MipsInstrInfo.td revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MFLOHI : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisVT<1, untyped>]>;
27def SDT_MTLOHI : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>,
28                                      SDTCisInt<1>, SDTCisSameAs<1, 2>]>;
29def SDT_MipsMultDiv : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisInt<1>,
30                                    SDTCisSameAs<1, 2>]>;
31def SDT_MipsMAddMSub : SDTypeProfile<1, 3,
32                                     [SDTCisVT<0, untyped>, SDTCisSameAs<0, 3>,
33                                      SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
34def SDT_MipsDivRem16 : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
35
36def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
37
38def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
39
40def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
42def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
43                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
44                                   SDTCisSameAs<0, 4>]>;
45
46def SDTMipsLoadLR  : SDTypeProfile<1, 2,
47                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
48                                    SDTCisSameAs<0, 2>]>;
49
50// Call
51def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
52                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
53                          SDNPVariadic]>;
54
55// Tail call
56def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
57                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
58
59// Hi and Lo nodes are used to handle global addresses. Used on
60// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
61// static model. (nothing to do with Mips Registers Hi and Lo)
62def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
63def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
64def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
65
66// TlsGd node is used to handle General Dynamic TLS
67def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
68
69// TprelHi and TprelLo nodes are used to handle Local Exec TLS
70def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
71def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
72
73// Thread pointer
74def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
75
76// Return
77def MipsRet : SDNode<"MipsISD::Ret", SDTNone,
78                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
79
80// These are target-independent nodes, but have target-specific formats.
81def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
82                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
83def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
84                           [SDNPHasChain, SDNPSideEffect,
85                            SDNPOptInGlue, SDNPOutGlue]>;
86
87// Nodes used to extract LO/HI registers.
88def MipsMFHI : SDNode<"MipsISD::MFHI", SDT_MFLOHI>;
89def MipsMFLO : SDNode<"MipsISD::MFLO", SDT_MFLOHI>;
90
91// Node used to insert 32-bit integers to LOHI register pair.
92def MipsMTLOHI : SDNode<"MipsISD::MTLOHI", SDT_MTLOHI>;
93
94// Mult nodes.
95def MipsMult  : SDNode<"MipsISD::Mult", SDT_MipsMultDiv>;
96def MipsMultu : SDNode<"MipsISD::Multu", SDT_MipsMultDiv>;
97
98// MAdd*/MSub* nodes
99def MipsMAdd  : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub>;
100def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub>;
101def MipsMSub  : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub>;
102def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub>;
103
104// DivRem(u) nodes
105def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsMultDiv>;
106def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsMultDiv>;
107def MipsDivRem16  : SDNode<"MipsISD::DivRem16", SDT_MipsDivRem16,
108                           [SDNPOutGlue]>;
109def MipsDivRemU16 : SDNode<"MipsISD::DivRemU16", SDT_MipsDivRem16,
110                           [SDNPOutGlue]>;
111
112// Target constant nodes that are not part of any isel patterns and remain
113// unchanged can cause instructions with illegal operands to be emitted.
114// Wrapper node patterns give the instruction selector a chance to replace
115// target constant nodes that would otherwise remain unchanged with ADDiu
116// nodes. Without these wrapper node patterns, the following conditional move
117// instruction is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
118// compiled:
119//  movn  %got(d)($gp), %got(c)($gp), $4
120// This instruction is illegal since movn can take only register operands.
121
122def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
123
124def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
125
126def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
127def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
128
129def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
130                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
131def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
132                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
133def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
134                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
135def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
136                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
137def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
138                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
139def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
140                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
141def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
142                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
143def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
144                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
145
146//===----------------------------------------------------------------------===//
147// Mips Instruction Predicate Definitions.
