MipsISelLowering.cpp revision e36a62c23d332658e4513d67eedb392b9c27f470
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include "MipsISelLowering.h"
16#include "InstPrinter/MipsInstPrinter.h"
17#include "MCTargetDesc/MipsBaseInfo.h"
18#include "MipsMachineFunction.h"
19#include "MipsSubtarget.h"
20#include "MipsTargetMachine.h"
21#include "MipsTargetObjectFile.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37#include <cctype>
38
39using namespace llvm;
40
41STATISTIC(NumTailCalls, "Number of tail calls");
42
43static cl::opt<bool>
44LargeGOT("mxgot", cl::Hidden,
45         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
46
47static cl::opt<bool>
48NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
49               cl::desc("MIPS: Don't trap on integer division by zero."),
50               cl::init(false));
51
52static const uint16_t O32IntRegs[4] = {
53  Mips::A0, Mips::A1, Mips::A2, Mips::A3
54};
55
56static const uint16_t Mips64IntRegs[8] = {
57  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
58  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
59};
60
61static const uint16_t Mips64DPRegs[8] = {
62  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
63  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
64};
65
66// If I is a shifted mask, set the size (Size) and the first bit of the
67// mask (Pos), and return true.
68// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
69static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
70  if (!isShiftedMask_64(I))
71     return false;
72
73  Size = CountPopulation_64(I);
74  Pos = countTrailingZeros(I);
75  return true;
76}
77
78SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
79  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
80  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
81}
82
83static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
84  EVT Ty = Op.getValueType();
85
86  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
87    return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(Op), Ty, 0,
88                                      Flag);
89  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
90    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
91  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
92    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
93  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
94    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
95  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
96    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
97                                     N->getOffset(), Flag);
98
99  llvm_unreachable("Unexpected node type.");
100  return SDValue();
101}
102
103static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
104  SDLoc DL(Op);
105  EVT Ty = Op.getValueType();
106  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
107  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
108  return DAG.getNode(ISD::ADD, DL, Ty,
109                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
110                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
111}
112
113SDValue MipsTargetLowering::getAddrLocal(SDValue Op, SelectionDAG &DAG,
114                                         bool HasMips64) const {
115  SDLoc DL(Op);
116  EVT Ty = Op.getValueType();
117  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
118  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
119                            getTargetNode(Op, DAG, GOTFlag));
120  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
121                             MachinePointerInfo::getGOT(), false, false, false,
122                             0);
123  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
124  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
125  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
126}
127
128SDValue MipsTargetLowering::getAddrGlobal(SDValue Op, SelectionDAG &DAG,
129                                          unsigned Flag) const {
130  SDLoc DL(Op);
131  EVT Ty = Op.getValueType();
132  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
133                            getTargetNode(Op, DAG, Flag));
134  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
135                     MachinePointerInfo::getGOT(), false, false, false, 0);
136}
137
138SDValue MipsTargetLowering::getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
139                                                  unsigned HiFlag,
140                                                  unsigned LoFlag) const {
141  SDLoc DL(Op);
142  EVT Ty = Op.getValueType();
143  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
144  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
145  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
146                                getTargetNode(Op, DAG, LoFlag));
147  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
148                     MachinePointerInfo::getGOT(), false, false, false, 0);
149}
150
151const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
152  switch (Opcode) {
153  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
154  case MipsISD::TailCall:          return "MipsISD::TailCall";
155  case MipsISD::Hi:                return "MipsISD::Hi";
156  case MipsISD::Lo:                return "MipsISD::Lo";
157  case MipsISD::GPRel:             return "MipsISD::GPRel";
158  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
159  case MipsISD::Ret:               return "MipsISD::Ret";
160  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
161  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
162  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
163  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
164  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
165  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
166  case MipsISD::ExtractLOHI:       return "MipsISD::ExtractLOHI";
167  case MipsISD::InsertLOHI:        return "MipsISD::InsertLOHI";
168  case MipsISD::Mult:              return "MipsISD::Mult";
169  case MipsISD::Multu:             return "MipsISD::Multu";
170  case MipsISD::MAdd:              return "MipsISD::MAdd";
171  case MipsISD::MAddu:             return "MipsISD::MAddu";
172  case MipsISD::MSub:              return "MipsISD::MSub";
173  case MipsISD::MSubu:             return "MipsISD::MSubu";
174  case MipsISD::DivRem:            return "MipsISD::DivRem";
175  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
176  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
177  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
178  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
179  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
180  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
181  case MipsISD::Sync:              return "MipsISD::Sync";
182  case MipsISD::Ext:               return "MipsISD::Ext";
183  case MipsISD::Ins:               return "MipsISD::Ins";
184  case MipsISD::LWL:               return "MipsISD::LWL";
185  case MipsISD::LWR:               return "MipsISD::LWR";
186  case MipsISD::SWL:               return "MipsISD::SWL";
187  case MipsISD::SWR:               return "MipsISD::SWR";
188  case MipsISD::LDL:               return "MipsISD::LDL";
189  case MipsISD::LDR:               return "MipsISD::LDR";
190  case MipsISD::SDL:               return "MipsISD::SDL";
191  case MipsISD::SDR:               return "MipsISD::SDR";
192  case MipsISD::EXTP:              return "MipsISD::EXTP";
193  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
194  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
195  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
196  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
197  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
198  case MipsISD::SHILO:             return "MipsISD::SHILO";
199  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
200  case MipsISD::MULT:              return "MipsISD::MULT";
201  case MipsISD::MULTU:             return "MipsISD::MULTU";
202  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
203  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
204  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
205  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
206  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
207  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
208  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
209  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
210  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
211  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
212  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
213  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
214  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
215  case MipsISD::VCEQ:              return "MipsISD::VCEQ";
216  case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
217  case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
218  case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
219  case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
220  case MipsISD::VSMAX:             return "MipsISD::VSMAX";
221  case MipsISD::VSMIN:             return "MipsISD::VSMIN";
222  case MipsISD::VUMAX:             return "MipsISD::VUMAX";
223  case MipsISD::VUMIN:             return "MipsISD::VUMIN";
224  case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
225  case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
226  case MipsISD::VNOR:              return "MipsISD::VNOR";
227  case MipsISD::VSHF:              return "MipsISD::VSHF";
228  case MipsISD::SHF:               return "MipsISD::SHF";
229  case MipsISD::ILVEV:             return "MipsISD::ILVEV";
230  case MipsISD::ILVOD:             return "MipsISD::ILVOD";
231  case MipsISD::ILVL:              return "MipsISD::ILVL";
232  case MipsISD::ILVR:              return "MipsISD::ILVR";
233  case MipsISD::PCKEV:             return "MipsISD::PCKEV";
234  case MipsISD::PCKOD:             return "MipsISD::PCKOD";
235  default:                         return NULL;
236  }
237}
238
239MipsTargetLowering::
240MipsTargetLowering(MipsTargetMachine &TM)
241  : TargetLowering(TM, new MipsTargetObjectFile()),
242    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
243    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
244    IsO32(Subtarget->isABI_O32()) {
245  // Mips does not have i1 type, so use i32 for
246  // setcc operations results (slt, sgt, ...).
247  setBooleanContents(ZeroOrOneBooleanContent);
248  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
249
250  // Load extented operations for i1 types must be promoted
251  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
252  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
253  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
254
255  // MIPS doesn't have extending float->double load/store
256  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
257  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
258
259  // Used by legalize types to correctly generate the setcc result.
260  // Without this, every float setcc comes with a AND/OR with the result,
261  // we don't want this, since the fpcmp result goes to a flag register,
262  // which is used implicitly by brcond and select operations.
263  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
264
265  // Mips Custom Operations
266  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
267  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
268  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
269  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
270  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
271  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
272  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
273  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
274  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
275  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
276  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
277  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
278  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
279  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
280  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
281  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
282  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
283  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
284
285  if (!TM.Options.NoNaNsFPMath) {
286    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
287    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
288  }
289
290  if (HasMips64) {
291    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
292    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
293    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
294    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
295    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
296    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
297    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
298    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
299    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
300  }
301
302  if (!HasMips64) {
303    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
304    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
305    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
306  }
307
308  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
309  if (HasMips64)
310    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
311
312  setOperationAction(ISD::SDIV, MVT::i32, Expand);
313  setOperationAction(ISD::SREM, MVT::i32, Expand);
314  setOperationAction(ISD::UDIV, MVT::i32, Expand);
315  setOperationAction(ISD::UREM, MVT::i32, Expand);
316  setOperationAction(ISD::SDIV, MVT::i64, Expand);
317  setOperationAction(ISD::SREM, MVT::i64, Expand);
318  setOperationAction(ISD::UDIV, MVT::i64, Expand);
319  setOperationAction(ISD::UREM, MVT::i64, Expand);
320
321  // Operations not directly supported by Mips.
322  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
323  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
324  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
325  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
326  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
327  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
328  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
329  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
330  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
331  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
332  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
333  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
334  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
335  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
336  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
337  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
338  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
339  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
340  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
341  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
342  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
343  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
344
345  if (!Subtarget->hasMips32r2())
346    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
347
348  if (!Subtarget->hasMips64r2())
349    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
350
351  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
352  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
353  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
354  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
355  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
356  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
357  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
358  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
359  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
360  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
361  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
362  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
363  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
364  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
365  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
366  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
367  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
368
369  if (!TM.Options.NoNaNsFPMath) {
370    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
371    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
372  }
373
374  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
375
376  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
377  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
378  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
379
380  // Use the default for now
381  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
382  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
383
384  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
385  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
386  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
387  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
388
389  setInsertFencesForAtomic(true);
390
391  if (!Subtarget->hasSEInReg()) {
392    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
393    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
394  }
395
396  if (!Subtarget->hasBitCount()) {
397    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
398    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
399  }
400
401  if (!Subtarget->hasSwap()) {
402    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
403    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
404  }
405
406  if (HasMips64) {
407    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
408    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
409    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
410    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
411  }
412
413  setOperationAction(ISD::TRAP, MVT::Other, Legal);
414
415  setTargetDAGCombine(ISD::SDIVREM);
416  setTargetDAGCombine(ISD::UDIVREM);
417  setTargetDAGCombine(ISD::SELECT);
418  setTargetDAGCombine(ISD::AND);
419  setTargetDAGCombine(ISD::OR);
420  setTargetDAGCombine(ISD::ADD);
421
422  setMinFunctionAlignment(HasMips64 ? 3 : 2);
423
424  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
425
426  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
427  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
428
429  MaxStoresPerMemcpy = 16;
430}
431
432const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
433  if (TM.getSubtargetImpl()->inMips16Mode())
434    return llvm::createMips16TargetLowering(TM);
435
436  return llvm::createMipsSETargetLowering(TM);
437}
438
439EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
440  if (!VT.isVector())
441    return MVT::i32;
442  return VT.changeVectorElementTypeToInteger();
443}
444
445static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
446                                    TargetLowering::DAGCombinerInfo &DCI,
447                                    const MipsSubtarget *Subtarget) {
448  if (DCI.isBeforeLegalizeOps())
449    return SDValue();
450
451  EVT Ty = N->getValueType(0);
452  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
453  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
454  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
455                                                  MipsISD::DivRemU16;
456  SDLoc DL(N);
457
458  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
459                               N->getOperand(0), N->getOperand(1));
460  SDValue InChain = DAG.getEntryNode();
461  SDValue InGlue = DivRem;
462
463  // insert MFLO
464  if (N->hasAnyUseOfValue(0)) {
465    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
466                                            InGlue);
467    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
468    InChain = CopyFromLo.getValue(1);
469    InGlue = CopyFromLo.getValue(2);
470  }
471
472  // insert MFHI
473  if (N->hasAnyUseOfValue(1)) {
474    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
475                                            HI, Ty, InGlue);
476    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
477  }
478
479  return SDValue();
480}
481
482static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
483  switch (CC) {
484  default: llvm_unreachable("Unknown fp condition code!");
485  case ISD::SETEQ:
486  case ISD::SETOEQ: return Mips::FCOND_OEQ;
487  case ISD::SETUNE: return Mips::FCOND_UNE;
488  case ISD::SETLT:
489  case ISD::SETOLT: return Mips::FCOND_OLT;
490  case ISD::SETGT:
491  case ISD::SETOGT: return Mips::FCOND_OGT;
492  case ISD::SETLE:
493  case ISD::SETOLE: return Mips::FCOND_OLE;
494  case ISD::SETGE:
495  case ISD::SETOGE: return Mips::FCOND_OGE;
496  case ISD::SETULT: return Mips::FCOND_ULT;
497  case ISD::SETULE: return Mips::FCOND_ULE;
498  case ISD::SETUGT: return Mips::FCOND_UGT;
499  case ISD::SETUGE: return Mips::FCOND_UGE;
500  case ISD::SETUO:  return Mips::FCOND_UN;
501  case ISD::SETO:   return Mips::FCOND_OR;
502  case ISD::SETNE:
503  case ISD::SETONE: return Mips::FCOND_ONE;
504  case ISD::SETUEQ: return Mips::FCOND_UEQ;
505  }
506}
507
508
509/// This function returns true if the floating point conditional branches and
510/// conditional moves which use condition code CC should be inverted.
