)
615    return Op;
616
617  SDValue LHS = Op.getOperand(0);
618
619  if (!LHS.getValueType().isFloatingPoint())
620    return Op;
621
622  SDValue RHS = Op.getOperand(1);
623  DebugLoc dl = Op.getDebugLoc();
624
625  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
626  // node if necessary.
627  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
628
629  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
630                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
631}
632
633// Creates and returns a CMovFPT/F node.
634static SDValue CreateCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
635                            SDValue False, DebugLoc DL) {
636  bool invert = InvertFPCondCode((Mips::CondCode)
637                                 cast<ConstantSDNode>(Cond.getOperand(2))
638                                 ->getSExtValue());
639
640  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
641                     True.getValueType(), True, False, Cond);
642}
643
644static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
645                                    TargetLowering::DAGCombinerInfo &DCI,
646                                    const MipsSubtarget *Subtarget) {
647  if (DCI.isBeforeLegalizeOps())
648    return SDValue();
649
650  SDValue SetCC = N->getOperand(0);
651
652  if ((SetCC.getOpcode() != ISD::SETCC) ||
653      !SetCC.getOperand(0).getValueType().isInteger())
654    return SDValue();
655
656  SDValue False = N->getOperand(2);
657  EVT FalseTy = False.getValueType();
658
659  if (!FalseTy.isInteger())
660    return SDValue();
661
662  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
663
664  if (!CN || CN->getZExtValue())
665    return SDValue();
666
667  const DebugLoc DL = N->getDebugLoc();
668  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
669  SDValue True = N->getOperand(1);
670
671  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
672                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
673
674  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
675}
676
677static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
678                                 TargetLowering::DAGCombinerInfo &DCI,
679                                 const MipsSubtarget *Subtarget) {
680  // Pattern match EXT.
681  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
682  //  => ext $dst, $src, size, pos
683  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
684    return SDValue();
685
686  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
687  unsigned ShiftRightOpc = ShiftRight.getOpcode();
688
689  // Op's first operand must be a shift right.
690  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
691    return SDValue();
692
693  // The second operand of the shift must be an immediate.
694  ConstantSDNode *CN;
695  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
696    return SDValue();
697
698  uint64_t Pos = CN->getZExtValue();
699  uint64_t SMPos, SMSize;
700
701  // Op's second operand must be a shifted mask.
702  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
703      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
704    return SDValue();
705
706  // Return if the shifted mask does not start at bit 0 or the sum of its size
707  // and Pos exceeds the word's size.
708  EVT ValTy = N->getValueType(0);
709  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
710    return SDValue();
711
712  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
713                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
714                     DAG.getConstant(SMSize, MVT::i32));
715}
716
717static SDValue PerformORCombine(SDNode *N, SelectionDAG &DAG,
718                                TargetLowering::DAGCombinerInfo &DCI,
719                                const MipsSubtarget *Subtarget) {
720  // Pattern match INS.
721  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
722  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
723  //  => ins $dst, $src, size, pos, $src1
724  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
725    return SDValue();
726
727  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
728  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
729  ConstantSDNode *CN;
730
731  // See if Op's first operand matches (and $src1 , mask0).
732  if (And0.getOpcode() != ISD::AND)
733    return SDValue();
734
735  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
736      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
737    return SDValue();
738
739  // See if Op's second operand matches (and (shl $src, pos), mask1).
740  if (And1.getOpcode() != ISD::AND)
741    return SDValue();
742
743  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
744      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
745    return SDValue();
746
747  // The shift masks must have the same position and size.
748  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
749    return SDValue();
750
751  SDValue Shl = And1.getOperand(0);
752  if (Shl.getOpcode() != ISD::SHL)
753    return SDValue();
754
755  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
756    return SDValue();
757
758  unsigned Shamt = CN->getZExtValue();
759
760  // Return if the shift amount and the first bit position of mask are not the
761  // same.
762  EVT ValTy = N->getValueType(0);
763  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
764    return SDValue();
765
766  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
767                     DAG.getConstant(SMPos0, MVT::i32),
768                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
769}
770
771static SDValue PerformADDCombine(SDNode *N, SelectionDAG &DAG,
772                                 TargetLowering::DAGCombinerInfo &DCI,
773                                 const MipsSubtarget *Subtarget) {
774  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
775
776  if (DCI.isBeforeLegalizeOps())
777    return SDValue();
778
779  SDValue Add = N->getOperand(1);
780
781  if (Add.getOpcode() != ISD::ADD)
782    return SDValue();
783
784  SDValue Lo = Add.getOperand(1);
785
786  if ((Lo.getOpcode() != MipsISD::Lo) ||
787      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
788    return SDValue();
789
790  EVT ValTy = N->getValueType(0);
791  DebugLoc DL = N->getDebugLoc();
792
793  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
794                             Add.getOperand(0));
795  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
796}
797
798SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
799  const {
800  SelectionDAG &DAG = DCI.DAG;
801  unsigned opc = N->getOpcode();
802
803  switch (opc) {
804  default: break;
805  case ISD::ADDE:
806    return PerformADDECombine(N, DAG, DCI, Subtarget);
807  case ISD::SUBE:
808    return PerformSUBECombine(N, DAG, DCI, Subtarget);
809  case ISD::SDIVREM:
810  case ISD::UDIVREM:
811    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
812  case ISD::SELECT:
813    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
814  case ISD::AND:
815    return PerformANDCombine(N, DAG, DCI, Subtarget);
816  case ISD::OR:
817    return PerformORCombine(N, DAG, DCI, Subtarget);
818  case ISD::ADD:
819    return PerformADDCombine(N, DAG, DCI, Subtarget);
820  }
821
822  return SDValue();
823}
824
825void
826MipsTargetLowering::LowerOperationWrapper(SDNode *N,
827                                          SmallVectorImpl<SDValue> &Results,
828                                          SelectionDAG &DAG) const {
829  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
830
831  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
832    Results.push_back(Res.getValue(I));
833}
834
835void
836MipsTargetLowering::ReplaceNodeResults(SDNode *N,
837                                       SmallVectorImpl<SDValue> &Results,
838                                       SelectionDAG &DAG) const {
839  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
840
841  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
842    Results.push_back(Res.getValue(I));
843}
844
845SDValue MipsTargetLowering::
846LowerOperation(SDValue Op, SelectionDAG &DAG) const
847{
848  switch (Op.getOpcode())
849  {
850    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
851    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
852    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
853    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
854    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
855    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
856    case ISD::SELECT:             return LowerSELECT(Op, DAG);
857    case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
858    case ISD::SETCC:              return LowerSETCC(Op, DAG);
859    case ISD::VASTART:            return LowerVASTART(Op, DAG);
860    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
861    case ISD::FABS:               return LowerFABS(Op, DAG);
862    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
863    case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
864    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
865    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
866    case ISD::SHL_PARTS:          return LowerShiftLeftParts(Op, DAG);
867    case ISD::SRA_PARTS:          return LowerShiftRightParts(Op, DAG, true);
868    case ISD::SRL_PARTS:          return LowerShiftRightParts(Op, DAG, false);
869    case ISD::LOAD:               return LowerLOAD(Op, DAG);
870    case ISD::STORE:              return LowerSTORE(Op, DAG);
871    case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
872    case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
873  }
874  return SDValue();
875}
876
877//===----------------------------------------------------------------------===//
878//  Lower helper functions
879//===----------------------------------------------------------------------===//
880
881// AddLiveIn - This helper function adds the specified physical register to the
882// MachineFunction as a live in value.  It also creates a corresponding
883// virtual register for it.
884static unsigned
885AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
886{
887  assert(RC->contains(PReg) && "Not the correct regclass!");
888  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
889  MF.getRegInfo().addLiveIn(PReg, VReg);
890  return VReg;
891}
892
893// Get fp branch code (not opcode) from condition code.
894static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
895  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
896    return Mips::BRANCH_T;
897
898  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
899         "Invalid CondCode.");
900
901  return Mips::BRANCH_F;
902}
903
904/*
905static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
906                                        DebugLoc dl,
907                                        const MipsSubtarget *Subtarget,
908                                        const TargetInstrInfo *TII,
909                                        bool isFPCmp, unsigned Opc) {
910  // There is no need to expand CMov instructions if target has
911  // conditional moves.
912  if (Subtarget->hasCondMov())
913    return BB;
914
915  // To "insert" a SELECT_CC instruction, we actually have to insert the
916  // diamond control-flow pattern.  The incoming instruction knows the
917  // destination vreg to set, the condition code register to branch on, the
918  // true/false values to select between, and a branch opcode to use.
919  const BasicBlock *LLVM_BB = BB->getBasicBlock();
920  MachineFunction::iterator It = BB;
921  ++It;
922
923  //  thisMBB:
924  //  ...
925  //   TrueVal = ...
926  //   setcc r1, r2, r3
927  //   bNE   r1, r0, copy1MBB
928  //   fallthrough --> copy0MBB
929  MachineBasicBlock *thisMBB  = BB;
930  MachineFunction *F = BB->getParent();
931  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
932  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
933  F->insert(It, copy0MBB);
934  F->insert(It, sinkMBB);
935
936  // Transfer the remainder of BB and its successor edges to sinkMBB.
937  sinkMBB->splice(sinkMBB->begin(), BB,
938                  llvm::next(MachineBasicBlock::iterator(MI)),
939                  BB->end());
940  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
941
942  // Next, add the true and fallthrough blocks as its successors.
943  BB->addSuccessor(copy0MBB);
944  BB->addSuccessor(sinkMBB);
945
946  // Emit the right instruction according to the type of the operands compared
947  if (isFPCmp)
948    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
949  else
950    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
951      .addReg(Mips::ZERO).addMBB(sinkMBB);
952
953  //  copy0MBB:
954  //   %FalseValue = ...
955  //   # fallthrough to sinkMBB
956  BB = copy0MBB;
957
958  // Update machine-CFG edges
959  BB->addSuccessor(sinkMBB);
960
961  //  sinkMBB:
962  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
963  //  ...
964  BB = sinkMBB;
965
966  if (isFPCmp)
967    BuildMI(*BB, BB->begin(), dl,
968            TII->get(Mips::PHI), MI->getOperand(0).getReg())
969      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
970      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
971  else
972    BuildMI(*BB, BB->begin(), dl,
973            TII->get(Mips::PHI), MI->getOperand(0).getReg())
974      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
975      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
976
977  MI->eraseFromParent();   // The pseudo instruction is gone now.
978  return BB;
979}
980*/
981
982MachineBasicBlock *
983MipsTargetLowering::EmitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
984  // $bb:
985  //  bposge32_pseudo $vr0
986  //  =>
987  // $bb:
988  //  bposge32 $tbb
989  // $fbb:
990  //  li $vr2, 0
991  //  b $sink
992  // $tbb:
993  //  li $vr1, 1
994  // $sink:
995  //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
996
997  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
998  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
999  const TargetRegisterClass *RC = &Mips::CPURegsRegClass;
1000  DebugLoc DL = MI->getDebugLoc();
1001  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1002  MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB));
1003  MachineFunction *F = BB->getParent();
1004  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
1005  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
1006  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
1007  F->insert(It, FBB);
1008  F->insert(It, TBB);
1009  F->insert(It, Sink);
1010
1011  // Transfer the remainder of BB and its successor edges to Sink.
1012  Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)),
1013               BB->end());
1014  Sink->transferSuccessorsAndUpdatePHIs(BB);
1015
1016  // Add successors.
1017  BB->addSuccessor(FBB);
1018  BB->addSuccessor(TBB);
1019  FBB->addSuccessor(Sink);
1020  TBB->addSuccessor(Sink);
1021
1022  // Insert the real bposge32 instruction to $BB.
1023  BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
1024
1025  // Fill $FBB.
1026  unsigned VR2 = RegInfo.createVirtualRegister(RC);
1027  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
1028    .addReg(Mips::ZERO).addImm(0);
1029  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
1030
1031  // Fill $TBB.
1032  unsigned VR1 = RegInfo.createVirtualRegister(RC);
1033  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
1034    .addReg(Mips::ZERO).addImm(1);
1035
1036  // Insert phi function to $Sink.