148//===----------------------------------------------------------------------===//
149def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
150                      AssemblerPredicate<"FeatureSEInReg">;
151def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
152                      AssemblerPredicate<"FeatureBitCount">;
153def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
154                      AssemblerPredicate<"FeatureSwap">;
155def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
156                      AssemblerPredicate<"FeatureCondMov">;
157def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
158                      AssemblerPredicate<"FeatureFPIdx">;
159def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
160                      AssemblerPredicate<"FeatureMips32">;
161def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
162                      AssemblerPredicate<"FeatureMips32r2">;
163def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
164                      AssemblerPredicate<"FeatureMips64">;
165def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
166                      AssemblerPredicate<"!FeatureMips64">;
167def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
168                      AssemblerPredicate<"FeatureMips64r2">;
169def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
170                      AssemblerPredicate<"FeatureN64">;
171def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
172                      AssemblerPredicate<"FeatureMips16">;
173def HasCnMips    :    Predicate<"Subtarget.hasCnMips()">,
174                      AssemblerPredicate<"FeatureCnMips">;
175def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
176                      AssemblerPredicate<"FeatureMips32">;
177def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
178                      AssemblerPredicate<"FeatureMips32">;
179def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
180                      AssemblerPredicate<"FeatureMips32">;
181def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
182                      AssemblerPredicate<"!FeatureMips16">;
183def NotDSP :          Predicate<"!Subtarget.hasDSP()">;
184def InMicroMips    :  Predicate<"Subtarget.inMicroMipsMode()">,
185                      AssemblerPredicate<"FeatureMicroMips">;
186def NotInMicroMips :  Predicate<"!Subtarget.inMicroMipsMode()">,
187                      AssemblerPredicate<"!FeatureMicroMips">;
188def IsLE           :  Predicate<"Subtarget.isLittle()">;
189def IsBE           :  Predicate<"!Subtarget.isLittle()">;
190def IsNotNaCl    :    Predicate<"!Subtarget.isTargetNaCl()">;
191
192class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
193  let Predicates = [HasStdEnc];
194}
195
196class IsCommutable {
197  bit isCommutable = 1;
198}
199
200class IsBranch {
201  bit isBranch = 1;
202}
203
204class IsReturn {
205  bit isReturn = 1;
206}
207
208class IsCall {
209  bit isCall = 1;
210}
211
212class IsTailCall {
213  bit isCall = 1;
214  bit isTerminator = 1;
215  bit isReturn = 1;
216  bit isBarrier = 1;
217  bit hasExtraSrcRegAllocReq = 1;
218  bit isCodeGenOnly = 1;
219}
220
221class IsAsCheapAsAMove {
222  bit isAsCheapAsAMove = 1;
223}
224
225class NeverHasSideEffects {
226  bit neverHasSideEffects = 1;
227}
228
229//===----------------------------------------------------------------------===//
230// Instruction format superclass
231//===----------------------------------------------------------------------===//
232
233include "MipsInstrFormats.td"
234
235//===----------------------------------------------------------------------===//
236// Mips Operand, Complex Patterns and Transformations Definitions.
237//===----------------------------------------------------------------------===//
238
239def MipsJumpTargetAsmOperand : AsmOperandClass {
240  let Name = "JumpTarget";
241  let ParserMethod = "ParseJumpTarget";
242  let PredicateMethod = "isImm";
243  let RenderMethod = "addImmOperands";
244}
245
246// Instruction operand types
247def jmptarget   : Operand<OtherVT> {
248  let EncoderMethod = "getJumpTargetOpValue";
249  let ParserMatchClass = MipsJumpTargetAsmOperand;
250}
251def brtarget    : Operand<OtherVT> {
252  let EncoderMethod = "getBranchTargetOpValue";
253  let OperandType = "OPERAND_PCREL";
254  let DecoderMethod = "DecodeBranchTarget";
255  let ParserMatchClass = MipsJumpTargetAsmOperand;
256}
257def calltarget  : Operand<iPTR> {
258  let EncoderMethod = "getJumpTargetOpValue";