511static bool invertFPCondCodeUser(Mips::CondCode CC) {
512  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
513    return false;
514
515  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
516         "Illegal Condition Code");
517
518  return true;
519}
520
521// Creates and returns an FPCmp node from a setcc node.
522// Returns Op if setcc is not a floating point comparison.
523static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
524  // must be a SETCC node
525  if (Op.getOpcode() != ISD::SETCC)
526    return Op;
527
528  SDValue LHS = Op.getOperand(0);
529
530  if (!LHS.getValueType().isFloatingPoint())
531    return Op;
532
533  SDValue RHS = Op.getOperand(1);
534  SDLoc DL(Op);
535
536  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
537  // node if necessary.
538  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
539
540  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
541                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
542}
543
544// Creates and returns a CMovFPT/F node.
545static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
546                            SDValue False, SDLoc DL) {
547  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
548  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
549  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
550
551  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
552                     True.getValueType(), True, FCC0, False, Cond);
553}
554
555static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
556                                    TargetLowering::DAGCombinerInfo &DCI,
557                                    const MipsSubtarget *Subtarget) {
558  if (DCI.isBeforeLegalizeOps())
559    return SDValue();
560
561  SDValue SetCC = N->getOperand(0);
562
563  if ((SetCC.getOpcode() != ISD::SETCC) ||
564      !SetCC.getOperand(0).getValueType().isInteger())
565    return SDValue();
566
567  SDValue False = N->getOperand(2);
568  EVT FalseTy = False.getValueType();
569
570  if (!FalseTy.isInteger())
571    return SDValue();
572
573  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
574
575  if (!CN || CN->getZExtValue())
576    return SDValue();
577
578  const SDLoc DL(N);
579  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
580  SDValue True = N->getOperand(1);
581
582  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
583                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
584
585  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
586}
587
588static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
589                                 TargetLowering::DAGCombinerInfo &DCI,
590                                 const MipsSubtarget *Subtarget) {
591  // Pattern match EXT.
592  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
593  //  => ext $dst, $src, size, pos
594  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
595    return SDValue();
596
597  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
598  unsigned ShiftRightOpc = ShiftRight.getOpcode();
599
600  // Op's first operand must be a shift right.
601  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
602    return SDValue();
603
604  // The second operand of the shift must be an immediate.
605  ConstantSDNode *CN;
606  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
607    return SDValue();
608
609  uint64_t Pos = CN->getZExtValue();
610  uint64_t SMPos, SMSize;
611
612  // Op's second operand must be a shifted mask.
613  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
614      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
615    return SDValue();
616
617  // Return if the shifted mask does not start at bit 0 or the sum of its size
618  // and Pos exceeds the word's size.
619  EVT ValTy = N->getValueType(0);
620  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
621    return SDValue();
622
623  return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
624                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
625                     DAG.getConstant(SMSize, MVT::i32));
626}
627
628static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
629                                TargetLowering::DAGCombinerInfo &DCI,
630                                const MipsSubtarget *Subtarget) {
631  // Pattern match INS.
632  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
633  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
634  //  => ins $dst, $src, size, pos, $src1
635  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
636    return SDValue();
637
638  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
639  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
640  ConstantSDNode *CN;
641
642  // See if Op's first operand matches (and $src1 , mask0).
643  if (And0.getOpcode() != ISD::AND)
644    return SDValue();
645
646  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
647      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
648    return SDValue();
649
650  // See if Op's second operand matches (and (shl $src, pos), mask1).
651  if (And1.getOpcode() != ISD::AND)
652    return SDValue();
653
654  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
655      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
656    return SDValue();
657
658  // The shift masks must have the same position and size.
659  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
660    return SDValue();
661
662  SDValue Shl = And1.getOperand(0);
663  if (Shl.getOpcode() != ISD::SHL)
664    return SDValue();
665
666  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
667    return SDValue();
668
669  unsigned Shamt = CN->getZExtValue();
670
671  // Return if the shift amount and the first bit position of mask are not the
672  // same.
673  EVT ValTy = N->getValueType(0);
674  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
675    return SDValue();
676
677  return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
678                     DAG.getConstant(SMPos0, MVT::i32),
679                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
680}
681
682static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
683                                 TargetLowering::DAGCombinerInfo &DCI,
684                                 const MipsSubtarget *Subtarget) {
685  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
686
687  if (DCI.isBeforeLegalizeOps())
688    return SDValue();
689
690  SDValue Add = N->getOperand(1);
691
692  if (Add.getOpcode() != ISD::ADD)
693    return SDValue();
694
695  SDValue Lo = Add.getOperand(1);
696
697  if ((Lo.getOpcode() != MipsISD::Lo) ||
698      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
699    return SDValue();
700
701  EVT ValTy = N->getValueType(0);
702  SDLoc DL(N);
703
704  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
705                             Add.getOperand(0));
706  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
707}
708
709SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
710  const {
711  SelectionDAG &DAG = DCI.DAG;
712  unsigned Opc = N->getOpcode();
713
714  switch (Opc) {
715  default: break;
716  case ISD::SDIVREM:
717  case ISD::UDIVREM:
718    return performDivRemCombine(N, DAG, DCI, Subtarget);
719  case ISD::SELECT:
720    return performSELECTCombine(N, DAG, DCI, Subtarget);
721  case ISD::AND:
722    return performANDCombine(N, DAG, DCI, Subtarget);
723  case ISD::OR:
724    return performORCombine(N, DAG, DCI, Subtarget);
725  case ISD::ADD:
726    return performADDCombine(N, DAG, DCI, Subtarget);
727  }
728
729  return SDValue();
730}
731
732void
733MipsTargetLowering::LowerOperationWrapper(SDNode *N,
734                                          SmallVectorImpl<SDValue> &Results,
735                                          SelectionDAG &DAG) const {
736  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
737
738  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
739    Results.push_back(Res.getValue(I));
740}
741
742void
743MipsTargetLowering::ReplaceNodeResults(SDNode *N,
744                                       SmallVectorImpl<SDValue> &Results,
745                                       SelectionDAG &DAG) const {
746  return LowerOperationWrapper(N, Results, DAG);
747}
748
749SDValue MipsTargetLowering::
750LowerOperation(SDValue Op, SelectionDAG &DAG) const
751{
752  switch (Op.getOpcode())
753  {
754  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
755  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
756  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
757  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
758  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
759  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
760  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
761  case ISD::SELECT:             return lowerSELECT(Op, DAG);
762  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
763  case ISD::SETCC:              return lowerSETCC(Op, DAG);
764  case ISD::VASTART:            return lowerVASTART(Op, DAG);
765  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
766  case ISD::FABS:               return lowerFABS(Op, DAG);
767  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
768  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
769  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
770  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
771  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
772  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
773  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
774  case ISD::LOAD:               return lowerLOAD(Op, DAG);
775  case ISD::STORE:              return lowerSTORE(Op, DAG);
776  case ISD::ADD:                return lowerADD(Op, DAG);
777  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
778  }
779  return SDValue();
780}
781
782//===----------------------------------------------------------------------===//
783//  Lower helper functions
784//===----------------------------------------------------------------------===//
785
786// addLiveIn - This helper function adds the specified physical register to the
787// MachineFunction as a live in value.  It also creates a corresponding
788// virtual register for it.
789static unsigned
790addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
791{
792  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
793  MF.getRegInfo().addLiveIn(PReg, VReg);
794  return VReg;
795}
796
797static MachineBasicBlock *expandPseudoDIV(MachineInstr *MI,
798                                          MachineBasicBlock &MBB,
799                                          const TargetInstrInfo &TII,
800                                          bool Is64Bit) {
801  if (NoZeroDivCheck)
802    return &MBB;
803
804  // Insert instruction "teq $divisor_reg, $zero, 7".
805  MachineBasicBlock::iterator I(MI);
806  MachineInstrBuilder MIB;
807  MIB = BuildMI(MBB, llvm::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
808    .addOperand(MI->getOperand(2)).addReg(Mips::ZERO).addImm(7);
809
810  // Use the 32-bit sub-register if this is a 64-bit division.
811  if (Is64Bit)
812    MIB->getOperand(0).setSubReg(Mips::sub_32);
813
814  return &MBB;
815}
816
817MachineBasicBlock *
818MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
819                                                MachineBasicBlock *BB) const {
820  switch (MI->getOpcode()) {
821  default:
822    llvm_unreachable("Unexpected instr type to insert");
823  case Mips::ATOMIC_LOAD_ADD_I8:
824    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
825  case Mips::ATOMIC_LOAD_ADD_I16:
826    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
827  case Mips::ATOMIC_LOAD_ADD_I32:
828    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
829  case Mips::ATOMIC_LOAD_ADD_I64:
830    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
831
832  case Mips::ATOMIC_LOAD_AND_I8:
833    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
834  case Mips::ATOMIC_LOAD_AND_I16:
835    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
836  case Mips::ATOMIC_LOAD_AND_I32:
837    return emitAtomicBinary(MI, BB, 4, Mips::AND);
838  case Mips::ATOMIC_LOAD_AND_I64:
839    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
840
841  case Mips::ATOMIC_LOAD_OR_I8:
842    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
843  case Mips::ATOMIC_LOAD_OR_I16:
844    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
845  case Mips::ATOMIC_LOAD_OR_I32:
846    return emitAtomicBinary(MI, BB, 4, Mips::OR);
847  case Mips::ATOMIC_LOAD_OR_I64:
848    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
849
850  case Mips::ATOMIC_LOAD_XOR_I8:
851    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
852  case Mips::ATOMIC_LOAD_XOR_I16:
853    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
854  case Mips::ATOMIC_LOAD_XOR_I32:
855    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
856  case Mips::ATOMIC_LOAD_XOR_I64:
857    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
858
859  case Mips::ATOMIC_LOAD_NAND_I8:
860    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
861  case Mips::ATOMIC_LOAD_NAND_I16:
862    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
863  case Mips::ATOMIC_LOAD_NAND_I32:
864    return emitAtomicBinary(MI, BB, 4, 0, true);
865  case Mips::ATOMIC_LOAD_NAND_I64:
866    return emitAtomicBinary(MI, BB, 8, 0, true);
867
868  case Mips::ATOMIC_LOAD_SUB_I8:
869    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
870  case Mips::ATOMIC_LOAD_SUB_I16:
871    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
872  case Mips::ATOMIC_LOAD_SUB_I32:
873    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
874  case Mips::ATOMIC_LOAD_SUB_I64:
875    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
876
877  case Mips::ATOMIC_SWAP_I8:
878    return emitAtomicBinaryPartword(MI, BB, 1, 0);
879  case Mips::ATOMIC_SWAP_I16:
880    return emitAtomicBinaryPartword(MI, BB, 2, 0);
881  case Mips::ATOMIC_SWAP_I32:
882    return emitAtomicBinary(MI, BB, 4, 0);
883  case Mips::ATOMIC_SWAP_I64:
884    return emitAtomicBinary(MI, BB, 8, 0);
885
886  case Mips::ATOMIC_CMP_SWAP_I8:
887    return emitAtomicCmpSwapPartword(MI, BB, 1);
888  case Mips::ATOMIC_CMP_SWAP_I16:
889    return emitAtomicCmpSwapPartword(MI, BB, 2);
890  case Mips::ATOMIC_CMP_SWAP_I32:
891    return emitAtomicCmpSwap(MI, BB, 4);
892  case Mips::ATOMIC_CMP_SWAP_I64:
893    return emitAtomicCmpSwap(MI, BB, 8);
894  case Mips::PseudoSDIV:
895  case Mips::PseudoUDIV:
896    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), false);
897  case Mips::PseudoDSDIV:
898  case Mips::PseudoDUDIV:
899    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), true);
900  }
901}
902
903// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
904// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
905MachineBasicBlock *
906MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
907                                     unsigned Size, unsigned BinOpcode,
908                                     bool Nand) const {
909  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
910
911  MachineFunction *MF = BB->getParent();
912  MachineRegisterInfo &RegInfo = MF->getRegInfo();
913  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
914  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
915  DebugLoc DL = MI->getDebugLoc();
916  unsigned LL, SC, AND, NOR, ZERO, BEQ;
917
918  if (Size == 4) {
919    LL = Mips::LL;
920    SC = Mips::SC;
921    AND = Mips::AND;
922    NOR = Mips::NOR;
923    ZERO = Mips::ZERO;
924    BEQ = Mips::BEQ;
925  }
926  else {
927    LL = Mips::LLD;
928    SC = Mips::SCD;
929    AND = Mips::AND64;
930    NOR = Mips::NOR64;
931    ZERO = Mips::ZERO_64;
932    BEQ = Mips::BEQ64;
933  }
934
935  unsigned OldVal = MI->getOperand(0).getReg();
936  unsigned Ptr = MI->getOperand(1).getReg();
937  unsigned Incr = MI->getOperand(2).getReg();
938
939  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
940  unsigned AndRes = RegInfo.createVirtualRegister(RC);
941  unsigned Success = RegInfo.createVirtualRegister(RC);
942
943  // insert new blocks after the current block
944  const BasicBlock *LLVM_BB = BB->getBasicBlock();
945  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
946  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
947  MachineFunction::iterator It = BB;
948  ++It;
949  MF->insert(It, loopMBB);
950  MF->insert(It, exitMBB);
951
952  // Transfer the remainder of BB and its successor edges to exitMBB.
