MipsISelLowering.cpp revision e13f441e002b95bb64d883d173f6aff9615556fd
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "mips-lower"
16#include "MipsISelLowering.h"
17#include "InstPrinter/MipsInstPrinter.h"
18#include "MCTargetDesc/MipsBaseInfo.h"
19#include "MipsMachineFunction.h"
20#include "MipsSubtarget.h"
21#include "MipsTargetMachine.h"
22#include "MipsTargetObjectFile.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/CodeGen/CallingConvLower.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/SelectionDAGISel.h"
30#include "llvm/CodeGen/ValueTypes.h"
31#include "llvm/IR/CallingConv.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/GlobalVariable.h"
35#include "llvm/IR/Intrinsics.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/raw_ostream.h"
40
41using namespace llvm;
42
43STATISTIC(NumTailCalls, "Number of tail calls");
44
45static cl::opt<bool>
46EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
47                    cl::desc("MIPS: Enable tail calls."), cl::init(false));
48
49static cl::opt<bool>
50LargeGOT("mxgot", cl::Hidden,
51         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
52
53static cl::opt<bool>
54Mips16HardFloat("mips16-hard-float", cl::NotHidden,
55                cl::desc("MIPS: mips16 hard float enable."),
56                cl::init(false));
57
58
59
60static const uint16_t O32IntRegs[4] = {
61  Mips::A0, Mips::A1, Mips::A2, Mips::A3
62};
63
64static const uint16_t Mips64IntRegs[8] = {
65  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
66  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
67};
68
69static const uint16_t Mips64DPRegs[8] = {
70  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
71  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
72};
73
74// If I is a shifted mask, set the size (Size) and the first bit of the
75// mask (Pos), and return true.
76// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
77static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
78  if (!isShiftedMask_64(I))
79     return false;
80
81  Size = CountPopulation_64(I);
82  Pos = CountTrailingZeros_64(I);
83  return true;
84}
85
86static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
87  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
88  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
89}
90
91static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
92  EVT Ty = Op.getValueType();
93
94  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
95    return DAG.getTargetGlobalAddress(N->getGlobal(), Op.getDebugLoc(), Ty, 0,
96                                      Flag);
97  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
98    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
99  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
100    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
101  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
102    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
103  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
104    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
105                                     N->getOffset(), Flag);
106
107  llvm_unreachable("Unexpected node type.");
108  return SDValue();
109}
110
111static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
112  DebugLoc DL = Op.getDebugLoc();
113  EVT Ty = Op.getValueType();
114  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
115  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
116  return DAG.getNode(ISD::ADD, DL, Ty,
117                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
118                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
119}
120
121static SDValue getAddrLocal(SDValue Op, SelectionDAG &DAG, bool HasMips64) {
122  DebugLoc DL = Op.getDebugLoc();
123  EVT Ty = Op.getValueType();
124  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
125  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, GetGlobalReg(DAG, Ty),
126                            getTargetNode(Op, DAG, GOTFlag));
127  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
128                             MachinePointerInfo::getGOT(), false, false, false,
129                             0);
130  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
131  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
132  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
133}
134
135static SDValue getAddrGlobal(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
136  DebugLoc DL = Op.getDebugLoc();
137  EVT Ty = Op.getValueType();
138  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, GetGlobalReg(DAG, Ty),
139                            getTargetNode(Op, DAG, Flag));
140  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
141                     MachinePointerInfo::getGOT(), false, false, false, 0);
142}
143
144static SDValue getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
145                                     unsigned HiFlag, unsigned LoFlag) {
146  DebugLoc DL = Op.getDebugLoc();
147  EVT Ty = Op.getValueType();
148  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
149  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, GetGlobalReg(DAG, Ty));
150  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
151                                getTargetNode(Op, DAG, LoFlag));
152  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
153                     MachinePointerInfo::getGOT(), false, false, false, 0);
154}
155
156const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
157  switch (Opcode) {
158  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
159  case MipsISD::TailCall:          return "MipsISD::TailCall";
160  case MipsISD::Hi:                return "MipsISD::Hi";
161  case MipsISD::Lo:                return "MipsISD::Lo";
162  case MipsISD::GPRel:             return "MipsISD::GPRel";
163  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
164  case MipsISD::Ret:               return "MipsISD::Ret";
165  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
166  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
167  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
168  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
169  case MipsISD::FPRound:           return "MipsISD::FPRound";
170  case MipsISD::MAdd:              return "MipsISD::MAdd";
171  case MipsISD::MAddu:             return "MipsISD::MAddu";
172  case MipsISD::MSub:              return "MipsISD::MSub";
173  case MipsISD::MSubu:             return "MipsISD::MSubu";
174  case MipsISD::DivRem:            return "MipsISD::DivRem";
175  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
176  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
177  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
178  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
179  case MipsISD::Sync:              return "MipsISD::Sync";
180  case MipsISD::Ext:               return "MipsISD::Ext";
181  case MipsISD::Ins:               return "MipsISD::Ins";
182  case MipsISD::LWL:               return "MipsISD::LWL";
183  case MipsISD::LWR:               return "MipsISD::LWR";
184  case MipsISD::SWL:               return "MipsISD::SWL";
185  case MipsISD::SWR:               return "MipsISD::SWR";
186  case MipsISD::LDL:               return "MipsISD::LDL";
187  case MipsISD::LDR:               return "MipsISD::LDR";
188  case MipsISD::SDL:               return "MipsISD::SDL";
189  case MipsISD::SDR:               return "MipsISD::SDR";
190  case MipsISD::EXTP:              return "MipsISD::EXTP";
191  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
192  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
193  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
194  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
195  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
196  case MipsISD::SHILO:             return "MipsISD::SHILO";
197  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
198  case MipsISD::MULT:              return "MipsISD::MULT";
199  case MipsISD::MULTU:             return "MipsISD::MULTU";
200  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSPDSP";
201  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
202  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
203  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
204  default:                         return NULL;
205  }
206}
207
208void MipsTargetLowering::setMips16HardFloatLibCalls() {
209  setLibcallName(RTLIB::ADD_F32, "__mips16_addsf3");
210  setLibcallName(RTLIB::ADD_F64, "__mips16_adddf3");
211  setLibcallName(RTLIB::SUB_F32, "__mips16_subsf3");
212  setLibcallName(RTLIB::SUB_F64, "__mips16_subdf3");
213  setLibcallName(RTLIB::MUL_F32, "__mips16_mulsf3");
214  setLibcallName(RTLIB::MUL_F64, "__mips16_muldf3");
215  setLibcallName(RTLIB::DIV_F32, "__mips16_divsf3");
216  setLibcallName(RTLIB::DIV_F64, "__mips16_divdf3");
217  setLibcallName(RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2");
218  setLibcallName(RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2");
219  setLibcallName(RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi");
220  setLibcallName(RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi");
221  setLibcallName(RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf");
222  setLibcallName(RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf");
223  setLibcallName(RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf");
224  setLibcallName(RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf");
225  setLibcallName(RTLIB::OEQ_F32, "__mips16_eqsf2");
226  setLibcallName(RTLIB::OEQ_F64, "__mips16_eqdf2");
227  setLibcallName(RTLIB::UNE_F32, "__mips16_nesf2");
228  setLibcallName(RTLIB::UNE_F64, "__mips16_nedf2");
229  setLibcallName(RTLIB::OGE_F32, "__mips16_gesf2");
230  setLibcallName(RTLIB::OGE_F64, "__mips16_gedf2");
231  setLibcallName(RTLIB::OLT_F32, "__mips16_ltsf2");
232  setLibcallName(RTLIB::OLT_F64, "__mips16_ltdf2");
233  setLibcallName(RTLIB::OLE_F32, "__mips16_lesf2");
234  setLibcallName(RTLIB::OLE_F64, "__mips16_ledf2");
235  setLibcallName(RTLIB::OGT_F32, "__mips16_gtsf2");
236  setLibcallName(RTLIB::OGT_F64, "__mips16_gtdf2");
237  setLibcallName(RTLIB::UO_F32, "__mips16_unordsf2");
238  setLibcallName(RTLIB::UO_F64, "__mips16_unorddf2");
239  setLibcallName(RTLIB::O_F32, "__mips16_unordsf2");
240  setLibcallName(RTLIB::O_F64, "__mips16_unorddf2");
241}
242
243MipsTargetLowering::
244MipsTargetLowering(MipsTargetMachine &TM)
245  : TargetLowering(TM, new MipsTargetObjectFile()),
246    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
247    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
248    IsO32(Subtarget->isABI_O32()) {
249
250  // Mips does not have i1 type, so use i32 for
251  // setcc operations results (slt, sgt, ...).
252  setBooleanContents(ZeroOrOneBooleanContent);
253  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
254
255  // Set up the register classes
256  addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
257
258  if (HasMips64)
259    addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
260
261  if (Subtarget->inMips16Mode()) {
262    addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
263    if (Mips16HardFloat)
264      setMips16HardFloatLibCalls();
265  }
266
267  if (Subtarget->hasDSP()) {
268    MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
269
270    for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
271      addRegisterClass(VecTys[i], &Mips::DSPRegsRegClass);
272
273      // Expand all builtin opcodes.
274      for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
275        setOperationAction(Opc, VecTys[i], Expand);
276
277      setOperationAction(ISD::LOAD, VecTys[i], Legal);
278      setOperationAction(ISD::STORE, VecTys[i], Legal);
279      setOperationAction(ISD::BITCAST, VecTys[i], Legal);
280    }
281  }
282
283  if (!TM.Options.UseSoftFloat) {
284    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
285
286    // When dealing with single precision only, use libcalls
287    if (!Subtarget->isSingleFloat()) {
288      if (HasMips64)
289        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
290      else
291        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
292    }
293  }
294
295  // Load extented operations for i1 types must be promoted
296  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
297  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
298  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
299
300  // MIPS doesn't have extending float->double load/store
301  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
302  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
303
304  // Used by legalize types to correctly generate the setcc result.
305  // Without this, every float setcc comes with a AND/OR with the result,
306  // we don't want this, since the fpcmp result goes to a flag register,
307  // which is used implicitly by brcond and select operations.
308  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
309
310  // Mips Custom Operations
311  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
312  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
313  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
314  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
315  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
316  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
317  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
318  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
319  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
320  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
321  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
322  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
323  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
324  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
325  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
326  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
327  if (Subtarget->inMips16Mode()) {
328    setOperationAction(ISD::MEMBARRIER,         MVT::Other, Expand);
329    setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Expand);
330  }
331  else {
332    setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
333    setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
334  }
335  if (!Subtarget->inMips16Mode()) {
336    setOperationAction(ISD::LOAD,               MVT::i32, Custom);
337    setOperationAction(ISD::STORE,              MVT::i32, Custom);
338  }
339
340  if (!TM.Options.NoNaNsFPMath) {
341    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
342    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
343  }
344
345  if (HasMips64) {
346    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
347    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
348    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
349    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
350    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
351    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
352    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
353    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
354  }
355
356  if (!HasMips64) {
357    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
358    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
359    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
360  }
361
362  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
363  if (HasMips64)
364    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
365
366  setOperationAction(ISD::SDIV, MVT::i32, Expand);
367  setOperationAction(ISD::SREM, MVT::i32, Expand);
368  setOperationAction(ISD::UDIV, MVT::i32, Expand);
369  setOperationAction(ISD::UREM, MVT::i32, Expand);
370  setOperationAction(ISD::SDIV, MVT::i64, Expand);
371  setOperationAction(ISD::SREM, MVT::i64, Expand);
372  setOperationAction(ISD::UDIV, MVT::i64, Expand);
373  setOperationAction(ISD::UREM, MVT::i64, Expand);
374
375  // Operations not directly supported by Mips.
376  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
377  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
378  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
379  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
380  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
381  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
382  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
383  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
384  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
385  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
386  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
387  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
388  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
389  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
390  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
391  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
392  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
393  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
394  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
395  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
396
397  if (!Subtarget->hasMips32r2())
398    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
399
400  if (!Subtarget->hasMips64r2())
401    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
402
403  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
404  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
405  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
406  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
407  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
408  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
409  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
410  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
411  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
412  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
413  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
414  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
415  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
416  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
417  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
418
419  if (!TM.Options.NoNaNsFPMath) {
420    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
421    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
422  }
423
424  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
425  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
426  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
427  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
428
429  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
430  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
431  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
432
433  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
434  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
435
436  // Use the default for now
437  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
438  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
439
440  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
441  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
442  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
443  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
444
445  if (Subtarget->inMips16Mode()) {
446    setOperationAction(ISD::ATOMIC_CMP_SWAP,       MVT::i32,    Expand);
447    setOperationAction(ISD::ATOMIC_SWAP,           MVT::i32,    Expand);
448    setOperationAction(ISD::ATOMIC_LOAD_ADD,       MVT::i32,    Expand);
449    setOperationAction(ISD::ATOMIC_LOAD_SUB,       MVT::i32,    Expand);
450    setOperationAction(ISD::ATOMIC_LOAD_AND,       MVT::i32,    Expand);
451    setOperationAction(ISD::ATOMIC_LOAD_OR,        MVT::i32,    Expand);
452    setOperationAction(ISD::ATOMIC_LOAD_XOR,       MVT::i32,    Expand);
453    setOperationAction(ISD::ATOMIC_LOAD_NAND,      MVT::i32,    Expand);
454    setOperationAction(ISD::ATOMIC_LOAD_MIN,       MVT::i32,    Expand);
455    setOperationAction(ISD::ATOMIC_LOAD_MAX,       MVT::i32,    Expand);
456    setOperationAction(ISD::ATOMIC_LOAD_UMIN,      MVT::i32,    Expand);
457    setOperationAction(ISD::ATOMIC_LOAD_UMAX,      MVT::i32,    Expand);
458  }
459
460  setInsertFencesForAtomic(true);
461
462  if (!Subtarget->hasSEInReg()) {
463    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
464    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
465  }
466
467  if (!Subtarget->hasBitCount()) {
468    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
469    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
470  }
471
472  if (!Subtarget->hasSwap()) {
473    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
474    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
475  }
476
477  if (HasMips64) {
478    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
479    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
480    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
481    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
482  }
483
484  setTargetDAGCombine(ISD::ADDE);
485  setTargetDAGCombine(ISD::SUBE);
486  setTargetDAGCombine(ISD::SDIVREM);
487  setTargetDAGCombine(ISD::UDIVREM);
488  setTargetDAGCombine(ISD::SELECT);
489  setTargetDAGCombine(ISD::AND);
490  setTargetDAGCombine(ISD::OR);
491  setTargetDAGCombine(ISD::ADD);
492
493  setMinFunctionAlignment(HasMips64 ? 3 : 2);
494
495  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
496  computeRegisterProperties();
497
498  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
499  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
500
501  maxStoresPerMemcpy = 16;
502}
503
504bool
505MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
506  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
507
508  if (Subtarget->inMips16Mode())
509    return false;
510
511  switch (SVT) {
512  case MVT::i64:
513  case MVT::i32:
514    if (Fast)
515      *Fast = true;
516    return true;
517  default:
518    return false;
519  }
520}
521
522EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
523  if (!VT.isVector())
524    return MVT::i32;
525  return VT.changeVectorElementTypeToInteger();
526}
527
528// SelectMadd -
529// Transforms a subgraph in CurDAG if the following pattern is found:
530//  (addc multLo, Lo0), (adde multHi, Hi0),
531// where,
532//  multHi/Lo: product of multiplication
533//  Lo0: initial value of Lo register
534//  Hi0: initial value of Hi register
535// Return true if pattern matching was successful.