1037  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
1038          MI->getOperand(0).getReg())
1039    .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
1040
1041  MI->eraseFromParent();   // The pseudo instruction is gone now.
1042  return Sink;
1043}
1044
1045MachineBasicBlock *
1046MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1047                                                MachineBasicBlock *BB) const {
1048  switch (MI->getOpcode()) {
1049  default: llvm_unreachable("Unexpected instr type to insert");
1050  case Mips::ATOMIC_LOAD_ADD_I8:
1051  case Mips::ATOMIC_LOAD_ADD_I8_P8:
1052    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
1053  case Mips::ATOMIC_LOAD_ADD_I16:
1054  case Mips::ATOMIC_LOAD_ADD_I16_P8:
1055    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
1056  case Mips::ATOMIC_LOAD_ADD_I32:
1057  case Mips::ATOMIC_LOAD_ADD_I32_P8:
1058    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
1059  case Mips::ATOMIC_LOAD_ADD_I64:
1060  case Mips::ATOMIC_LOAD_ADD_I64_P8:
1061    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
1062
1063  case Mips::ATOMIC_LOAD_AND_I8:
1064  case Mips::ATOMIC_LOAD_AND_I8_P8:
1065    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
1066  case Mips::ATOMIC_LOAD_AND_I16:
1067  case Mips::ATOMIC_LOAD_AND_I16_P8:
1068    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
1069  case Mips::ATOMIC_LOAD_AND_I32:
1070  case Mips::ATOMIC_LOAD_AND_I32_P8:
1071    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
1072  case Mips::ATOMIC_LOAD_AND_I64:
1073  case Mips::ATOMIC_LOAD_AND_I64_P8:
1074    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
1075
1076  case Mips::ATOMIC_LOAD_OR_I8:
1077  case Mips::ATOMIC_LOAD_OR_I8_P8:
1078    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
1079  case Mips::ATOMIC_LOAD_OR_I16:
1080  case Mips::ATOMIC_LOAD_OR_I16_P8:
1081    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
1082  case Mips::ATOMIC_LOAD_OR_I32:
1083  case Mips::ATOMIC_LOAD_OR_I32_P8:
1084    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
1085  case Mips::ATOMIC_LOAD_OR_I64:
1086  case Mips::ATOMIC_LOAD_OR_I64_P8:
1087    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
1088
1089  case Mips::ATOMIC_LOAD_XOR_I8:
1090  case Mips::ATOMIC_LOAD_XOR_I8_P8:
1091    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
1092  case Mips::ATOMIC_LOAD_XOR_I16:
1093  case Mips::ATOMIC_LOAD_XOR_I16_P8:
1094    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
1095  case Mips::ATOMIC_LOAD_XOR_I32:
1096  case Mips::ATOMIC_LOAD_XOR_I32_P8:
1097    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
1098  case Mips::ATOMIC_LOAD_XOR_I64:
1099  case Mips::ATOMIC_LOAD_XOR_I64_P8:
1100    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
1101
1102  case Mips::ATOMIC_LOAD_NAND_I8:
1103  case Mips::ATOMIC_LOAD_NAND_I8_P8:
1104    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
1105  case Mips::ATOMIC_LOAD_NAND_I16:
1106  case Mips::ATOMIC_LOAD_NAND_I16_P8:
1107    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
1108  case Mips::ATOMIC_LOAD_NAND_I32:
1109  case Mips::ATOMIC_LOAD_NAND_I32_P8:
1110    return EmitAtomicBinary(MI, BB, 4, 0, true);
1111  case Mips::ATOMIC_LOAD_NAND_I64:
1112  case Mips::ATOMIC_LOAD_NAND_I64_P8:
1113    return EmitAtomicBinary(MI, BB, 8, 0, true);
1114
1115  case Mips::ATOMIC_LOAD_SUB_I8:
1116  case Mips::ATOMIC_LOAD_SUB_I8_P8:
1117    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
1118  case Mips::ATOMIC_LOAD_SUB_I16:
1119  case Mips::ATOMIC_LOAD_SUB_I16_P8:
1120    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
1121  case Mips::ATOMIC_LOAD_SUB_I32:
1122  case Mips::ATOMIC_LOAD_SUB_I32_P8:
1123    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
1124  case Mips::ATOMIC_LOAD_SUB_I64:
1125  case Mips::ATOMIC_LOAD_SUB_I64_P8:
1126    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
1127
1128  case Mips::ATOMIC_SWAP_I8:
1129  case Mips::ATOMIC_SWAP_I8_P8:
1130    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
1131  case Mips::ATOMIC_SWAP_I16:
1132  case Mips::ATOMIC_SWAP_I16_P8:
1133    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
1134  case Mips::ATOMIC_SWAP_I32:
1135  case Mips::ATOMIC_SWAP_I32_P8:
1136    return EmitAtomicBinary(MI, BB, 4, 0);
1137  case Mips::ATOMIC_SWAP_I64:
1138  case Mips::ATOMIC_SWAP_I64_P8:
1139    return EmitAtomicBinary(MI, BB, 8, 0);
1140
1141  case Mips::ATOMIC_CMP_SWAP_I8:
1142  case Mips::ATOMIC_CMP_SWAP_I8_P8:
1143    return EmitAtomicCmpSwapPartword(MI, BB, 1);
1144  case Mips::ATOMIC_CMP_SWAP_I16:
1145  case Mips::ATOMIC_CMP_SWAP_I16_P8:
1146    return EmitAtomicCmpSwapPartword(MI, BB, 2);
1147  case Mips::ATOMIC_CMP_SWAP_I32:
1148  case Mips::ATOMIC_CMP_SWAP_I32_P8:
1149    return EmitAtomicCmpSwap(MI, BB, 4);
1150  case Mips::ATOMIC_CMP_SWAP_I64:
1151  case Mips::ATOMIC_CMP_SWAP_I64_P8:
1152    return EmitAtomicCmpSwap(MI, BB, 8);
1153  case Mips::BPOSGE32_PSEUDO:
1154    return EmitBPOSGE32(MI, BB);
1155  }
1156}
1157
1158// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1159// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1160MachineBasicBlock *
1161MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1162                                     unsigned Size, unsigned BinOpcode,
1163                                     bool Nand) const {
1164  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1165
1166  MachineFunction *MF = BB->getParent();
1167  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1168  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1169  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1170  DebugLoc dl = MI->getDebugLoc();
1171  unsigned LL, SC, AND, NOR, ZERO, BEQ;
1172
1173  if (Size == 4) {
1174    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1175    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1176    AND = Mips::AND;
1177    NOR = Mips::NOR;
1178    ZERO = Mips::ZERO;
1179    BEQ = Mips::BEQ;
1180  }
1181  else {
1182    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1183    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1184    AND = Mips::AND64;
1185    NOR = Mips::NOR64;
1186    ZERO = Mips::ZERO_64;
1187    BEQ = Mips::BEQ64;
1188  }
1189
1190  unsigned OldVal = MI->getOperand(0).getReg();
1191  unsigned Ptr = MI->getOperand(1).getReg();
1192  unsigned Incr = MI->getOperand(2).getReg();
1193
1194  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1195  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1196  unsigned Success = RegInfo.createVirtualRegister(RC);
1197
1198  // insert new blocks after the current block
1199  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1200  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1201  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1202  MachineFunction::iterator It = BB;
1203  ++It;
1204  MF->insert(It, loopMBB);
1205  MF->insert(It, exitMBB);
1206
1207  // Transfer the remainder of BB and its successor edges to exitMBB.
1208  exitMBB->splice(exitMBB->begin(), BB,
1209                  llvm::next(MachineBasicBlock::iterator(MI)),
1210                  BB->end());
1211  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1212
1213  //  thisMBB:
1214  //    ...
1215  //    fallthrough --> loopMBB
1216  BB->addSuccessor(loopMBB);
1217  loopMBB->addSuccessor(loopMBB);
1218  loopMBB->addSuccessor(exitMBB);
1219
1220  //  loopMBB:
1221  //    ll oldval, 0(ptr)
1222  //    <binop> storeval, oldval, incr
1223  //    sc success, storeval, 0(ptr)
1224  //    beq success, $0, loopMBB
1225  BB = loopMBB;
1226  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1227  if (Nand) {
1228    //  and andres, oldval, incr
1229    //  nor storeval, $0, andres
1230    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1231    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1232  } else if (BinOpcode) {
1233    //  <binop> storeval, oldval, incr
1234    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1235  } else {
1236    StoreVal = Incr;
1237  }
1238  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1239  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1240
1241  MI->eraseFromParent();   // The instruction is gone now.
1242
1243  return exitMBB;
1244}
1245
1246MachineBasicBlock *
1247MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1248                                             MachineBasicBlock *BB,
1249                                             unsigned Size, unsigned BinOpcode,
1250                                             bool Nand) const {
1251  assert((Size == 1 || Size == 2) &&
1252      "Unsupported size for EmitAtomicBinaryPartial.");
1253
1254  MachineFunction *MF = BB->getParent();
1255  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1256  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1257  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1258  DebugLoc dl = MI->getDebugLoc();
1259  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1260  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1261
1262  unsigned Dest = MI->getOperand(0).getReg();
1263  unsigned Ptr = MI->getOperand(1).getReg();
1264  unsigned Incr = MI->getOperand(2).getReg();
1265
1266  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1267  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1268  unsigned Mask = RegInfo.createVirtualRegister(RC);
1269  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1270  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1271  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1272  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1273  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1274  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1275  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1276  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1277  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1278  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1279  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1280  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1281  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1282  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1283  unsigned Success = RegInfo.createVirtualRegister(RC);
1284
1285  // insert new blocks after the current block
1286  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1287  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1288  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1289  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1290  MachineFunction::iterator It = BB;
1291  ++It;
1292  MF->insert(It, loopMBB);
1293  MF->insert(It, sinkMBB);
1294  MF->insert(It, exitMBB);
1295
1296  // Transfer the remainder of BB and its successor edges to exitMBB.
1297  exitMBB->splice(exitMBB->begin(), BB,
1298                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1299  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1300
1301  BB->addSuccessor(loopMBB);
1302  loopMBB->addSuccessor(loopMBB);
1303  loopMBB->addSuccessor(sinkMBB);
1304  sinkMBB->addSuccessor(exitMBB);
1305
1306  //  thisMBB:
1307  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1308  //    and     alignedaddr,ptr,masklsb2
1309  //    andi    ptrlsb2,ptr,3
1310  //    sll     shiftamt,ptrlsb2,3
1311  //    ori     maskupper,$0,255               # 0xff
1312  //    sll     mask,maskupper,shiftamt
1313  //    nor     mask2,$0,mask
1314  //    sll     incr2,incr,shiftamt
1315
1316  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1317  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1318    .addReg(Mips::ZERO).addImm(-4);
1319  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1320    .addReg(Ptr).addReg(MaskLSB2);
1321  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1322  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1323  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1324    .addReg(Mips::ZERO).addImm(MaskImm);
1325  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1326    .addReg(ShiftAmt).addReg(MaskUpper);
1327  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1328  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1329
1330  // atomic.load.binop
1331  // loopMBB:
1332  //   ll      oldval,0(alignedaddr)
1333  //   binop   binopres,oldval,incr2
1334  //   and     newval,binopres,mask
1335  //   and     maskedoldval0,oldval,mask2
1336  //   or      storeval,maskedoldval0,newval
1337  //   sc      success,storeval,0(alignedaddr)
1338  //   beq     success,$0,loopMBB
1339
1340  // atomic.swap
1341  // loopMBB:
1342  //   ll      oldval,0(alignedaddr)
1343  //   and     newval,incr2,mask
1344  //   and     maskedoldval0,oldval,mask2
1345  //   or      storeval,maskedoldval0,newval
1346  //   sc      success,storeval,0(alignedaddr)
1347  //   beq     success,$0,loopMBB
1348
1349  BB = loopMBB;
1350  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1351  if (Nand) {
1352    //  and andres, oldval, incr2
1353    //  nor binopres, $0, andres
1354    //  and newval, binopres, mask
1355    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1356    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1357      .addReg(Mips::ZERO).addReg(AndRes);
1358    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1359  } else if (BinOpcode) {
1360    //  <binop> binopres, oldval, incr2
1361    //  and newval, binopres, mask
1362    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1363    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1364  } else {// atomic.swap
1365    //  and newval, incr2, mask
1366    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1367  }
1368
1369  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1370    .addReg(OldVal).addReg(Mask2);
1371  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1372    .addReg(MaskedOldVal0).addReg(NewVal);
1373  BuildMI(BB, dl, TII->get(SC), Success)
1374    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1375  BuildMI(BB, dl, TII->get(Mips::BEQ))
1376    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1377
1378  //  sinkMBB:
1379  //    and     maskedoldval1,oldval,mask
1380  //    srl     srlres,maskedoldval1,shiftamt
1381  //    sll     sllres,srlres,24
1382  //    sra     dest,sllres,24
1383  BB = sinkMBB;
1384  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1385
1386  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1387    .addReg(OldVal).addReg(Mask);
1388  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1389      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1390  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1391      .addReg(SrlRes).addImm(ShiftImm);
1392  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1393      .addReg(SllRes).addImm(ShiftImm);
1394
1395  MI->eraseFromParent();   // The instruction is gone now.
1396
1397  return exitMBB;
1398}
1399
1400MachineBasicBlock *
1401MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1402                                      MachineBasicBlock *BB,
1403                                      unsigned Size) const {
1404  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1405
1406  MachineFunction *MF = BB->getParent();
1407  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1408  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1409  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1410  DebugLoc dl = MI->getDebugLoc();
1411  unsigned LL, SC, ZERO, BNE, BEQ;
1412
1413  if (Size == 4) {
1414    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1415    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1416    ZERO = Mips::ZERO;
1417    BNE = Mips::BNE;
1418    BEQ = Mips::BEQ;
1419  }
1420  else {
1421    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1422    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1423    ZERO = Mips::ZERO_64;
1424    BNE = Mips::BNE64;
1425    BEQ = Mips::BEQ64;
1426  }
1427
1428  unsigned Dest    = MI->getOperand(0).getReg();
1429  unsigned Ptr     = MI->getOperand(1).getReg();
1430  unsigned OldVal  = MI->getOperand(2).getReg();
1431  unsigned NewVal  = MI->getOperand(3).getReg();
1432
1433  unsigned Success = RegInfo.createVirtualRegister(RC);
1434
1435  // insert new blocks after the current block
1436  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1437  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1438  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1439  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1440  MachineFunction::iterator It = BB;
1441  ++It;
1442  MF->insert(It, loop1MBB);
1443  MF->insert(It, loop2MBB);
1444  MF->insert(It, exitMBB);
1445
1446  // Transfer the remainder of BB and its successor edges to exitMBB.