953  exitMBB->splice(exitMBB->begin(), BB,
954                  llvm::next(MachineBasicBlock::iterator(MI)),
955                  BB->end());
956  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
957
958  //  thisMBB:
959  //    ...
960  //    fallthrough --> loopMBB
961  BB->addSuccessor(loopMBB);
962  loopMBB->addSuccessor(loopMBB);
963  loopMBB->addSuccessor(exitMBB);
964
965  //  loopMBB:
966  //    ll oldval, 0(ptr)
967  //    <binop> storeval, oldval, incr
968  //    sc success, storeval, 0(ptr)
969  //    beq success, $0, loopMBB
970  BB = loopMBB;
971  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
972  if (Nand) {
973    //  and andres, oldval, incr
974    //  nor storeval, $0, andres
975    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
976    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
977  } else if (BinOpcode) {
978    //  <binop> storeval, oldval, incr
979    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
980  } else {
981    StoreVal = Incr;
982  }
983  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
984  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
985
986  MI->eraseFromParent();   // The instruction is gone now.
987
988  return exitMBB;
989}
990
991MachineBasicBlock *
992MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
993                                             MachineBasicBlock *BB,
994                                             unsigned Size, unsigned BinOpcode,
995                                             bool Nand) const {
996  assert((Size == 1 || Size == 2) &&
997      "Unsupported size for EmitAtomicBinaryPartial.");
998
999  MachineFunction *MF = BB->getParent();
1000  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1001  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1002  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1003  DebugLoc DL = MI->getDebugLoc();
1004
1005  unsigned Dest = MI->getOperand(0).getReg();
1006  unsigned Ptr = MI->getOperand(1).getReg();
1007  unsigned Incr = MI->getOperand(2).getReg();
1008
1009  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1010  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1011  unsigned Mask = RegInfo.createVirtualRegister(RC);
1012  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1013  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1014  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1015  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1016  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1017  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1018  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1019  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1020  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1021  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1022  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1023  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1024  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1025  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1026  unsigned Success = RegInfo.createVirtualRegister(RC);
1027
1028  // insert new blocks after the current block
1029  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1030  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1031  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1032  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1033  MachineFunction::iterator It = BB;
1034  ++It;
1035  MF->insert(It, loopMBB);
1036  MF->insert(It, sinkMBB);
1037  MF->insert(It, exitMBB);
1038
1039  // Transfer the remainder of BB and its successor edges to exitMBB.
1040  exitMBB->splice(exitMBB->begin(), BB,
1041                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1042  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1043
1044  BB->addSuccessor(loopMBB);
1045  loopMBB->addSuccessor(loopMBB);
1046  loopMBB->addSuccessor(sinkMBB);
1047  sinkMBB->addSuccessor(exitMBB);
1048
1049  //  thisMBB:
1050  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1051  //    and     alignedaddr,ptr,masklsb2
1052  //    andi    ptrlsb2,ptr,3
1053  //    sll     shiftamt,ptrlsb2,3
1054  //    ori     maskupper,$0,255               # 0xff
1055  //    sll     mask,maskupper,shiftamt
1056  //    nor     mask2,$0,mask
1057  //    sll     incr2,incr,shiftamt
1058
1059  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1060  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1061    .addReg(Mips::ZERO).addImm(-4);
1062  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1063    .addReg(Ptr).addReg(MaskLSB2);
1064  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1065  if (Subtarget->isLittle()) {
1066    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1067  } else {
1068    unsigned Off = RegInfo.createVirtualRegister(RC);
1069    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1070      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1071    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1072  }
1073  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1074    .addReg(Mips::ZERO).addImm(MaskImm);
1075  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1076    .addReg(MaskUpper).addReg(ShiftAmt);
1077  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1078  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1079
1080  // atomic.load.binop
1081  // loopMBB:
1082  //   ll      oldval,0(alignedaddr)
1083  //   binop   binopres,oldval,incr2
1084  //   and     newval,binopres,mask
1085  //   and     maskedoldval0,oldval,mask2
1086  //   or      storeval,maskedoldval0,newval
1087  //   sc      success,storeval,0(alignedaddr)
1088  //   beq     success,$0,loopMBB
1089
1090  // atomic.swap
1091  // loopMBB:
1092  //   ll      oldval,0(alignedaddr)
1093  //   and     newval,incr2,mask
1094  //   and     maskedoldval0,oldval,mask2
1095  //   or      storeval,maskedoldval0,newval
1096  //   sc      success,storeval,0(alignedaddr)
1097  //   beq     success,$0,loopMBB
1098
1099  BB = loopMBB;
1100  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1101  if (Nand) {
1102    //  and andres, oldval, incr2
1103    //  nor binopres, $0, andres
1104    //  and newval, binopres, mask
1105    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1106    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1107      .addReg(Mips::ZERO).addReg(AndRes);
1108    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1109  } else if (BinOpcode) {
1110    //  <binop> binopres, oldval, incr2
1111    //  and newval, binopres, mask
1112    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1113    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1114  } else {// atomic.swap
1115    //  and newval, incr2, mask
1116    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1117  }
1118
1119  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1120    .addReg(OldVal).addReg(Mask2);
1121  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1122    .addReg(MaskedOldVal0).addReg(NewVal);
1123  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1124    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1125  BuildMI(BB, DL, TII->get(Mips::BEQ))
1126    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1127
1128  //  sinkMBB:
1129  //    and     maskedoldval1,oldval,mask
1130  //    srl     srlres,maskedoldval1,shiftamt
1131  //    sll     sllres,srlres,24
1132  //    sra     dest,sllres,24
1133  BB = sinkMBB;
1134  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1135
1136  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1137    .addReg(OldVal).addReg(Mask);
1138  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1139      .addReg(MaskedOldVal1).addReg(ShiftAmt);
1140  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1141      .addReg(SrlRes).addImm(ShiftImm);
1142  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1143      .addReg(SllRes).addImm(ShiftImm);
1144
1145  MI->eraseFromParent();   // The instruction is gone now.
1146
1147  return exitMBB;
1148}
1149
1150MachineBasicBlock *
1151MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1152                                      MachineBasicBlock *BB,
1153                                      unsigned Size) const {
1154  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1155
1156  MachineFunction *MF = BB->getParent();
1157  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1158  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1159  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1160  DebugLoc DL = MI->getDebugLoc();
1161  unsigned LL, SC, ZERO, BNE, BEQ;
1162
1163  if (Size == 4) {
1164    LL = Mips::LL;
1165    SC = Mips::SC;
1166    ZERO = Mips::ZERO;
1167    BNE = Mips::BNE;
1168    BEQ = Mips::BEQ;
1169  }
1170  else {
1171    LL = Mips::LLD;
1172    SC = Mips::SCD;
1173    ZERO = Mips::ZERO_64;
1174    BNE = Mips::BNE64;
1175    BEQ = Mips::BEQ64;
1176  }
1177
1178  unsigned Dest    = MI->getOperand(0).getReg();
1179  unsigned Ptr     = MI->getOperand(1).getReg();
1180  unsigned OldVal  = MI->getOperand(2).getReg();
1181  unsigned NewVal  = MI->getOperand(3).getReg();
1182
1183  unsigned Success = RegInfo.createVirtualRegister(RC);
1184
1185  // insert new blocks after the current block
1186  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1187  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1188  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1189  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1190  MachineFunction::iterator It = BB;
1191  ++It;
1192  MF->insert(It, loop1MBB);
1193  MF->insert(It, loop2MBB);
1194  MF->insert(It, exitMBB);
1195
1196  // Transfer the remainder of BB and its successor edges to exitMBB.
1197  exitMBB->splice(exitMBB->begin(), BB,
1198                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1199  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1200
1201  //  thisMBB:
1202  //    ...
1203  //    fallthrough --> loop1MBB
1204  BB->addSuccessor(loop1MBB);
1205  loop1MBB->addSuccessor(exitMBB);
1206  loop1MBB->addSuccessor(loop2MBB);
1207  loop2MBB->addSuccessor(loop1MBB);
1208  loop2MBB->addSuccessor(exitMBB);
1209
1210  // loop1MBB:
1211  //   ll dest, 0(ptr)
1212  //   bne dest, oldval, exitMBB
1213  BB = loop1MBB;
1214  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1215  BuildMI(BB, DL, TII->get(BNE))
1216    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1217
1218  // loop2MBB:
1219  //   sc success, newval, 0(ptr)
1220  //   beq success, $0, loop1MBB
1221  BB = loop2MBB;
1222  BuildMI(BB, DL, TII->get(SC), Success)
1223    .addReg(NewVal).addReg(Ptr).addImm(0);
1224  BuildMI(BB, DL, TII->get(BEQ))
1225    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1226
1227  MI->eraseFromParent();   // The instruction is gone now.
1228
1229  return exitMBB;
1230}
1231
1232MachineBasicBlock *
1233MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1234                                              MachineBasicBlock *BB,
1235                                              unsigned Size) const {
1236  assert((Size == 1 || Size == 2) &&
1237      "Unsupported size for EmitAtomicCmpSwapPartial.");
1238
1239  MachineFunction *MF = BB->getParent();
1240  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1241  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1242  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1243  DebugLoc DL = MI->getDebugLoc();
1244
1245  unsigned Dest    = MI->getOperand(0).getReg();
1246  unsigned Ptr     = MI->getOperand(1).getReg();
1247  unsigned CmpVal  = MI->getOperand(2).getReg();
1248  unsigned NewVal  = MI->getOperand(3).getReg();
1249
1250  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1251  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1252  unsigned Mask = RegInfo.createVirtualRegister(RC);
1253  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1254  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1255  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1256  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1257  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1258  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1259  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1260  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1261  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1262  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1263  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1264  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1265  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1266  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1267  unsigned Success = RegInfo.createVirtualRegister(RC);
1268
1269  // insert new blocks after the current block
1270  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1271  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1272  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1273  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1274  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1275  MachineFunction::iterator It = BB;
1276  ++It;
1277  MF->insert(It, loop1MBB);
1278  MF->insert(It, loop2MBB);
1279  MF->insert(It, sinkMBB);
1280  MF->insert(It, exitMBB);
1281
1282  // Transfer the remainder of BB and its successor edges to exitMBB.
1283  exitMBB->splice(exitMBB->begin(), BB,
1284                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1285  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1286
1287  BB->addSuccessor(loop1MBB);
1288  loop1MBB->addSuccessor(sinkMBB);
1289  loop1MBB->addSuccessor(loop2MBB);
1290  loop2MBB->addSuccessor(loop1MBB);
1291  loop2MBB->addSuccessor(sinkMBB);
1292  sinkMBB->addSuccessor(exitMBB);
1293
1294  // FIXME: computation of newval2 can be moved to loop2MBB.
1295  //  thisMBB:
1296  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1297  //    and     alignedaddr,ptr,masklsb2
1298  //    andi    ptrlsb2,ptr,3
1299  //    sll     shiftamt,ptrlsb2,3
1300  //    ori     maskupper,$0,255               # 0xff
1301  //    sll     mask,maskupper,shiftamt
1302  //    nor     mask2,$0,mask
1303  //    andi    maskedcmpval,cmpval,255
1304  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1305  //    andi    maskednewval,newval,255
1306  //    sll     shiftednewval,maskednewval,shiftamt
1307  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1308  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1309    .addReg(Mips::ZERO).addImm(-4);
1310  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1311    .addReg(Ptr).addReg(MaskLSB2);
1312  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1313  if (Subtarget->isLittle()) {
1314    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1315  } else {
1316    unsigned Off = RegInfo.createVirtualRegister(RC);
1317    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1318      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1319    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1320  }
1321  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1322    .addReg(Mips::ZERO).addImm(MaskImm);
1323  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1324    .addReg(MaskUpper).addReg(ShiftAmt);
1325  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1326  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1327    .addReg(CmpVal).addImm(MaskImm);
1328  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1329    .addReg(MaskedCmpVal).addReg(ShiftAmt);
1330  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1331    .addReg(NewVal).addImm(MaskImm);
1332  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1333    .addReg(MaskedNewVal).addReg(ShiftAmt);
1334
1335  //  loop1MBB:
1336  //    ll      oldval,0(alginedaddr)
1337  //    and     maskedoldval0,oldval,mask
1338  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1339  BB = loop1MBB;
1340  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1341  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1342    .addReg(OldVal).addReg(Mask);
1343  BuildMI(BB, DL, TII->get(Mips::BNE))
1344    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1345
1346  //  loop2MBB:
1347  //    and     maskedoldval1,oldval,mask2
1348  //    or      storeval,maskedoldval1,shiftednewval
1349  //    sc      success,storeval,0(alignedaddr)
1350  //    beq     success,$0,loop1MBB
1351  BB = loop2MBB;
1352  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1353    .addReg(OldVal).addReg(Mask2);
1354  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1355    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1356  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1357      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1358  BuildMI(BB, DL, TII->get(Mips::BEQ))
1359      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1360
1361  //  sinkMBB:
1362  //    srl     srlres,maskedoldval0,shiftamt
1363  //    sll     sllres,srlres,24
1364  //    sra     dest,sllres,24
1365  BB = sinkMBB;
1366  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1367
1368  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1369      .addReg(MaskedOldVal0).addReg(ShiftAmt);
1370  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1371      .addReg(SrlRes).addImm(ShiftImm);
1372  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1373      .addReg(SllRes).addImm(ShiftImm);
1374
1375  MI->eraseFromParent();   // The instruction is gone now.
1376
1377  return exitMBB;
1378}
1379
1380//===----------------------------------------------------------------------===//
1381//  Misc Lower Operation implementation
1382//===----------------------------------------------------------------------===//
1383SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1384  SDValue Chain = Op.getOperand(0);
1385  SDValue Table = Op.getOperand(1);
1386  SDValue Index = Op.getOperand(2);
1387  SDLoc DL(Op);
1388  EVT PTy = getPointerTy();
1389  unsigned EntrySize =
1390    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1391
1392  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1393                      DAG.getConstant(EntrySize, PTy));
1394  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1395
1396  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1397  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1398                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1399                        0);
1400  Chain = Addr.getValue(1);
1401
1402  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
1403    // For PIC, the sequence is:
1404    // BRIND(load(Jumptable + index) + RelocBase)
1405    // RelocBase can be JumpTable, GOT or some sort of global base.