259  let ParserMatchClass = MipsJumpTargetAsmOperand;
260}
261
262def simm10 : Operand<i32>;
263
264def simm16      : Operand<i32> {
265  let DecoderMethod= "DecodeSimm16";
266}
267
268def simm20      : Operand<i32> {
269}
270
271def uimm20      : Operand<i32> {
272}
273
274def uimm10      : Operand<i32> {
275}
276
277def simm16_64   : Operand<i64> {
278  let DecoderMethod = "DecodeSimm16";
279}
280
281// Zero
282def uimmz       : Operand<i32> {
283  let PrintMethod = "printUnsignedImm";
284}
285
286// Unsigned Operand
287def uimm5       : Operand<i32> {
288  let PrintMethod = "printUnsignedImm";
289}
290
291def uimm6 : Operand<i32> {
292  let PrintMethod = "printUnsignedImm";
293}
294
295def uimm16      : Operand<i32> {
296  let PrintMethod = "printUnsignedImm";
297}
298
299def pcrel16      : Operand<i32> {
300}
301
302def MipsMemAsmOperand : AsmOperandClass {
303  let Name = "Mem";
304  let ParserMethod = "parseMemOperand";
305}
306
307def MipsInvertedImmoperand : AsmOperandClass {
308  let Name = "InvNum";
309  let RenderMethod = "addImmOperands";
310  let ParserMethod = "parseInvNum";
311}
312
313def InvertedImOperand : Operand<i32> {
314  let ParserMatchClass = MipsInvertedImmoperand;
315}
316
317class mem_generic : Operand<iPTR> {
318  let PrintMethod = "printMemOperand";
319  let MIOperandInfo = (ops ptr_rc, simm16);
320  let EncoderMethod = "getMemEncoding";
321  let ParserMatchClass = MipsMemAsmOperand;
322  let OperandType = "OPERAND_MEMORY";
323}
324
325// Address operand
326def mem : mem_generic;
327
328// MSA specific address operand
329def mem_msa : mem_generic {
330  let MIOperandInfo = (ops ptr_rc, simm10);
331  let EncoderMethod = "getMSAMemEncoding";
332}
333
334def mem_ea : Operand<iPTR> {
335  let PrintMethod = "printMemOperandEA";
336  let MIOperandInfo = (ops ptr_rc, simm16);
337  let EncoderMethod = "getMemEncoding";
338  let OperandType = "OPERAND_MEMORY";
339}
340
341def PtrRC : Operand<iPTR> {
342  let MIOperandInfo = (ops ptr_rc);
343  let DecoderMethod = "DecodePtrRegisterClass";
344  let ParserMatchClass = GPR32AsmOperand;
345}
346
347// size operand of ext instruction
348def size_ext : Operand<i32> {
349  let EncoderMethod = "getSizeExtEncoding";
350  let DecoderMethod = "DecodeExtSize";
351}
352
353// size operand of ins instruction
354def size_ins : Operand<i32> {
355  let EncoderMethod = "getSizeInsEncoding";
356  let DecoderMethod = "DecodeInsSize";
357}
358
359// Transformation Function - get the lower 16 bits.
360def LO16 : SDNodeXForm<imm, [{
361  return getImm(N, N->getZExtValue() & 0xFFFF);
362}]>;
363
364// Transformation Function - get the higher 16 bits.
365def HI16 : SDNodeXForm<imm, [{
366  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
367}]>;
368
369// Plus 1.
370def Plus1 : SDNodeXForm<imm, [{ return getImm(N, N->getSExtValue() + 1); }]>;
371
372// Node immediate is zero (e.g. insve.d)
373def immz : PatLeaf<(imm), [{ return N->getSExtValue() == 0; }]>;
374
375// Node immediate fits as 16-bit sign extended on target immediate.
376// e.g. addi, andi
377def immSExt8  : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>;
378
379// Node immediate fits as 16-bit sign extended on target immediate.
380// e.g. addi, andi
381def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
382
383// Node immediate fits as 15-bit sign extended on target immediate.
384// e.g. addi, andi
385def immSExt15  : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>;
386
387// Node immediate fits as 16-bit zero extended on target immediate.
388// The LO16 param means that only the lower 16 bits of the node
389// immediate are caught.
390// e.g. addiu, sltiu
391def immZExt16  : PatLeaf<(imm), [{
392  if (N->getValueType(0) == MVT::i32)
393    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
394  else
395    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
396}], LO16>;
397
398// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
399def immLow16Zero : PatLeaf<(imm), [{
400  int64_t Val = N->getSExtValue();
401  return isInt<32>(Val) && !(Val & 0xffff);
402}]>;
403
404// shamt field must fit in 5 bits.
405def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
406
407// True if (N + 1) fits in 16-bit field.
408def immSExt16Plus1 : PatLeaf<(imm), [{
409  return isInt<17>(N->getSExtValue()) && isInt<16>(N->getSExtValue() + 1);
410}]>;
411
412// Mips Address Mode! SDNode frameindex could possibily be a match
413// since load and store instructions from stack used it.