1447  exitMBB->splice(exitMBB->begin(), BB,
1448                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1449  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1450
1451  //  thisMBB:
1452  //    ...
1453  //    fallthrough --> loop1MBB
1454  BB->addSuccessor(loop1MBB);
1455  loop1MBB->addSuccessor(exitMBB);
1456  loop1MBB->addSuccessor(loop2MBB);
1457  loop2MBB->addSuccessor(loop1MBB);
1458  loop2MBB->addSuccessor(exitMBB);
1459
1460  // loop1MBB:
1461  //   ll dest, 0(ptr)
1462  //   bne dest, oldval, exitMBB
1463  BB = loop1MBB;
1464  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1465  BuildMI(BB, dl, TII->get(BNE))
1466    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1467
1468  // loop2MBB:
1469  //   sc success, newval, 0(ptr)
1470  //   beq success, $0, loop1MBB
1471  BB = loop2MBB;
1472  BuildMI(BB, dl, TII->get(SC), Success)
1473    .addReg(NewVal).addReg(Ptr).addImm(0);
1474  BuildMI(BB, dl, TII->get(BEQ))
1475    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1476
1477  MI->eraseFromParent();   // The instruction is gone now.
1478
1479  return exitMBB;
1480}
1481
1482MachineBasicBlock *
1483MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1484                                              MachineBasicBlock *BB,
1485                                              unsigned Size) const {
1486  assert((Size == 1 || Size == 2) &&
1487      "Unsupported size for EmitAtomicCmpSwapPartial.");
1488
1489  MachineFunction *MF = BB->getParent();
1490  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1491  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1492  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1493  DebugLoc dl = MI->getDebugLoc();
1494  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1495  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1496
1497  unsigned Dest    = MI->getOperand(0).getReg();
1498  unsigned Ptr     = MI->getOperand(1).getReg();
1499  unsigned CmpVal  = MI->getOperand(2).getReg();
1500  unsigned NewVal  = MI->getOperand(3).getReg();
1501
1502  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1503  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1504  unsigned Mask = RegInfo.createVirtualRegister(RC);
1505  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1506  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1507  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1508  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1509  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1510  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1511  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1512  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1513  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1514  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1515  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1516  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1517  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1518  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1519  unsigned Success = RegInfo.createVirtualRegister(RC);
1520
1521  // insert new blocks after the current block
1522  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1523  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1524  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1525  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1526  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1527  MachineFunction::iterator It = BB;
1528  ++It;
1529  MF->insert(It, loop1MBB);
1530  MF->insert(It, loop2MBB);
1531  MF->insert(It, sinkMBB);
1532  MF->insert(It, exitMBB);
1533
1534  // Transfer the remainder of BB and its successor edges to exitMBB.
1535  exitMBB->splice(exitMBB->begin(), BB,
1536                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1537  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1538
1539  BB->addSuccessor(loop1MBB);
1540  loop1MBB->addSuccessor(sinkMBB);
1541  loop1MBB->addSuccessor(loop2MBB);
1542  loop2MBB->addSuccessor(loop1MBB);
1543  loop2MBB->addSuccessor(sinkMBB);
1544  sinkMBB->addSuccessor(exitMBB);
1545
1546  // FIXME: computation of newval2 can be moved to loop2MBB.
1547  //  thisMBB:
1548  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1549  //    and     alignedaddr,ptr,masklsb2
1550  //    andi    ptrlsb2,ptr,3
1551  //    sll     shiftamt,ptrlsb2,3
1552  //    ori     maskupper,$0,255               # 0xff
1553  //    sll     mask,maskupper,shiftamt
1554  //    nor     mask2,$0,mask
1555  //    andi    maskedcmpval,cmpval,255
1556  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1557  //    andi    maskednewval,newval,255
1558  //    sll     shiftednewval,maskednewval,shiftamt
1559  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1560  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1561    .addReg(Mips::ZERO).addImm(-4);
1562  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1563    .addReg(Ptr).addReg(MaskLSB2);
1564  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1565  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1566  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1567    .addReg(Mips::ZERO).addImm(MaskImm);
1568  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1569    .addReg(ShiftAmt).addReg(MaskUpper);
1570  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1571  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1572    .addReg(CmpVal).addImm(MaskImm);
1573  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1574    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1575  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1576    .addReg(NewVal).addImm(MaskImm);
1577  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1578    .addReg(ShiftAmt).addReg(MaskedNewVal);
1579
1580  //  loop1MBB:
1581  //    ll      oldval,0(alginedaddr)
1582  //    and     maskedoldval0,oldval,mask
1583  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1584  BB = loop1MBB;
1585  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1586  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1587    .addReg(OldVal).addReg(Mask);
1588  BuildMI(BB, dl, TII->get(Mips::BNE))
1589    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1590
1591  //  loop2MBB:
1592  //    and     maskedoldval1,oldval,mask2
1593  //    or      storeval,maskedoldval1,shiftednewval
1594  //    sc      success,storeval,0(alignedaddr)
1595  //    beq     success,$0,loop1MBB
1596  BB = loop2MBB;
1597  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1598    .addReg(OldVal).addReg(Mask2);
1599  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1600    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1601  BuildMI(BB, dl, TII->get(SC), Success)
1602      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1603  BuildMI(BB, dl, TII->get(Mips::BEQ))
1604      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1605
1606  //  sinkMBB:
1607  //    srl     srlres,maskedoldval0,shiftamt
1608  //    sll     sllres,srlres,24
1609  //    sra     dest,sllres,24
1610  BB = sinkMBB;
1611  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1612
1613  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1614      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1615  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1616      .addReg(SrlRes).addImm(ShiftImm);
1617  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1618      .addReg(SllRes).addImm(ShiftImm);
1619
1620  MI->eraseFromParent();   // The instruction is gone now.
1621
1622  return exitMBB;
1623}
1624
1625//===----------------------------------------------------------------------===//
1626//  Misc Lower Operation implementation
1627//===----------------------------------------------------------------------===//
1628SDValue MipsTargetLowering::
1629LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1630{
1631  // The first operand is the chain, the second is the condition, the third is
1632  // the block to branch to if the condition is true.
1633  SDValue Chain = Op.getOperand(0);
1634  SDValue Dest = Op.getOperand(2);
1635  DebugLoc dl = Op.getDebugLoc();
1636
1637  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
1638
1639  // Return if flag is not set by a floating point comparison.
1640  if (CondRes.getOpcode() != MipsISD::FPCmp)
1641    return Op;
1642
1643  SDValue CCNode  = CondRes.getOperand(2);
1644  Mips::CondCode CC =
1645    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1646  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
1647
1648  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
1649                     Dest, CondRes);
1650}
1651
1652SDValue MipsTargetLowering::
1653LowerSELECT(SDValue Op, SelectionDAG &DAG) const
1654{
1655  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
1656
1657  // Return if flag is not set by a floating point comparison.
1658  if (Cond.getOpcode() != MipsISD::FPCmp)
1659    return Op;
1660
1661  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1662                      Op.getDebugLoc());
1663}
1664
1665SDValue MipsTargetLowering::
1666LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1667{
1668  DebugLoc DL = Op.getDebugLoc();
1669  EVT Ty = Op.getOperand(0).getValueType();
1670  SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
1671                             Op.getOperand(0), Op.getOperand(1),
1672                             Op.getOperand(4));
1673
1674  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1675                     Op.getOperand(3));
1676}
1677
1678SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1679  SDValue Cond = CreateFPCmp(DAG, Op);
1680
1681  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1682         "Floating point operand expected.");
1683
1684  SDValue True  = DAG.getConstant(1, MVT::i32);
1685  SDValue False = DAG.getConstant(0, MVT::i32);
1686
1687  return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1688}
1689
1690SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
1691                                               SelectionDAG &DAG) const {
1692  // FIXME there isn't actually debug info here
1693  DebugLoc dl = Op.getDebugLoc();
1694  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1695
1696  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1697    SDVTList VTs = DAG.getVTList(MVT::i32);
1698
1699    const MipsTargetObjectFile &TLOF =
1700      (const MipsTargetObjectFile&)getObjFileLowering();
1701
1702    // %gp_rel relocation
1703    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1704      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1705                                              MipsII::MO_GPREL);
1706      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
1707      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1708      return DAG.getNode(ISD::ADD, dl, MVT::i32, GPReg, GPRelNode);
1709    }
1710    // %hi/%lo relocation
1711    SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1712                                              MipsII::MO_ABS_HI);
1713    SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1714                                              MipsII::MO_ABS_LO);
1715    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1);
1716    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
1717    return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1718  }
1719
1720  EVT ValTy = Op.getValueType();
1721  bool HasGotOfst = (GV->hasInternalLinkage() ||
1722                     (GV->hasLocalLinkage() && !isa<Function>(GV)));
1723  unsigned GotFlag = HasMips64 ?
1724                     (HasGotOfst ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT_DISP) :
1725                     (HasGotOfst ? MipsII::MO_GOT : MipsII::MO_GOT16);
1726  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0, GotFlag);
1727  GA = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), GA);
1728  SDValue ResNode = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), GA,
1729                                MachinePointerInfo(), false, false, false, 0);
1730  // On functions and global targets not internal linked only
1731  // a load from got/GP is necessary for PIC to work.
1732  if (!HasGotOfst)
1733    return ResNode;
1734  SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0,
1735                                            HasMips64 ? MipsII::MO_GOT_OFST :
1736                                                        MipsII::MO_ABS_LO);
1737  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, GALo);
1738  return DAG.getNode(ISD::ADD, dl, ValTy, ResNode, Lo);
1739}
1740
1741SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
1742                                              SelectionDAG &DAG) const {
1743  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1744  // FIXME there isn't actually debug info here
1745  DebugLoc dl = Op.getDebugLoc();
1746
1747  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1748    // %hi/%lo relocation
1749    SDValue BAHi =
1750      DAG.getTargetBlockAddress(BA, MVT::i32, 0, MipsII::MO_ABS_HI);
1751    SDValue BALo =
1752      DAG.getTargetBlockAddress(BA, MVT::i32, 0, MipsII::MO_ABS_LO);
1753    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi);
1754    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo);
1755    return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
1756  }
1757
1758  EVT ValTy = Op.getValueType();
1759  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1760  unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1761  SDValue BAGOTOffset = DAG.getTargetBlockAddress(BA, ValTy, 0, GOTFlag);
1762  BAGOTOffset = DAG.getNode(MipsISD::Wrapper, dl, ValTy,
1763                            GetGlobalReg(DAG, ValTy), BAGOTOffset);
1764  SDValue BALOOffset = DAG.getTargetBlockAddress(BA, ValTy, 0, OFSTFlag);
1765  SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), BAGOTOffset,
1766                             MachinePointerInfo(), false, false, false, 0);
1767  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, BALOOffset);
1768  return DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1769}
1770
1771SDValue MipsTargetLowering::
1772LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1773{
1774  // If the relocation model is PIC, use the General Dynamic TLS Model or
1775  // Local Dynamic TLS model, otherwise use the Initial Exec or
1776  // Local Exec TLS Model.
1777
1778  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1779  DebugLoc dl = GA->getDebugLoc();
1780  const GlobalValue *GV = GA->getGlobal();
1781  EVT PtrVT = getPointerTy();
1782
1783  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1784
1785  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1786    // General Dynamic and Local Dynamic TLS Model.
1787    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1788                                                      : MipsII::MO_TLSGD;
1789
1790    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
1791    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
1792                                   GetGlobalReg(DAG, PtrVT), TGA);
1793    unsigned PtrSize = PtrVT.getSizeInBits();
1794    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1795
1796    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1797
1798    ArgListTy Args;
1799    ArgListEntry Entry;
1800    Entry.Node = Argument;
1801    Entry.Ty = PtrTy;
1802    Args.push_back(Entry);
1803
1804    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1805                  false, false, false, false, 0, CallingConv::C,
1806                  /*isTailCall=*/false, /*doesNotRet=*/false,
1807                  /*isReturnValueUsed=*/true,
1808                  TlsGetAddr, Args, DAG, dl);
1809    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1810
1811    SDValue Ret = CallResult.first;
1812
1813    if (model != TLSModel::LocalDynamic)
1814      return Ret;
1815
1816    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1817                                               MipsII::MO_DTPREL_HI);
1818    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1819    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1820                                               MipsII::MO_DTPREL_LO);
1821    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1822    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
1823    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
1824  }
1825
1826  SDValue Offset;
1827  if (model == TLSModel::InitialExec) {
1828    // Initial Exec TLS Model
1829    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1830                                             MipsII::MO_GOTTPREL);
1831    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1832                      TGA);
1833    Offset = DAG.getLoad(PtrVT, dl,
1834                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1835                         false, false, false, 0);
1836  } else {
1837    // Local Exec TLS Model
1838    assert(model == TLSModel::LocalExec);
1839    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1840                                               MipsII::MO_TPREL_HI);
1841    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1842                                               MipsII::MO_TPREL_LO);
1843    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1844    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1845    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1846  }
1847
1848  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
1849  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1850}
1851
1852SDValue MipsTargetLowering::
1853LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1854{
1855  SDValue HiPart, JTI, JTILo;
1856  // FIXME there isn't actually debug info here
1857  DebugLoc dl = Op.getDebugLoc();
1858  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1859  EVT PtrVT = Op.getValueType();
1860  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1861
1862  if (!IsPIC && !IsN64) {
1863    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_HI);
1864    HiPart = DAG.getNode(MipsISD::Hi, dl, PtrVT, JTI);
1865    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_LO);
1866  } else {// Emit Load from Global Pointer
1867    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1868    unsigned OfstFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1869    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, GOTFlag);
1870    JTI = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1871                      JTI);
1872    HiPart = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), JTI,
1873                         MachinePointerInfo(), false, false, false, 0);
1874    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OfstFlag);
1875  }
1876
1877  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, JTILo);
1878  return DAG.getNode(ISD::ADD, dl, PtrVT, HiPart, Lo);
1879}
1880
1881SDValue MipsTargetLowering::
1882LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1883{
1884  SDValue ResNode;
1885  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1886  const Constant *C = N->getConstVal();
1887  // FIXME there isn't actually debug info here
1888  DebugLoc dl = Op.getDebugLoc();
1889
1890  // gp_rel relocation
1891  // FIXME: we should reference the constant pool using small data sections,
1892  // but the asm printer currently doesn't support this feature without
1893  // hacking it. This feature should come soon so we can uncomment the
1894  // stuff below.