1406    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1407                       getPICJumpTableRelocBase(Table, DAG));
1408  }
1409
1410  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1411}
1412
1413SDValue MipsTargetLowering::
1414lowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1415{
1416  // The first operand is the chain, the second is the condition, the third is
1417  // the block to branch to if the condition is true.
1418  SDValue Chain = Op.getOperand(0);
1419  SDValue Dest = Op.getOperand(2);
1420  SDLoc DL(Op);
1421
1422  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1423
1424  // Return if flag is not set by a floating point comparison.
1425  if (CondRes.getOpcode() != MipsISD::FPCmp)
1426    return Op;
1427
1428  SDValue CCNode  = CondRes.getOperand(2);
1429  Mips::CondCode CC =
1430    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1431  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1432  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1433  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1434  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1435                     FCC0, Dest, CondRes);
1436}
1437
1438SDValue MipsTargetLowering::
1439lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1440{
1441  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1442
1443  // Return if flag is not set by a floating point comparison.
1444  if (Cond.getOpcode() != MipsISD::FPCmp)
1445    return Op;
1446
1447  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1448                      SDLoc(Op));
1449}
1450
1451SDValue MipsTargetLowering::
1452lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1453{
1454  SDLoc DL(Op);
1455  EVT Ty = Op.getOperand(0).getValueType();
1456  SDValue Cond = DAG.getNode(ISD::SETCC, DL,
1457                             getSetCCResultType(*DAG.getContext(), Ty),
1458                             Op.getOperand(0), Op.getOperand(1),
1459                             Op.getOperand(4));
1460
1461  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1462                     Op.getOperand(3));
1463}
1464
1465SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1466  SDValue Cond = createFPCmp(DAG, Op);
1467
1468  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1469         "Floating point operand expected.");
1470
1471  SDValue True  = DAG.getConstant(1, MVT::i32);
1472  SDValue False = DAG.getConstant(0, MVT::i32);
1473
1474  return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
1475}
1476
1477SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1478                                               SelectionDAG &DAG) const {
1479  // FIXME there isn't actually debug info here
1480  SDLoc DL(Op);
1481  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1482
1483  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1484    const MipsTargetObjectFile &TLOF =
1485      (const MipsTargetObjectFile&)getObjFileLowering();
1486
1487    // %gp_rel relocation
1488    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1489      SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1490                                              MipsII::MO_GPREL);
1491      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1492                                      DAG.getVTList(MVT::i32), &GA, 1);
1493      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1494      return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1495    }
1496
1497    // %hi/%lo relocation
1498    return getAddrNonPIC(Op, DAG);
1499  }
1500
1501  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1502    return getAddrLocal(Op, DAG, HasMips64);
1503
1504  if (LargeGOT)
1505    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
1506                                 MipsII::MO_GOT_LO16);
1507
1508  return getAddrGlobal(Op, DAG,
1509                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1510}
1511
1512SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1513                                              SelectionDAG &DAG) const {
1514  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1515    return getAddrNonPIC(Op, DAG);
1516
1517  return getAddrLocal(Op, DAG, HasMips64);
1518}
1519
1520SDValue MipsTargetLowering::
1521lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1522{
1523  // If the relocation model is PIC, use the General Dynamic TLS Model or
1524  // Local Dynamic TLS model, otherwise use the Initial Exec or
1525  // Local Exec TLS Model.
1526
1527  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1528  SDLoc DL(GA);
1529  const GlobalValue *GV = GA->getGlobal();
1530  EVT PtrVT = getPointerTy();
1531
1532  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1533
1534  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1535    // General Dynamic and Local Dynamic TLS Model.
1536    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1537                                                      : MipsII::MO_TLSGD;
1538
1539    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1540    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1541                                   getGlobalReg(DAG, PtrVT), TGA);
1542    unsigned PtrSize = PtrVT.getSizeInBits();
1543    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1544
1545    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1546
1547    ArgListTy Args;
1548    ArgListEntry Entry;
1549    Entry.Node = Argument;
1550    Entry.Ty = PtrTy;
1551    Args.push_back(Entry);
1552
1553    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1554                  false, false, false, false, 0, CallingConv::C,
1555                  /*IsTailCall=*/false, /*doesNotRet=*/false,
1556                  /*isReturnValueUsed=*/true,
1557                  TlsGetAddr, Args, DAG, DL);
1558    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1559
1560    SDValue Ret = CallResult.first;
1561
1562    if (model != TLSModel::LocalDynamic)
1563      return Ret;
1564
1565    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1566                                               MipsII::MO_DTPREL_HI);
1567    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1568    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1569                                               MipsII::MO_DTPREL_LO);
1570    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1571    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1572    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1573  }
1574
1575  SDValue Offset;
1576  if (model == TLSModel::InitialExec) {
1577    // Initial Exec TLS Model
1578    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1579                                             MipsII::MO_GOTTPREL);
1580    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1581                      TGA);
1582    Offset = DAG.getLoad(PtrVT, DL,
1583                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1584                         false, false, false, 0);
1585  } else {
1586    // Local Exec TLS Model
1587    assert(model == TLSModel::LocalExec);
1588    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1589                                               MipsII::MO_TPREL_HI);
1590    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1591                                               MipsII::MO_TPREL_LO);
1592    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1593    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1594    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1595  }
1596
1597  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1598  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1599}
1600
1601SDValue MipsTargetLowering::
1602lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1603{
1604  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1605    return getAddrNonPIC(Op, DAG);
1606
1607  return getAddrLocal(Op, DAG, HasMips64);
1608}
1609
1610SDValue MipsTargetLowering::
1611lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1612{
1613  // gp_rel relocation
1614  // FIXME: we should reference the constant pool using small data sections,
1615  // but the asm printer currently doesn't support this feature without
1616  // hacking it. This feature should come soon so we can uncomment the
1617  // stuff below.
1618  //if (IsInSmallSection(C->getType())) {
1619  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1620  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1621  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1622
1623  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1624    return getAddrNonPIC(Op, DAG);
1625
1626  return getAddrLocal(Op, DAG, HasMips64);
1627}
1628
1629SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1630  MachineFunction &MF = DAG.getMachineFunction();
1631  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1632
1633  SDLoc DL(Op);
1634  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1635                                 getPointerTy());
1636
1637  // vastart just stores the address of the VarArgsFrameIndex slot into the
1638  // memory location argument.
1639  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1640  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1641                      MachinePointerInfo(SV), false, false, 0);
1642}
1643
1644static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1645  EVT TyX = Op.getOperand(0).getValueType();
1646  EVT TyY = Op.getOperand(1).getValueType();
1647  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1648  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1649  SDLoc DL(Op);
1650  SDValue Res;
1651
1652  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1653  // to i32.
1654  SDValue X = (TyX == MVT::f32) ?
1655    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1656    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1657                Const1);
1658  SDValue Y = (TyY == MVT::f32) ?
1659    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1660    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1661                Const1);
1662
1663  if (HasR2) {
1664    // ext  E, Y, 31, 1  ; extract bit31 of Y
1665    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1666    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1667    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1668  } else {
1669    // sll SllX, X, 1
1670    // srl SrlX, SllX, 1
1671    // srl SrlY, Y, 31
1672    // sll SllY, SrlX, 31
1673    // or  Or, SrlX, SllY
1674    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1675    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1676    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1677    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1678    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1679  }
1680
1681  if (TyX == MVT::f32)
1682    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1683
1684  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1685                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1686  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1687}
1688
1689static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1690  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1691  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1692  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1693  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1694  SDLoc DL(Op);
1695
1696  // Bitcast to integer nodes.
1697  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1698  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1699
1700  if (HasR2) {
1701    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1702    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1703    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1704                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1705
1706    if (WidthX > WidthY)
1707      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1708    else if (WidthY > WidthX)
1709      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1710
1711    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1712                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1713    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1714  }
1715
1716  // (d)sll SllX, X, 1
1717  // (d)srl SrlX, SllX, 1
1718  // (d)srl SrlY, Y, width(Y)-1
1719  // (d)sll SllY, SrlX, width(Y)-1
1720  // or     Or, SrlX, SllY
1721  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1722  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1723  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1724                             DAG.getConstant(WidthY - 1, MVT::i32));
1725
1726  if (WidthX > WidthY)
1727    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1728  else if (WidthY > WidthX)
1729    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1730
1731  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1732                             DAG.getConstant(WidthX - 1, MVT::i32));
1733  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1734  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1735}
1736
1737SDValue
1738MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1739  if (Subtarget->hasMips64())
1740    return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1741
1742  return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1743}
1744
1745static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1746  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1747  SDLoc DL(Op);
1748
1749  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1750  // to i32.
1751  SDValue X = (Op.getValueType() == MVT::f32) ?
1752    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1753    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1754                Const1);
1755
1756  // Clear MSB.
1757  if (HasR2)
1758    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1759                      DAG.getRegister(Mips::ZERO, MVT::i32),
1760                      DAG.getConstant(31, MVT::i32), Const1, X);
1761  else {
1762    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1763    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1764  }
1765
1766  if (Op.getValueType() == MVT::f32)
1767    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1768
1769  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1770                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1771  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1772}
1773
1774static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1775  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1776  SDLoc DL(Op);
1777
1778  // Bitcast to integer node.
1779  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1780
1781  // Clear MSB.
1782  if (HasR2)
1783    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1784                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1785                      DAG.getConstant(63, MVT::i32), Const1, X);
1786  else {
1787    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1788    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1789  }
1790
1791  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1792}
1793
1794SDValue
1795MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
1796  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1797    return lowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1798
1799  return lowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1800}
1801
1802SDValue MipsTargetLowering::
1803lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1804  // check the depth
1805  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1806         "Frame address can only be determined for current frame.");
1807
1808  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1809  MFI->setFrameAddressIsTaken(true);
1810  EVT VT = Op.getValueType();
1811  SDLoc DL(Op);
1812  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1813                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1814  return FrameAddr;
1815}
1816
1817SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1818                                            SelectionDAG &DAG) const {
1819  // check the depth
1820  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1821         "Return address can be determined only for current frame.");
1822
1823  MachineFunction &MF = DAG.getMachineFunction();
1824  MachineFrameInfo *MFI = MF.getFrameInfo();
1825  MVT VT = Op.getSimpleValueType();
1826  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1827  MFI->setReturnAddressIsTaken(true);
1828
1829  // Return RA, which contains the return address. Mark it an implicit live-in.
1830  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1831  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
1832}
1833
1834// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1835// generated from __builtin_eh_return (offset, handler)
1836// The effect of this is to adjust the stack pointer by "offset"
1837// and then branch to "handler".
1838SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1839                                                                     const {
1840  MachineFunction &MF = DAG.getMachineFunction();
1841  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1842
1843  MipsFI->setCallsEhReturn();
1844  SDValue Chain     = Op.getOperand(0);
1845  SDValue Offset    = Op.getOperand(1);
1846  SDValue Handler   = Op.getOperand(2);
1847  SDLoc DL(Op);
1848  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
1849
1850  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1851  // EH_RETURN nodes, so that instructions are emitted back-to-back.