414def addr :
415  ComplexPattern<iPTR, 2, "selectIntAddr", [frameindex]>;
416
417def addrRegImm :
418  ComplexPattern<iPTR, 2, "selectAddrRegImm", [frameindex]>;
419
420def addrRegReg :
421  ComplexPattern<iPTR, 2, "selectAddrRegReg", [frameindex]>;
422
423def addrDefault :
424  ComplexPattern<iPTR, 2, "selectAddrDefault", [frameindex]>;
425
426def addrimm10 : ComplexPattern<iPTR, 2, "selectIntAddrMSA", [frameindex]>;
427
428//===----------------------------------------------------------------------===//
429// Instructions specific format
430//===----------------------------------------------------------------------===//
431
432// Arithmetic and logical instructions with 3 register operands.
433class ArithLogicR<string opstr, RegisterOperand RO, bit isComm = 0,
434                  InstrItinClass Itin = NoItinerary,
435                  SDPatternOperator OpNode = null_frag>:
436  InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
437         !strconcat(opstr, "\t$rd, $rs, $rt"),
438         [(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR, opstr> {
439  let isCommutable = isComm;
440  let isReMaterializable = 1;
441  let TwoOperandAliasConstraint = "$rd = $rs";
442}
443
444// Arithmetic and logical instructions with 2 register operands.
445class ArithLogicI<string opstr, Operand Od, RegisterOperand RO,
446                  InstrItinClass Itin = NoItinerary,
447                  SDPatternOperator imm_type = null_frag,
448                  SDPatternOperator OpNode = null_frag> :
449  InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16),
450         !strconcat(opstr, "\t$rt, $rs, $imm16"),
451         [(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))],
452         Itin, FrmI, opstr> {
453  let isReMaterializable = 1;
454  let TwoOperandAliasConstraint = "$rs = $rt";
455}
456
457// Arithmetic Multiply ADD/SUB
458class MArithR<string opstr, InstrItinClass itin, bit isComm = 0> :
459  InstSE<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt),
460         !strconcat(opstr, "\t$rs, $rt"), [], itin, FrmR, opstr> {
461  let Defs = [HI0, LO0];
462  let Uses = [HI0, LO0];
463  let isCommutable = isComm;
464}
465
466//  Logical
467class LogicNOR<string opstr, RegisterOperand RO>:
468  InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
469         !strconcat(opstr, "\t$rd, $rs, $rt"),
470         [(set RO:$rd, (not (or RO:$rs, RO:$rt)))], II_NOR, FrmR, opstr> {
471  let isCommutable = 1;
472}
473
474// Shifts
475class shift_rotate_imm<string opstr, Operand ImmOpnd,
476                       RegisterOperand RO, InstrItinClass itin,
477                       SDPatternOperator OpNode = null_frag,
478                       SDPatternOperator PF = null_frag> :
479  InstSE<(outs RO:$rd), (ins RO:$rt, ImmOpnd:$shamt),
480         !strconcat(opstr, "\t$rd, $rt, $shamt"),
481         [(set RO:$rd, (OpNode RO:$rt, PF:$shamt))], itin, FrmR, opstr>;
482
483class shift_rotate_reg<string opstr, RegisterOperand RO, InstrItinClass itin,
484                       SDPatternOperator OpNode = null_frag>:
485  InstSE<(outs RO:$rd), (ins RO:$rt, GPR32Opnd:$rs),
486         !strconcat(opstr, "\t$rd, $rt, $rs"),
487         [(set RO:$rd, (OpNode RO:$rt, GPR32Opnd:$rs))], itin, FrmR,
488         opstr>;
489
490// Load Upper Imediate
491class LoadUpper<string opstr, RegisterOperand RO, Operand Imm>:
492  InstSE<(outs RO:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"),
493         [], II_LUI, FrmI, opstr>, IsAsCheapAsAMove {
494  let neverHasSideEffects = 1;
495  let isReMaterializable = 1;
496}
497
498// Memory Load/Store
499class Load<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag,
500           InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> :
501  InstSE<(outs RO:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
502         [(set RO:$rt, (OpNode Addr:$addr))], Itin, FrmI, opstr> {
503  let DecoderMethod = "DecodeMem";
504  let canFoldAsLoad = 1;
505  let mayLoad = 1;
506}
507