1895  //if (IsInSmallSection(C->getType())) {
1896  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1897  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1898  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1899
1900  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1901    SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1902                                             N->getOffset(), MipsII::MO_ABS_HI);
1903    SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1904                                             N->getOffset(), MipsII::MO_ABS_LO);
1905    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi);
1906    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
1907    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1908  } else {
1909    EVT ValTy = Op.getValueType();
1910    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1911    unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1912    SDValue CP = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1913                                           N->getOffset(), GOTFlag);
1914    CP = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), CP);
1915    SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), CP,
1916                               MachinePointerInfo::getConstantPool(), false,
1917                               false, false, 0);
1918    SDValue CPLo = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1919                                             N->getOffset(), OFSTFlag);
1920    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, CPLo);
1921    ResNode = DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1922  }
1923
1924  return ResNode;
1925}
1926
1927SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1928  MachineFunction &MF = DAG.getMachineFunction();
1929  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1930
1931  DebugLoc dl = Op.getDebugLoc();
1932  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1933                                 getPointerTy());
1934
1935  // vastart just stores the address of the VarArgsFrameIndex slot into the
1936  // memory location argument.
1937  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1938  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
1939                      MachinePointerInfo(SV), false, false, 0);
1940}
1941
1942static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1943  EVT TyX = Op.getOperand(0).getValueType();
1944  EVT TyY = Op.getOperand(1).getValueType();
1945  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1946  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1947  DebugLoc DL = Op.getDebugLoc();
1948  SDValue Res;
1949
1950  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1951  // to i32.
1952  SDValue X = (TyX == MVT::f32) ?
1953    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1954    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1955                Const1);
1956  SDValue Y = (TyY == MVT::f32) ?
1957    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1958    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1959                Const1);
1960
1961  if (HasR2) {
1962    // ext  E, Y, 31, 1  ; extract bit31 of Y
1963    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1964    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1965    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1966  } else {
1967    // sll SllX, X, 1
1968    // srl SrlX, SllX, 1
1969    // srl SrlY, Y, 31
1970    // sll SllY, SrlX, 31
1971    // or  Or, SrlX, SllY
1972    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1973    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1974    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1975    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1976    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1977  }
1978
1979  if (TyX == MVT::f32)
1980    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1981
1982  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1983                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1984  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1985}
1986
1987static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1988  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1989  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1990  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1991  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1992  DebugLoc DL = Op.getDebugLoc();
1993
1994  // Bitcast to integer nodes.
1995  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1996  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1997
1998  if (HasR2) {
1999    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
2000    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
2001    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2002                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
2003
2004    if (WidthX > WidthY)
2005      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2006    else if (WidthY > WidthX)
2007      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2008
2009    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2010                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
2011    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2012  }
2013
2014  // (d)sll SllX, X, 1
2015  // (d)srl SrlX, SllX, 1
2016  // (d)srl SrlY, Y, width(Y)-1
2017  // (d)sll SllY, SrlX, width(Y)-1
2018  // or     Or, SrlX, SllY
2019  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2020  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2021  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2022                             DAG.getConstant(WidthY - 1, MVT::i32));
2023
2024  if (WidthX > WidthY)
2025    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2026  else if (WidthY > WidthX)
2027    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2028
2029  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2030                             DAG.getConstant(WidthX - 1, MVT::i32));
2031  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2032  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2033}
2034
2035SDValue
2036MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2037  if (Subtarget->hasMips64())
2038    return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
2039
2040  return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
2041}
2042
2043static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2044  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2045  DebugLoc DL = Op.getDebugLoc();
2046
2047  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2048  // to i32.
2049  SDValue X = (Op.getValueType() == MVT::f32) ?
2050    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2051    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2052                Const1);
2053
2054  // Clear MSB.
2055  if (HasR2)
2056    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
2057                      DAG.getRegister(Mips::ZERO, MVT::i32),
2058                      DAG.getConstant(31, MVT::i32), Const1, X);
2059  else {
2060    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2061    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2062  }
2063
2064  if (Op.getValueType() == MVT::f32)
2065    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
2066
2067  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2068                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
2069  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2070}
2071
2072static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2073  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2074  DebugLoc DL = Op.getDebugLoc();
2075
2076  // Bitcast to integer node.
2077  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2078
2079  // Clear MSB.
2080  if (HasR2)
2081    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2082                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
2083                      DAG.getConstant(63, MVT::i32), Const1, X);
2084  else {
2085    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2086    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2087  }
2088
2089  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2090}
2091
2092SDValue
2093MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
2094  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
2095    return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
2096
2097  return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
2098}
2099
2100SDValue MipsTargetLowering::
2101LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2102  // check the depth
2103  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2104         "Frame address can only be determined for current frame.");
2105
2106  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2107  MFI->setFrameAddressIsTaken(true);
2108  EVT VT = Op.getValueType();
2109  DebugLoc dl = Op.getDebugLoc();
2110  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2111                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
2112  return FrameAddr;
2113}
2114
2115SDValue MipsTargetLowering::LowerRETURNADDR(SDValue Op,
2116                                            SelectionDAG &DAG) const {
2117  // check the depth
2118  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2119         "Return address can be determined only for current frame.");
2120
2121  MachineFunction &MF = DAG.getMachineFunction();
2122  MachineFrameInfo *MFI = MF.getFrameInfo();
2123  EVT VT = Op.getValueType();
2124  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
2125  MFI->setReturnAddressIsTaken(true);
2126
2127  // Return RA, which contains the return address. Mark it an implicit live-in.
2128  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2129  return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
2130}
2131
2132// TODO: set SType according to the desired memory barrier behavior.
2133SDValue
2134MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
2135  unsigned SType = 0;
2136  DebugLoc dl = Op.getDebugLoc();
2137  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2138                     DAG.getConstant(SType, MVT::i32));
2139}
2140
2141SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
2142                                              SelectionDAG &DAG) const {
2143  // FIXME: Need pseudo-fence for 'singlethread' fences
2144  // FIXME: Set SType for weaker fences where supported/appropriate.
2145  unsigned SType = 0;
2146  DebugLoc dl = Op.getDebugLoc();
2147  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2148                     DAG.getConstant(SType, MVT::i32));
2149}
2150
2151SDValue MipsTargetLowering::LowerShiftLeftParts(SDValue Op,
2152                                                SelectionDAG &DAG) const {
2153  DebugLoc DL = Op.getDebugLoc();
2154  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2155  SDValue Shamt = Op.getOperand(2);
2156
2157  // if shamt < 32:
2158  //  lo = (shl lo, shamt)
2159  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2160  // else:
2161  //  lo = 0
2162  //  hi = (shl lo, shamt[4:0])
2163  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2164                            DAG.getConstant(-1, MVT::i32));
2165  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
2166                                      DAG.getConstant(1, MVT::i32));
2167  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
2168                                     Not);
2169  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
2170  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2171  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
2172  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2173                             DAG.getConstant(0x20, MVT::i32));
2174  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2175                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
2176  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
2177
2178  SDValue Ops[2] = {Lo, Hi};
2179  return DAG.getMergeValues(Ops, 2, DL);
2180}
2181
2182SDValue MipsTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2183                                                 bool IsSRA) const {
2184  DebugLoc DL = Op.getDebugLoc();
2185  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2186  SDValue Shamt = Op.getOperand(2);
2187
2188  // if shamt < 32:
2189  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2190  //  if isSRA:
2191  //    hi = (sra hi, shamt)
2192  //  else:
2193  //    hi = (srl hi, shamt)
2194  // else:
2195  //  if isSRA:
2196  //   lo = (sra hi, shamt[4:0])
2197  //   hi = (sra hi, 31)
2198  //  else:
2199  //   lo = (srl hi, shamt[4:0])
2200  //   hi = 0
2201  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2202                            DAG.getConstant(-1, MVT::i32));
2203  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
2204                                     DAG.getConstant(1, MVT::i32));
2205  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
2206  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
2207  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2208  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2209                                     Hi, Shamt);
2210  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2211                             DAG.getConstant(0x20, MVT::i32));
2212  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
2213                                DAG.getConstant(31, MVT::i32));
2214  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
2215  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2216                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2217                   ShiftRightHi);
2218
2219  SDValue Ops[2] = {Lo, Hi};
2220  return DAG.getMergeValues(Ops, 2, DL);
2221}
2222
2223static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2224                            SDValue Chain, SDValue Src, unsigned Offset) {
2225  SDValue Ptr = LD->getBasePtr();
2226  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2227  EVT BasePtrVT = Ptr.getValueType();
2228  DebugLoc DL = LD->getDebugLoc();
2229  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2230
2231  if (Offset)
2232    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2233                      DAG.getConstant(Offset, BasePtrVT));
2234
2235  SDValue Ops[] = { Chain, Ptr, Src };
2236  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2237                                 LD->getMemOperand());
2238}
2239
2240// Expand an unaligned 32 or 64-bit integer load node.
2241SDValue MipsTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2242  LoadSDNode *LD = cast<LoadSDNode>(Op);
2243  EVT MemVT = LD->getMemoryVT();
2244
2245  // Return if load is aligned or if MemVT is neither i32 nor i64.
2246  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2247      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2248    return SDValue();
2249
2250  bool IsLittle = Subtarget->isLittle();
2251  EVT VT = Op.getValueType();
2252  ISD::LoadExtType ExtType = LD->getExtensionType();
2253  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2254
2255  assert((VT == MVT::i32) || (VT == MVT::i64));
2256
2257  // Expand
2258  //  (set dst, (i64 (load baseptr)))
2259  // to
2260  //  (set tmp, (ldl (add baseptr, 7), undef))
2261  //  (set dst, (ldr baseptr, tmp))
2262  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2263    SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2264                               IsLittle ? 7 : 0);
2265    return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2266                        IsLittle ? 0 : 7);
2267  }
2268
2269  SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2270                             IsLittle ? 3 : 0);
2271  SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2272                             IsLittle ? 0 : 3);
2273
2274  // Expand
2275  //  (set dst, (i32 (load baseptr))) or
2276  //  (set dst, (i64 (sextload baseptr))) or
2277  //  (set dst, (i64 (extload baseptr)))
2278  // to
2279  //  (set tmp, (lwl (add baseptr, 3), undef))
2280  //  (set dst, (lwr baseptr, tmp))
2281  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2282      (ExtType == ISD::EXTLOAD))
2283    return LWR;
2284
2285  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2286
2287  // Expand
2288  //  (set dst, (i64 (zextload baseptr)))
2289  // to
2290  //  (set tmp0, (lwl (add baseptr, 3), undef))
2291  //  (set tmp1, (lwr baseptr, tmp0))
2292  //  (set tmp2, (shl tmp1, 32))
2293  //  (set dst, (srl tmp2, 32))
2294  DebugLoc DL = LD->getDebugLoc();
2295  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2296  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2297  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2298  SDValue Ops[] = { SRL, LWR.getValue(1) };
2299  return DAG.getMergeValues(Ops, 2, DL);
2300}
2301
2302static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2303                             SDValue Chain, unsigned Offset) {
2304  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2305  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2306  DebugLoc DL = SD->getDebugLoc();
2307  SDVTList VTList = DAG.getVTList(MVT::Other);
2308
2309  if (Offset)
2310    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2311                      DAG.getConstant(Offset, BasePtrVT));
2312
2313  SDValue Ops[] = { Chain, Value, Ptr };
2314  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2315                                 SD->getMemOperand());
2316}
2317
2318// Expand an unaligned 32 or 64-bit integer store node.
2319SDValue MipsTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2320  StoreSDNode *SD = cast<StoreSDNode>(Op);
2321  EVT MemVT = SD->getMemoryVT();
2322
2323  // Return if store is aligned or if MemVT is neither i32 nor i64.