1852  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
1853  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
1854  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1855  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1856  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1857                     DAG.getRegister(OffsetReg, Ty),
1858                     DAG.getRegister(AddrReg, getPointerTy()),
1859                     Chain.getValue(1));
1860}
1861
1862SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1863                                              SelectionDAG &DAG) const {
1864  // FIXME: Need pseudo-fence for 'singlethread' fences
1865  // FIXME: Set SType for weaker fences where supported/appropriate.
1866  unsigned SType = 0;
1867  SDLoc DL(Op);
1868  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1869                     DAG.getConstant(SType, MVT::i32));
1870}
1871
1872SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1873                                                SelectionDAG &DAG) const {
1874  SDLoc DL(Op);
1875  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1876  SDValue Shamt = Op.getOperand(2);
1877
1878  // if shamt < 32:
1879  //  lo = (shl lo, shamt)
1880  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1881  // else:
1882  //  lo = 0
1883  //  hi = (shl lo, shamt[4:0])
1884  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1885                            DAG.getConstant(-1, MVT::i32));
1886  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1887                                      DAG.getConstant(1, MVT::i32));
1888  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1889                                     Not);
1890  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1891  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1892  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1893  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1894                             DAG.getConstant(0x20, MVT::i32));
1895  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1896                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1897  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1898
1899  SDValue Ops[2] = {Lo, Hi};
1900  return DAG.getMergeValues(Ops, 2, DL);
1901}
1902
1903SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1904                                                 bool IsSRA) const {
1905  SDLoc DL(Op);
1906  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1907  SDValue Shamt = Op.getOperand(2);
1908
1909  // if shamt < 32:
1910  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1911  //  if isSRA:
1912  //    hi = (sra hi, shamt)
1913  //  else:
1914  //    hi = (srl hi, shamt)
1915  // else:
1916  //  if isSRA:
1917  //   lo = (sra hi, shamt[4:0])
1918  //   hi = (sra hi, 31)
1919  //  else:
1920  //   lo = (srl hi, shamt[4:0])
1921  //   hi = 0
1922  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1923                            DAG.getConstant(-1, MVT::i32));
1924  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1925                                     DAG.getConstant(1, MVT::i32));
1926  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1927  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1928  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1929  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1930                                     Hi, Shamt);
1931  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1932                             DAG.getConstant(0x20, MVT::i32));
1933  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1934                                DAG.getConstant(31, MVT::i32));
1935  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1936  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1937                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
1938                   ShiftRightHi);
1939
1940  SDValue Ops[2] = {Lo, Hi};
1941  return DAG.getMergeValues(Ops, 2, DL);
1942}
1943
1944static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
1945                            SDValue Chain, SDValue Src, unsigned Offset) {
1946  SDValue Ptr = LD->getBasePtr();
1947  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
1948  EVT BasePtrVT = Ptr.getValueType();
1949  SDLoc DL(LD);
1950  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1951
1952  if (Offset)
1953    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1954                      DAG.getConstant(Offset, BasePtrVT));
1955
1956  SDValue Ops[] = { Chain, Ptr, Src };
1957  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
1958                                 LD->getMemOperand());
1959}
1960
1961// Expand an unaligned 32 or 64-bit integer load node.
1962SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1963  LoadSDNode *LD = cast<LoadSDNode>(Op);
1964  EVT MemVT = LD->getMemoryVT();
1965
1966  // Return if load is aligned or if MemVT is neither i32 nor i64.
1967  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
1968      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
1969    return SDValue();
1970
1971  bool IsLittle = Subtarget->isLittle();
1972  EVT VT = Op.getValueType();
1973  ISD::LoadExtType ExtType = LD->getExtensionType();
1974  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
1975
1976  assert((VT == MVT::i32) || (VT == MVT::i64));
1977
1978  // Expand
1979  //  (set dst, (i64 (load baseptr)))
1980  // to
1981  //  (set tmp, (ldl (add baseptr, 7), undef))
1982  //  (set dst, (ldr baseptr, tmp))
1983  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
1984    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
1985                               IsLittle ? 7 : 0);
1986    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
1987                        IsLittle ? 0 : 7);
1988  }
1989
1990  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
1991                             IsLittle ? 3 : 0);
1992  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
1993                             IsLittle ? 0 : 3);
1994
1995  // Expand
1996  //  (set dst, (i32 (load baseptr))) or
1997  //  (set dst, (i64 (sextload baseptr))) or
1998  //  (set dst, (i64 (extload baseptr)))
1999  // to
2000  //  (set tmp, (lwl (add baseptr, 3), undef))
2001  //  (set dst, (lwr baseptr, tmp))
2002  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2003      (ExtType == ISD::EXTLOAD))
2004    return LWR;
2005
2006  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2007
2008  // Expand
2009  //  (set dst, (i64 (zextload baseptr)))
2010  // to
2011  //  (set tmp0, (lwl (add baseptr, 3), undef))
2012  //  (set tmp1, (lwr baseptr, tmp0))
2013  //  (set tmp2, (shl tmp1, 32))
2014  //  (set dst, (srl tmp2, 32))
2015  SDLoc DL(LD);
2016  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2017  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2018  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2019  SDValue Ops[] = { SRL, LWR.getValue(1) };
2020  return DAG.getMergeValues(Ops, 2, DL);
2021}
2022
2023static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2024                             SDValue Chain, unsigned Offset) {
2025  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2026  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2027  SDLoc DL(SD);
2028  SDVTList VTList = DAG.getVTList(MVT::Other);
2029
2030  if (Offset)
2031    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2032                      DAG.getConstant(Offset, BasePtrVT));
2033
2034  SDValue Ops[] = { Chain, Value, Ptr };
2035  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2036                                 SD->getMemOperand());
2037}
2038
2039// Expand an unaligned 32 or 64-bit integer store node.
2040static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2041                                      bool IsLittle) {
2042  SDValue Value = SD->getValue(), Chain = SD->getChain();
2043  EVT VT = Value.getValueType();
2044
2045  // Expand
2046  //  (store val, baseptr) or
2047  //  (truncstore val, baseptr)
2048  // to
2049  //  (swl val, (add baseptr, 3))
2050  //  (swr val, baseptr)
2051  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2052    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2053                                IsLittle ? 3 : 0);
2054    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2055  }
2056
2057  assert(VT == MVT::i64);
2058
2059  // Expand
2060  //  (store val, baseptr)
2061  // to
2062  //  (sdl val, (add baseptr, 7))
2063  //  (sdr val, baseptr)
2064  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2065  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2066}
2067
2068// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2069static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2070  SDValue Val = SD->getValue();
2071
2072  if (Val.getOpcode() != ISD::FP_TO_SINT)
2073    return SDValue();
2074
2075  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2076  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2077                           Val.getOperand(0));
2078
2079  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2080                      SD->getPointerInfo(), SD->isVolatile(),
2081                      SD->isNonTemporal(), SD->getAlignment());
2082}
2083
2084SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2085  StoreSDNode *SD = cast<StoreSDNode>(Op);
2086  EVT MemVT = SD->getMemoryVT();
2087
2088  // Lower unaligned integer stores.
2089  if ((SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2090      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2091    return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
2092
2093  return lowerFP_TO_SINT_STORE(SD, DAG);
2094}
2095
2096SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2097  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2098      || cast<ConstantSDNode>
2099        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2100      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2101    return SDValue();
2102
2103  // The pattern
2104  //   (add (frameaddr 0), (frame_to_args_offset))
2105  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2106  //   (add FrameObject, 0)
2107  // where FrameObject is a fixed StackObject with offset 0 which points to
2108  // the old stack pointer.
2109  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2110  EVT ValTy = Op->getValueType(0);
2111  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2112  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2113  return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
2114                     DAG.getConstant(0, ValTy));
2115}
2116
2117SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2118                                            SelectionDAG &DAG) const {
2119  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2120  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2121                              Op.getOperand(0));
2122  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2123}
2124
2125//===----------------------------------------------------------------------===//
2126//                      Calling Convention Implementation
2127//===----------------------------------------------------------------------===//
2128
2129//===----------------------------------------------------------------------===//
2130// TODO: Implement a generic logic using tblgen that can support this.
2131// Mips O32 ABI rules:
2132// ---
2133// i32 - Passed in A0, A1, A2, A3 and stack
2134// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2135//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2136// f64 - Only passed in two aliased f32 registers if no int reg has been used
2137//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2138//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2139//       go to stack.
2140//
2141//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2142//===----------------------------------------------------------------------===//
2143
2144static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2145                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2146                       ISD::ArgFlagsTy ArgFlags, CCState &State,
2147                       const uint16_t *F64Regs) {
2148
2149  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2150
2151  static const uint16_t IntRegs[] = {
2152      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2153  };
2154  static const uint16_t F32Regs[] = {
2155      Mips::F12, Mips::F14
2156  };
2157
2158  // Do not process byval args here.
2159  if (ArgFlags.isByVal())
2160    return true;
2161
2162  // Promote i8 and i16
2163  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2164    LocVT = MVT::i32;
2165    if (ArgFlags.isSExt())
2166      LocInfo = CCValAssign::SExt;
2167    else if (ArgFlags.isZExt())
2168      LocInfo = CCValAssign::ZExt;
2169    else
2170      LocInfo = CCValAssign::AExt;
2171  }
2172
2173  unsigned Reg;
2174
2175  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2176  // is true: function is vararg, argument is 3rd or higher, there is previous
2177  // argument which is not f32 or f64.
2178  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2179      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2180  unsigned OrigAlign = ArgFlags.getOrigAlign();
2181  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2182
2183  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2184    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2185    // If this is the first part of an i64 arg,
2186    // the allocated register must be either A0 or A2.
2187    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2188      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2189    LocVT = MVT::i32;
2190  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2191    // Allocate int register and shadow next int register. If first
2192    // available register is Mips::A1 or Mips::A3, shadow it too.
2193    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2194    if (Reg == Mips::A1 || Reg == Mips::A3)
2195      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2196    State.AllocateReg(IntRegs, IntRegsSize);
2197    LocVT = MVT::i32;
2198  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2199    // we are guaranteed to find an available float register
2200    if (ValVT == MVT::f32) {
2201      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2202      // Shadow int register
2203      State.AllocateReg(IntRegs, IntRegsSize);
2204    } else {
2205      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2206      // Shadow int registers
2207      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2208      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2209        State.AllocateReg(IntRegs, IntRegsSize);
2210      State.AllocateReg(IntRegs, IntRegsSize);
2211    }
2212  } else
2213    llvm_unreachable("Cannot handle this ValVT.");
2214
2215  if (!Reg) {
2216    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2217                                          OrigAlign);
2218    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2219  } else
2220    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2221
2222  return false;
2223}
2224
2225static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2226                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2227                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2228  static const uint16_t F64Regs[] = { Mips::D6, Mips::D7 };
2229
2230  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2231}
2232
2233static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2234                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2235                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2236  static const uint16_t F64Regs[] = { Mips::D12_64, Mips::D12_64 };
2237
2238  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2239}
2240
2241#include "MipsGenCallingConv.inc"
2242
2243//===----------------------------------------------------------------------===//
2244//                  Call Calling Convention Implementation
2245//===----------------------------------------------------------------------===//
2246
2247// Return next O32 integer argument register.
2248static unsigned getNextIntArgReg(unsigned Reg) {
2249  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2250  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2251}
2252
2253SDValue
2254MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2255                                   SDValue Chain, SDValue Arg, SDLoc DL,
2256                                   bool IsTailCall, SelectionDAG &DAG) const {
2257  if (!IsTailCall) {
2258    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2259                                 DAG.getIntPtrConstant(Offset));
2260    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2261                        false, 0);
2262  }
2263
2264  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2265  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2266  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2267  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2268                      /*isVolatile=*/ true, false, 0);
2269}
2270
2271void MipsTargetLowering::
2272getOpndList(SmallVectorImpl<SDValue> &Ops,
2273            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2274            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2275            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2276  // Insert node "GP copy globalreg" before call to function.
2277  //
2278  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2279  // in PIC mode) allow symbols to be resolved via lazy binding.
2280  // The lazy binding stub requires GP to point to the GOT.
2281  if (IsPICCall && !InternalLinkage) {
2282    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2283    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2284    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2285  }
2286
2287  // Build a sequence of copy-to-reg nodes chained together with token
2288  // chain and flag operands which copy the outgoing args into registers.
2289  // The InFlag in necessary since all emitted instructions must be
2290  // stuck together.
2291  SDValue InFlag;
2292
2293  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2294    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2295                                 RegsToPass[i].second, InFlag);
2296    InFlag = Chain.getValue(1);
2297  }
2298
2299  // Add argument registers to the end of the list so that they are
2300  // known live into the call.
2301  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2302    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2303                                      RegsToPass[i].second.getValueType()));
2304
2305  // Add a register mask operand representing the call-preserved registers.