536static bool SelectMadd(SDNode *ADDENode, SelectionDAG *CurDAG) {
537  // ADDENode's second operand must be a flag output of an ADDC node in order
538  // for the matching to be successful.
539  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
540
541  if (ADDCNode->getOpcode() != ISD::ADDC)
542    return false;
543
544  SDValue MultHi = ADDENode->getOperand(0);
545  SDValue MultLo = ADDCNode->getOperand(0);
546  SDNode *MultNode = MultHi.getNode();
547  unsigned MultOpc = MultHi.getOpcode();
548
549  // MultHi and MultLo must be generated by the same node,
550  if (MultLo.getNode() != MultNode)
551    return false;
552
553  // and it must be a multiplication.
554  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
555    return false;
556
557  // MultLo amd MultHi must be the first and second output of MultNode
558  // respectively.
559  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
560    return false;
561
562  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
563  // of the values of MultNode, in which case MultNode will be removed in later
564  // phases.
565  // If there exist users other than ADDENode or ADDCNode, this function returns
566  // here, which will result in MultNode being mapped to a single MULT
567  // instruction node rather than a pair of MULT and MADD instructions being
568  // produced.
569  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
570    return false;
571
572  SDValue Chain = CurDAG->getEntryNode();
573  DebugLoc dl = ADDENode->getDebugLoc();
574
575  // create MipsMAdd(u) node
576  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
577
578  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
579                                 MultNode->getOperand(0),// Factor 0
580                                 MultNode->getOperand(1),// Factor 1
581                                 ADDCNode->getOperand(1),// Lo0
582                                 ADDENode->getOperand(1));// Hi0
583
584  // create CopyFromReg nodes
585  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
586                                              MAdd);
587  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
588                                              Mips::HI, MVT::i32,
589                                              CopyFromLo.getValue(2));
590
591  // replace uses of adde and addc here
592  if (!SDValue(ADDCNode, 0).use_empty())
593    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
594
595  if (!SDValue(ADDENode, 0).use_empty())
596    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
597
598  return true;
599}
600
601// SelectMsub -
602// Transforms a subgraph in CurDAG if the following pattern is found:
603//  (addc Lo0, multLo), (sube Hi0, multHi),
604// where,
605//  multHi/Lo: product of multiplication
606//  Lo0: initial value of Lo register
607//  Hi0: initial value of Hi register
608// Return true if pattern matching was successful.
609static bool SelectMsub(SDNode *SUBENode, SelectionDAG *CurDAG) {
610  // SUBENode's second operand must be a flag output of an SUBC node in order
611  // for the matching to be successful.
612  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
613
614  if (SUBCNode->getOpcode() != ISD::SUBC)
615    return false;
616
617  SDValue MultHi = SUBENode->getOperand(1);
618  SDValue MultLo = SUBCNode->getOperand(1);
619  SDNode *MultNode = MultHi.getNode();
620  unsigned MultOpc = MultHi.getOpcode();
621
622  // MultHi and MultLo must be generated by the same node,
623  if (MultLo.getNode() != MultNode)
624    return false;
625
626  // and it must be a multiplication.
627  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
628    return false;
629
630  // MultLo amd MultHi must be the first and second output of MultNode
631  // respectively.
632  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
633    return false;
634
635  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
636  // of the values of MultNode, in which case MultNode will be removed in later
637  // phases.
638  // If there exist users other than SUBENode or SUBCNode, this function returns
639  // here, which will result in MultNode being mapped to a single MULT
640  // instruction node rather than a pair of MULT and MSUB instructions being
641  // produced.
642  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
643    return false;
644
645  SDValue Chain = CurDAG->getEntryNode();
646  DebugLoc dl = SUBENode->getDebugLoc();
647
648  // create MipsSub(u) node
649  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
650
651  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
652                                 MultNode->getOperand(0),// Factor 0
653                                 MultNode->getOperand(1),// Factor 1
654                                 SUBCNode->getOperand(0),// Lo0
655                                 SUBENode->getOperand(0));// Hi0
656
657  // create CopyFromReg nodes
658  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
659                                              MSub);
660  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
661                                              Mips::HI, MVT::i32,
662                                              CopyFromLo.getValue(2));
663
664  // replace uses of sube and subc here
665  if (!SDValue(SUBCNode, 0).use_empty())
666    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
667
668  if (!SDValue(SUBENode, 0).use_empty())
669    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
670
671  return true;
672}
673
674static SDValue PerformADDECombine(SDNode *N, SelectionDAG &DAG,
675                                  TargetLowering::DAGCombinerInfo &DCI,
676                                  const MipsSubtarget *Subtarget) {
677  if (DCI.isBeforeLegalize())
678    return SDValue();
679
680  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
681      SelectMadd(N, &DAG))
682    return SDValue(N, 0);
683
684  return SDValue();
685}
686
687static SDValue PerformSUBECombine(SDNode *N, SelectionDAG &DAG,
688                                  TargetLowering::DAGCombinerInfo &DCI,
689                                  const MipsSubtarget *Subtarget) {
690  if (DCI.isBeforeLegalize())
691    return SDValue();
692
693  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
694      SelectMsub(N, &DAG))
695    return SDValue(N, 0);
696
697  return SDValue();
698}
699
700static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG &DAG,
701                                    TargetLowering::DAGCombinerInfo &DCI,
702                                    const MipsSubtarget *Subtarget) {
703  if (DCI.isBeforeLegalizeOps())
704    return SDValue();
705
706  EVT Ty = N->getValueType(0);
707  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
708  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
709  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
710                                                  MipsISD::DivRemU;
711  DebugLoc dl = N->getDebugLoc();
712
713  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
714                               N->getOperand(0), N->getOperand(1));
715  SDValue InChain = DAG.getEntryNode();
716  SDValue InGlue = DivRem;
717
718  // insert MFLO
719  if (N->hasAnyUseOfValue(0)) {
720    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
721                                            InGlue);
722    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
723    InChain = CopyFromLo.getValue(1);
724    InGlue = CopyFromLo.getValue(2);
725  }
726
727  // insert MFHI
728  if (N->hasAnyUseOfValue(1)) {
729    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
730                                            HI, Ty, InGlue);
731    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
732  }
733
734  return SDValue();
735}
736
737static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
738  switch (CC) {
739  default: llvm_unreachable("Unknown fp condition code!");
740  case ISD::SETEQ:
741  case ISD::SETOEQ: return Mips::FCOND_OEQ;
742  case ISD::SETUNE: return Mips::FCOND_UNE;
743  case ISD::SETLT:
744  case ISD::SETOLT: return Mips::FCOND_OLT;
745  case ISD::SETGT:
746  case ISD::SETOGT: return Mips::FCOND_OGT;
747  case ISD::SETLE:
748  case ISD::SETOLE: return Mips::FCOND_OLE;
749  case ISD::SETGE:
750  case ISD::SETOGE: return Mips::FCOND_OGE;
751  case ISD::SETULT: return Mips::FCOND_ULT;
752  case ISD::SETULE: return Mips::FCOND_ULE;
753  case ISD::SETUGT: return Mips::FCOND_UGT;
754  case ISD::SETUGE: return Mips::FCOND_UGE;
755  case ISD::SETUO:  return Mips::FCOND_UN;
756  case ISD::SETO:   return Mips::FCOND_OR;
757  case ISD::SETNE:
758  case ISD::SETONE: return Mips::FCOND_ONE;
759  case ISD::SETUEQ: return Mips::FCOND_UEQ;
760  }
761}
762
763
764// Returns true if condition code has to be inverted.
765static bool InvertFPCondCode(Mips::CondCode CC) {
766  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
767    return false;
768
769  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
770         "Illegal Condition Code");
771
772  return true;
773}
774
775// Creates and returns an FPCmp node from a setcc node.
776// Returns Op if setcc is not a floating point comparison.
777static SDValue CreateFPCmp(SelectionDAG &DAG, const SDValue &Op) {
778  // must be a SETCC node
779  if (Op.getOpcode() != ISD::SETCC)
780    return Op;
781
782  SDValue LHS = Op.getOperand(0);
783
784  if (!LHS.getValueType().isFloatingPoint())
785    return Op;
786
787  SDValue RHS = Op.getOperand(1);
788  DebugLoc dl = Op.getDebugLoc();
789
790  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
791  // node if necessary.
792  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
793
794  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
795                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
796}
797
798// Creates and returns a CMovFPT/F node.
799static SDValue CreateCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
800                            SDValue False, DebugLoc DL) {
801  bool invert = InvertFPCondCode((Mips::CondCode)
802                                 cast<ConstantSDNode>(Cond.getOperand(2))
803                                 ->getSExtValue());
804
805  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
806                     True.getValueType(), True, False, Cond);
807}
808
809static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
810                                    TargetLowering::DAGCombinerInfo &DCI,
811                                    const MipsSubtarget *Subtarget) {
812  if (DCI.isBeforeLegalizeOps())
813    return SDValue();
814
815  SDValue SetCC = N->getOperand(0);
816
817  if ((SetCC.getOpcode() != ISD::SETCC) ||
818      !SetCC.getOperand(0).getValueType().isInteger())
819    return SDValue();
820
821  SDValue False = N->getOperand(2);
822  EVT FalseTy = False.getValueType();
823
824  if (!FalseTy.isInteger())
825    return SDValue();
826
827  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
828
829  if (!CN || CN->getZExtValue())
830    return SDValue();
831
832  const DebugLoc DL = N->getDebugLoc();
833  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
834  SDValue True = N->getOperand(1);
835
836  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
837                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
838
839  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
840}
841
842static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
843                                 TargetLowering::DAGCombinerInfo &DCI,
844                                 const MipsSubtarget *Subtarget) {
845  // Pattern match EXT.
846  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
847  //  => ext $dst, $src, size, pos
848  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
849    return SDValue();
850
851  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
852  unsigned ShiftRightOpc = ShiftRight.getOpcode();
853
854  // Op's first operand must be a shift right.
855  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
856    return SDValue();
857
858  // The second operand of the shift must be an immediate.
859  ConstantSDNode *CN;
860  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
861    return SDValue();
862
863  uint64_t Pos = CN->getZExtValue();
864  uint64_t SMPos, SMSize;
865
866  // Op's second operand must be a shifted mask.
867  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
868      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
869    return SDValue();
870
871  // Return if the shifted mask does not start at bit 0 or the sum of its size
872  // and Pos exceeds the word's size.
873  EVT ValTy = N->getValueType(0);
874  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
875    return SDValue();
876
877  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
878                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
879                     DAG.getConstant(SMSize, MVT::i32));
880}
881
882static SDValue PerformORCombine(SDNode *N, SelectionDAG &DAG,
883                                TargetLowering::DAGCombinerInfo &DCI,
884                                const MipsSubtarget *Subtarget) {
885  // Pattern match INS.
886  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
887  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
888  //  => ins $dst, $src, size, pos, $src1
889  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
890    return SDValue();
891
892  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
893  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
894  ConstantSDNode *CN;
895
896  // See if Op's first operand matches (and $src1 , mask0).
897  if (And0.getOpcode() != ISD::AND)
898    return SDValue();
899
900  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
901      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
902    return SDValue();
903
904  // See if Op's second operand matches (and (shl $src, pos), mask1).
905  if (And1.getOpcode() != ISD::AND)
906    return SDValue();
907
908  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
909      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
910    return SDValue();
911
912  // The shift masks must have the same position and size.
913  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
914    return SDValue();
915
916  SDValue Shl = And1.getOperand(0);
917  if (Shl.getOpcode() != ISD::SHL)
918    return SDValue();
919
920  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
921    return SDValue();
922
923  unsigned Shamt = CN->getZExtValue();
924
925  // Return if the shift amount and the first bit position of mask are not the
926  // same.
927  EVT ValTy = N->getValueType(0);
928  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
929    return SDValue();
930
931  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
932                     DAG.getConstant(SMPos0, MVT::i32),
933                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
934}
935
936static SDValue PerformADDCombine(SDNode *N, SelectionDAG &DAG,
937                                 TargetLowering::DAGCombinerInfo &DCI,
938                                 const MipsSubtarget *Subtarget) {
939  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
940
941  if (DCI.isBeforeLegalizeOps())
942    return SDValue();
943
944  SDValue Add = N->getOperand(1);
945
946  if (Add.getOpcode() != ISD::ADD)
947    return SDValue();
948
949  SDValue Lo = Add.getOperand(1);
950
951  if ((Lo.getOpcode() != MipsISD::Lo) ||
952      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
953    return SDValue();
954
955  EVT ValTy = N->getValueType(0);
956  DebugLoc DL = N->getDebugLoc();
957
958  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
959                             Add.getOperand(0));
960  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
961}
962
963SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
964  const {
965  SelectionDAG &DAG = DCI.DAG;
966  unsigned opc = N->getOpcode();
967
968  switch (opc) {
969  default: break;
970  case ISD::ADDE:
971    return PerformADDECombine(N, DAG, DCI, Subtarget);
972  case ISD::SUBE:
973    return PerformSUBECombine(N, DAG, DCI, Subtarget);
974  case ISD::SDIVREM:
975  case ISD::UDIVREM:
976    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
977  case ISD::SELECT:
978    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
979  case ISD::AND:
980    return PerformANDCombine(N, DAG, DCI, Subtarget);
981  case ISD::OR:
982    return PerformORCombine(N, DAG, DCI, Subtarget);
983  case ISD::ADD:
984    return PerformADDCombine(N, DAG, DCI, Subtarget);
985  }
986
987  return SDValue();
988}
989
990void
991MipsTargetLowering::LowerOperationWrapper(SDNode *N,
992                                          SmallVectorImpl<SDValue> &Results,
993                                          SelectionDAG &DAG) const {
994  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
995
996  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
997    Results.push_back(Res.getValue(I));
998}
999
1000void
1001MipsTargetLowering::ReplaceNodeResults(SDNode *N,
1002                                       SmallVectorImpl<SDValue> &Results,
1003                                       SelectionDAG &DAG) const {
1004  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1005
1006  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1007    Results.push_back(Res.getValue(I));
1008}
1009
1010SDValue MipsTargetLowering::
1011LowerOperation(SDValue Op, SelectionDAG &DAG) const
1012{
1013  switch (Op.getOpcode())
1014  {
1015    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
1016    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
1017    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
1018    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
1019    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
1020    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
1021    case ISD::SELECT:             return LowerSELECT(Op, DAG);
1022    case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
1023    case ISD::SETCC:              return LowerSETCC(Op, DAG);
1024    case ISD::VASTART:            return LowerVASTART(Op, DAG);
1025    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
1026    case ISD::FABS:               return LowerFABS(Op, DAG);
1027    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
1028    case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
1029    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
1030    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
1031    case ISD::SHL_PARTS:          return LowerShiftLeftParts(Op, DAG);
1032    case ISD::SRA_PARTS:          return LowerShiftRightParts(Op, DAG, true);
1033    case ISD::SRL_PARTS:          return LowerShiftRightParts(Op, DAG, false);
1034    case ISD::LOAD:               return LowerLOAD(Op, DAG);
1035    case ISD::STORE:              return LowerSTORE(Op, DAG);
1036    case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1037    case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
1038    case ISD::ADD:                return LowerADD(Op, DAG);
1039  }
1040  return SDValue();
1041}
1042
1043//===----------------------------------------------------------------------===//
1044//  Lower helper functions
1045//===----------------------------------------------------------------------===//
1046
1047// AddLiveIn - This helper function adds the specified physical register to the
1048// MachineFunction as a live in value.  It also creates a corresponding
1049// virtual register for it.