2324  if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2325      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2326    return SDValue();
2327
2328  bool IsLittle = Subtarget->isLittle();
2329  SDValue Value = SD->getValue(), Chain = SD->getChain();
2330  EVT VT = Value.getValueType();
2331
2332  // Expand
2333  //  (store val, baseptr) or
2334  //  (truncstore val, baseptr)
2335  // to
2336  //  (swl val, (add baseptr, 3))
2337  //  (swr val, baseptr)
2338  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2339    SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
2340                                IsLittle ? 3 : 0);
2341    return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2342  }
2343
2344  assert(VT == MVT::i64);
2345
2346  // Expand
2347  //  (store val, baseptr)
2348  // to
2349  //  (sdl val, (add baseptr, 7))
2350  //  (sdr val, baseptr)
2351  SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2352  return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2353}
2354
2355// This function expands mips intrinsic nodes which have 64-bit input operands
2356// or output values.
2357//
2358// out64 = intrinsic-node in64
2359// =>
2360// lo = copy (extract-element (in64, 0))
2361// hi = copy (extract-element (in64, 1))
2362// mips-specific-node
2363// v0 = copy lo
2364// v1 = copy hi
2365// out64 = merge-values (v0, v1)
2366//
2367static SDValue LowerDSPIntr(SDValue Op, SelectionDAG &DAG,
2368                            unsigned Opc, bool HasI64In, bool HasI64Out) {
2369  DebugLoc DL = Op.getDebugLoc();
2370  bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
2371  SDValue Chain = HasChainIn ? Op->getOperand(0) : DAG.getEntryNode();
2372  SmallVector<SDValue, 3> Ops;
2373
2374  if (HasI64In) {
2375    SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2376                               Op->getOperand(1 + HasChainIn),
2377                               DAG.getConstant(0, MVT::i32));
2378    SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2379                               Op->getOperand(1 + HasChainIn),
2380                               DAG.getConstant(1, MVT::i32));
2381
2382    Chain = DAG.getCopyToReg(Chain, DL, Mips::LO, InLo, SDValue());
2383    Chain = DAG.getCopyToReg(Chain, DL, Mips::HI, InHi, Chain.getValue(1));
2384
2385    Ops.push_back(Chain);
2386    Ops.append(Op->op_begin() + HasChainIn + 2, Op->op_end());
2387    Ops.push_back(Chain.getValue(1));
2388  } else {
2389    Ops.push_back(Chain);
2390    Ops.append(Op->op_begin() + HasChainIn + 1, Op->op_end());
2391  }
2392
2393  if (!HasI64Out)
2394    return DAG.getNode(Opc, DL, Op->value_begin(), Op->getNumValues(),
2395                       Ops.begin(), Ops.size());
2396
2397  SDValue Intr = DAG.getNode(Opc, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2398                             Ops.begin(), Ops.size());
2399  SDValue OutLo = DAG.getCopyFromReg(Intr.getValue(0), DL, Mips::LO, MVT::i32,
2400                                     Intr.getValue(1));
2401  SDValue OutHi = DAG.getCopyFromReg(OutLo.getValue(1), DL, Mips::HI, MVT::i32,
2402                                     OutLo.getValue(2));
2403  SDValue Out = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, OutLo, OutHi);
2404
2405  if (!HasChainIn)
2406    return Out;
2407
2408  SDValue Vals[] = { Out, OutHi.getValue(1) };
2409  return DAG.getMergeValues(Vals, 2, DL);
2410}
2411
2412SDValue MipsTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2413                                                    SelectionDAG &DAG) const {
2414  switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
2415  default:
2416    return SDValue();
2417  case Intrinsic::mips_shilo:
2418    return LowerDSPIntr(Op, DAG, MipsISD::SHILO, true, true);
2419  case Intrinsic::mips_dpau_h_qbl:
2420    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL, true, true);
2421  case Intrinsic::mips_dpau_h_qbr:
2422    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR, true, true);
2423  case Intrinsic::mips_dpsu_h_qbl:
2424    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL, true, true);
2425  case Intrinsic::mips_dpsu_h_qbr:
2426    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR, true, true);
2427  case Intrinsic::mips_dpa_w_ph:
2428    return LowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH, true, true);
2429  case Intrinsic::mips_dps_w_ph:
2430    return LowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH, true, true);
2431  case Intrinsic::mips_dpax_w_ph:
2432    return LowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH, true, true);
2433  case Intrinsic::mips_dpsx_w_ph:
2434    return LowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH, true, true);
2435  case Intrinsic::mips_mulsa_w_ph:
2436    return LowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH, true, true);
2437  case Intrinsic::mips_mult:
2438    return LowerDSPIntr(Op, DAG, MipsISD::MULT, false, true);
2439  case Intrinsic::mips_multu:
2440    return LowerDSPIntr(Op, DAG, MipsISD::MULTU, false, true);
2441  case Intrinsic::mips_madd:
2442    return LowerDSPIntr(Op, DAG, MipsISD::MADD_DSP, true, true);
2443  case Intrinsic::mips_maddu:
2444    return LowerDSPIntr(Op, DAG, MipsISD::MADDU_DSP, true, true);
2445  case Intrinsic::mips_msub:
2446    return LowerDSPIntr(Op, DAG, MipsISD::MSUB_DSP, true, true);
2447  case Intrinsic::mips_msubu:
2448    return LowerDSPIntr(Op, DAG, MipsISD::MSUBU_DSP, true, true);
2449  }
2450}
2451
2452SDValue MipsTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
2453                                                   SelectionDAG &DAG) const {
2454  switch (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue()) {
2455  default:
2456    return SDValue();
2457  case Intrinsic::mips_extp:
2458    return LowerDSPIntr(Op, DAG, MipsISD::EXTP, true, false);
2459  case Intrinsic::mips_extpdp:
2460    return LowerDSPIntr(Op, DAG, MipsISD::EXTPDP, true, false);
2461  case Intrinsic::mips_extr_w:
2462    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_W, true, false);
2463  case Intrinsic::mips_extr_r_w:
2464    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W, true, false);
2465  case Intrinsic::mips_extr_rs_w:
2466    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W, true, false);
2467  case Intrinsic::mips_extr_s_h:
2468    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H, true, false);
2469  case Intrinsic::mips_mthlip:
2470    return LowerDSPIntr(Op, DAG, MipsISD::MTHLIP, true, true);
2471  case Intrinsic::mips_mulsaq_s_w_ph:
2472    return LowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH, true, true);
2473  case Intrinsic::mips_maq_s_w_phl:
2474    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL, true, true);
2475  case Intrinsic::mips_maq_s_w_phr:
2476    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR, true, true);
2477  case Intrinsic::mips_maq_sa_w_phl:
2478    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL, true, true);
2479  case Intrinsic::mips_maq_sa_w_phr:
2480    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR, true, true);
2481  case Intrinsic::mips_dpaq_s_w_ph:
2482    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH, true, true);
2483  case Intrinsic::mips_dpsq_s_w_ph:
2484    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH, true, true);
2485  case Intrinsic::mips_dpaq_sa_l_w:
2486    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W, true, true);
2487  case Intrinsic::mips_dpsq_sa_l_w:
2488    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W, true, true);
2489  case Intrinsic::mips_dpaqx_s_w_ph:
2490    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH, true, true);
2491  case Intrinsic::mips_dpaqx_sa_w_ph:
2492    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH, true, true);
2493  case Intrinsic::mips_dpsqx_s_w_ph:
2494    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH, true, true);
2495  case Intrinsic::mips_dpsqx_sa_w_ph:
2496    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH, true, true);
2497  }
2498}
2499
2500//===----------------------------------------------------------------------===//
2501//                      Calling Convention Implementation
2502//===----------------------------------------------------------------------===//
2503
2504//===----------------------------------------------------------------------===//
2505// TODO: Implement a generic logic using tblgen that can support this.
2506// Mips O32 ABI rules:
2507// ---
2508// i32 - Passed in A0, A1, A2, A3 and stack
2509// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2510//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2511// f64 - Only passed in two aliased f32 registers if no int reg has been used
2512//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2513//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2514//       go to stack.
2515//
2516//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2517//===----------------------------------------------------------------------===//
2518
2519static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2520                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2521                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2522
2523  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2524
2525  static const uint16_t IntRegs[] = {
2526      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2527  };
2528  static const uint16_t F32Regs[] = {
2529      Mips::F12, Mips::F14
2530  };
2531  static const uint16_t F64Regs[] = {
2532      Mips::D6, Mips::D7
2533  };
2534
2535  // ByVal Args
2536  if (ArgFlags.isByVal()) {
2537    State.HandleByVal(ValNo, ValVT, LocVT, LocInfo,
2538                      1 /*MinSize*/, 4 /*MinAlign*/, ArgFlags);
2539    unsigned NextReg = (State.getNextStackOffset() + 3) / 4;
2540    for (unsigned r = State.getFirstUnallocated(IntRegs, IntRegsSize);
2541         r < std::min(IntRegsSize, NextReg); ++r)
2542      State.AllocateReg(IntRegs[r]);
2543    return false;
2544  }
2545
2546  // Promote i8 and i16
2547  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2548    LocVT = MVT::i32;
2549    if (ArgFlags.isSExt())
2550      LocInfo = CCValAssign::SExt;
2551    else if (ArgFlags.isZExt())
2552      LocInfo = CCValAssign::ZExt;
2553    else
2554      LocInfo = CCValAssign::AExt;
2555  }
2556
2557  unsigned Reg;
2558
2559  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2560  // is true: function is vararg, argument is 3rd or higher, there is previous
2561  // argument which is not f32 or f64.
2562  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2563      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2564  unsigned OrigAlign = ArgFlags.getOrigAlign();
2565  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2566
2567  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2568    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2569    // If this is the first part of an i64 arg,
2570    // the allocated register must be either A0 or A2.
2571    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2572      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2573    LocVT = MVT::i32;
2574  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2575    // Allocate int register and shadow next int register. If first
2576    // available register is Mips::A1 or Mips::A3, shadow it too.
2577    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2578    if (Reg == Mips::A1 || Reg == Mips::A3)
2579      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2580    State.AllocateReg(IntRegs, IntRegsSize);
2581    LocVT = MVT::i32;
2582  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2583    // we are guaranteed to find an available float register
2584    if (ValVT == MVT::f32) {
2585      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2586      // Shadow int register
2587      State.AllocateReg(IntRegs, IntRegsSize);
2588    } else {
2589      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2590      // Shadow int registers
2591      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2592      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2593        State.AllocateReg(IntRegs, IntRegsSize);
2594      State.AllocateReg(IntRegs, IntRegsSize);
2595    }
2596  } else
2597    llvm_unreachable("Cannot handle this ValVT.");
2598
2599  unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
2600  unsigned Offset = State.AllocateStack(SizeInBytes, OrigAlign);
2601
2602  if (!Reg)
2603    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2604  else
2605    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2606
2607  return false; // CC must always match
2608}
2609
2610static const uint16_t Mips64IntRegs[8] =
2611  {Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
2612   Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64};
2613static const uint16_t Mips64DPRegs[8] =
2614  {Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
2615   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64};
2616
2617static bool CC_Mips64Byval(unsigned ValNo, MVT ValVT, MVT LocVT,
2618                           CCValAssign::LocInfo LocInfo,
2619                           ISD::ArgFlagsTy ArgFlags, CCState &State) {
2620  unsigned Align = std::max(ArgFlags.getByValAlign(), (unsigned)8);
2621  unsigned Size  = (ArgFlags.getByValSize() + 7) / 8 * 8;
2622  unsigned FirstIdx = State.getFirstUnallocated(Mips64IntRegs, 8);
2623
2624  assert(Align <= 16 && "Cannot handle alignments larger than 16.");
2625
2626  // If byval is 16-byte aligned, the first arg register must be even.
2627  if ((Align == 16) && (FirstIdx % 2)) {
2628    State.AllocateReg(Mips64IntRegs[FirstIdx], Mips64DPRegs[FirstIdx]);
2629    ++FirstIdx;
2630  }
2631
2632  // Mark the registers allocated.
2633  for (unsigned I = FirstIdx; Size && (I < 8); Size -= 8, ++I)
2634    State.AllocateReg(Mips64IntRegs[I], Mips64DPRegs[I]);
2635
2636  // Allocate space on caller's stack.
2637  unsigned Offset = State.AllocateStack(Size, Align);
2638
2639  if (FirstIdx < 8)
2640    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Mips64IntRegs[FirstIdx],
2641                                     LocVT, LocInfo));
2642  else
2643    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2644
2645  return true;
2646}
2647
2648#include "MipsGenCallingConv.inc"
2649
2650static void
2651AnalyzeMips64CallOperands(CCState &CCInfo,
2652                          const SmallVectorImpl<ISD::OutputArg> &Outs) {
2653  unsigned NumOps = Outs.size();
2654  for (unsigned i = 0; i != NumOps; ++i) {
2655    MVT ArgVT = Outs[i].VT;
2656    ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2657    bool R;
2658
2659    if (Outs[i].IsFixed)
2660      R = CC_MipsN(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2661    else
2662      R = CC_MipsN_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2663
2664    if (R) {
2665#ifndef NDEBUG
2666      dbgs() << "Call operand #" << i << " has unhandled type "
2667             << EVT(ArgVT).getEVTString();
2668#endif
2669      llvm_unreachable(0);
2670    }
2671  }
2672}
2673
2674//===----------------------------------------------------------------------===//
2675//                  Call Calling Convention Implementation
2676//===----------------------------------------------------------------------===//
2677
2678static const unsigned O32IntRegsSize = 4;
2679
2680static const uint16_t O32IntRegs[] = {
2681  Mips::A0, Mips::A1, Mips::A2, Mips::A3
2682};
2683
2684// Return next O32 integer argument register.