2306  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2307  const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2308  assert(Mask && "Missing call preserved mask for calling convention");
2309  if (Subtarget->inMips16HardFloat()) {
2310    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2311      llvm::StringRef Sym = G->getGlobal()->getName();
2312      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2313      if (F->hasFnAttribute("__Mips16RetHelper")) {
2314        Mask = MipsRegisterInfo::getMips16RetHelperMask();
2315      }
2316    }
2317  }
2318  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2319
2320  if (InFlag.getNode())
2321    Ops.push_back(InFlag);
2322}
2323
2324/// LowerCall - functions arguments are copied from virtual regs to
2325/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2326SDValue
2327MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2328                              SmallVectorImpl<SDValue> &InVals) const {
2329  SelectionDAG &DAG                     = CLI.DAG;
2330  SDLoc DL                              = CLI.DL;
2331  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2332  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2333  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2334  SDValue Chain                         = CLI.Chain;
2335  SDValue Callee                        = CLI.Callee;
2336  bool &IsTailCall                      = CLI.IsTailCall;
2337  CallingConv::ID CallConv              = CLI.CallConv;
2338  bool IsVarArg                         = CLI.IsVarArg;
2339
2340  MachineFunction &MF = DAG.getMachineFunction();
2341  MachineFrameInfo *MFI = MF.getFrameInfo();
2342  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2343  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2344
2345  // Analyze operands of the call, assigning locations to each operand.
2346  SmallVector<CCValAssign, 16> ArgLocs;
2347  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2348                 getTargetMachine(), ArgLocs, *DAG.getContext());
2349  MipsCC::SpecialCallingConvType SpecialCallingConv =
2350    getSpecialCallingConv(Callee);
2351  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo,
2352                    SpecialCallingConv);
2353
2354  MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2355                                 Subtarget->mipsSEUsesSoftFloat(),
2356                                 Callee.getNode(), CLI.Args);
2357
2358  // Get a count of how many bytes are to be pushed on the stack.
2359  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2360
2361  // Check if it's really possible to do a tail call.
2362  if (IsTailCall)
2363    IsTailCall =
2364      isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2365                                        *MF.getInfo<MipsFunctionInfo>());
2366
2367  if (IsTailCall)
2368    ++NumTailCalls;
2369
2370  // Chain is the output chain of the last Load/Store or CopyToReg node.
2371  // ByValChain is the output chain of the last Memcpy node created for copying
2372  // byval arguments to the stack.
2373  unsigned StackAlignment = TFL->getStackAlignment();
2374  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2375  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2376
2377  if (!IsTailCall)
2378    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2379
2380  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
2381                                        IsN64 ? Mips::SP_64 : Mips::SP,
2382                                        getPointerTy());
2383
2384  // With EABI is it possible to have 16 args on registers.
2385  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2386  SmallVector<SDValue, 8> MemOpChains;
2387  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2388
2389  // Walk the register/memloc assignments, inserting copies/loads.
2390  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2391    SDValue Arg = OutVals[i];
2392    CCValAssign &VA = ArgLocs[i];
2393    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2394    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2395
2396    // ByVal Arg.
2397    if (Flags.isByVal()) {
2398      assert(Flags.getByValSize() &&
2399             "ByVal args of size 0 should have been ignored by front-end.");
2400      assert(ByValArg != MipsCCInfo.byval_end());
2401      assert(!IsTailCall &&
2402             "Do not tail-call optimize if there is a byval argument.");
2403      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2404                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2405      ++ByValArg;
2406      continue;
2407    }
2408
2409    // Promote the value if needed.
2410    switch (VA.getLocInfo()) {
2411    default: llvm_unreachable("Unknown loc info!");
2412    case CCValAssign::Full:
2413      if (VA.isRegLoc()) {
2414        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2415            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2416            (ValVT == MVT::i64 && LocVT == MVT::f64))
2417          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2418        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2419          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2420                                   Arg, DAG.getConstant(0, MVT::i32));
2421          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2422                                   Arg, DAG.getConstant(1, MVT::i32));
2423          if (!Subtarget->isLittle())
2424            std::swap(Lo, Hi);
2425          unsigned LocRegLo = VA.getLocReg();
2426          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2427          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2428          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2429          continue;
2430        }
2431      }
2432      break;
2433    case CCValAssign::SExt:
2434      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2435      break;
2436    case CCValAssign::ZExt:
2437      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2438      break;
2439    case CCValAssign::AExt:
2440      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2441      break;
2442    }
2443
2444    // Arguments that can be passed on register must be kept at
2445    // RegsToPass vector
2446    if (VA.isRegLoc()) {
2447      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2448      continue;
2449    }
2450
2451    // Register can't get to this point...
2452    assert(VA.isMemLoc());
2453
2454    // emit ISD::STORE whichs stores the
2455    // parameter value to a stack Location
2456    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2457                                         Chain, Arg, DL, IsTailCall, DAG));
2458  }
2459
2460  // Transform all store nodes into one single node because all store
2461  // nodes are independent of each other.
2462  if (!MemOpChains.empty())
2463    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2464                        &MemOpChains[0], MemOpChains.size());
2465
2466  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2467  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2468  // node so that legalize doesn't hack it.
2469  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2470  bool GlobalOrExternal = false, InternalLinkage = false;
2471  SDValue CalleeLo;
2472
2473  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2474    if (IsPICCall) {
2475      InternalLinkage = G->getGlobal()->hasInternalLinkage();
2476
2477      if (InternalLinkage)
2478        Callee = getAddrLocal(Callee, DAG, HasMips64);
2479      else if (LargeGOT)
2480        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2481                                       MipsII::MO_CALL_LO16);
2482      else
2483        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2484    } else
2485      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2486                                          MipsII::MO_NO_FLAG);
2487    GlobalOrExternal = true;
2488  }
2489  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2490    if (!IsN64 && !IsPIC) // !N64 && static
2491      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2492                                            MipsII::MO_NO_FLAG);
2493    else if (LargeGOT)
2494      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2495                                     MipsII::MO_CALL_LO16);
2496    else // N64 || PIC
2497      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2498
2499    GlobalOrExternal = true;
2500  }
2501
2502  SmallVector<SDValue, 8> Ops(1, Chain);
2503  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2504
2505  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2506              CLI, Callee, Chain);
2507
2508  if (IsTailCall)
2509    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
2510
2511  Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
2512  SDValue InFlag = Chain.getValue(1);
2513
2514  // Create the CALLSEQ_END node.
2515  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2516                             DAG.getIntPtrConstant(0, true), InFlag, DL);
2517  InFlag = Chain.getValue(1);
2518
2519  // Handle result values, copying them out of physregs into vregs that we
2520  // return.
2521  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2522                         Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2523}
2524
2525/// LowerCallResult - Lower the result values of a call into the
2526/// appropriate copies out of appropriate physical registers.
2527SDValue
2528MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2529                                    CallingConv::ID CallConv, bool IsVarArg,
2530                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2531                                    SDLoc DL, SelectionDAG &DAG,
2532                                    SmallVectorImpl<SDValue> &InVals,
2533                                    const SDNode *CallNode,
2534                                    const Type *RetTy) const {
2535  // Assign locations to each value returned by this call.
2536  SmallVector<CCValAssign, 16> RVLocs;
2537  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2538                 getTargetMachine(), RVLocs, *DAG.getContext());
2539  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2540
2541  MipsCCInfo.analyzeCallResult(Ins, Subtarget->mipsSEUsesSoftFloat(),
2542                               CallNode, RetTy);
2543
2544  // Copy all of the result registers out of their specified physreg.
2545  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2546    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2547                                     RVLocs[i].getLocVT(), InFlag);
2548    Chain = Val.getValue(1);
2549    InFlag = Val.getValue(2);
2550
2551    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2552      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2553
2554    InVals.push_back(Val);
2555  }
2556
2557  return Chain;
2558}
2559
2560//===----------------------------------------------------------------------===//
2561//             Formal Arguments Calling Convention Implementation
2562//===----------------------------------------------------------------------===//
2563/// LowerFormalArguments - transform physical registers into virtual registers
2564/// and generate load operations for arguments places on the stack.
2565SDValue
2566MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2567                                         CallingConv::ID CallConv,
2568                                         bool IsVarArg,
2569                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2570                                         SDLoc DL, SelectionDAG &DAG,
2571                                         SmallVectorImpl<SDValue> &InVals)
2572                                          const {
2573  MachineFunction &MF = DAG.getMachineFunction();
2574  MachineFrameInfo *MFI = MF.getFrameInfo();
2575  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2576
2577  MipsFI->setVarArgsFrameIndex(0);
2578
2579  // Used with vargs to acumulate store chains.
2580  std::vector<SDValue> OutChains;
2581
2582  // Assign locations to all of the incoming arguments.
2583  SmallVector<CCValAssign, 16> ArgLocs;
2584  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2585                 getTargetMachine(), ArgLocs, *DAG.getContext());
2586  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2587  Function::const_arg_iterator FuncArg =
2588    DAG.getMachineFunction().getFunction()->arg_begin();
2589  bool UseSoftFloat = Subtarget->mipsSEUsesSoftFloat();
2590
2591  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2592  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2593                           MipsCCInfo.hasByValArg());
2594
2595  unsigned CurArgIdx = 0;
2596  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2597
2598  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2599    CCValAssign &VA = ArgLocs[i];
2600    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2601    CurArgIdx = Ins[i].OrigArgIndex;
2602    EVT ValVT = VA.getValVT();
2603    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2604    bool IsRegLoc = VA.isRegLoc();
2605
2606    if (Flags.isByVal()) {
2607      assert(Flags.getByValSize() &&
2608             "ByVal args of size 0 should have been ignored by front-end.");
2609      assert(ByValArg != MipsCCInfo.byval_end());
2610      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2611                    MipsCCInfo, *ByValArg);
2612      ++ByValArg;
2613      continue;
2614    }
2615
2616    // Arguments stored on registers
2617    if (IsRegLoc) {
2618      EVT RegVT = VA.getLocVT();
2619      unsigned ArgReg = VA.getLocReg();
2620      const TargetRegisterClass *RC;
2621
2622      if (RegVT == MVT::i32)
2623        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
2624                                        &Mips::GPR32RegClass;
2625      else if (RegVT == MVT::i64)
2626        RC = &Mips::GPR64RegClass;
2627      else if (RegVT == MVT::f32)
2628        RC = &Mips::FGR32RegClass;
2629      else if (RegVT == MVT::f64)
2630        RC = Subtarget->isFP64bit() ? &Mips::FGR64RegClass :
2631                                      &Mips::AFGR64RegClass;
2632      else
2633        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2634
2635      // Transform the arguments stored on
2636      // physical registers into virtual ones
2637      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2638      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2639
2640      // If this is an 8 or 16-bit value, it has been passed promoted
2641      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2642      // truncate to the right size.
2643      if (VA.getLocInfo() != CCValAssign::Full) {
2644        unsigned Opcode = 0;
2645        if (VA.getLocInfo() == CCValAssign::SExt)
2646          Opcode = ISD::AssertSext;
2647        else if (VA.getLocInfo() == CCValAssign::ZExt)
2648          Opcode = ISD::AssertZext;
2649        if (Opcode)
2650          ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2651                                 DAG.getValueType(ValVT));
2652        ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2653      }
2654
2655      // Handle floating point arguments passed in integer registers and
2656      // long double arguments passed in floating point registers.
2657      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2658          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2659          (RegVT == MVT::f64 && ValVT == MVT::i64))
2660        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2661      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2662        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2663                                  getNextIntArgReg(ArgReg), RC);
2664        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2665        if (!Subtarget->isLittle())
2666          std::swap(ArgValue, ArgValue2);
2667        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2668                               ArgValue, ArgValue2);
2669      }
2670
2671      InVals.push_back(ArgValue);
2672    } else { // VA.isRegLoc()
2673
2674      // sanity check
2675      assert(VA.isMemLoc());
2676
2677      // The stack pointer offset is relative to the caller stack frame.
2678      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2679                                      VA.getLocMemOffset(), true);
2680
2681      // Create load nodes to retrieve arguments from the stack
2682      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2683      InVals.push_back(DAG.getLoad(ValVT, DL, Chain, FIN,
2684                                   MachinePointerInfo::getFixedStack(FI),
2685                                   false, false, false, 0));
2686    }
2687  }
2688
2689  // The mips ABIs for returning structs by value requires that we copy
2690  // the sret argument into $v0 for the return. Save the argument into
2691  // a virtual register so that we can access it from the return points.
2692  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2693    unsigned Reg = MipsFI->getSRetReturnReg();
2694    if (!Reg) {
2695      Reg = MF.getRegInfo().
2696        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
2697      MipsFI->setSRetReturnReg(Reg);
2698    }
2699    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
2700    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2701  }
2702
2703  if (IsVarArg)
2704    writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2705
2706  // All stores are grouped in one node to allow the matching between
2707  // the size of Ins and InVals. This only happens when on varg functions
2708  if (!OutChains.empty()) {
2709    OutChains.push_back(Chain);
2710    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2711                        &OutChains[0], OutChains.size());
2712  }
2713
2714  return Chain;
2715}
2716
2717//===----------------------------------------------------------------------===//
2718//               Return Value Calling Convention Implementation
2719//===----------------------------------------------------------------------===//
2720
2721bool
2722MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2723                                   MachineFunction &MF, bool IsVarArg,
2724                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2725                                   LLVMContext &Context) const {
2726  SmallVector<CCValAssign, 16> RVLocs;
2727  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2728                 RVLocs, Context);
2729  return CCInfo.CheckReturn(Outs, RetCC_Mips);
2730}
2731
2732SDValue
2733MipsTargetLowering::LowerReturn(SDValue Chain,
2734                                CallingConv::ID CallConv, bool IsVarArg,
2735                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2736                                const SmallVectorImpl<SDValue> &OutVals,
2737                                SDLoc DL, SelectionDAG &DAG) const {
2738  // CCValAssign - represent the assignment of
2739  // the return value to a location
2740  SmallVector<CCValAssign, 16> RVLocs;
2741  MachineFunction &MF = DAG.getMachineFunction();
2742
2743  // CCState - Info about the registers and stack slot.