1050static unsigned
1051AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
1052{
1053  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1054  MF.getRegInfo().addLiveIn(PReg, VReg);
1055  return VReg;
1056}
1057
1058// Get fp branch code (not opcode) from condition code.
1059static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
1060  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
1061    return Mips::BRANCH_T;
1062
1063  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
1064         "Invalid CondCode.");
1065
1066  return Mips::BRANCH_F;
1067}
1068
1069/*
1070static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
1071                                        DebugLoc dl,
1072                                        const MipsSubtarget *Subtarget,
1073                                        const TargetInstrInfo *TII,
1074                                        bool isFPCmp, unsigned Opc) {
1075  // There is no need to expand CMov instructions if target has
1076  // conditional moves.
1077  if (Subtarget->hasCondMov())
1078    return BB;
1079
1080  // To "insert" a SELECT_CC instruction, we actually have to insert the
1081  // diamond control-flow pattern.  The incoming instruction knows the
1082  // destination vreg to set, the condition code register to branch on, the
1083  // true/false values to select between, and a branch opcode to use.
1084  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1085  MachineFunction::iterator It = BB;
1086  ++It;
1087
1088  //  thisMBB:
1089  //  ...
1090  //   TrueVal = ...
1091  //   setcc r1, r2, r3
1092  //   bNE   r1, r0, copy1MBB
1093  //   fallthrough --> copy0MBB
1094  MachineBasicBlock *thisMBB  = BB;
1095  MachineFunction *F = BB->getParent();
1096  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1097  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
1098  F->insert(It, copy0MBB);
1099  F->insert(It, sinkMBB);
1100
1101  // Transfer the remainder of BB and its successor edges to sinkMBB.
1102  sinkMBB->splice(sinkMBB->begin(), BB,
1103                  llvm::next(MachineBasicBlock::iterator(MI)),
1104                  BB->end());
1105  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1106
1107  // Next, add the true and fallthrough blocks as its successors.
1108  BB->addSuccessor(copy0MBB);
1109  BB->addSuccessor(sinkMBB);
1110
1111  // Emit the right instruction according to the type of the operands compared
1112  if (isFPCmp)
1113    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
1114  else
1115    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
1116      .addReg(Mips::ZERO).addMBB(sinkMBB);
1117
1118  //  copy0MBB:
1119  //   %FalseValue = ...
1120  //   # fallthrough to sinkMBB
1121  BB = copy0MBB;
1122
1123  // Update machine-CFG edges
1124  BB->addSuccessor(sinkMBB);
1125
1126  //  sinkMBB:
1127  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
1128  //  ...
1129  BB = sinkMBB;
1130
1131  if (isFPCmp)
1132    BuildMI(*BB, BB->begin(), dl,
1133            TII->get(Mips::PHI), MI->getOperand(0).getReg())
1134      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
1135      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
1136  else
1137    BuildMI(*BB, BB->begin(), dl,
1138            TII->get(Mips::PHI), MI->getOperand(0).getReg())
1139      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
1140      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
1141
1142  MI->eraseFromParent();   // The pseudo instruction is gone now.
1143  return BB;
1144}
1145*/
1146
1147MachineBasicBlock *
1148MipsTargetLowering::EmitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
1149  // $bb:
1150  //  bposge32_pseudo $vr0
1151  //  =>
1152  // $bb:
1153  //  bposge32 $tbb
1154  // $fbb:
1155  //  li $vr2, 0
1156  //  b $sink
1157  // $tbb:
1158  //  li $vr1, 1
1159  // $sink:
1160  //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
1161
1162  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
1163  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1164  const TargetRegisterClass *RC = &Mips::CPURegsRegClass;
1165  DebugLoc DL = MI->getDebugLoc();
1166  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1167  MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB));
1168  MachineFunction *F = BB->getParent();
1169  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
1170  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
1171  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
1172  F->insert(It, FBB);
1173  F->insert(It, TBB);
1174  F->insert(It, Sink);
1175
1176  // Transfer the remainder of BB and its successor edges to Sink.
1177  Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)),
1178               BB->end());
1179  Sink->transferSuccessorsAndUpdatePHIs(BB);
1180
1181  // Add successors.
1182  BB->addSuccessor(FBB);
1183  BB->addSuccessor(TBB);
1184  FBB->addSuccessor(Sink);
1185  TBB->addSuccessor(Sink);
1186
1187  // Insert the real bposge32 instruction to $BB.
1188  BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
1189
1190  // Fill $FBB.
1191  unsigned VR2 = RegInfo.createVirtualRegister(RC);
1192  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
1193    .addReg(Mips::ZERO).addImm(0);
1194  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
1195
1196  // Fill $TBB.
1197  unsigned VR1 = RegInfo.createVirtualRegister(RC);
1198  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
1199    .addReg(Mips::ZERO).addImm(1);
1200
1201  // Insert phi function to $Sink.
1202  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
1203          MI->getOperand(0).getReg())
1204    .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
1205
1206  MI->eraseFromParent();   // The pseudo instruction is gone now.
1207  return Sink;
1208}
1209
1210MachineBasicBlock *
1211MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1212                                                MachineBasicBlock *BB) const {
1213  switch (MI->getOpcode()) {
1214  default: llvm_unreachable("Unexpected instr type to insert");
1215  case Mips::ATOMIC_LOAD_ADD_I8:
1216  case Mips::ATOMIC_LOAD_ADD_I8_P8:
1217    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
1218  case Mips::ATOMIC_LOAD_ADD_I16:
1219  case Mips::ATOMIC_LOAD_ADD_I16_P8:
1220    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
1221  case Mips::ATOMIC_LOAD_ADD_I32:
1222  case Mips::ATOMIC_LOAD_ADD_I32_P8:
1223    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
1224  case Mips::ATOMIC_LOAD_ADD_I64:
1225  case Mips::ATOMIC_LOAD_ADD_I64_P8:
1226    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
1227
1228  case Mips::ATOMIC_LOAD_AND_I8:
1229  case Mips::ATOMIC_LOAD_AND_I8_P8:
1230    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
1231  case Mips::ATOMIC_LOAD_AND_I16:
1232  case Mips::ATOMIC_LOAD_AND_I16_P8:
1233    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
1234  case Mips::ATOMIC_LOAD_AND_I32:
1235  case Mips::ATOMIC_LOAD_AND_I32_P8:
1236    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
1237  case Mips::ATOMIC_LOAD_AND_I64:
1238  case Mips::ATOMIC_LOAD_AND_I64_P8:
1239    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
1240
1241  case Mips::ATOMIC_LOAD_OR_I8:
1242  case Mips::ATOMIC_LOAD_OR_I8_P8:
1243    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
1244  case Mips::ATOMIC_LOAD_OR_I16:
1245  case Mips::ATOMIC_LOAD_OR_I16_P8:
1246    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
1247  case Mips::ATOMIC_LOAD_OR_I32:
1248  case Mips::ATOMIC_LOAD_OR_I32_P8:
1249    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
1250  case Mips::ATOMIC_LOAD_OR_I64:
1251  case Mips::ATOMIC_LOAD_OR_I64_P8:
1252    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
1253
1254  case Mips::ATOMIC_LOAD_XOR_I8:
1255  case Mips::ATOMIC_LOAD_XOR_I8_P8:
1256    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
1257  case Mips::ATOMIC_LOAD_XOR_I16:
1258  case Mips::ATOMIC_LOAD_XOR_I16_P8:
1259    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
1260  case Mips::ATOMIC_LOAD_XOR_I32:
1261  case Mips::ATOMIC_LOAD_XOR_I32_P8:
1262    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
1263  case Mips::ATOMIC_LOAD_XOR_I64:
1264  case Mips::ATOMIC_LOAD_XOR_I64_P8:
1265    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
1266
1267  case Mips::ATOMIC_LOAD_NAND_I8:
1268  case Mips::ATOMIC_LOAD_NAND_I8_P8:
1269    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
1270  case Mips::ATOMIC_LOAD_NAND_I16:
1271  case Mips::ATOMIC_LOAD_NAND_I16_P8:
1272    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
1273  case Mips::ATOMIC_LOAD_NAND_I32:
1274  case Mips::ATOMIC_LOAD_NAND_I32_P8:
1275    return EmitAtomicBinary(MI, BB, 4, 0, true);
1276  case Mips::ATOMIC_LOAD_NAND_I64:
1277  case Mips::ATOMIC_LOAD_NAND_I64_P8:
1278    return EmitAtomicBinary(MI, BB, 8, 0, true);
1279
1280  case Mips::ATOMIC_LOAD_SUB_I8:
1281  case Mips::ATOMIC_LOAD_SUB_I8_P8:
1282    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
1283  case Mips::ATOMIC_LOAD_SUB_I16:
1284  case Mips::ATOMIC_LOAD_SUB_I16_P8:
1285    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
1286  case Mips::ATOMIC_LOAD_SUB_I32:
1287  case Mips::ATOMIC_LOAD_SUB_I32_P8:
1288    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
1289  case Mips::ATOMIC_LOAD_SUB_I64:
1290  case Mips::ATOMIC_LOAD_SUB_I64_P8:
1291    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
1292
1293  case Mips::ATOMIC_SWAP_I8:
1294  case Mips::ATOMIC_SWAP_I8_P8:
1295    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
1296  case Mips::ATOMIC_SWAP_I16:
1297  case Mips::ATOMIC_SWAP_I16_P8:
1298    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
1299  case Mips::ATOMIC_SWAP_I32:
1300  case Mips::ATOMIC_SWAP_I32_P8:
1301    return EmitAtomicBinary(MI, BB, 4, 0);
1302  case Mips::ATOMIC_SWAP_I64:
1303  case Mips::ATOMIC_SWAP_I64_P8:
1304    return EmitAtomicBinary(MI, BB, 8, 0);
1305
1306  case Mips::ATOMIC_CMP_SWAP_I8:
1307  case Mips::ATOMIC_CMP_SWAP_I8_P8:
1308    return EmitAtomicCmpSwapPartword(MI, BB, 1);
1309  case Mips::ATOMIC_CMP_SWAP_I16:
1310  case Mips::ATOMIC_CMP_SWAP_I16_P8:
1311    return EmitAtomicCmpSwapPartword(MI, BB, 2);
1312  case Mips::ATOMIC_CMP_SWAP_I32:
1313  case Mips::ATOMIC_CMP_SWAP_I32_P8:
1314    return EmitAtomicCmpSwap(MI, BB, 4);
1315  case Mips::ATOMIC_CMP_SWAP_I64:
1316  case Mips::ATOMIC_CMP_SWAP_I64_P8:
1317    return EmitAtomicCmpSwap(MI, BB, 8);
1318  case Mips::BPOSGE32_PSEUDO:
1319    return EmitBPOSGE32(MI, BB);
1320  }
1321}
1322
1323// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1324// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1325MachineBasicBlock *
1326MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1327                                     unsigned Size, unsigned BinOpcode,
1328                                     bool Nand) const {
1329  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1330
1331  MachineFunction *MF = BB->getParent();
1332  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1333  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1334  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1335  DebugLoc dl = MI->getDebugLoc();
1336  unsigned LL, SC, AND, NOR, ZERO, BEQ;
1337
1338  if (Size == 4) {
1339    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1340    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1341    AND = Mips::AND;
1342    NOR = Mips::NOR;
1343    ZERO = Mips::ZERO;
1344    BEQ = Mips::BEQ;
1345  }
1346  else {
1347    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1348    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1349    AND = Mips::AND64;
1350    NOR = Mips::NOR64;
1351    ZERO = Mips::ZERO_64;
1352    BEQ = Mips::BEQ64;
1353  }
1354
1355  unsigned OldVal = MI->getOperand(0).getReg();
1356  unsigned Ptr = MI->getOperand(1).getReg();
1357  unsigned Incr = MI->getOperand(2).getReg();
1358
1359  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1360  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1361  unsigned Success = RegInfo.createVirtualRegister(RC);
1362
1363  // insert new blocks after the current block
1364  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1365  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1366  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1367  MachineFunction::iterator It = BB;
1368  ++It;
1369  MF->insert(It, loopMBB);
1370  MF->insert(It, exitMBB);
1371
1372  // Transfer the remainder of BB and its successor edges to exitMBB.
1373  exitMBB->splice(exitMBB->begin(), BB,
1374                  llvm::next(MachineBasicBlock::iterator(MI)),
1375                  BB->end());
1376  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1377
1378  //  thisMBB:
1379  //    ...
1380  //    fallthrough --> loopMBB
1381  BB->addSuccessor(loopMBB);
1382  loopMBB->addSuccessor(loopMBB);
1383  loopMBB->addSuccessor(exitMBB);
1384
1385  //  loopMBB:
1386  //    ll oldval, 0(ptr)
1387  //    <binop> storeval, oldval, incr
1388  //    sc success, storeval, 0(ptr)
1389  //    beq success, $0, loopMBB
1390  BB = loopMBB;
1391  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1392  if (Nand) {
1393    //  and andres, oldval, incr
1394    //  nor storeval, $0, andres
1395    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1396    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1397  } else if (BinOpcode) {
1398    //  <binop> storeval, oldval, incr
1399    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1400  } else {
1401    StoreVal = Incr;
1402  }
1403  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1404  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1405
1406  MI->eraseFromParent();   // The instruction is gone now.
1407
1408  return exitMBB;
1409}
1410
1411MachineBasicBlock *
1412MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1413                                             MachineBasicBlock *BB,
1414                                             unsigned Size, unsigned BinOpcode,
1415                                             bool Nand) const {
1416  assert((Size == 1 || Size == 2) &&
1417      "Unsupported size for EmitAtomicBinaryPartial.");
1418
1419  MachineFunction *MF = BB->getParent();
1420  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1421  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1422  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1423  DebugLoc dl = MI->getDebugLoc();
1424  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1425  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1426
1427  unsigned Dest = MI->getOperand(0).getReg();
1428  unsigned Ptr = MI->getOperand(1).getReg();
1429  unsigned Incr = MI->getOperand(2).getReg();
1430
1431  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1432  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1433  unsigned Mask = RegInfo.createVirtualRegister(RC);
1434  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1435  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1436  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1437  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1438  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1439  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1440  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1441  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1442  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1443  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1444  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1445  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1446  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1447  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1448  unsigned Success = RegInfo.createVirtualRegister(RC);
1449
1450  // insert new blocks after the current block
1451  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1452  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1453  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1454  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1455  MachineFunction::iterator It = BB;
1456  ++It;
1457  MF->insert(It, loopMBB);
1458  MF->insert(It, sinkMBB);
1459  MF->insert(It, exitMBB);
1460
1461  // Transfer the remainder of BB and its successor edges to exitMBB.