2685static unsigned getNextIntArgReg(unsigned Reg) {
2686  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2687  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2688}
2689
2690// Write ByVal Arg to arg registers and stack.
2691static void
2692WriteByValArg(SDValue Chain, DebugLoc dl,
2693              SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
2694              SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
2695              MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2696              const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2697              MVT PtrType, bool isLittle) {
2698  unsigned LocMemOffset = VA.getLocMemOffset();
2699  unsigned Offset = 0;
2700  uint32_t RemainingSize = Flags.getByValSize();
2701  unsigned ByValAlign = Flags.getByValAlign();
2702
2703  // Copy the first 4 words of byval arg to registers A0 - A3.
2704  // FIXME: Use a stricter alignment if it enables better optimization in passes
2705  //        run later.
2706  for (; RemainingSize >= 4 && LocMemOffset < 4 * 4;
2707       Offset += 4, RemainingSize -= 4, LocMemOffset += 4) {
2708    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2709                                  DAG.getConstant(Offset, MVT::i32));
2710    SDValue LoadVal = DAG.getLoad(MVT::i32, dl, Chain, LoadPtr,
2711                                  MachinePointerInfo(), false, false, false,
2712                                  std::min(ByValAlign, (unsigned )4));
2713    MemOpChains.push_back(LoadVal.getValue(1));
2714    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2715    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2716  }
2717
2718  if (RemainingSize == 0)
2719    return;
2720
2721  // If there still is a register available for argument passing, write the
2722  // remaining part of the structure to it using subword loads and shifts.
2723  if (LocMemOffset < 4 * 4) {
2724    assert(RemainingSize <= 3 && RemainingSize >= 1 &&
2725           "There must be one to three bytes remaining.");
2726    unsigned LoadSize = (RemainingSize == 3 ? 2 : RemainingSize);
2727    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2728                                  DAG.getConstant(Offset, MVT::i32));
2729    unsigned Alignment = std::min(ByValAlign, (unsigned )4);
2730    SDValue LoadVal = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2731                                     LoadPtr, MachinePointerInfo(),
2732                                     MVT::getIntegerVT(LoadSize * 8), false,
2733                                     false, Alignment);
2734    MemOpChains.push_back(LoadVal.getValue(1));
2735
2736    // If target is big endian, shift it to the most significant half-word or
2737    // byte.
2738    if (!isLittle)
2739      LoadVal = DAG.getNode(ISD::SHL, dl, MVT::i32, LoadVal,
2740                            DAG.getConstant(32 - LoadSize * 8, MVT::i32));
2741
2742    Offset += LoadSize;
2743    RemainingSize -= LoadSize;
2744
2745    // Read second subword if necessary.
2746    if (RemainingSize != 0)  {
2747      assert(RemainingSize == 1 && "There must be one byte remaining.");
2748      LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2749                            DAG.getConstant(Offset, MVT::i32));
2750      unsigned Alignment = std::min(ByValAlign, (unsigned )2);
2751      SDValue Subword = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2752                                       LoadPtr, MachinePointerInfo(),
2753                                       MVT::i8, false, false, Alignment);
2754      MemOpChains.push_back(Subword.getValue(1));
2755      // Insert the loaded byte to LoadVal.
2756      // FIXME: Use INS if supported by target.
2757      unsigned ShiftAmt = isLittle ? 16 : 8;
2758      SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i32, Subword,
2759                                  DAG.getConstant(ShiftAmt, MVT::i32));
2760      LoadVal = DAG.getNode(ISD::OR, dl, MVT::i32, LoadVal, Shift);
2761    }
2762
2763    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2764    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2765    return;
2766  }
2767
2768  // Copy remaining part of byval arg using memcpy.
2769  SDValue Src = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2770                            DAG.getConstant(Offset, MVT::i32));
2771  SDValue Dst = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr,
2772                            DAG.getIntPtrConstant(LocMemOffset));
2773  Chain = DAG.getMemcpy(Chain, dl, Dst, Src,
2774                        DAG.getConstant(RemainingSize, MVT::i32),
2775                        std::min(ByValAlign, (unsigned)4),
2776                        /*isVolatile=*/false, /*AlwaysInline=*/false,
2777                        MachinePointerInfo(0), MachinePointerInfo(0));
2778  MemOpChains.push_back(Chain);
2779}
2780
2781// Copy Mips64 byVal arg to registers and stack.
2782void static
2783PassByValArg64(SDValue Chain, DebugLoc dl,
2784               SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
2785               SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
2786               MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2787               const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2788               EVT PtrTy, bool isLittle) {
2789  unsigned ByValSize = Flags.getByValSize();
2790  unsigned Alignment = std::min(Flags.getByValAlign(), (unsigned)8);
2791  bool IsRegLoc = VA.isRegLoc();
2792  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
2793  unsigned LocMemOffset = 0;
2794  unsigned MemCpySize = ByValSize;
2795
2796  if (!IsRegLoc)
2797    LocMemOffset = VA.getLocMemOffset();
2798  else {
2799    const uint16_t *Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8,
2800                                    VA.getLocReg());
2801    const uint16_t *RegEnd = Mips64IntRegs + 8;
2802
2803    // Copy double words to registers.
2804    for (; (Reg != RegEnd) && (ByValSize >= Offset + 8); ++Reg, Offset += 8) {
2805      SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2806                                    DAG.getConstant(Offset, PtrTy));
2807      SDValue LoadVal = DAG.getLoad(MVT::i64, dl, Chain, LoadPtr,
2808                                    MachinePointerInfo(), false, false, false,
2809                                    Alignment);
2810      MemOpChains.push_back(LoadVal.getValue(1));
2811      RegsToPass.push_back(std::make_pair(*Reg, LoadVal));
2812    }
2813
2814    // Return if the struct has been fully copied.
2815    if (!(MemCpySize = ByValSize - Offset))
2816      return;
2817
2818    // If there is an argument register available, copy the remainder of the
2819    // byval argument with sub-doubleword loads and shifts.
2820    if (Reg != RegEnd) {
2821      assert((ByValSize < Offset + 8) &&
2822             "Size of the remainder should be smaller than 8-byte.");
2823      SDValue Val;
2824      for (unsigned LoadSize = 4; Offset < ByValSize; LoadSize /= 2) {
2825        unsigned RemSize = ByValSize - Offset;
2826
2827        if (RemSize < LoadSize)
2828          continue;
2829
2830        SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2831                                      DAG.getConstant(Offset, PtrTy));
2832        SDValue LoadVal =
2833          DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i64, Chain, LoadPtr,
2834                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
2835                         false, false, Alignment);
2836        MemOpChains.push_back(LoadVal.getValue(1));
2837
2838        // Offset in number of bits from double word boundary.
2839        unsigned OffsetDW = (Offset % 8) * 8;
2840        unsigned Shamt = isLittle ? OffsetDW : 64 - (OffsetDW + LoadSize * 8);
2841        SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i64, LoadVal,
2842                                    DAG.getConstant(Shamt, MVT::i32));
2843
2844        Val = Val.getNode() ? DAG.getNode(ISD::OR, dl, MVT::i64, Val, Shift) :
2845                              Shift;
2846        Offset += LoadSize;
2847        Alignment = std::min(Alignment, LoadSize);
2848      }
2849
2850      RegsToPass.push_back(std::make_pair(*Reg, Val));
2851      return;
2852    }
2853  }
2854
2855  assert(MemCpySize && "MemCpySize must not be zero.");
2856
2857  // Copy remainder of byval arg to it with memcpy.
2858  SDValue Src = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2859                            DAG.getConstant(Offset, PtrTy));
2860  SDValue Dst = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr,
2861                            DAG.getIntPtrConstant(LocMemOffset));
2862  Chain = DAG.getMemcpy(Chain, dl, Dst, Src,
2863                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
2864                        /*isVolatile=*/false, /*AlwaysInline=*/false,
2865                        MachinePointerInfo(0), MachinePointerInfo(0));
2866  MemOpChains.push_back(Chain);
2867}
2868
2869/// LowerCall - functions arguments are copied from virtual regs to
2870/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2871/// TODO: isTailCall.
2872SDValue
2873MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2874                              SmallVectorImpl<SDValue> &InVals) const {
2875  SelectionDAG &DAG                     = CLI.DAG;
2876  DebugLoc &dl                          = CLI.DL;
2877  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2878  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2879  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2880  SDValue Chain                         = CLI.Chain;
2881  SDValue Callee                        = CLI.Callee;
2882  bool &isTailCall                      = CLI.IsTailCall;
2883  CallingConv::ID CallConv              = CLI.CallConv;
2884  bool isVarArg                         = CLI.IsVarArg;
2885
2886  // MIPs target does not yet support tail call optimization.
2887  isTailCall = false;
2888
2889  MachineFunction &MF = DAG.getMachineFunction();
2890  MachineFrameInfo *MFI = MF.getFrameInfo();
2891  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2892  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2893  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2894
2895  // Analyze operands of the call, assigning locations to each operand.
2896  SmallVector<CCValAssign, 16> ArgLocs;
2897  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2898                 getTargetMachine(), ArgLocs, *DAG.getContext());
2899
2900  if (CallConv == CallingConv::Fast)
2901    CCInfo.AnalyzeCallOperands(Outs, CC_Mips_FastCC);
2902  else if (IsO32)
2903    CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32);
2904  else if (HasMips64)
2905    AnalyzeMips64CallOperands(CCInfo, Outs);
2906  else
2907    CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
2908
2909  // Get a count of how many bytes are to be pushed on the stack.
2910  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2911  unsigned StackAlignment = TFL->getStackAlignment();
2912  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2913
2914  // Update size of the maximum argument space.
2915  // For O32, a minimum of four words (16 bytes) of argument space is
2916  // allocated.
2917  if (IsO32 && (CallConv != CallingConv::Fast))
2918    NextStackOffset = std::max(NextStackOffset, (unsigned)16);
2919
2920  // Chain is the output chain of the last Load/Store or CopyToReg node.
2921  // ByValChain is the output chain of the last Memcpy node created for copying
2922  // byval arguments to the stack.
2923  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2924  Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
2925
2926  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl,
2927                                        IsN64 ? Mips::SP_64 : Mips::SP,
2928                                        getPointerTy());
2929
2930  if (MipsFI->getMaxCallFrameSize() < NextStackOffset)
2931    MipsFI->setMaxCallFrameSize(NextStackOffset);
2932
2933  // With EABI is it possible to have 16 args on registers.
2934  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
2935  SmallVector<SDValue, 8> MemOpChains;
2936
2937  // Walk the register/memloc assignments, inserting copies/loads.
2938  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2939    SDValue Arg = OutVals[i];
2940    CCValAssign &VA = ArgLocs[i];
2941    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2942    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2943
2944    // ByVal Arg.
2945    if (Flags.isByVal()) {
2946      assert(Flags.getByValSize() &&
2947             "ByVal args of size 0 should have been ignored by front-end.");
2948      if (IsO32)
2949        WriteByValArg(Chain, dl, RegsToPass, MemOpChains, StackPtr,
2950                      MFI, DAG, Arg, VA, Flags, getPointerTy(),
2951                      Subtarget->isLittle());
2952      else
2953        PassByValArg64(Chain, dl, RegsToPass, MemOpChains, StackPtr,
2954                       MFI, DAG, Arg, VA, Flags, getPointerTy(),
2955                       Subtarget->isLittle());
2956      continue;
2957    }
2958
2959    // Promote the value if needed.
2960    switch (VA.getLocInfo()) {
2961    default: llvm_unreachable("Unknown loc info!");
2962    case CCValAssign::Full:
2963      if (VA.isRegLoc()) {
2964        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2965            (ValVT == MVT::f64 && LocVT == MVT::i64))
2966          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
2967        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2968          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2969                                   Arg, DAG.getConstant(0, MVT::i32));
2970          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2971                                   Arg, DAG.getConstant(1, MVT::i32));
2972          if (!Subtarget->isLittle())
2973            std::swap(Lo, Hi);
2974          unsigned LocRegLo = VA.getLocReg();
2975          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2976          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2977          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2978          continue;
2979        }
2980      }
2981      break;
2982    case CCValAssign::SExt:
2983      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
2984      break;
2985    case CCValAssign::ZExt:
2986      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
2987      break;
2988    case CCValAssign::AExt:
2989      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
2990      break;
2991    }
2992
2993    // Arguments that can be passed on register must be kept at
2994    // RegsToPass vector
2995    if (VA.isRegLoc()) {
2996      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2997      continue;
2998    }
2999
3000    // Register can't get to this point...
3001    assert(VA.isMemLoc());
3002
3003    // emit ISD::STORE whichs stores the
3004    // parameter value to a stack Location
3005    SDValue PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
3006                                 DAG.getIntPtrConstant(VA.getLocMemOffset()));
3007    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3008                                       MachinePointerInfo(), false, false, 0));
3009  }
3010
3011  // Transform all store nodes into one single node because all store
3012  // nodes are independent of each other.
3013  if (!MemOpChains.empty())
3014    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3015                        &MemOpChains[0], MemOpChains.size());
3016
3017  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3018  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3019  // node so that legalize doesn't hack it.