2744  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2745                 *DAG.getContext());
2746  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2747
2748  // Analyze return values.
2749  MipsCCInfo.analyzeReturn(Outs, Subtarget->mipsSEUsesSoftFloat(),
2750                           MF.getFunction()->getReturnType());
2751
2752  SDValue Flag;
2753  SmallVector<SDValue, 4> RetOps(1, Chain);
2754
2755  // Copy the result values into the output registers.
2756  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2757    SDValue Val = OutVals[i];
2758    CCValAssign &VA = RVLocs[i];
2759    assert(VA.isRegLoc() && "Can only return in registers!");
2760
2761    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2762      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2763
2764    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2765
2766    // Guarantee that all emitted copies are stuck together with flags.
2767    Flag = Chain.getValue(1);
2768    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2769  }
2770
2771  // The mips ABIs for returning structs by value requires that we copy
2772  // the sret argument into $v0 for the return. We saved the argument into
2773  // a virtual register in the entry block, so now we copy the value out
2774  // and into $v0.
2775  if (MF.getFunction()->hasStructRetAttr()) {
2776    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2777    unsigned Reg = MipsFI->getSRetReturnReg();
2778
2779    if (!Reg)
2780      llvm_unreachable("sret virtual register not created in the entry block");
2781    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2782    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
2783
2784    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2785    Flag = Chain.getValue(1);
2786    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2787  }
2788
2789  RetOps[0] = Chain;  // Update chain.
2790
2791  // Add the flag if we have it.
2792  if (Flag.getNode())
2793    RetOps.push_back(Flag);
2794
2795  // Return on Mips is always a "jr $ra"
2796  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
2797}
2798
2799//===----------------------------------------------------------------------===//
2800//                           Mips Inline Assembly Support
2801//===----------------------------------------------------------------------===//
2802
2803/// getConstraintType - Given a constraint letter, return the type of
2804/// constraint it is for this target.
2805MipsTargetLowering::ConstraintType MipsTargetLowering::
2806getConstraintType(const std::string &Constraint) const
2807{
2808  // Mips specific constrainy
2809  // GCC config/mips/constraints.md
2810  //
2811  // 'd' : An address register. Equivalent to r
2812  //       unless generating MIPS16 code.
2813  // 'y' : Equivalent to r; retained for
2814  //       backwards compatibility.
2815  // 'c' : A register suitable for use in an indirect
2816  //       jump. This will always be $25 for -mabicalls.
2817  // 'l' : The lo register. 1 word storage.
2818  // 'x' : The hilo register pair. Double word storage.
2819  if (Constraint.size() == 1) {
2820    switch (Constraint[0]) {
2821      default : break;
2822      case 'd':
2823      case 'y':
2824      case 'f':
2825      case 'c':
2826      case 'l':
2827      case 'x':
2828        return C_RegisterClass;
2829      case 'R':
2830        return C_Memory;
2831    }
2832  }
2833  return TargetLowering::getConstraintType(Constraint);
2834}
2835
2836/// Examine constraint type and operand type and determine a weight value.
2837/// This object must already have been set up with the operand type
2838/// and the current alternative constraint selected.
2839TargetLowering::ConstraintWeight
2840MipsTargetLowering::getSingleConstraintMatchWeight(
2841    AsmOperandInfo &info, const char *constraint) const {
2842  ConstraintWeight weight = CW_Invalid;
2843  Value *CallOperandVal = info.CallOperandVal;
2844    // If we don't have a value, we can't do a match,
2845    // but allow it at the lowest weight.
2846  if (CallOperandVal == NULL)
2847    return CW_Default;
2848  Type *type = CallOperandVal->getType();
2849  // Look at the constraint type.
2850  switch (*constraint) {
2851  default:
2852    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2853    break;
2854  case 'd':
2855  case 'y':
2856    if (type->isIntegerTy())
2857      weight = CW_Register;
2858    break;
2859  case 'f':
2860    if (type->isFloatTy())
2861      weight = CW_Register;
2862    break;
2863  case 'c': // $25 for indirect jumps
2864  case 'l': // lo register
2865  case 'x': // hilo register pair
2866      if (type->isIntegerTy())
2867      weight = CW_SpecificReg;
2868      break;
2869  case 'I': // signed 16 bit immediate
2870  case 'J': // integer zero
2871  case 'K': // unsigned 16 bit immediate
2872  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2873  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2874  case 'O': // signed 15 bit immediate (+- 16383)
2875  case 'P': // immediate in the range of 65535 to 1 (inclusive)
2876    if (isa<ConstantInt>(CallOperandVal))
2877      weight = CW_Constant;
2878    break;
2879  case 'R':
2880    weight = CW_Memory;
2881    break;
2882  }
2883  return weight;
2884}
2885
2886/// This is a helper function to parse a physical register string and split it
2887/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
2888/// that is returned indicates whether parsing was successful. The second flag
2889/// is true if the numeric part exists.
2890static std::pair<bool, bool>
2891parsePhysicalReg(const StringRef &C, std::string &Prefix,
2892                 unsigned long long &Reg) {
2893  if (C.front() != '{' || C.back() != '}')
2894    return std::make_pair(false, false);
2895
2896  // Search for the first numeric character.
2897  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
2898  I = std::find_if(B, E, std::ptr_fun(isdigit));
2899
2900  Prefix.assign(B, I - B);
2901
2902  // The second flag is set to false if no numeric characters were found.
2903  if (I == E)
2904    return std::make_pair(true, false);
2905
2906  // Parse the numeric characters.
2907  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
2908                        true);
2909}
2910
2911std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
2912parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const {
2913  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2914  const TargetRegisterClass *RC;
2915  std::string Prefix;
2916  unsigned long long Reg;
2917
2918  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
2919
2920  if (!R.first)
2921    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2922
2923  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
2924    // No numeric characters follow "hi" or "lo".
2925    if (R.second)
2926      return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2927
2928    RC = TRI->getRegClass(Prefix == "hi" ?
2929                          Mips::HI32RegClassID : Mips::LO32RegClassID);
2930    return std::make_pair(*(RC->begin()), RC);
2931  }
2932
2933  if (!R.second)
2934    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2935
2936  if (Prefix == "$f") { // Parse $f0-$f31.
2937    // If the size of FP registers is 64-bit or Reg is an even number, select
2938    // the 64-bit register class. Otherwise, select the 32-bit register class.
2939    if (VT == MVT::Other)
2940      VT = (Subtarget->isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
2941
2942    RC= getRegClassFor(VT);
2943
2944    if (RC == &Mips::AFGR64RegClass) {
2945      assert(Reg % 2 == 0);
2946      Reg >>= 1;
2947    }
2948  } else if (Prefix == "$fcc") { // Parse $fcc0-$fcc7.
2949    RC = TRI->getRegClass(Mips::FCCRegClassID);
2950  } else { // Parse $0-$31.
2951    assert(Prefix == "$");
2952    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
2953  }
2954
2955  assert(Reg < RC->getNumRegs());
2956  return std::make_pair(*(RC->begin() + Reg), RC);
2957}
2958
2959/// Given a register class constraint, like 'r', if this corresponds directly
2960/// to an LLVM register class, return a register of 0 and the register class
2961/// pointer.
2962std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2963getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
2964{
2965  if (Constraint.size() == 1) {
2966    switch (Constraint[0]) {
2967    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2968    case 'y': // Same as 'r'. Exists for compatibility.
2969    case 'r':
2970      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
2971        if (Subtarget->inMips16Mode())
2972          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
2973        return std::make_pair(0U, &Mips::GPR32RegClass);
2974      }
2975      if (VT == MVT::i64 && !HasMips64)
2976        return std::make_pair(0U, &Mips::GPR32RegClass);
2977      if (VT == MVT::i64 && HasMips64)
2978        return std::make_pair(0U, &Mips::GPR64RegClass);
2979      // This will generate an error message
2980      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2981    case 'f':
2982      if (VT == MVT::f32)
2983        return std::make_pair(0U, &Mips::FGR32RegClass);
2984      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2985        if (Subtarget->isFP64bit())
2986          return std::make_pair(0U, &Mips::FGR64RegClass);
2987        return std::make_pair(0U, &Mips::AFGR64RegClass);
2988      }
2989      break;
2990    case 'c': // register suitable for indirect jump
2991      if (VT == MVT::i32)
2992        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
2993      assert(VT == MVT::i64 && "Unexpected type.");
2994      return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
2995    case 'l': // register suitable for indirect jump
2996      if (VT == MVT::i32)
2997        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
2998      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
2999    case 'x': // register suitable for indirect jump
3000      // Fixme: Not triggering the use of both hi and low
3001      // This will generate an error message
3002      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3003    }
3004  }
3005
3006  std::pair<unsigned, const TargetRegisterClass *> R;
3007  R = parseRegForInlineAsmConstraint(Constraint, VT);
3008
3009  if (R.second)
3010    return R;
3011
3012  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3013}
3014
3015/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3016/// vector.  If it is invalid, don't add anything to Ops.
3017void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3018                                                     std::string &Constraint,
3019                                                     std::vector<SDValue>&Ops,
3020                                                     SelectionDAG &DAG) const {
3021  SDValue Result(0, 0);
3022
3023  // Only support length 1 constraints for now.
3024  if (Constraint.length() > 1) return;
3025
3026  char ConstraintLetter = Constraint[0];
3027  switch (ConstraintLetter) {
3028  default: break; // This will fall through to the generic implementation
3029  case 'I': // Signed 16 bit constant
3030    // If this fails, the parent routine will give an error
3031    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3032      EVT Type = Op.getValueType();
3033      int64_t Val = C->getSExtValue();
3034      if (isInt<16>(Val)) {
3035        Result = DAG.getTargetConstant(Val, Type);
3036        break;
3037      }
3038    }
3039    return;
3040  case 'J': // integer zero
3041    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3042      EVT Type = Op.getValueType();
3043      int64_t Val = C->getZExtValue();
3044      if (Val == 0) {
3045        Result = DAG.getTargetConstant(0, Type);
3046        break;
3047      }
3048    }
3049    return;
3050  case 'K': // unsigned 16 bit immediate
3051    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3052      EVT Type = Op.getValueType();
3053      uint64_t Val = (uint64_t)C->getZExtValue();
3054      if (isUInt<16>(Val)) {
3055        Result = DAG.getTargetConstant(Val, Type);
3056        break;
3057      }
3058    }
3059    return;
3060  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3061    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3062      EVT Type = Op.getValueType();
3063      int64_t Val = C->getSExtValue();
3064      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3065        Result = DAG.getTargetConstant(Val, Type);
3066        break;
3067      }
3068    }
3069    return;
3070  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3071    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3072      EVT Type = Op.getValueType();
3073      int64_t Val = C->getSExtValue();
3074      if ((Val >= -65535) && (Val <= -1)) {
3075        Result = DAG.getTargetConstant(Val, Type);
3076        break;
3077      }
3078    }
3079    return;
3080  case 'O': // signed 15 bit immediate
3081    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3082      EVT Type = Op.getValueType();
3083      int64_t Val = C->getSExtValue();
3084      if ((isInt<15>(Val))) {
3085        Result = DAG.getTargetConstant(Val, Type);
3086        break;
3087      }
3088    }
3089    return;
3090  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3091    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3092      EVT Type = Op.getValueType();
3093      int64_t Val = C->getSExtValue();
3094      if ((Val <= 65535) && (Val >= 1)) {
3095        Result = DAG.getTargetConstant(Val, Type);
3096        break;
3097      }
3098    }
3099    return;
3100  }
3101
3102  if (Result.getNode()) {
3103    Ops.push_back(Result);
3104    return;
3105  }
3106
3107  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3108}
3109
3110bool
3111MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
3112  // No global is ever allowed as a base.
3113  if (AM.BaseGV)
3114    return false;
3115
3116  switch (AM.Scale) {
3117  case 0: // "r+i" or just "i", depending on HasBaseReg.
3118    break;
3119  case 1:
3120    if (!AM.HasBaseReg) // allow "r+i".
3121      break;
3122    return false; // disallow "r+r" or "r+r+i".
3123  default:
3124    return false;
3125  }
3126
3127  return true;
3128}
3129
3130bool
3131MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3132  // The Mips target isn't yet aware of offsets.