1462  exitMBB->splice(exitMBB->begin(), BB,
1463                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1464  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1465
1466  BB->addSuccessor(loopMBB);
1467  loopMBB->addSuccessor(loopMBB);
1468  loopMBB->addSuccessor(sinkMBB);
1469  sinkMBB->addSuccessor(exitMBB);
1470
1471  //  thisMBB:
1472  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1473  //    and     alignedaddr,ptr,masklsb2
1474  //    andi    ptrlsb2,ptr,3
1475  //    sll     shiftamt,ptrlsb2,3
1476  //    ori     maskupper,$0,255               # 0xff
1477  //    sll     mask,maskupper,shiftamt
1478  //    nor     mask2,$0,mask
1479  //    sll     incr2,incr,shiftamt
1480
1481  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1482  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1483    .addReg(Mips::ZERO).addImm(-4);
1484  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1485    .addReg(Ptr).addReg(MaskLSB2);
1486  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1487  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1488  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1489    .addReg(Mips::ZERO).addImm(MaskImm);
1490  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1491    .addReg(ShiftAmt).addReg(MaskUpper);
1492  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1493  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1494
1495  // atomic.load.binop
1496  // loopMBB:
1497  //   ll      oldval,0(alignedaddr)
1498  //   binop   binopres,oldval,incr2
1499  //   and     newval,binopres,mask
1500  //   and     maskedoldval0,oldval,mask2
1501  //   or      storeval,maskedoldval0,newval
1502  //   sc      success,storeval,0(alignedaddr)
1503  //   beq     success,$0,loopMBB
1504
1505  // atomic.swap
1506  // loopMBB:
1507  //   ll      oldval,0(alignedaddr)
1508  //   and     newval,incr2,mask
1509  //   and     maskedoldval0,oldval,mask2
1510  //   or      storeval,maskedoldval0,newval
1511  //   sc      success,storeval,0(alignedaddr)
1512  //   beq     success,$0,loopMBB
1513
1514  BB = loopMBB;
1515  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1516  if (Nand) {
1517    //  and andres, oldval, incr2
1518    //  nor binopres, $0, andres
1519    //  and newval, binopres, mask
1520    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1521    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1522      .addReg(Mips::ZERO).addReg(AndRes);
1523    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1524  } else if (BinOpcode) {
1525    //  <binop> binopres, oldval, incr2
1526    //  and newval, binopres, mask
1527    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1528    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1529  } else {// atomic.swap
1530    //  and newval, incr2, mask
1531    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1532  }
1533
1534  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1535    .addReg(OldVal).addReg(Mask2);
1536  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1537    .addReg(MaskedOldVal0).addReg(NewVal);
1538  BuildMI(BB, dl, TII->get(SC), Success)
1539    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1540  BuildMI(BB, dl, TII->get(Mips::BEQ))
1541    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1542
1543  //  sinkMBB:
1544  //    and     maskedoldval1,oldval,mask
1545  //    srl     srlres,maskedoldval1,shiftamt
1546  //    sll     sllres,srlres,24
1547  //    sra     dest,sllres,24
1548  BB = sinkMBB;
1549  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1550
1551  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1552    .addReg(OldVal).addReg(Mask);
1553  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1554      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1555  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1556      .addReg(SrlRes).addImm(ShiftImm);
1557  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1558      .addReg(SllRes).addImm(ShiftImm);
1559
1560  MI->eraseFromParent();   // The instruction is gone now.
1561
1562  return exitMBB;
1563}
1564
1565MachineBasicBlock *
1566MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1567                                      MachineBasicBlock *BB,
1568                                      unsigned Size) const {
1569  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1570
1571  MachineFunction *MF = BB->getParent();
1572  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1573  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1574  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1575  DebugLoc dl = MI->getDebugLoc();
1576  unsigned LL, SC, ZERO, BNE, BEQ;
1577
1578  if (Size == 4) {
1579    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1580    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1581    ZERO = Mips::ZERO;
1582    BNE = Mips::BNE;
1583    BEQ = Mips::BEQ;
1584  }
1585  else {
1586    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1587    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1588    ZERO = Mips::ZERO_64;
1589    BNE = Mips::BNE64;
1590    BEQ = Mips::BEQ64;
1591  }
1592
1593  unsigned Dest    = MI->getOperand(0).getReg();
1594  unsigned Ptr     = MI->getOperand(1).getReg();
1595  unsigned OldVal  = MI->getOperand(2).getReg();
1596  unsigned NewVal  = MI->getOperand(3).getReg();
1597
1598  unsigned Success = RegInfo.createVirtualRegister(RC);
1599
1600  // insert new blocks after the current block
1601  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1602  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1603  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1604  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1605  MachineFunction::iterator It = BB;
1606  ++It;
1607  MF->insert(It, loop1MBB);
1608  MF->insert(It, loop2MBB);
1609  MF->insert(It, exitMBB);
1610
1611  // Transfer the remainder of BB and its successor edges to exitMBB.
1612  exitMBB->splice(exitMBB->begin(), BB,
1613                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1614  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1615
1616  //  thisMBB:
1617  //    ...
1618  //    fallthrough --> loop1MBB
1619  BB->addSuccessor(loop1MBB);
1620  loop1MBB->addSuccessor(exitMBB);
1621  loop1MBB->addSuccessor(loop2MBB);
1622  loop2MBB->addSuccessor(loop1MBB);
1623  loop2MBB->addSuccessor(exitMBB);
1624
1625  // loop1MBB:
1626  //   ll dest, 0(ptr)
1627  //   bne dest, oldval, exitMBB
1628  BB = loop1MBB;
1629  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1630  BuildMI(BB, dl, TII->get(BNE))
1631    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1632
1633  // loop2MBB:
1634  //   sc success, newval, 0(ptr)
1635  //   beq success, $0, loop1MBB
1636  BB = loop2MBB;
1637  BuildMI(BB, dl, TII->get(SC), Success)
1638    .addReg(NewVal).addReg(Ptr).addImm(0);
1639  BuildMI(BB, dl, TII->get(BEQ))
1640    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1641
1642  MI->eraseFromParent();   // The instruction is gone now.
1643
1644  return exitMBB;
1645}
1646
1647MachineBasicBlock *
1648MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1649                                              MachineBasicBlock *BB,
1650                                              unsigned Size) const {
1651  assert((Size == 1 || Size == 2) &&
1652      "Unsupported size for EmitAtomicCmpSwapPartial.");
1653
1654  MachineFunction *MF = BB->getParent();
1655  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1656  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1657  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1658  DebugLoc dl = MI->getDebugLoc();
1659  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1660  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1661
1662  unsigned Dest    = MI->getOperand(0).getReg();
1663  unsigned Ptr     = MI->getOperand(1).getReg();
1664  unsigned CmpVal  = MI->getOperand(2).getReg();
1665  unsigned NewVal  = MI->getOperand(3).getReg();
1666
1667  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1668  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1669  unsigned Mask = RegInfo.createVirtualRegister(RC);
1670  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1671  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1672  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1673  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1674  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1675  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1676  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1677  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1678  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1679  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1680  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1681  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1682  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1683  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1684  unsigned Success = RegInfo.createVirtualRegister(RC);
1685
1686  // insert new blocks after the current block
1687  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1688  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1689  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1690  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1691  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1692  MachineFunction::iterator It = BB;
1693  ++It;
1694  MF->insert(It, loop1MBB);
1695  MF->insert(It, loop2MBB);
1696  MF->insert(It, sinkMBB);
1697  MF->insert(It, exitMBB);
1698
1699  // Transfer the remainder of BB and its successor edges to exitMBB.
1700  exitMBB->splice(exitMBB->begin(), BB,
1701                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1702  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1703
1704  BB->addSuccessor(loop1MBB);
1705  loop1MBB->addSuccessor(sinkMBB);
1706  loop1MBB->addSuccessor(loop2MBB);
1707  loop2MBB->addSuccessor(loop1MBB);
1708  loop2MBB->addSuccessor(sinkMBB);
1709  sinkMBB->addSuccessor(exitMBB);
1710
1711  // FIXME: computation of newval2 can be moved to loop2MBB.
1712  //  thisMBB:
1713  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1714  //    and     alignedaddr,ptr,masklsb2
1715  //    andi    ptrlsb2,ptr,3
1716  //    sll     shiftamt,ptrlsb2,3
1717  //    ori     maskupper,$0,255               # 0xff
1718  //    sll     mask,maskupper,shiftamt
1719  //    nor     mask2,$0,mask
1720  //    andi    maskedcmpval,cmpval,255
1721  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1722  //    andi    maskednewval,newval,255
1723  //    sll     shiftednewval,maskednewval,shiftamt
1724  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1725  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1726    .addReg(Mips::ZERO).addImm(-4);
1727  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1728    .addReg(Ptr).addReg(MaskLSB2);
1729  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1730  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1731  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1732    .addReg(Mips::ZERO).addImm(MaskImm);
1733  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1734    .addReg(ShiftAmt).addReg(MaskUpper);
1735  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1736  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1737    .addReg(CmpVal).addImm(MaskImm);
1738  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1739    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1740  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1741    .addReg(NewVal).addImm(MaskImm);
1742  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1743    .addReg(ShiftAmt).addReg(MaskedNewVal);
1744
1745  //  loop1MBB:
1746  //    ll      oldval,0(alginedaddr)
1747  //    and     maskedoldval0,oldval,mask
1748  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1749  BB = loop1MBB;
1750  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1751  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1752    .addReg(OldVal).addReg(Mask);
1753  BuildMI(BB, dl, TII->get(Mips::BNE))
1754    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1755
1756  //  loop2MBB:
1757  //    and     maskedoldval1,oldval,mask2
1758  //    or      storeval,maskedoldval1,shiftednewval
1759  //    sc      success,storeval,0(alignedaddr)
1760  //    beq     success,$0,loop1MBB
1761  BB = loop2MBB;
1762  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1763    .addReg(OldVal).addReg(Mask2);
1764  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1765    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1766  BuildMI(BB, dl, TII->get(SC), Success)
1767      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1768  BuildMI(BB, dl, TII->get(Mips::BEQ))
1769      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1770
1771  //  sinkMBB:
1772  //    srl     srlres,maskedoldval0,shiftamt
1773  //    sll     sllres,srlres,24
1774  //    sra     dest,sllres,24
1775  BB = sinkMBB;
1776  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1777
1778  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1779      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1780  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1781      .addReg(SrlRes).addImm(ShiftImm);
1782  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1783      .addReg(SllRes).addImm(ShiftImm);
1784
1785  MI->eraseFromParent();   // The instruction is gone now.
1786
1787  return exitMBB;
1788}
1789
1790//===----------------------------------------------------------------------===//
1791//  Misc Lower Operation implementation
1792//===----------------------------------------------------------------------===//
1793SDValue MipsTargetLowering::
1794LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1795{
1796  // The first operand is the chain, the second is the condition, the third is
1797  // the block to branch to if the condition is true.
1798  SDValue Chain = Op.getOperand(0);
1799  SDValue Dest = Op.getOperand(2);
1800  DebugLoc dl = Op.getDebugLoc();
1801
1802  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
1803
1804  // Return if flag is not set by a floating point comparison.
1805  if (CondRes.getOpcode() != MipsISD::FPCmp)
1806    return Op;
1807
1808  SDValue CCNode  = CondRes.getOperand(2);
1809  Mips::CondCode CC =
1810    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1811  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
1812
1813  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
1814                     Dest, CondRes);
1815}
1816
1817SDValue MipsTargetLowering::
1818LowerSELECT(SDValue Op, SelectionDAG &DAG) const
1819{
1820  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
1821
1822  // Return if flag is not set by a floating point comparison.
1823  if (Cond.getOpcode() != MipsISD::FPCmp)
1824    return Op;
1825
1826  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1827                      Op.getDebugLoc());
1828}
1829
1830SDValue MipsTargetLowering::
1831LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1832{
1833  DebugLoc DL = Op.getDebugLoc();
1834  EVT Ty = Op.getOperand(0).getValueType();
1835  SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
1836                             Op.getOperand(0), Op.getOperand(1),
1837                             Op.getOperand(4));
1838
1839  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1840                     Op.getOperand(3));
1841}
1842
1843SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1844  SDValue Cond = CreateFPCmp(DAG, Op);
1845
1846  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1847         "Floating point operand expected.");
1848
1849  SDValue True  = DAG.getConstant(1, MVT::i32);
1850  SDValue False = DAG.getConstant(0, MVT::i32);
1851
1852  return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1853}
1854
1855SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
1856                                               SelectionDAG &DAG) const {
1857  // FIXME there isn't actually debug info here
1858  DebugLoc dl = Op.getDebugLoc();
1859  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1860
1861  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1862    const MipsTargetObjectFile &TLOF =
1863      (const MipsTargetObjectFile&)getObjFileLowering();
1864
1865    // %gp_rel relocation
1866    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1867      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1868                                              MipsII::MO_GPREL);
1869      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl,
1870                                      DAG.getVTList(MVT::i32), &GA, 1);
1871      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1872      return DAG.getNode(ISD::ADD, dl, MVT::i32, GPReg, GPRelNode);
1873    }
1874
1875    // %hi/%lo relocation
1876    return getAddrNonPIC(Op, DAG);
1877  }
1878
1879  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1880    return getAddrLocal(Op, DAG, HasMips64);
1881
1882  if (LargeGOT)
1883    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
1884                                 MipsII::MO_GOT_LO16);
1885
1886  return getAddrGlobal(Op, DAG,
1887                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1888}
1889
1890SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
1891                                              SelectionDAG &DAG) const {
1892  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1893    return getAddrNonPIC(Op, DAG);
1894
1895  return getAddrLocal(Op, DAG, HasMips64);
1896}
1897
1898SDValue MipsTargetLowering::
1899LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1900{
1901  // If the relocation model is PIC, use the General Dynamic TLS Model or
1902  // Local Dynamic TLS model, otherwise use the Initial Exec or
1903  // Local Exec TLS Model.
1904
1905  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1906  DebugLoc dl = GA->getDebugLoc();
1907  const GlobalValue *GV = GA->getGlobal();
1908  EVT PtrVT = getPointerTy();
1909
1910  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1911
1912  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1913    // General Dynamic and Local Dynamic TLS Model.