3020  unsigned char OpFlag;
3021  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
3022  bool GlobalOrExternal = false;
3023  SDValue CalleeLo;
3024
3025  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3026    if (IsPICCall && G->getGlobal()->hasInternalLinkage()) {
3027      OpFlag = IsO32 ? MipsII::MO_GOT : MipsII::MO_GOT_PAGE;
3028      unsigned char LoFlag = IsO32 ? MipsII::MO_ABS_LO : MipsII::MO_GOT_OFST;
3029      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
3030                                          OpFlag);
3031      CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(),
3032                                            0, LoFlag);
3033    } else {
3034      OpFlag = IsPICCall ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
3035      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3036                                          getPointerTy(), 0, OpFlag);
3037    }
3038
3039    GlobalOrExternal = true;
3040  }
3041  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3042    if (IsN64 || (!IsO32 && IsPIC))
3043      OpFlag = MipsII::MO_GOT_DISP;
3044    else if (!IsPIC) // !N64 && static
3045      OpFlag = MipsII::MO_NO_FLAG;
3046    else // O32 & PIC
3047      OpFlag = MipsII::MO_GOT_CALL;
3048    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
3049                                         OpFlag);
3050    GlobalOrExternal = true;
3051  }
3052
3053  SDValue InFlag;
3054
3055  // Create nodes that load address of callee and copy it to T9
3056  if (IsPICCall) {
3057    if (GlobalOrExternal) {
3058      // Load callee address
3059      Callee = DAG.getNode(MipsISD::Wrapper, dl, getPointerTy(),
3060                           GetGlobalReg(DAG, getPointerTy()), Callee);
3061      SDValue LoadValue = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
3062                                      Callee, MachinePointerInfo::getGOT(),
3063                                      false, false, false, 0);
3064
3065      // Use GOT+LO if callee has internal linkage.
3066      if (CalleeLo.getNode()) {
3067        SDValue Lo = DAG.getNode(MipsISD::Lo, dl, getPointerTy(), CalleeLo);
3068        Callee = DAG.getNode(ISD::ADD, dl, getPointerTy(), LoadValue, Lo);
3069      } else
3070        Callee = LoadValue;
3071    }
3072  }
3073
3074  // T9 register operand.
3075  SDValue T9;
3076
3077  // T9 should contain the address of the callee function if
3078  // -reloction-model=pic or it is an indirect call.
3079  if (IsPICCall || !GlobalOrExternal) {
3080    // copy to T9
3081    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
3082    Chain = DAG.getCopyToReg(Chain, dl, T9Reg, Callee, SDValue(0, 0));
3083    InFlag = Chain.getValue(1);
3084
3085    if (Subtarget->inMips16Mode())
3086      T9 = DAG.getRegister(T9Reg, getPointerTy());
3087    else
3088      Callee = DAG.getRegister(T9Reg, getPointerTy());
3089  }
3090
3091  // Insert node "GP copy globalreg" before call to function.
3092  // Lazy-binding stubs require GP to point to the GOT.
3093  if (IsPICCall) {
3094    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
3095    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
3096    RegsToPass.push_back(std::make_pair(GPReg, GetGlobalReg(DAG, Ty)));
3097  }
3098
3099  // Build a sequence of copy-to-reg nodes chained together with token
3100  // chain and flag operands which copy the outgoing args into registers.
3101  // The InFlag in necessary since all emitted instructions must be
3102  // stuck together.
3103  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3104    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3105                             RegsToPass[i].second, InFlag);
3106    InFlag = Chain.getValue(1);
3107  }
3108
3109  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
3110  //             = Chain, Callee, Reg#1, Reg#2, ...
3111  //
3112  // Returns a chain & a flag for retval copy to use.
3113  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3114  SmallVector<SDValue, 8> Ops;
3115  Ops.push_back(Chain);
3116  Ops.push_back(Callee);
3117
3118  // Add argument registers to the end of the list so that they are
3119  // known live into the call.
3120  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3121    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3122                                  RegsToPass[i].second.getValueType()));
3123
3124  // Add T9 register operand.
3125  if (T9.getNode())
3126    Ops.push_back(T9);
3127
3128  // Add a register mask operand representing the call-preserved registers.
3129  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3130  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3131  assert(Mask && "Missing call preserved mask for calling convention");
3132  Ops.push_back(DAG.getRegisterMask(Mask));
3133
3134  if (InFlag.getNode())
3135    Ops.push_back(InFlag);
3136
3137  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
3138  InFlag = Chain.getValue(1);
3139
3140  // Create the CALLSEQ_END node.
3141  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
3142                             DAG.getIntPtrConstant(0, true), InFlag);
3143  InFlag = Chain.getValue(1);
3144
3145  // Handle result values, copying them out of physregs into vregs that we
3146  // return.
3147  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3148                         Ins, dl, DAG, InVals);
3149}
3150
3151/// LowerCallResult - Lower the result values of a call into the
3152/// appropriate copies out of appropriate physical registers.
3153SDValue
3154MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3155                                    CallingConv::ID CallConv, bool isVarArg,
3156                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3157                                    DebugLoc dl, SelectionDAG &DAG,
3158                                    SmallVectorImpl<SDValue> &InVals) const {
3159  // Assign locations to each value returned by this call.
3160  SmallVector<CCValAssign, 16> RVLocs;
3161  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3162                 getTargetMachine(), RVLocs, *DAG.getContext());
3163
3164  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
3165
3166  // Copy all of the result registers out of their specified physreg.
3167  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3168    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
3169                               RVLocs[i].getValVT(), InFlag).getValue(1);
3170    InFlag = Chain.getValue(2);
3171    InVals.push_back(Chain.getValue(0));
3172  }
3173
3174  return Chain;
3175}
3176
3177//===----------------------------------------------------------------------===//
3178//             Formal Arguments Calling Convention Implementation
3179//===----------------------------------------------------------------------===//
3180static void ReadByValArg(MachineFunction &MF, SDValue Chain, DebugLoc dl,
3181                         std::vector<SDValue> &OutChains,
3182                         SelectionDAG &DAG, unsigned NumWords, SDValue FIN,
3183                         const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
3184                         const Argument *FuncArg) {
3185  unsigned LocMem = VA.getLocMemOffset();
3186  unsigned FirstWord = LocMem / 4;
3187
3188  // copy register A0 - A3 to frame object
3189  for (unsigned i = 0; i < NumWords; ++i) {
3190    unsigned CurWord = FirstWord + i;
3191    if (CurWord >= O32IntRegsSize)
3192      break;
3193
3194    unsigned SrcReg = O32IntRegs[CurWord];
3195    unsigned Reg = AddLiveIn(MF, SrcReg, &Mips::CPURegsRegClass);
3196    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN,
3197                                   DAG.getConstant(i * 4, MVT::i32));
3198    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(Reg, MVT::i32),
3199                                 StorePtr, MachinePointerInfo(FuncArg, i * 4),
3200                                 false, false, 0);
3201    OutChains.push_back(Store);
3202  }
3203}
3204
3205// Create frame object on stack and copy registers used for byval passing to it.
3206static unsigned
3207CopyMips64ByValRegs(MachineFunction &MF, SDValue Chain, DebugLoc dl,
3208                    std::vector<SDValue> &OutChains, SelectionDAG &DAG,
3209                    const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
3210                    MachineFrameInfo *MFI, bool IsRegLoc,
3211                    SmallVectorImpl<SDValue> &InVals, MipsFunctionInfo *MipsFI,
3212                    EVT PtrTy, const Argument *FuncArg) {
3213  const uint16_t *Reg = Mips64IntRegs + 8;
3214  int FOOffset; // Frame object offset from virtual frame pointer.
3215
3216  if (IsRegLoc) {
3217    Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8, VA.getLocReg());
3218    FOOffset = (Reg - Mips64IntRegs) * 8 - 8 * 8;
3219  }
3220  else
3221    FOOffset = VA.getLocMemOffset();
3222
3223  // Create frame object.
3224  unsigned NumRegs = (Flags.getByValSize() + 7) / 8;
3225  unsigned LastFI = MFI->CreateFixedObject(NumRegs * 8, FOOffset, true);
3226  SDValue FIN = DAG.getFrameIndex(LastFI, PtrTy);
3227  InVals.push_back(FIN);
3228
3229  // Copy arg registers.
3230  for (unsigned I = 0; (Reg != Mips64IntRegs + 8) && (I < NumRegs);
3231       ++Reg, ++I) {
3232    unsigned VReg = AddLiveIn(MF, *Reg, &Mips::CPU64RegsRegClass);
3233    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, PtrTy, FIN,
3234                                   DAG.getConstant(I * 8, PtrTy));
3235    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(VReg, MVT::i64),
3236                                 StorePtr, MachinePointerInfo(FuncArg, I * 8),
3237                                 false, false, 0);
3238    OutChains.push_back(Store);
3239  }
3240
3241  return LastFI;
3242}
3243
3244/// LowerFormalArguments - transform physical registers into virtual registers
3245/// and generate load operations for arguments places on the stack.
3246SDValue
3247MipsTargetLowering::LowerFormalArguments(SDValue Chain,
3248                                         CallingConv::ID CallConv,
3249                                         bool isVarArg,
3250                                      const SmallVectorImpl<ISD::InputArg> &Ins,
3251                                         DebugLoc dl, SelectionDAG &DAG,
3252                                         SmallVectorImpl<SDValue> &InVals)
3253                                          const {
3254  MachineFunction &MF = DAG.getMachineFunction();
3255  MachineFrameInfo *MFI = MF.getFrameInfo();
3256  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3257
3258  MipsFI->setVarArgsFrameIndex(0);
3259
3260  // Used with vargs to acumulate store chains.
3261  std::vector<SDValue> OutChains;
3262
3263  // Assign locations to all of the incoming arguments.
3264  SmallVector<CCValAssign, 16> ArgLocs;
3265  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3266                 getTargetMachine(), ArgLocs, *DAG.getContext());
3267
3268  if (CallConv == CallingConv::Fast)
3269    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FastCC);
3270  else if (IsO32)
3271    CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32);
3272  else
3273    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
3274
3275  Function::const_arg_iterator FuncArg =
3276    DAG.getMachineFunction().getFunction()->arg_begin();
3277  int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function.
3278
3279  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++FuncArg) {
3280    CCValAssign &VA = ArgLocs[i];
3281    EVT ValVT = VA.getValVT();
3282    ISD::ArgFlagsTy Flags = Ins[i].Flags;
3283    bool IsRegLoc = VA.isRegLoc();
3284
3285    if (Flags.isByVal()) {
3286      assert(Flags.getByValSize() &&
3287             "ByVal args of size 0 should have been ignored by front-end.");
3288      if (IsO32) {
3289        unsigned NumWords = (Flags.getByValSize() + 3) / 4;
3290        LastFI = MFI->CreateFixedObject(NumWords * 4, VA.getLocMemOffset(),
3291                                        true);
3292        SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3293        InVals.push_back(FIN);
3294        ReadByValArg(MF, Chain, dl, OutChains, DAG, NumWords, FIN, VA, Flags,
3295                     &*FuncArg);
3296      } else // N32/64
3297        LastFI = CopyMips64ByValRegs(MF, Chain, dl, OutChains, DAG, VA, Flags,
3298                                     MFI, IsRegLoc, InVals, MipsFI,
3299                                     getPointerTy(), &*FuncArg);
3300      continue;
3301    }
3302
3303    // Arguments stored on registers
3304    if (IsRegLoc) {
3305      EVT RegVT = VA.getLocVT();
3306      unsigned ArgReg = VA.getLocReg();
3307      const TargetRegisterClass *RC;
3308
3309      if (RegVT == MVT::i32)
3310        RC = &Mips::CPURegsRegClass;
3311      else if (RegVT == MVT::i64)
3312        RC = &Mips::CPU64RegsRegClass;
3313      else if (RegVT == MVT::f32)
3314        RC = &Mips::FGR32RegClass;
3315      else if (RegVT == MVT::f64)
3316        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
3317      else
3318        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
3319
3320      // Transform the arguments stored on
3321      // physical registers into virtual ones
3322      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3323      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3324
3325      // If this is an 8 or 16-bit value, it has been passed promoted
3326      // to 32 bits.  Insert an assert[sz]ext to capture this, then
3327      // truncate to the right size.
3328      if (VA.getLocInfo() != CCValAssign::Full) {
3329        unsigned Opcode = 0;
3330        if (VA.getLocInfo() == CCValAssign::SExt)
3331          Opcode = ISD::AssertSext;
3332        else if (VA.getLocInfo() == CCValAssign::ZExt)
3333          Opcode = ISD::AssertZext;
3334        if (Opcode)
3335          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
3336                                 DAG.getValueType(ValVT));
3337        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
3338      }
3339
3340      // Handle floating point arguments passed in integer registers.
3341      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3342          (RegVT == MVT::i64 && ValVT == MVT::f64))
3343        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
3344      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
3345        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
3346                                  getNextIntArgReg(ArgReg), RC);
3347        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
3348        if (!Subtarget->isLittle())
3349          std::swap(ArgValue, ArgValue2);
3350        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
3351                               ArgValue, ArgValue2);
3352      }
3353
3354      InVals.push_back(ArgValue);
3355    } else { // VA.isRegLoc()
3356
3357      // sanity check
3358      assert(VA.isMemLoc());
3359
3360      // The stack pointer offset is relative to the caller stack frame.