3133  return false;
3134}
3135
3136EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3137                                            unsigned SrcAlign,
3138                                            bool IsMemset, bool ZeroMemset,
3139                                            bool MemcpyStrSrc,
3140                                            MachineFunction &MF) const {
3141  if (Subtarget->hasMips64())
3142    return MVT::i64;
3143
3144  return MVT::i32;
3145}
3146
3147bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3148  if (VT != MVT::f32 && VT != MVT::f64)
3149    return false;
3150  if (Imm.isNegZero())
3151    return false;
3152  return Imm.isZero();
3153}
3154
3155unsigned MipsTargetLowering::getJumpTableEncoding() const {
3156  if (IsN64)
3157    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3158
3159  return TargetLowering::getJumpTableEncoding();
3160}
3161
3162/// This function returns true if CallSym is a long double emulation routine.
3163static bool isF128SoftLibCall(const char *CallSym) {
3164  const char *const LibCalls[] =
3165    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3166     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3167     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3168     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3169     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3170     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3171     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3172     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3173     "truncl"};
3174
3175  const char * const *End = LibCalls + array_lengthof(LibCalls);
3176
3177  // Check that LibCalls is sorted alphabetically.
3178  MipsTargetLowering::LTStr Comp;
3179
3180#ifndef NDEBUG
3181  for (const char * const *I = LibCalls; I < End - 1; ++I)
3182    assert(Comp(*I, *(I + 1)));
3183#endif
3184
3185  return std::binary_search(LibCalls, End, CallSym, Comp);
3186}
3187
3188/// This function returns true if Ty is fp128 or i128 which was originally a
3189/// fp128.
3190static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3191  if (Ty->isFP128Ty())
3192    return true;
3193
3194  const ExternalSymbolSDNode *ES =
3195    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3196
3197  // If the Ty is i128 and the function being called is a long double emulation
3198  // routine, then the original type is f128.
3199  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3200}
3201
3202MipsTargetLowering::MipsCC::SpecialCallingConvType
3203  MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
3204  MipsCC::SpecialCallingConvType SpecialCallingConv =
3205    MipsCC::NoSpecialCallingConv;;
3206  if (Subtarget->inMips16HardFloat()) {
3207    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3208      llvm::StringRef Sym = G->getGlobal()->getName();
3209      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3210      if (F->hasFnAttribute("__Mips16RetHelper")) {
3211        SpecialCallingConv = MipsCC::Mips16RetHelperConv;
3212      }
3213    }
3214  }
3215  return SpecialCallingConv;
3216}
3217
3218MipsTargetLowering::MipsCC::MipsCC(
3219  CallingConv::ID CC, bool IsO32_, bool IsFP64_, CCState &Info,
3220    MipsCC::SpecialCallingConvType SpecialCallingConv_)
3221  : CCInfo(Info), CallConv(CC), IsO32(IsO32_), IsFP64(IsFP64_),
3222    SpecialCallingConv(SpecialCallingConv_){
3223  // Pre-allocate reserved argument area.
3224  CCInfo.AllocateStack(reservedArgArea(), 1);
3225}
3226
3227
3228void MipsTargetLowering::MipsCC::
3229analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3230                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3231                    std::vector<ArgListEntry> &FuncArgs) {
3232  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3233         "CallingConv::Fast shouldn't be used for vararg functions.");
3234
3235  unsigned NumOpnds = Args.size();
3236  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3237
3238  for (unsigned I = 0; I != NumOpnds; ++I) {
3239    MVT ArgVT = Args[I].VT;
3240    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3241    bool R;
3242
3243    if (ArgFlags.isByVal()) {
3244      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3245      continue;
3246    }
3247
3248    if (IsVarArg && !Args[I].IsFixed)
3249      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3250    else {
3251      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3252                           IsSoftFloat);
3253      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3254    }
3255
3256    if (R) {
3257#ifndef NDEBUG
3258      dbgs() << "Call operand #" << I << " has unhandled type "
3259             << EVT(ArgVT).getEVTString();
3260#endif
3261      llvm_unreachable(0);
3262    }
3263  }
3264}
3265
3266void MipsTargetLowering::MipsCC::
3267analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3268                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3269  unsigned NumArgs = Args.size();
3270  llvm::CCAssignFn *FixedFn = fixedArgFn();
3271  unsigned CurArgIdx = 0;
3272
3273  for (unsigned I = 0; I != NumArgs; ++I) {
3274    MVT ArgVT = Args[I].VT;
3275    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3276    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3277    CurArgIdx = Args[I].OrigArgIndex;
3278
3279    if (ArgFlags.isByVal()) {
3280      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3281      continue;
3282    }
3283
3284    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
3285
3286    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3287      continue;
3288
3289#ifndef NDEBUG
3290    dbgs() << "Formal Arg #" << I << " has unhandled type "
3291           << EVT(ArgVT).getEVTString();
3292#endif
3293    llvm_unreachable(0);
3294  }
3295}
3296
3297template<typename Ty>
3298void MipsTargetLowering::MipsCC::
3299analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3300              const SDNode *CallNode, const Type *RetTy) const {
3301  CCAssignFn *Fn;
3302
3303  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3304    Fn = RetCC_F128Soft;
3305  else
3306    Fn = RetCC_Mips;
3307
3308  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3309    MVT VT = RetVals[I].VT;
3310    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3311    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3312
3313    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3314#ifndef NDEBUG
3315      dbgs() << "Call result #" << I << " has unhandled type "
3316             << EVT(VT).getEVTString() << '\n';
3317#endif
3318      llvm_unreachable(0);
3319    }
3320  }
3321}
3322
3323void MipsTargetLowering::MipsCC::
3324analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3325                  const SDNode *CallNode, const Type *RetTy) const {
3326  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3327}
3328
3329void MipsTargetLowering::MipsCC::
3330analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3331              const Type *RetTy) const {
3332  analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
3333}
3334
3335void
3336MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3337                                           MVT LocVT,
3338                                           CCValAssign::LocInfo LocInfo,
3339                                           ISD::ArgFlagsTy ArgFlags) {
3340  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3341
3342  struct ByValArgInfo ByVal;
3343  unsigned RegSize = regSize();
3344  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3345  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3346                            RegSize * 2);
3347
3348  if (useRegsForByval())
3349    allocateRegs(ByVal, ByValSize, Align);
3350
3351  // Allocate space on caller's stack.
3352  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3353                                       Align);
3354  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3355                                    LocInfo));
3356  ByValArgs.push_back(ByVal);
3357}
3358
3359unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3360  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3361}
3362
3363unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3364  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3365}
3366
3367const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
3368  return IsO32 ? O32IntRegs : Mips64IntRegs;
3369}
3370
3371llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3372  if (CallConv == CallingConv::Fast)
3373    return CC_Mips_FastCC;
3374
3375  if (SpecialCallingConv == Mips16RetHelperConv)
3376    return CC_Mips16RetHelper;
3377  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN;
3378}
3379
3380llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3381  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN_VarArg;
3382}
3383
3384const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
3385  return IsO32 ? O32IntRegs : Mips64DPRegs;
3386}
3387
3388void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3389                                              unsigned ByValSize,
3390                                              unsigned Align) {
3391  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3392  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3393  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3394         "Byval argument's size and alignment should be a multiple of"
3395         "RegSize.");
3396
3397  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3398
3399  // If Align > RegSize, the first arg register must be even.
3400  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3401    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3402    ++ByVal.FirstIdx;
3403  }
3404
3405  // Mark the registers allocated.
3406  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3407       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3408    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3409}
3410
3411MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3412                                         const SDNode *CallNode,
3413                                         bool IsSoftFloat) const {
3414  if (IsSoftFloat || IsO32)
3415    return VT;
3416
3417  // Check if the original type was fp128.
3418  if (originalTypeIsF128(OrigTy, CallNode)) {
3419    assert(VT == MVT::i64);
3420    return MVT::f64;
3421  }
3422
3423  return VT;
3424}
3425
3426void MipsTargetLowering::
3427copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
3428              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3429              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3430              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3431  MachineFunction &MF = DAG.getMachineFunction();
3432  MachineFrameInfo *MFI = MF.getFrameInfo();
3433  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3434  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3435  int FrameObjOffset;
3436
3437  if (RegAreaSize)
3438    FrameObjOffset = (int)CC.reservedArgArea() -
3439      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3440  else
3441    FrameObjOffset = ByVal.Address;
3442
3443  // Create frame object.
3444  EVT PtrTy = getPointerTy();
3445  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3446  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3447  InVals.push_back(FIN);
3448
3449  if (!ByVal.NumRegs)
3450    return;
3451
3452  // Copy arg registers.
3453  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3454  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3455
3456  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3457    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3458    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3459    unsigned Offset = I * CC.regSize();
3460    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3461                                   DAG.getConstant(Offset, PtrTy));
3462    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3463                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3464                                 false, false, 0);
3465    OutChains.push_back(Store);
3466  }
3467}
3468
3469// Copy byVal arg to registers and stack.
3470void MipsTargetLowering::
3471passByValArg(SDValue Chain, SDLoc DL,
3472             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3473             SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
3474             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3475             const MipsCC &CC, const ByValArgInfo &ByVal,
3476             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3477  unsigned ByValSize = Flags.getByValSize();
3478  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3479  unsigned RegSize = CC.regSize();
3480  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3481  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3482
3483  if (ByVal.NumRegs) {
3484    const uint16_t *ArgRegs = CC.intArgRegs();
3485    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3486    unsigned I = 0;
3487
3488    // Copy words to registers.
3489    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3490      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3491                                    DAG.getConstant(Offset, PtrTy));
3492      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3493                                    MachinePointerInfo(), false, false, false,
3494                                    Alignment);
3495      MemOpChains.push_back(LoadVal.getValue(1));
3496      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3497      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3498    }
3499
3500    // Return if the struct has been fully copied.
3501    if (ByValSize == Offset)
3502      return;
3503
3504    // Copy the remainder of the byval argument with sub-word loads and shifts.
3505    if (LeftoverBytes) {
3506      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3507             "Size of the remainder should be smaller than RegSize.");
3508      SDValue Val;
3509
3510      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3511           Offset < ByValSize; LoadSize /= 2) {
3512        unsigned RemSize = ByValSize - Offset;
3513
3514        if (RemSize < LoadSize)
3515          continue;
3516
3517        // Load subword.
3518        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3519                                      DAG.getConstant(Offset, PtrTy));
3520        SDValue LoadVal =
3521          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3522                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3523                         false, false, Alignment);
3524        MemOpChains.push_back(LoadVal.getValue(1));
3525
3526        // Shift the loaded value.
3527        unsigned Shamt;
3528
3529        if (isLittle)
3530          Shamt = TotalSizeLoaded;
3531        else
3532          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3533
3534        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3535                                    DAG.getConstant(Shamt, MVT::i32));
3536
3537        if (Val.getNode())
3538          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3539        else
3540          Val = Shift;
3541
3542        Offset += LoadSize;
3543        TotalSizeLoaded += LoadSize;
3544        Alignment = std::min(Alignment, LoadSize);
3545      }
3546
3547      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3548      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3549      return;
3550    }
3551  }
3552
3553  // Copy remainder of byval arg to it with memcpy.
3554  unsigned MemCpySize = ByValSize - Offset;
3555  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3556                            DAG.getConstant(Offset, PtrTy));
3557  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3558                            DAG.getIntPtrConstant(ByVal.Address));
3559  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
3560                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
3561                        /*isVolatile=*/false, /*AlwaysInline=*/false,
3562                        MachinePointerInfo(0), MachinePointerInfo(0));
3563  MemOpChains.push_back(Chain);
3564}
3565
3566void
3567MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3568                                    const MipsCC &CC, SDValue Chain,
3569                                    SDLoc DL, SelectionDAG &DAG) const {
3570  unsigned NumRegs = CC.numIntArgRegs();
3571  const uint16_t *ArgRegs = CC.intArgRegs();
3572  const CCState &CCInfo = CC.getCCInfo();
3573  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3574  unsigned RegSize = CC.regSize();
3575  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3576  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3577  MachineFunction &MF = DAG.getMachineFunction();
3578  MachineFrameInfo *MFI = MF.getFrameInfo();
3579  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3580
3581  // Offset of the first variable argument from stack pointer.
3582  int VaArgOffset;
3583
3584  if (NumRegs == Idx)
3585    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3586  else
3587    VaArgOffset =
3588      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3589
3590  // Record the frame index of the first variable argument
3591  // which is a value necessary to VASTART.
3592  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3593  MipsFI->setVarArgsFrameIndex(FI);
3594
3595  // Copy the integer registers that have not been used for argument passing
3596  // to the argument register save area. For O32, the save area is allocated
3597  // in the caller's stack frame, while for N32/64, it is allocated in the
3598  // callee's stack frame.
3599  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3600    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3601    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3602    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3603    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3604    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3605                                 MachinePointerInfo(), false, false, 0);
3606    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3607    OutChains.push_back(Store);
3608  }
3609}
3610