1914    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1915                                                      : MipsII::MO_TLSGD;
1916
1917    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
1918    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
1919                                   GetGlobalReg(DAG, PtrVT), TGA);
1920    unsigned PtrSize = PtrVT.getSizeInBits();
1921    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1922
1923    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1924
1925    ArgListTy Args;
1926    ArgListEntry Entry;
1927    Entry.Node = Argument;
1928    Entry.Ty = PtrTy;
1929    Args.push_back(Entry);
1930
1931    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1932                  false, false, false, false, 0, CallingConv::C,
1933                  /*isTailCall=*/false, /*doesNotRet=*/false,
1934                  /*isReturnValueUsed=*/true,
1935                  TlsGetAddr, Args, DAG, dl);
1936    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1937
1938    SDValue Ret = CallResult.first;
1939
1940    if (model != TLSModel::LocalDynamic)
1941      return Ret;
1942
1943    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1944                                               MipsII::MO_DTPREL_HI);
1945    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1946    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1947                                               MipsII::MO_DTPREL_LO);
1948    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1949    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
1950    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
1951  }
1952
1953  SDValue Offset;
1954  if (model == TLSModel::InitialExec) {
1955    // Initial Exec TLS Model
1956    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1957                                             MipsII::MO_GOTTPREL);
1958    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1959                      TGA);
1960    Offset = DAG.getLoad(PtrVT, dl,
1961                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1962                         false, false, false, 0);
1963  } else {
1964    // Local Exec TLS Model
1965    assert(model == TLSModel::LocalExec);
1966    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1967                                               MipsII::MO_TPREL_HI);
1968    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1969                                               MipsII::MO_TPREL_LO);
1970    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1971    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1972    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1973  }
1974
1975  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
1976  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1977}
1978
1979SDValue MipsTargetLowering::
1980LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1981{
1982  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1983    return getAddrNonPIC(Op, DAG);
1984
1985  return getAddrLocal(Op, DAG, HasMips64);
1986}
1987
1988SDValue MipsTargetLowering::
1989LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1990{
1991  // gp_rel relocation
1992  // FIXME: we should reference the constant pool using small data sections,
1993  // but the asm printer currently doesn't support this feature without
1994  // hacking it. This feature should come soon so we can uncomment the
1995  // stuff below.
1996  //if (IsInSmallSection(C->getType())) {
1997  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1998  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1999  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
2000
2001  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
2002    return getAddrNonPIC(Op, DAG);
2003
2004  return getAddrLocal(Op, DAG, HasMips64);
2005}
2006
2007SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2008  MachineFunction &MF = DAG.getMachineFunction();
2009  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2010
2011  DebugLoc dl = Op.getDebugLoc();
2012  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2013                                 getPointerTy());
2014
2015  // vastart just stores the address of the VarArgsFrameIndex slot into the
2016  // memory location argument.
2017  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2018  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
2019                      MachinePointerInfo(SV), false, false, 0);
2020}
2021
2022static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2023  EVT TyX = Op.getOperand(0).getValueType();
2024  EVT TyY = Op.getOperand(1).getValueType();
2025  SDValue Const1 = DAG.getConstant(1, MVT::i32);
2026  SDValue Const31 = DAG.getConstant(31, MVT::i32);
2027  DebugLoc DL = Op.getDebugLoc();
2028  SDValue Res;
2029
2030  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2031  // to i32.
2032  SDValue X = (TyX == MVT::f32) ?
2033    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2034    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2035                Const1);
2036  SDValue Y = (TyY == MVT::f32) ?
2037    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
2038    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
2039                Const1);
2040
2041  if (HasR2) {
2042    // ext  E, Y, 31, 1  ; extract bit31 of Y
2043    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
2044    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
2045    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
2046  } else {
2047    // sll SllX, X, 1
2048    // srl SrlX, SllX, 1
2049    // srl SrlY, Y, 31
2050    // sll SllY, SrlX, 31
2051    // or  Or, SrlX, SllY
2052    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2053    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2054    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
2055    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
2056    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
2057  }
2058
2059  if (TyX == MVT::f32)
2060    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
2061
2062  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2063                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
2064  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2065}
2066
2067static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2068  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
2069  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
2070  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2071  SDValue Const1 = DAG.getConstant(1, MVT::i32);
2072  DebugLoc DL = Op.getDebugLoc();
2073
2074  // Bitcast to integer nodes.
2075  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2076  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2077
2078  if (HasR2) {
2079    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
2080    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
2081    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2082                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
2083
2084    if (WidthX > WidthY)
2085      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2086    else if (WidthY > WidthX)
2087      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2088
2089    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2090                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
2091    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2092  }
2093
2094  // (d)sll SllX, X, 1
2095  // (d)srl SrlX, SllX, 1
2096  // (d)srl SrlY, Y, width(Y)-1
2097  // (d)sll SllY, SrlX, width(Y)-1
2098  // or     Or, SrlX, SllY
2099  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2100  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2101  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2102                             DAG.getConstant(WidthY - 1, MVT::i32));
2103
2104  if (WidthX > WidthY)
2105    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2106  else if (WidthY > WidthX)
2107    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2108
2109  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2110                             DAG.getConstant(WidthX - 1, MVT::i32));
2111  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2112  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2113}
2114
2115SDValue
2116MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2117  if (Subtarget->hasMips64())
2118    return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
2119
2120  return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
2121}
2122
2123static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2124  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2125  DebugLoc DL = Op.getDebugLoc();
2126
2127  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2128  // to i32.
2129  SDValue X = (Op.getValueType() == MVT::f32) ?
2130    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2131    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2132                Const1);
2133
2134  // Clear MSB.
2135  if (HasR2)
2136    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
2137                      DAG.getRegister(Mips::ZERO, MVT::i32),
2138                      DAG.getConstant(31, MVT::i32), Const1, X);
2139  else {
2140    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2141    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2142  }
2143
2144  if (Op.getValueType() == MVT::f32)
2145    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
2146
2147  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2148                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
2149  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2150}
2151
2152static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2153  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2154  DebugLoc DL = Op.getDebugLoc();
2155
2156  // Bitcast to integer node.
2157  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2158
2159  // Clear MSB.
2160  if (HasR2)
2161    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2162                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
2163                      DAG.getConstant(63, MVT::i32), Const1, X);
2164  else {
2165    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2166    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2167  }
2168
2169  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2170}
2171
2172SDValue
2173MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
2174  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
2175    return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
2176
2177  return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
2178}
2179
2180SDValue MipsTargetLowering::
2181LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2182  // check the depth
2183  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2184         "Frame address can only be determined for current frame.");
2185
2186  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2187  MFI->setFrameAddressIsTaken(true);
2188  EVT VT = Op.getValueType();
2189  DebugLoc dl = Op.getDebugLoc();
2190  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2191                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
2192  return FrameAddr;
2193}
2194
2195SDValue MipsTargetLowering::LowerRETURNADDR(SDValue Op,
2196                                            SelectionDAG &DAG) const {
2197  // check the depth
2198  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2199         "Return address can be determined only for current frame.");
2200
2201  MachineFunction &MF = DAG.getMachineFunction();
2202  MachineFrameInfo *MFI = MF.getFrameInfo();
2203  MVT VT = Op.getSimpleValueType();
2204  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
2205  MFI->setReturnAddressIsTaken(true);
2206
2207  // Return RA, which contains the return address. Mark it an implicit live-in.
2208  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2209  return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
2210}
2211
2212// TODO: set SType according to the desired memory barrier behavior.
2213SDValue
2214MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
2215  unsigned SType = 0;
2216  DebugLoc dl = Op.getDebugLoc();
2217  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2218                     DAG.getConstant(SType, MVT::i32));
2219}
2220
2221SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
2222                                              SelectionDAG &DAG) const {
2223  // FIXME: Need pseudo-fence for 'singlethread' fences
2224  // FIXME: Set SType for weaker fences where supported/appropriate.
2225  unsigned SType = 0;
2226  DebugLoc dl = Op.getDebugLoc();
2227  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2228                     DAG.getConstant(SType, MVT::i32));
2229}
2230
2231SDValue MipsTargetLowering::LowerShiftLeftParts(SDValue Op,
2232                                                SelectionDAG &DAG) const {
2233  DebugLoc DL = Op.getDebugLoc();
2234  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2235  SDValue Shamt = Op.getOperand(2);
2236
2237  // if shamt < 32:
2238  //  lo = (shl lo, shamt)
2239  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2240  // else:
2241  //  lo = 0
2242  //  hi = (shl lo, shamt[4:0])
2243  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2244                            DAG.getConstant(-1, MVT::i32));
2245  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
2246                                      DAG.getConstant(1, MVT::i32));
2247  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
2248                                     Not);
2249  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
2250  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2251  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
2252  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2253                             DAG.getConstant(0x20, MVT::i32));
2254  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2255                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
2256  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
2257
2258  SDValue Ops[2] = {Lo, Hi};
2259  return DAG.getMergeValues(Ops, 2, DL);
2260}
2261
2262SDValue MipsTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2263                                                 bool IsSRA) const {
2264  DebugLoc DL = Op.getDebugLoc();
2265  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2266  SDValue Shamt = Op.getOperand(2);
2267
2268  // if shamt < 32:
2269  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2270  //  if isSRA:
2271  //    hi = (sra hi, shamt)
2272  //  else:
2273  //    hi = (srl hi, shamt)
2274  // else:
2275  //  if isSRA:
2276  //   lo = (sra hi, shamt[4:0])
2277  //   hi = (sra hi, 31)
2278  //  else:
2279  //   lo = (srl hi, shamt[4:0])
2280  //   hi = 0
2281  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2282                            DAG.getConstant(-1, MVT::i32));
2283  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
2284                                     DAG.getConstant(1, MVT::i32));
2285  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
2286  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
2287  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2288  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2289                                     Hi, Shamt);
2290  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2291                             DAG.getConstant(0x20, MVT::i32));
2292  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
2293                                DAG.getConstant(31, MVT::i32));
2294  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
2295  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2296                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2297                   ShiftRightHi);
2298
2299  SDValue Ops[2] = {Lo, Hi};
2300  return DAG.getMergeValues(Ops, 2, DL);
2301}
2302
2303static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2304                            SDValue Chain, SDValue Src, unsigned Offset) {
2305  SDValue Ptr = LD->getBasePtr();
2306  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2307  EVT BasePtrVT = Ptr.getValueType();
2308  DebugLoc DL = LD->getDebugLoc();
2309  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2310
2311  if (Offset)
2312    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2313                      DAG.getConstant(Offset, BasePtrVT));
2314
2315  SDValue Ops[] = { Chain, Ptr, Src };
2316  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2317                                 LD->getMemOperand());
2318}
2319
2320// Expand an unaligned 32 or 64-bit integer load node.
2321SDValue MipsTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2322  LoadSDNode *LD = cast<LoadSDNode>(Op);
2323  EVT MemVT = LD->getMemoryVT();
2324
2325  // Return if load is aligned or if MemVT is neither i32 nor i64.
2326  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2327      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2328    return SDValue();
2329
2330  bool IsLittle = Subtarget->isLittle();
2331  EVT VT = Op.getValueType();
2332  ISD::LoadExtType ExtType = LD->getExtensionType();
2333  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2334
2335  assert((VT == MVT::i32) || (VT == MVT::i64));
2336
2337  // Expand
2338  //  (set dst, (i64 (load baseptr)))
2339  // to
2340  //  (set tmp, (ldl (add baseptr, 7), undef))
2341  //  (set dst, (ldr baseptr, tmp))
2342  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2343    SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2344                               IsLittle ? 7 : 0);
2345    return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2346                        IsLittle ? 0 : 7);
2347  }
2348
2349  SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2350                             IsLittle ? 3 : 0);
2351  SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2352                             IsLittle ? 0 : 3);
2353
2354  // Expand
2355  //  (set dst, (i32 (load baseptr))) or
2356  //  (set dst, (i64 (sextload baseptr))) or
2357  //  (set dst, (i64 (extload baseptr)))
2358  // to
2359  //  (set tmp, (lwl (add baseptr, 3), undef))
2360  //  (set dst, (lwr baseptr, tmp))
2361  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2362      (ExtType == ISD::EXTLOAD))
2363    return LWR;
2364
2365  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2366
2367  // Expand
2368  //  (set dst, (i64 (zextload baseptr)))
2369  // to
2370  //  (set tmp0, (lwl (add baseptr, 3), undef))
2371  //  (set tmp1, (lwr baseptr, tmp0))
2372  //  (set tmp2, (shl tmp1, 32))
2373  //  (set dst, (srl tmp2, 32))
2374  DebugLoc DL = LD->getDebugLoc();
2375  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2376  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2377  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2378  SDValue Ops[] = { SRL, LWR.getValue(1) };
2379  return DAG.getMergeValues(Ops, 2, DL);
2380}
2381
2382static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2383                             SDValue Chain, unsigned Offset) {
2384  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2385  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2386  DebugLoc DL = SD->getDebugLoc();
2387  SDVTList VTList = DAG.getVTList(MVT::Other);
2388
2389  if (Offset)
2390    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2391                      DAG.getConstant(Offset, BasePtrVT));
2392
2393  SDValue Ops[] = { Chain, Value, Ptr };
2394  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2395                                 SD->getMemOperand());
2396}
2397
2398// Expand an unaligned 32 or 64-bit integer store node.
2399SDValue MipsTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2400  StoreSDNode *SD = cast<StoreSDNode>(Op);
2401  EVT MemVT = SD->getMemoryVT();
2402
2403  // Return if store is aligned or if MemVT is neither i32 nor i64.
2404  if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2405      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2406    return SDValue();
2407
2408  bool IsLittle = Subtarget->isLittle();
2409  SDValue Value = SD->getValue(), Chain = SD->getChain();
2410  EVT VT = Value.getValueType();
2411
2412  // Expand
2413  //  (store val, baseptr) or
2414  //  (truncstore val, baseptr)
2415  // to
2416  //  (swl val, (add baseptr, 3))
2417  //  (swr val, baseptr)
2418  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2419    SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
2420                                IsLittle ? 3 : 0);
2421    return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2422  }
2423
2424  assert(VT == MVT::i64);
2425
2426  // Expand
2427  //  (store val, baseptr)
2428  // to
2429  //  (sdl val, (add baseptr, 7))
2430  //  (sdr val, baseptr)
2431  SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2432  return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2433}
2434
2435// This function expands mips intrinsic nodes which have 64-bit input operands
2436// or output values.