3361      LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
3362                                      VA.getLocMemOffset(), true);
3363
3364      // Create load nodes to retrieve arguments from the stack
3365      SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3366      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
3367                                   MachinePointerInfo::getFixedStack(LastFI),
3368                                   false, false, false, 0));
3369    }
3370  }
3371
3372  // The mips ABIs for returning structs by value requires that we copy
3373  // the sret argument into $v0 for the return. Save the argument into
3374  // a virtual register so that we can access it from the return points.
3375  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3376    unsigned Reg = MipsFI->getSRetReturnReg();
3377    if (!Reg) {
3378      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
3379      MipsFI->setSRetReturnReg(Reg);
3380    }
3381    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
3382    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
3383  }
3384
3385  if (isVarArg) {
3386    unsigned NumOfRegs = IsO32 ? 4 : 8;
3387    const uint16_t *ArgRegs = IsO32 ? O32IntRegs : Mips64IntRegs;
3388    unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumOfRegs);
3389    int FirstRegSlotOffset = IsO32 ? 0 : -64 ; // offset of $a0's slot.
3390    const TargetRegisterClass *RC = IsO32 ?
3391      (const TargetRegisterClass*)&Mips::CPURegsRegClass :
3392      (const TargetRegisterClass*)&Mips::CPU64RegsRegClass;
3393    unsigned RegSize = RC->getSize();
3394    int RegSlotOffset = FirstRegSlotOffset + Idx * RegSize;
3395
3396    // Offset of the first variable argument from stack pointer.
3397    int FirstVaArgOffset;
3398
3399    if (IsO32 || (Idx == NumOfRegs)) {
3400      FirstVaArgOffset =
3401        (CCInfo.getNextStackOffset() + RegSize - 1) / RegSize * RegSize;
3402    } else
3403      FirstVaArgOffset = RegSlotOffset;
3404
3405    // Record the frame index of the first variable argument
3406    // which is a value necessary to VASTART.
3407    LastFI = MFI->CreateFixedObject(RegSize, FirstVaArgOffset, true);
3408    MipsFI->setVarArgsFrameIndex(LastFI);
3409
3410    // Copy the integer registers that have not been used for argument passing
3411    // to the argument register save area. For O32, the save area is allocated
3412    // in the caller's stack frame, while for N32/64, it is allocated in the
3413    // callee's stack frame.
3414    for (int StackOffset = RegSlotOffset;
3415         Idx < NumOfRegs; ++Idx, StackOffset += RegSize) {
3416      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegs[Idx], RC);
3417      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3418                                            MVT::getIntegerVT(RegSize * 8));
3419      LastFI = MFI->CreateFixedObject(RegSize, StackOffset, true);
3420      SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
3421      OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
3422                                       MachinePointerInfo(), false, false, 0));
3423    }
3424  }
3425
3426  MipsFI->setLastInArgFI(LastFI);
3427
3428  // All stores are grouped in one node to allow the matching between
3429  // the size of Ins and InVals. This only happens when on varg functions
3430  if (!OutChains.empty()) {
3431    OutChains.push_back(Chain);
3432    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3433                        &OutChains[0], OutChains.size());
3434  }
3435
3436  return Chain;
3437}
3438
3439//===----------------------------------------------------------------------===//
3440//               Return Value Calling Convention Implementation
3441//===----------------------------------------------------------------------===//
3442
3443SDValue
3444MipsTargetLowering::LowerReturn(SDValue Chain,
3445                                CallingConv::ID CallConv, bool isVarArg,
3446                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3447                                const SmallVectorImpl<SDValue> &OutVals,
3448                                DebugLoc dl, SelectionDAG &DAG) const {
3449
3450  // CCValAssign - represent the assignment of
3451  // the return value to a location
3452  SmallVector<CCValAssign, 16> RVLocs;
3453
3454  // CCState - Info about the registers and stack slot.
3455  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3456                 getTargetMachine(), RVLocs, *DAG.getContext());
3457
3458  // Analize return values.
3459  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3460
3461  // If this is the first return lowered for this function, add
3462  // the regs to the liveout set for the function.
3463  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3464    for (unsigned i = 0; i != RVLocs.size(); ++i)
3465      if (RVLocs[i].isRegLoc())
3466        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3467  }
3468
3469  SDValue Flag;
3470
3471  // Copy the result values into the output registers.
3472  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3473    CCValAssign &VA = RVLocs[i];
3474    assert(VA.isRegLoc() && "Can only return in registers!");
3475
3476    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
3477
3478    // guarantee that all emitted copies are
3479    // stuck together, avoiding something bad
3480    Flag = Chain.getValue(1);
3481  }
3482
3483  // The mips ABIs for returning structs by value requires that we copy
3484  // the sret argument into $v0 for the return. We saved the argument into
3485  // a virtual register in the entry block, so now we copy the value out
3486  // and into $v0.
3487  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3488    MachineFunction &MF      = DAG.getMachineFunction();
3489    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3490    unsigned Reg = MipsFI->getSRetReturnReg();
3491
3492    if (!Reg)
3493      llvm_unreachable("sret virtual register not created in the entry block");
3494    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
3495
3496    Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
3497    Flag = Chain.getValue(1);
3498  }
3499
3500  // Return on Mips is always a "jr $ra"
3501  if (Flag.getNode())
3502    return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain, Flag);
3503
3504  // Return Void
3505  return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain);
3506}
3507
3508//===----------------------------------------------------------------------===//
3509//                           Mips Inline Assembly Support
3510//===----------------------------------------------------------------------===//
3511
3512/// getConstraintType - Given a constraint letter, return the type of
3513/// constraint it is for this target.
3514MipsTargetLowering::ConstraintType MipsTargetLowering::
3515getConstraintType(const std::string &Constraint) const
3516{
3517  // Mips specific constrainy
3518  // GCC config/mips/constraints.md
3519  //
3520  // 'd' : An address register. Equivalent to r
3521  //       unless generating MIPS16 code.
3522  // 'y' : Equivalent to r; retained for
3523  //       backwards compatibility.
3524  // 'c' : A register suitable for use in an indirect
3525  //       jump. This will always be $25 for -mabicalls.
3526  // 'l' : The lo register. 1 word storage.
3527  // 'x' : The hilo register pair. Double word storage.
3528  if (Constraint.size() == 1) {
3529    switch (Constraint[0]) {
3530      default : break;
3531      case 'd':
3532      case 'y':
3533      case 'f':
3534      case 'c':
3535      case 'l':
3536      case 'x':
3537        return C_RegisterClass;
3538    }
3539  }
3540  return TargetLowering::getConstraintType(Constraint);
3541}
3542
3543/// Examine constraint type and operand type and determine a weight value.
3544/// This object must already have been set up with the operand type
3545/// and the current alternative constraint selected.
3546TargetLowering::ConstraintWeight
3547MipsTargetLowering::getSingleConstraintMatchWeight(
3548    AsmOperandInfo &info, const char *constraint) const {
3549  ConstraintWeight weight = CW_Invalid;
3550  Value *CallOperandVal = info.CallOperandVal;
3551    // If we don't have a value, we can't do a match,
3552    // but allow it at the lowest weight.
3553  if (CallOperandVal == NULL)
3554    return CW_Default;
3555  Type *type = CallOperandVal->getType();
3556  // Look at the constraint type.
3557  switch (*constraint) {
3558  default:
3559    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3560    break;
3561  case 'd':
3562  case 'y':
3563    if (type->isIntegerTy())
3564      weight = CW_Register;
3565    break;
3566  case 'f':
3567    if (type->isFloatTy())
3568      weight = CW_Register;
3569    break;
3570  case 'c': // $25 for indirect jumps
3571  case 'l': // lo register
3572  case 'x': // hilo register pair
3573      if (type->isIntegerTy())
3574      weight = CW_SpecificReg;
3575      break;
3576  case 'I': // signed 16 bit immediate
3577  case 'J': // integer zero
3578  case 'K': // unsigned 16 bit immediate
3579  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3580  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3581  case 'O': // signed 15 bit immediate (+- 16383)
3582  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3583    if (isa<ConstantInt>(CallOperandVal))
3584      weight = CW_Constant;
3585    break;
3586  }
3587  return weight;
3588}
3589
3590/// Given a register class constraint, like 'r', if this corresponds directly
3591/// to an LLVM register class, return a register of 0 and the register class
3592/// pointer.
3593std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3594getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3595{
3596  if (Constraint.size() == 1) {
3597    switch (Constraint[0]) {
3598    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3599    case 'y': // Same as 'r'. Exists for compatibility.
3600    case 'r':
3601      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3602        if (Subtarget->inMips16Mode())
3603          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3604        return std::make_pair(0U, &Mips::CPURegsRegClass);
3605      }
3606      if (VT == MVT::i64 && !HasMips64)
3607        return std::make_pair(0U, &Mips::CPURegsRegClass);
3608      if (VT == MVT::i64 && HasMips64)
3609        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
3610      // This will generate an error message
3611      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3612    case 'f':
3613      if (VT == MVT::f32)
3614        return std::make_pair(0U, &Mips::FGR32RegClass);
3615      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3616        if (Subtarget->isFP64bit())
3617          return std::make_pair(0U, &Mips::FGR64RegClass);
3618        return std::make_pair(0U, &Mips::AFGR64RegClass);
3619      }
3620      break;
3621    case 'c': // register suitable for indirect jump
3622      if (VT == MVT::i32)
3623        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
3624      assert(VT == MVT::i64 && "Unexpected type.");
3625      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
3626    case 'l': // register suitable for indirect jump
3627      if (VT == MVT::i32)
3628        return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
3629      return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
3630    case 'x': // register suitable for indirect jump
3631      // Fixme: Not triggering the use of both hi and low
3632      // This will generate an error message
3633      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3634    }
3635  }
3636  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3637}
3638
3639/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3640/// vector.  If it is invalid, don't add anything to Ops.
3641void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3642                                                     std::string &Constraint,
3643                                                     std::vector<SDValue>&Ops,
3644                                                     SelectionDAG &DAG) const {
3645  SDValue Result(0, 0);
3646
3647  // Only support length 1 constraints for now.
3648  if (Constraint.length() > 1) return;
3649
3650  char ConstraintLetter = Constraint[0];
3651  switch (ConstraintLetter) {
3652  default: break; // This will fall through to the generic implementation
3653  case 'I': // Signed 16 bit constant
3654    // If this fails, the parent routine will give an error
3655    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3656      EVT Type = Op.getValueType();
3657      int64_t Val = C->getSExtValue();
3658      if (isInt<16>(Val)) {
3659        Result = DAG.getTargetConstant(Val, Type);
3660        break;
3661      }
3662    }
3663    return;
3664  case 'J': // integer zero
3665    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3666      EVT Type = Op.getValueType();
3667      int64_t Val = C->getZExtValue();
3668      if (Val == 0) {
3669        Result = DAG.getTargetConstant(0, Type);
3670        break;
3671      }
3672    }
3673    return;
3674  case 'K': // unsigned 16 bit immediate
3675    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3676      EVT Type = Op.getValueType();
3677      uint64_t Val = (uint64_t)C->getZExtValue();
3678      if (isUInt<16>(Val)) {
3679        Result = DAG.getTargetConstant(Val, Type);
3680        break;
3681      }
3682    }
3683    return;
3684  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3685    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3686      EVT Type = Op.getValueType();
3687      int64_t Val = C->getSExtValue();
3688      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3689        Result = DAG.getTargetConstant(Val, Type);
3690        break;
3691      }
3692    }
3693    return;
3694  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3695    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3696      EVT Type = Op.getValueType();
3697      int64_t Val = C->getSExtValue();
3698      if ((Val >= -65535) && (Val <= -1)) {
3699        Result = DAG.getTargetConstant(Val, Type);
3700        break;
3701      }
3702    }
3703    return;
3704  case 'O': // signed 15 bit immediate
3705    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3706      EVT Type = Op.getValueType();
3707      int64_t Val = C->getSExtValue();
3708      if ((isInt<15>(Val))) {
3709        Result = DAG.getTargetConstant(Val, Type);
3710        break;
3711      }
3712    }
3713    return;
3714  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3715    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3716      EVT Type = Op.getValueType();
3717      int64_t Val = C->getSExtValue();
3718      if ((Val <= 65535) && (Val >= 1)) {
3719        Result = DAG.getTargetConstant(Val, Type);
3720        break;
3721      }
3722    }
3723    return;
3724  }
3725
3726  if (Result.getNode()) {
3727    Ops.push_back(Result);
3728    return;
3729  }
3730
3731  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3732}
3733
3734bool
3735MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3736  // The Mips target isn't yet aware of offsets.
3737  return false;
3738}
3739
3740EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3741                                            unsigned SrcAlign, bool IsZeroVal,
3742                                            bool MemcpyStrSrc,
3743                                            MachineFunction &MF) const {
3744  if (Subtarget->hasMips64())
3745    return MVT::i64;
3746
3747  return MVT::i32;
3748}
3749
3750bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3751  if (VT != MVT::f32 && VT != MVT::f64)
3752    return false;
3753  if (Imm.isNegZero())
3754    return false;
3755  return Imm.isZero();
3756}
3757
3758unsigned MipsTargetLowering::getJumpTableEncoding() const {
3759  if (IsN64)
3760    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3761
3762  return TargetLowering::getJumpTableEncoding();
3763}
3764