2437//
2438// out64 = intrinsic-node in64
2439// =>
2440// lo = copy (extract-element (in64, 0))
2441// hi = copy (extract-element (in64, 1))
2442// mips-specific-node
2443// v0 = copy lo
2444// v1 = copy hi
2445// out64 = merge-values (v0, v1)
2446//
2447static SDValue LowerDSPIntr(SDValue Op, SelectionDAG &DAG,
2448                            unsigned Opc, bool HasI64In, bool HasI64Out) {
2449  DebugLoc DL = Op.getDebugLoc();
2450  bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
2451  SDValue Chain = HasChainIn ? Op->getOperand(0) : DAG.getEntryNode();
2452  SmallVector<SDValue, 3> Ops;
2453
2454  if (HasI64In) {
2455    SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2456                               Op->getOperand(1 + HasChainIn),
2457                               DAG.getConstant(0, MVT::i32));
2458    SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2459                               Op->getOperand(1 + HasChainIn),
2460                               DAG.getConstant(1, MVT::i32));
2461
2462    Chain = DAG.getCopyToReg(Chain, DL, Mips::LO, InLo, SDValue());
2463    Chain = DAG.getCopyToReg(Chain, DL, Mips::HI, InHi, Chain.getValue(1));
2464
2465    Ops.push_back(Chain);
2466    Ops.append(Op->op_begin() + HasChainIn + 2, Op->op_end());
2467    Ops.push_back(Chain.getValue(1));
2468  } else {
2469    Ops.push_back(Chain);
2470    Ops.append(Op->op_begin() + HasChainIn + 1, Op->op_end());
2471  }
2472
2473  if (!HasI64Out)
2474    return DAG.getNode(Opc, DL, Op->value_begin(), Op->getNumValues(),
2475                       Ops.begin(), Ops.size());
2476
2477  SDValue Intr = DAG.getNode(Opc, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2478                             Ops.begin(), Ops.size());
2479  SDValue OutLo = DAG.getCopyFromReg(Intr.getValue(0), DL, Mips::LO, MVT::i32,
2480                                     Intr.getValue(1));
2481  SDValue OutHi = DAG.getCopyFromReg(OutLo.getValue(1), DL, Mips::HI, MVT::i32,
2482                                     OutLo.getValue(2));
2483  SDValue Out = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, OutLo, OutHi);
2484
2485  if (!HasChainIn)
2486    return Out;
2487
2488  SDValue Vals[] = { Out, OutHi.getValue(1) };
2489  return DAG.getMergeValues(Vals, 2, DL);
2490}
2491
2492SDValue MipsTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2493                                                    SelectionDAG &DAG) const {
2494  switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
2495  default:
2496    return SDValue();
2497  case Intrinsic::mips_shilo:
2498    return LowerDSPIntr(Op, DAG, MipsISD::SHILO, true, true);
2499  case Intrinsic::mips_dpau_h_qbl:
2500    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL, true, true);
2501  case Intrinsic::mips_dpau_h_qbr:
2502    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR, true, true);
2503  case Intrinsic::mips_dpsu_h_qbl:
2504    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL, true, true);
2505  case Intrinsic::mips_dpsu_h_qbr:
2506    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR, true, true);
2507  case Intrinsic::mips_dpa_w_ph:
2508    return LowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH, true, true);
2509  case Intrinsic::mips_dps_w_ph:
2510    return LowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH, true, true);
2511  case Intrinsic::mips_dpax_w_ph:
2512    return LowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH, true, true);
2513  case Intrinsic::mips_dpsx_w_ph:
2514    return LowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH, true, true);
2515  case Intrinsic::mips_mulsa_w_ph:
2516    return LowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH, true, true);
2517  case Intrinsic::mips_mult:
2518    return LowerDSPIntr(Op, DAG, MipsISD::MULT, false, true);
2519  case Intrinsic::mips_multu:
2520    return LowerDSPIntr(Op, DAG, MipsISD::MULTU, false, true);
2521  case Intrinsic::mips_madd:
2522    return LowerDSPIntr(Op, DAG, MipsISD::MADD_DSP, true, true);
2523  case Intrinsic::mips_maddu:
2524    return LowerDSPIntr(Op, DAG, MipsISD::MADDU_DSP, true, true);
2525  case Intrinsic::mips_msub:
2526    return LowerDSPIntr(Op, DAG, MipsISD::MSUB_DSP, true, true);
2527  case Intrinsic::mips_msubu:
2528    return LowerDSPIntr(Op, DAG, MipsISD::MSUBU_DSP, true, true);
2529  }
2530}
2531
2532SDValue MipsTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
2533                                                   SelectionDAG &DAG) const {
2534  switch (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue()) {
2535  default:
2536    return SDValue();
2537  case Intrinsic::mips_extp:
2538    return LowerDSPIntr(Op, DAG, MipsISD::EXTP, true, false);
2539  case Intrinsic::mips_extpdp:
2540    return LowerDSPIntr(Op, DAG, MipsISD::EXTPDP, true, false);
2541  case Intrinsic::mips_extr_w:
2542    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_W, true, false);
2543  case Intrinsic::mips_extr_r_w:
2544    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W, true, false);
2545  case Intrinsic::mips_extr_rs_w:
2546    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W, true, false);
2547  case Intrinsic::mips_extr_s_h:
2548    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H, true, false);
2549  case Intrinsic::mips_mthlip:
2550    return LowerDSPIntr(Op, DAG, MipsISD::MTHLIP, true, true);
2551  case Intrinsic::mips_mulsaq_s_w_ph:
2552    return LowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH, true, true);
2553  case Intrinsic::mips_maq_s_w_phl:
2554    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL, true, true);
2555  case Intrinsic::mips_maq_s_w_phr:
2556    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR, true, true);
2557  case Intrinsic::mips_maq_sa_w_phl:
2558    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL, true, true);
2559  case Intrinsic::mips_maq_sa_w_phr:
2560    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR, true, true);
2561  case Intrinsic::mips_dpaq_s_w_ph:
2562    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH, true, true);
2563  case Intrinsic::mips_dpsq_s_w_ph:
2564    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH, true, true);
2565  case Intrinsic::mips_dpaq_sa_l_w:
2566    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W, true, true);
2567  case Intrinsic::mips_dpsq_sa_l_w:
2568    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W, true, true);
2569  case Intrinsic::mips_dpaqx_s_w_ph:
2570    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH, true, true);
2571  case Intrinsic::mips_dpaqx_sa_w_ph:
2572    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH, true, true);
2573  case Intrinsic::mips_dpsqx_s_w_ph:
2574    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH, true, true);
2575  case Intrinsic::mips_dpsqx_sa_w_ph:
2576    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH, true, true);
2577  }
2578}
2579
2580SDValue MipsTargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
2581  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2582      || cast<ConstantSDNode>
2583        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2584      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2585    return SDValue();
2586
2587  // The pattern
2588  //   (add (frameaddr 0), (frame_to_args_offset))
2589  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2590  //   (add FrameObject, 0)
2591  // where FrameObject is a fixed StackObject with offset 0 which points to
2592  // the old stack pointer.
2593  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2594  EVT ValTy = Op->getValueType(0);
2595  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2596  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2597  return DAG.getNode(ISD::ADD, Op->getDebugLoc(), ValTy, InArgsAddr,
2598                     DAG.getConstant(0, ValTy));
2599}
2600
2601//===----------------------------------------------------------------------===//
2602//                      Calling Convention Implementation
2603//===----------------------------------------------------------------------===//
2604
2605//===----------------------------------------------------------------------===//
2606// TODO: Implement a generic logic using tblgen that can support this.
2607// Mips O32 ABI rules:
2608// ---
2609// i32 - Passed in A0, A1, A2, A3 and stack
2610// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2611//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2612// f64 - Only passed in two aliased f32 registers if no int reg has been used
2613//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2614//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2615//       go to stack.
2616//
2617//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2618//===----------------------------------------------------------------------===//
2619
2620static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2621                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2622                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2623
2624  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2625
2626  static const uint16_t IntRegs[] = {
2627      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2628  };
2629  static const uint16_t F32Regs[] = {
2630      Mips::F12, Mips::F14
2631  };
2632  static const uint16_t F64Regs[] = {
2633      Mips::D6, Mips::D7
2634  };
2635
2636  // Do not process byval args here.
2637  if (ArgFlags.isByVal())
2638    return true;
2639
2640  // Promote i8 and i16
2641  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2642    LocVT = MVT::i32;
2643    if (ArgFlags.isSExt())
2644      LocInfo = CCValAssign::SExt;
2645    else if (ArgFlags.isZExt())
2646      LocInfo = CCValAssign::ZExt;
2647    else
2648      LocInfo = CCValAssign::AExt;
2649  }
2650
2651  unsigned Reg;
2652
2653  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2654  // is true: function is vararg, argument is 3rd or higher, there is previous
2655  // argument which is not f32 or f64.
2656  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2657      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2658  unsigned OrigAlign = ArgFlags.getOrigAlign();
2659  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2660
2661  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2662    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2663    // If this is the first part of an i64 arg,
2664    // the allocated register must be either A0 or A2.
2665    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2666      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2667    LocVT = MVT::i32;
2668  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2669    // Allocate int register and shadow next int register. If first
2670    // available register is Mips::A1 or Mips::A3, shadow it too.
2671    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2672    if (Reg == Mips::A1 || Reg == Mips::A3)
2673      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2674    State.AllocateReg(IntRegs, IntRegsSize);
2675    LocVT = MVT::i32;
2676  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2677    // we are guaranteed to find an available float register
2678    if (ValVT == MVT::f32) {
2679      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2680      // Shadow int register
2681      State.AllocateReg(IntRegs, IntRegsSize);
2682    } else {
2683      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2684      // Shadow int registers
2685      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2686      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2687        State.AllocateReg(IntRegs, IntRegsSize);
2688      State.AllocateReg(IntRegs, IntRegsSize);
2689    }
2690  } else
2691    llvm_unreachable("Cannot handle this ValVT.");
2692
2693  if (!Reg) {
2694    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2695                                          OrigAlign);
2696    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2697  } else
2698    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2699
2700  return false;
2701}
2702
2703#include "MipsGenCallingConv.inc"
2704
2705//===----------------------------------------------------------------------===//
2706//                  Call Calling Convention Implementation
2707//===----------------------------------------------------------------------===//
2708
2709static const unsigned O32IntRegsSize = 4;
2710
2711// Return next O32 integer argument register.
2712static unsigned getNextIntArgReg(unsigned Reg) {
2713  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2714  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2715}
2716
2717/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2718/// for tail call optimization.
2719bool MipsTargetLowering::
2720IsEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
2721                                  unsigned NextStackOffset,
2722                                  const MipsFunctionInfo& FI) const {
2723  if (!EnableMipsTailCalls)
2724    return false;
2725
2726  // No tail call optimization for mips16.
2727  if (Subtarget->inMips16Mode())
2728    return false;
2729
2730  // Return false if either the callee or caller has a byval argument.
2731  if (MipsCCInfo.hasByValArg() || FI.hasByvalArg())
2732    return false;
2733
2734  // Return true if the callee's argument area is no larger than the
2735  // caller's.
2736  return NextStackOffset <= FI.getIncomingArgSize();
2737}
2738
2739SDValue
2740MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2741                                   SDValue Chain, SDValue Arg, DebugLoc DL,
2742                                   bool IsTailCall, SelectionDAG &DAG) const {
2743  if (!IsTailCall) {
2744    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2745                                 DAG.getIntPtrConstant(Offset));
2746    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2747                        false, 0);
2748  }
2749
2750  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2751  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2752  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2753  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2754                      /*isVolatile=*/ true, false, 0);
2755}
2756
2757/// LowerCall - functions arguments are copied from virtual regs to
2758/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2759SDValue
2760MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2761                              SmallVectorImpl<SDValue> &InVals) const {
2762  SelectionDAG &DAG                     = CLI.DAG;
2763  DebugLoc &dl                          = CLI.DL;
2764  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2765  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2766  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2767  SDValue Chain                         = CLI.Chain;
2768  SDValue Callee                        = CLI.Callee;
2769  bool &isTailCall                      = CLI.IsTailCall;
2770  CallingConv::ID CallConv              = CLI.CallConv;
2771  bool isVarArg                         = CLI.IsVarArg;
2772
2773  MachineFunction &MF = DAG.getMachineFunction();
2774  MachineFrameInfo *MFI = MF.getFrameInfo();
2775  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2776  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2777
2778  // Analyze operands of the call, assigning locations to each operand.
2779  SmallVector<CCValAssign, 16> ArgLocs;
2780  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2781                 getTargetMachine(), ArgLocs, *DAG.getContext());
2782  MipsCC MipsCCInfo(CallConv, isVarArg, IsO32, CCInfo);
2783
2784  MipsCCInfo.analyzeCallOperands(Outs);
2785
2786  // Get a count of how many bytes are to be pushed on the stack.
2787  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2788
2789  // Check if it's really possible to do a tail call.
2790  if (isTailCall)
2791    isTailCall =
2792      IsEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2793                                        *MF.getInfo<MipsFunctionInfo>());
2794
2795  if (isTailCall)
2796    ++NumTailCalls;
2797
2798  // Chain is the output chain of the last Load/Store or CopyToReg node.
2799  // ByValChain is the output chain of the last Memcpy node created for copying
2800  // byval arguments to the stack.
2801  unsigned StackAlignment = TFL->getStackAlignment();
2802  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2803  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2804
2805  if (!isTailCall)
2806    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
2807
2808  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl,
2809                                        IsN64 ? Mips::SP_64 : Mips::SP,
2810                                        getPointerTy());
2811
2812  // With EABI is it possible to have 16 args on registers.
2813  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
2814  SmallVector<SDValue, 8> MemOpChains;
2815  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2816
2817  // Walk the register/memloc assignments, inserting copies/loads.
2818  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2819    SDValue Arg = OutVals[i];
2820    CCValAssign &VA = ArgLocs[i];
2821    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2822    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2823
2824    // ByVal Arg.
2825    if (Flags.isByVal()) {
2826      assert(Flags.getByValSize() &&
2827             "ByVal args of size 0 should have been ignored by front-end.");
2828      assert(ByValArg != MipsCCInfo.byval_end());
2829      assert(!isTailCall &&
2830             "Do not tail-call optimize if there is a byval argument.");
2831      passByValArg(Chain, dl, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2832                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2833      ++ByValArg;
2834      continue;
2835    }
2836
2837    // Promote the value if needed.
2838    switch (VA.getLocInfo()) {
2839    default: llvm_unreachable("Unknown loc info!");
2840    case CCValAssign::Full:
2841      if (VA.isRegLoc()) {
2842        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2843            (ValVT == MVT::f64 && LocVT == MVT::i64))
2844          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
2845        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2846          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2847                                   Arg, DAG.getConstant(0, MVT::i32));
2848          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2849                                   Arg, DAG.getConstant(1, MVT::i32));
2850          if (!Subtarget->isLittle())
2851            std::swap(Lo, Hi);
2852          unsigned LocRegLo = VA.getLocReg();
2853          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2854          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2855          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2856          continue;
2857        }
2858      }
2859      break;
2860    case CCValAssign::SExt:
2861      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
2862      break;
2863    case CCValAssign::ZExt:
2864      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
2865      break;
2866    case CCValAssign::AExt:
2867      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
2868      break;
2869    }
2870
2871    // Arguments that can be passed on register must be kept at
2872    // RegsToPass vector
2873    if (VA.isRegLoc()) {
2874      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2875      continue;
2876    }
2877
2878    // Register can't get to this point...
2879    assert(VA.isMemLoc());
2880
2881    // emit ISD::STORE whichs stores the
2882    // parameter value to a stack Location
2883    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2884                                         Chain, Arg, dl, isTailCall, DAG));
2885  }
2886
2887  // Transform all store nodes into one single node because all store
2888  // nodes are independent of each other.
2889  if (!MemOpChains.empty())
2890    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2891                        &MemOpChains[0], MemOpChains.size());
2892
2893  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2894  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2895  // node so that legalize doesn't hack it.
2896  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2897  bool GlobalOrExternal = false, InternalLinkage = false;
2898  SDValue CalleeLo;
2899
2900  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2901    if (IsPICCall) {
2902      InternalLinkage = G->getGlobal()->hasInternalLinkage();
2903
2904      if (InternalLinkage)
2905        Callee = getAddrLocal(Callee, DAG, HasMips64);
2906      else if (LargeGOT)
2907        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2908                                       MipsII::MO_CALL_LO16);
2909      else
2910        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2911    } else
2912      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
2913                                          MipsII::MO_NO_FLAG);
2914    GlobalOrExternal = true;
2915  }
2916  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2917    if (!IsN64 && !IsPIC) // !N64 && static
2918      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2919                                            MipsII::MO_NO_FLAG);
2920    else if (LargeGOT)
2921      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2922                                     MipsII::MO_CALL_LO16);
2923    else if (HasMips64)
2924      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_DISP);
2925    else // O32 & PIC
2926      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2927
2928    GlobalOrExternal = true;
2929  }
2930
2931  SDValue InFlag;
2932
2933  // T9 register operand.
2934  SDValue T9;
2935
2936  // T9 should contain the address of the callee function if
2937  // -reloction-model=pic or it is an indirect call.
2938  if (IsPICCall || !GlobalOrExternal) {
2939    // copy to T9
2940    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
2941    Chain = DAG.getCopyToReg(Chain, dl, T9Reg, Callee, SDValue(0, 0));
2942    InFlag = Chain.getValue(1);
2943
2944    if (Subtarget->inMips16Mode())
2945      T9 = DAG.getRegister(T9Reg, getPointerTy());
2946    else
2947      Callee = DAG.getRegister(T9Reg, getPointerTy());
2948  }
2949
2950  // Insert node "GP copy globalreg" before call to function.
2951  //
2952  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2953  // in PIC mode) allow symbols to be resolved via lazy binding.
2954  // The lazy binding stub requires GP to point to the GOT.
2955  if (IsPICCall && !InternalLinkage) {
2956    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2957    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2958    RegsToPass.push_back(std::make_pair(GPReg, GetGlobalReg(DAG, Ty)));
2959  }
2960
2961  // Build a sequence of copy-to-reg nodes chained together with token
2962  // chain and flag operands which copy the outgoing args into registers.
2963  // The InFlag in necessary since all emitted instructions must be
2964  // stuck together.
2965  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2966    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2967                             RegsToPass[i].second, InFlag);
2968    InFlag = Chain.getValue(1);
2969  }
2970
2971  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
2972  //             = Chain, Callee, Reg#1, Reg#2, ...
2973  //
2974  // Returns a chain & a flag for retval copy to use.
2975  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2976  SmallVector<SDValue, 8> Ops;
2977  Ops.push_back(Chain);
2978  Ops.push_back(Callee);
2979
2980  // Add argument registers to the end of the list so that they are
2981  // known live into the call.
2982  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2983    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2984                                  RegsToPass[i].second.getValueType()));
2985
2986  // Add T9 register operand.
2987  if (T9.getNode())
2988    Ops.push_back(T9);
2989
2990  // Add a register mask operand representing the call-preserved registers.
2991  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2992  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2993  assert(Mask && "Missing call preserved mask for calling convention");
2994  Ops.push_back(DAG.getRegisterMask(Mask));
2995
2996  if (InFlag.getNode())
2997    Ops.push_back(InFlag);
2998
2999  if (isTailCall)
3000    return DAG.getNode(MipsISD::TailCall, dl, MVT::Other, &Ops[0], Ops.size());
3001
3002  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
3003  InFlag = Chain.getValue(1);
3004
3005  // Create the CALLSEQ_END node.
3006  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
3007                             DAG.getIntPtrConstant(0, true), InFlag);
3008  InFlag = Chain.getValue(1);
3009
3010  // Handle result values, copying them out of physregs into vregs that we
3011  // return.
3012  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3013                         Ins, dl, DAG, InVals);
3014}
3015
3016/// LowerCallResult - Lower the result values of a call into the
3017/// appropriate copies out of appropriate physical registers.
3018SDValue
3019MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3020                                    CallingConv::ID CallConv, bool isVarArg,
3021                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3022                                    DebugLoc dl, SelectionDAG &DAG,
3023                                    SmallVectorImpl<SDValue> &InVals) const {
3024  // Assign locations to each value returned by this call.
3025  SmallVector<CCValAssign, 16> RVLocs;
3026  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3027                 getTargetMachine(), RVLocs, *DAG.getContext());
3028
3029  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
3030
3031  // Copy all of the result registers out of their specified physreg.
3032  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3033    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
3034                               RVLocs[i].getValVT(), InFlag).getValue(1);
3035    InFlag = Chain.getValue(2);
3036    InVals.push_back(Chain.getValue(0));
3037  }
3038
3039  return Chain;
3040}
3041
3042//===----------------------------------------------------------------------===//
3043//             Formal Arguments Calling Convention Implementation
3044//===----------------------------------------------------------------------===//
3045/// LowerFormalArguments - transform physical registers into virtual registers
3046/// and generate load operations for arguments places on the stack.
3047SDValue
3048MipsTargetLowering::LowerFormalArguments(SDValue Chain,
3049                                         CallingConv::ID CallConv,
3050                                         bool isVarArg,
3051                                      const SmallVectorImpl<ISD::InputArg> &Ins,
3052                                         DebugLoc dl, SelectionDAG &DAG,
3053                                         SmallVectorImpl<SDValue> &InVals)
3054                                          const {
3055  MachineFunction &MF = DAG.getMachineFunction();
3056  MachineFrameInfo *MFI = MF.getFrameInfo();
3057  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3058
3059  MipsFI->setVarArgsFrameIndex(0);
3060
3061  // Used with vargs to acumulate store chains.
3062  std::vector<SDValue> OutChains;
3063
3064  // Assign locations to all of the incoming arguments.
3065  SmallVector<CCValAssign, 16> ArgLocs;
3066  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3067                 getTargetMachine(), ArgLocs, *DAG.getContext());
3068  MipsCC MipsCCInfo(CallConv, isVarArg, IsO32, CCInfo);
3069
3070  MipsCCInfo.analyzeFormalArguments(Ins);
3071  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
3072                           MipsCCInfo.hasByValArg());
3073
3074  Function::const_arg_iterator FuncArg =
3075    DAG.getMachineFunction().getFunction()->arg_begin();
3076  unsigned CurArgIdx = 0;
3077  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
3078
3079  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3080    CCValAssign &VA = ArgLocs[i];
3081    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
3082    CurArgIdx = Ins[i].OrigArgIndex;
3083    EVT ValVT = VA.getValVT();
3084    ISD::ArgFlagsTy Flags = Ins[i].Flags;
3085    bool IsRegLoc = VA.isRegLoc();
3086
3087    if (Flags.isByVal()) {
3088      assert(Flags.getByValSize() &&
3089             "ByVal args of size 0 should have been ignored by front-end.");
3090      assert(ByValArg != MipsCCInfo.byval_end());
3091      copyByValRegs(Chain, dl, OutChains, DAG, Flags, InVals, &*FuncArg,
3092                    MipsCCInfo, *ByValArg);
3093      ++ByValArg;
3094      continue;
3095    }
3096
3097    // Arguments stored on registers
3098    if (IsRegLoc) {
3099      EVT RegVT = VA.getLocVT();
3100      unsigned ArgReg = VA.getLocReg();
3101      const TargetRegisterClass *RC;
3102
3103      if (RegVT == MVT::i32)
3104        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
3105                                        &Mips::CPURegsRegClass;
3106      else if (RegVT == MVT::i64)
3107        RC = &Mips::CPU64RegsRegClass;
3108      else if (RegVT == MVT::f32)
3109        RC = &Mips::FGR32RegClass;
3110      else if (RegVT == MVT::f64)
3111        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
3112      else
3113        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
3114
3115      // Transform the arguments stored on
3116      // physical registers into virtual ones
3117      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3118      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3119
3120      // If this is an 8 or 16-bit value, it has been passed promoted
3121      // to 32 bits.  Insert an assert[sz]ext to capture this, then
3122      // truncate to the right size.
3123      if (VA.getLocInfo() != CCValAssign::Full) {
3124        unsigned Opcode = 0;
3125        if (VA.getLocInfo() == CCValAssign::SExt)
3126          Opcode = ISD::AssertSext;
3127        else if (VA.getLocInfo() == CCValAssign::ZExt)
3128          Opcode = ISD::AssertZext;
3129        if (Opcode)
3130          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
3131                                 DAG.getValueType(ValVT));
3132        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
3133      }
3134
3135      // Handle floating point arguments passed in integer registers.
3136      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3137          (RegVT == MVT::i64 && ValVT == MVT::f64))
3138        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
3139      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
3140        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
3141                                  getNextIntArgReg(ArgReg), RC);
3142        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
3143        if (!Subtarget->isLittle())
3144          std::swap(ArgValue, ArgValue2);
3145        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
3146                               ArgValue, ArgValue2);
3147      }
3148
3149      InVals.push_back(ArgValue);
3150    } else { // VA.isRegLoc()
3151
3152      // sanity check
3153      assert(VA.isMemLoc());
3154
3155      // The stack pointer offset is relative to the caller stack frame.
3156      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
3157                                      VA.getLocMemOffset(), true);
3158
3159      // Create load nodes to retrieve arguments from the stack
3160      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3161      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
3162                                   MachinePointerInfo::getFixedStack(FI),
3163                                   false, false, false, 0));
3164    }
3165  }
3166
3167  // The mips ABIs for returning structs by value requires that we copy
3168  // the sret argument into $v0 for the return. Save the argument into
3169  // a virtual register so that we can access it from the return points.
3170  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3171    unsigned Reg = MipsFI->getSRetReturnReg();
3172    if (!Reg) {
3173      Reg = MF.getRegInfo().
3174        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
3175      MipsFI->setSRetReturnReg(Reg);
3176    }
3177    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
3178    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
3179  }
3180
3181  if (isVarArg)
3182    writeVarArgRegs(OutChains, MipsCCInfo, Chain, dl, DAG);
3183
3184  // All stores are grouped in one node to allow the matching between
3185  // the size of Ins and InVals. This only happens when on varg functions
3186  if (!OutChains.empty()) {
3187    OutChains.push_back(Chain);
3188    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3189                        &OutChains[0], OutChains.size());
3190  }
3191
3192  return Chain;
3193}
3194
3195//===----------------------------------------------------------------------===//
3196//               Return Value Calling Convention Implementation
3197//===----------------------------------------------------------------------===//
3198
3199bool
3200MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3201                                   MachineFunction &MF, bool isVarArg,
3202                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3203                                   LLVMContext &Context) const {
3204  SmallVector<CCValAssign, 16> RVLocs;
3205  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
3206                 RVLocs, Context);
3207  return CCInfo.CheckReturn(Outs, RetCC_Mips);
3208}
3209
3210SDValue
3211MipsTargetLowering::LowerReturn(SDValue Chain,
3212                                CallingConv::ID CallConv, bool isVarArg,
3213                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3214                                const SmallVectorImpl<SDValue> &OutVals,
3215                                DebugLoc dl, SelectionDAG &DAG) const {
3216
3217  // CCValAssign - represent the assignment of
3218  // the return value to a location
3219  SmallVector<CCValAssign, 16> RVLocs;
3220
3221  // CCState - Info about the registers and stack slot.
3222  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3223                 getTargetMachine(), RVLocs, *DAG.getContext());
3224
3225  // Analize return values.
3226  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3227
3228  // If this is the first return lowered for this function, add
3229  // the regs to the liveout set for the function.
3230  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3231    for (unsigned i = 0; i != RVLocs.size(); ++i)
3232      if (RVLocs[i].isRegLoc())
3233        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3234  }
3235
3236  SDValue Flag;
3237
3238  // Copy the result values into the output registers.
3239  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3240    CCValAssign &VA = RVLocs[i];
3241    assert(VA.isRegLoc() && "Can only return in registers!");
3242
3243    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
3244
3245    // guarantee that all emitted copies are
3246    // stuck together, avoiding something bad
3247    Flag = Chain.getValue(1);
3248  }
3249
3250  // The mips ABIs for returning structs by value requires that we copy
3251  // the sret argument into $v0 for the return. We saved the argument into
3252  // a virtual register in the entry block, so now we copy the value out
3253  // and into $v0.
3254  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3255    MachineFunction &MF      = DAG.getMachineFunction();
3256    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3257    unsigned Reg = MipsFI->getSRetReturnReg();
3258
3259    if (!Reg)
3260      llvm_unreachable("sret virtual register not created in the entry block");
3261    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
3262    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
3263
3264    Chain = DAG.getCopyToReg(Chain, dl, V0, Val, Flag);
3265    Flag = Chain.getValue(1);
3266    MF.getRegInfo().addLiveOut(V0);
3267  }
3268
3269  // Return on Mips is always a "jr $ra"
3270  if (Flag.getNode())
3271    return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain, Flag);
3272
3273  // Return Void
3274  return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain);
3275}
3276
3277//===----------------------------------------------------------------------===//
3278//                           Mips Inline Assembly Support
3279//===----------------------------------------------------------------------===//
3280
3281/// getConstraintType - Given a constraint letter, return the type of
3282/// constraint it is for this target.
3283MipsTargetLowering::ConstraintType MipsTargetLowering::
3284getConstraintType(const std::string &Constraint) const
3285{
3286  // Mips specific constrainy
3287  // GCC config/mips/constraints.md
3288  //
3289  // 'd' : An address register. Equivalent to r
3290  //       unless generating MIPS16 code.
3291  // 'y' : Equivalent to r; retained for
3292  //       backwards compatibility.
3293  // 'c' : A register suitable for use in an indirect
3294  //       jump. This will always be $25 for -mabicalls.
3295  // 'l' : The lo register. 1 word storage.
3296  // 'x' : The hilo register pair. Double word storage.
3297  if (Constraint.size() == 1) {
3298    switch (Constraint[0]) {
3299      default : break;
3300      case 'd':
3301      case 'y':
3302      case 'f':
3303      case 'c':
3304      case 'l':
3305      case 'x':
3306        return C_RegisterClass;
3307    }
3308  }
3309  return TargetLowering::getConstraintType(Constraint);
3310}
3311
3312/// Examine constraint type and operand type and determine a weight value.
3313/// This object must already have been set up with the operand type
3314/// and the current alternative constraint selected.
3315TargetLowering::ConstraintWeight
3316MipsTargetLowering::getSingleConstraintMatchWeight(
3317    AsmOperandInfo &info, const char *constraint) const {
3318  ConstraintWeight weight = CW_Invalid;
3319  Value *CallOperandVal = info.CallOperandVal;
3320    // If we don't have a value, we can't do a match,
3321    // but allow it at the lowest weight.
3322  if (CallOperandVal == NULL)
3323    return CW_Default;
3324  Type *type = CallOperandVal->getType();
3325  // Look at the constraint type.
3326  switch (*constraint) {
3327  default:
3328    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3329    break;
3330  case 'd':
3331  case 'y':
3332    if (type->isIntegerTy())
3333      weight = CW_Register;
3334    break;
3335  case 'f':
3336    if (type->isFloatTy())
3337      weight = CW_Register;
3338    break;
3339  case 'c': // $25 for indirect jumps
3340  case 'l': // lo register
3341  case 'x': // hilo register pair
3342      if (type->isIntegerTy())
3343      weight = CW_SpecificReg;
3344      break;
3345  case 'I': // signed 16 bit immediate
3346  case 'J': // integer zero
3347  case 'K': // unsigned 16 bit immediate
3348  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3349  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3350  case 'O': // signed 15 bit immediate (+- 16383)
3351  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3352    if (isa<ConstantInt>(CallOperandVal))
3353      weight = CW_Constant;
3354    break;
3355  }
3356  return weight;
3357}
3358
3359/// Given a register class constraint, like 'r', if this corresponds directly
3360/// to an LLVM register class, return a register of 0 and the register class
3361/// pointer.
3362std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3363getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3364{
3365  if (Constraint.size() == 1) {
3366    switch (Constraint[0]) {
3367    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3368    case 'y': // Same as 'r'. Exists for compatibility.
3369    case 'r':
3370      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3371        if (Subtarget->inMips16Mode())
3372          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3373        return std::make_pair(0U, &Mips::CPURegsRegClass);
3374      }
3375      if (VT == MVT::i64 && !HasMips64)
3376        return std::make_pair(0U, &Mips::CPURegsRegClass);
3377      if (VT == MVT::i64 && HasMips64)
3378        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
3379      // This will generate an error message
3380      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3381    case 'f':
3382      if (VT == MVT::f32)
3383        return std::make_pair(0U, &Mips::FGR32RegClass);
3384      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3385        if (Subtarget->isFP64bit())
3386          return std::make_pair(0U, &Mips::FGR64RegClass);
3387        return std::make_pair(0U, &Mips::AFGR64RegClass);
3388      }
3389      break;
3390    case 'c': // register suitable for indirect jump
3391      if (VT == MVT::i32)
3392        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
3393      assert(VT == MVT::i64 && "Unexpected type.");
3394      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
3395    case 'l': // register suitable for indirect jump
3396      if (VT == MVT::i32)
3397        return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
3398      return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
3399    case 'x': // register suitable for indirect jump
3400      // Fixme: Not triggering the use of both hi and low
3401      // This will generate an error message
3402      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3403    }
3404  }
3405  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3406}
3407
3408/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3409/// vector.  If it is invalid, don't add anything to Ops.
3410void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3411                                                     std::string &Constraint,
3412                                                     std::vector<SDValue>&Ops,
3413                                                     SelectionDAG &DAG) const {
3414  SDValue Result(0, 0);
3415
3416  // Only support length 1 constraints for now.
3417  if (Constraint.length() > 1) return;
3418
3419  char ConstraintLetter = Constraint[0];
3420  switch (ConstraintLetter) {
3421  default: break; // This will fall through to the generic implementation
3422  case 'I': // Signed 16 bit constant
3423    // If this fails, the parent routine will give an error
3424    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3425      EVT Type = Op.getValueType();
3426      int64_t Val = C->getSExtValue();
3427      if (isInt<16>(Val)) {
3428        Result = DAG.getTargetConstant(Val, Type);
3429        break;
3430      }
3431    }
3432    return;
3433  case 'J': // integer zero
3434    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3435      EVT Type = Op.getValueType();
3436      int64_t Val = C->getZExtValue();
3437      if (Val == 0) {
3438        Result = DAG.getTargetConstant(0, Type);
3439        break;
3440      }
3441    }
3442    return;
3443  case 'K': // unsigned 16 bit immediate
3444    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3445      EVT Type = Op.getValueType();
3446      uint64_t Val = (uint64_t)C->getZExtValue();
3447      if (isUInt<16>(Val)) {
3448        Result = DAG.getTargetConstant(Val, Type);
3449        break;
3450      }
3451    }
3452    return;
3453  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3454    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3455      EVT Type = Op.getValueType();
3456      int64_t Val = C->getSExtValue();
3457      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3458        Result = DAG.getTargetConstant(Val, Type);
3459        break;
3460      }
3461    }
3462    return;
3463  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3464    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3465      EVT Type = Op.getValueType();
3466      int64_t Val = C->getSExtValue();
3467      if ((Val >= -65535) && (Val <= -1)) {
3468        Result = DAG.getTargetConstant(Val, Type);
3469        break;
3470      }
3471    }
3472    return;
3473  case 'O': // signed 15 bit immediate
3474    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3475      EVT Type = Op.getValueType();
3476      int64_t Val = C->getSExtValue();
3477      if ((isInt<15>(Val))) {
3478        Result = DAG.getTargetConstant(Val, Type);
3479        break;
3480      }
3481    }
3482    return;
3483  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3484    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3485      EVT Type = Op.getValueType();
3486      int64_t Val = C->getSExtValue();
3487      if ((Val <= 65535) && (Val >= 1)) {
3488        Result = DAG.getTargetConstant(Val, Type);
3489        break;
3490      }
3491    }
3492    return;
3493  }
3494
3495  if (Result.getNode()) {
3496    Ops.push_back(Result);
3497    return;
3498  }
3499
3500  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3501}
3502
3503bool
3504MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
3505  // No global is ever allowed as a base.
3506  if (AM.BaseGV)
3507    return false;
3508
3509  switch (AM.Scale) {
3510  case 0: // "r+i" or just "i", depending on HasBaseReg.
3511    break;
3512  case 1:
3513    if (!AM.HasBaseReg) // allow "r+i".
3514      break;
3515    return false; // disallow "r+r" or "r+r+i".
3516  default:
3517    return false;
3518  }
3519
3520  return true;
3521}
3522
3523bool
3524MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3525  // The Mips target isn't yet aware of offsets.
3526  return false;
3527}
3528
3529EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3530                                            unsigned SrcAlign,
3531                                            bool IsMemset, bool ZeroMemset,
3532                                            bool MemcpyStrSrc,
3533                                            MachineFunction &MF) const {
3534  if (Subtarget->hasMips64())
3535    return MVT::i64;
3536
3537  return MVT::i32;
3538}
3539
3540bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3541  if (VT != MVT::f32 && VT != MVT::f64)
3542    return false;
3543  if (Imm.isNegZero())
3544    return false;
3545  return Imm.isZero();
3546}
3547
3548unsigned MipsTargetLowering::getJumpTableEncoding() const {
3549  if (IsN64)
3550    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3551
3552  return TargetLowering::getJumpTableEncoding();
3553}
3554
3555MipsTargetLowering::MipsCC::MipsCC(CallingConv::ID CallConv, bool IsVarArg,
3556                                   bool IsO32, CCState &Info) : CCInfo(Info) {
3557  UseRegsForByval = true;
3558
3559  if (IsO32) {
3560    RegSize = 4;
3561    NumIntArgRegs = array_lengthof(O32IntRegs);
3562    ReservedArgArea = 16;
3563    IntArgRegs = ShadowRegs = O32IntRegs;
3564    FixedFn = VarFn = CC_MipsO32;
3565  } else {
3566    RegSize = 8;
3567    NumIntArgRegs = array_lengthof(Mips64IntRegs);
3568    ReservedArgArea = 0;
3569    IntArgRegs = Mips64IntRegs;
3570    ShadowRegs = Mips64DPRegs;
3571    FixedFn = CC_MipsN;
3572    VarFn = CC_MipsN_VarArg;
3573  }
3574
3575  if (CallConv == CallingConv::Fast) {
3576    assert(!IsVarArg);
3577    UseRegsForByval = false;
3578    ReservedArgArea = 0;
3579    FixedFn = VarFn = CC_Mips_FastCC;
3580  }
3581
3582  // Pre-allocate reserved argument area.
3583  CCInfo.AllocateStack(ReservedArgArea, 1);
3584}
3585
3586void MipsTargetLowering::MipsCC::
3587analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args) {
3588  unsigned NumOpnds = Args.size();
3589
3590  for (unsigned I = 0; I != NumOpnds; ++I) {
3591    MVT ArgVT = Args[I].VT;
3592    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3593    bool R;
3594
3595    if (ArgFlags.isByVal()) {
3596      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3597      continue;
3598    }
3599
3600    if (Args[I].IsFixed)
3601      R = FixedFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3602    else
3603      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3604
3605    if (R) {
3606#ifndef NDEBUG
3607      dbgs() << "Call operand #" << I << " has unhandled type "
3608             << EVT(ArgVT).getEVTString();
3609#endif
3610      llvm_unreachable(0);
3611    }
3612  }
3613}
3614
3615void MipsTargetLowering::MipsCC::
3616analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args) {
3617  unsigned NumArgs = Args.size();
3618
3619  for (unsigned I = 0; I != NumArgs; ++I) {
3620    MVT ArgVT = Args[I].VT;
3621    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3622
3623    if (ArgFlags.isByVal()) {
3624      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3625      continue;
3626    }
3627
3628    if (!FixedFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo))
3629      continue;
3630
3631#ifndef NDEBUG
3632    dbgs() << "Formal Arg #" << I << " has unhandled type "
3633           << EVT(ArgVT).getEVTString();
3634#endif
3635    llvm_unreachable(0);
3636  }
3637}
3638
3639void
3640MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3641                                           MVT LocVT,
3642                                           CCValAssign::LocInfo LocInfo,
3643                                           ISD::ArgFlagsTy ArgFlags) {
3644  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3645
3646  struct ByValArgInfo ByVal;
3647  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3648  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3649                            RegSize * 2);
3650
3651  if (UseRegsForByval)
3652    allocateRegs(ByVal, ByValSize, Align);
3653
3654  // Allocate space on caller's stack.
3655  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3656                                       Align);
3657  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3658                                    LocInfo));
3659  ByValArgs.push_back(ByVal);
3660}
3661
3662void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3663                                              unsigned ByValSize,
3664                                              unsigned Align) {
3665  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3666         "Byval argument's size and alignment should be a multiple of"
3667         "RegSize.");
3668
3669  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3670
3671  // If Align > RegSize, the first arg register must be even.
3672  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3673    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3674    ++ByVal.FirstIdx;
3675  }
3676
3677  // Mark the registers allocated.
3678  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3679       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3680    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3681}
3682
3683void MipsTargetLowering::
3684copyByValRegs(SDValue Chain, DebugLoc DL, std::vector<SDValue> &OutChains,
3685              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3686              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3687              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3688  MachineFunction &MF = DAG.getMachineFunction();
3689  MachineFrameInfo *MFI = MF.getFrameInfo();
3690  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3691  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3692  int FrameObjOffset;
3693
3694  if (RegAreaSize)
3695    FrameObjOffset = (int)CC.reservedArgArea() -
3696      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3697  else
3698    FrameObjOffset = ByVal.Address;
3699
3700  // Create frame object.
3701  EVT PtrTy = getPointerTy();
3702  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3703  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3704  InVals.push_back(FIN);
3705
3706  if (!ByVal.NumRegs)
3707    return;
3708
3709  // Copy arg registers.
3710  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3711  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3712
3713  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3714    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3715    unsigned VReg = AddLiveIn(MF, ArgReg, RC);
3716    unsigned Offset = I * CC.regSize();
3717    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3718                                   DAG.getConstant(Offset, PtrTy));
3719    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3720                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3721                                 false, false, 0);
3722    OutChains.push_back(Store);
3723  }
3724}
3725
3726// Copy byVal arg to registers and stack.
3727void MipsTargetLowering::
3728passByValArg(SDValue Chain, DebugLoc DL,
3729             SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
3730             SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
3731             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3732             const MipsCC &CC, const ByValArgInfo &ByVal,
3733             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3734  unsigned ByValSize = Flags.getByValSize();
3735  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3736  unsigned RegSize = CC.regSize();
3737  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3738  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3739
3740  if (ByVal.NumRegs) {
3741    const uint16_t *ArgRegs = CC.intArgRegs();
3742    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3743    unsigned I = 0;
3744
3745    // Copy words to registers.
3746    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3747      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3748                                    DAG.getConstant(Offset, PtrTy));
3749      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3750                                    MachinePointerInfo(), false, false, false,
3751                                    Alignment);
3752      MemOpChains.push_back(LoadVal.getValue(1));
3753      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3754      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3755    }
3756
3757    // Return if the struct has been fully copied.
3758    if (ByValSize == Offset)
3759      return;
3760
3761    // Copy the remainder of the byval argument with sub-word loads and shifts.
3762    if (LeftoverBytes) {
3763      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3764             "Size of the remainder should be smaller than RegSize.");
3765      SDValue Val;
3766
3767      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3768           Offset < ByValSize; LoadSize /= 2) {
3769        unsigned RemSize = ByValSize - Offset;
3770
3771        if (RemSize < LoadSize)
3772          continue;
3773
3774        // Load subword.
3775        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3776                                      DAG.getConstant(Offset, PtrTy));
3777        SDValue LoadVal =
3778          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3779                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3780                         false, false, Alignment);
3781        MemOpChains.push_back(LoadVal.getValue(1));
3782
3783        // Shift the loaded value.
3784        unsigned Shamt;
3785
3786        if (isLittle)
3787          Shamt = TotalSizeLoaded;
3788        else
3789          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3790
3791        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3792                                    DAG.getConstant(Shamt, MVT::i32));
3793
3794        if (Val.getNode())
3795          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3796        else
3797          Val = Shift;
3798
3799        Offset += LoadSize;
3800        TotalSizeLoaded += LoadSize;
3801        Alignment = std::min(Alignment, LoadSize);
3802      }
3803
3804      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3805      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3806      return;
3807    }
3808  }
3809
3810  // Copy remainder of byval arg to it with memcpy.
3811  unsigned MemCpySize = ByValSize - Offset;
3812  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3813                            DAG.getConstant(Offset, PtrTy));
3814  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3815                            DAG.getIntPtrConstant(ByVal.Address));
3816  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
3817                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
3818                        /*isVolatile=*/false, /*AlwaysInline=*/false,
3819                        MachinePointerInfo(0), MachinePointerInfo(0));
3820  MemOpChains.push_back(Chain);
3821}
3822
3823void
3824MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3825                                    const MipsCC &CC, SDValue Chain,
3826                                    DebugLoc DL, SelectionDAG &DAG) const {
3827  unsigned NumRegs = CC.numIntArgRegs();
3828  const uint16_t *ArgRegs = CC.intArgRegs();
3829  const CCState &CCInfo = CC.getCCInfo();
3830  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3831  unsigned RegSize = CC.regSize();
3832  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3833  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3834  MachineFunction &MF = DAG.getMachineFunction();
3835  MachineFrameInfo *MFI = MF.getFrameInfo();
3836  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3837
3838  // Offset of the first variable argument from stack pointer.
3839  int VaArgOffset;
3840
3841  if (NumRegs == Idx)
3842    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3843  else
3844    VaArgOffset =
3845      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3846
3847  // Record the frame index of the first variable argument
3848  // which is a value necessary to VASTART.
3849  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3850  MipsFI->setVarArgsFrameIndex(FI);
3851
3852  // Copy the integer registers that have not been used for argument passing
3853  // to the argument register save area. For O32, the save area is allocated
3854  // in the caller's stack frame, while for N32/64, it is allocated in the
3855  // callee's stack frame.
3856  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3857    unsigned Reg = AddLiveIn(MF, ArgRegs[I], RC);
3858    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3859    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3860    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3861    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3862                                 MachinePointerInfo(), false, false, 0);
3863    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3864    OutChains.push_back(Store);
3865  }
3866}
3867