508class Store<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag,
509            InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> :
510  InstSE<(outs), (ins RO:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
511         [(OpNode RO:$rt, Addr:$addr)], Itin, FrmI, opstr> {
512  let DecoderMethod = "DecodeMem";
513  let mayStore = 1;
514}
515
516// Load/Store Left/Right
517let canFoldAsLoad = 1 in
518class LoadLeftRight<string opstr, SDNode OpNode, RegisterOperand RO,
519                    InstrItinClass Itin> :
520  InstSE<(outs RO:$rt), (ins mem:$addr, RO:$src),
521         !strconcat(opstr, "\t$rt, $addr"),
522         [(set RO:$rt, (OpNode addr:$addr, RO:$src))], Itin, FrmI> {
523  let DecoderMethod = "DecodeMem";
524  string Constraints = "$src = $rt";
525}
526
527class StoreLeftRight<string opstr, SDNode OpNode, RegisterOperand RO,
528                     InstrItinClass Itin> :
529  InstSE<(outs), (ins RO:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
530         [(OpNode RO:$rt, addr:$addr)], Itin, FrmI> {
531  let DecoderMethod = "DecodeMem";
532}
533
534// Conditional Branch
535class CBranch<string opstr, DAGOperand opnd, PatFrag cond_op,
536              RegisterOperand RO> :
537  InstSE<(outs), (ins RO:$rs, RO:$rt, opnd:$offset),
538         !strconcat(opstr, "\t$rs, $rt, $offset"),
539         [(brcond (i32 (cond_op RO:$rs, RO:$rt)), bb:$offset)], IIBranch,
540         FrmI, opstr> {
541  let isBranch = 1;
542  let isTerminator = 1;
543  let hasDelaySlot = 1;
544  let Defs = [AT];
545}
546
547class CBranchZero<string opstr, DAGOperand opnd, PatFrag cond_op,
548                  RegisterOperand RO> :
549  InstSE<(outs), (ins RO:$rs, opnd:$offset),
550         !strconcat(opstr, "\t$rs, $offset"),
551         [(brcond (i32 (cond_op RO:$rs, 0)), bb:$offset)], IIBranch,
552         FrmI, opstr> {
553  let isBranch = 1;
554  let isTerminator = 1;
555  let hasDelaySlot = 1;
556  let Defs = [AT];
557}
558
559// SetCC
560class SetCC_R<string opstr, PatFrag cond_op, RegisterOperand RO> :
561  InstSE<(outs GPR32Opnd:$rd), (ins RO:$rs, RO:$rt),
562         !strconcat(opstr, "\t$rd, $rs, $rt"),
563         [(set GPR32Opnd:$rd, (cond_op RO:$rs, RO:$rt))],
564         II_SLT_SLTU, FrmR, opstr>;
565
566class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
567              RegisterOperand RO>:
568  InstSE<(outs GPR32Opnd:$rt), (ins RO:$rs, Od:$imm16),
569         !strconcat(opstr, "\t$rt, $rs, $imm16"),
570         [(set GPR32Opnd:$rt, (cond_op RO:$rs, imm_type:$imm16))],
571         II_SLTI_SLTIU, FrmI, opstr>;
572
573// Jump
574class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator,
575             SDPatternOperator targetoperator, string bopstr> :
576  InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
577         [(operator targetoperator:$target)], IIBranch, FrmJ, bopstr> {
578  let isTerminator=1;
579  let isBarrier=1;
580  let hasDelaySlot = 1;
581  let DecoderMethod = "DecodeJumpTarget";
582  let Defs = [AT];
583}
584
585// Unconditional branch
586class UncondBranch<Instruction BEQInst> :
587  PseudoSE<(outs), (ins brtarget:$offset), [(br bb:$offset)], IIBranch>,
588  PseudoInstExpansion<(BEQInst ZERO, ZERO, brtarget:$offset)> {
589  let isBranch = 1;
590  let isTerminator = 1;
591  let isBarrier = 1;
592  let hasDelaySlot = 1;
593  let Predicates = [RelocPIC, HasStdEnc];
594  let Defs = [AT];
595}
596
597// Base class for indirect branch and return instruction classes.
598let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
599class JumpFR<string opstr, RegisterOperand RO,
600             SDPatternOperator operator = null_frag>:
601  InstSE<(outs), (ins RO:$rs), "jr\t$rs", [(operator RO:$rs)], IIBranch,
602         FrmR, opstr>;
603
604// Indirect branch
605class IndirectBranch<string opstr, RegisterOperand RO> :
606      JumpFR<opstr, RO, brind> {
607  let isBranch = 1;
608  let isIndirectBranch = 1;
609}
610
611// Return instruction
612class RetBase<string opstr, RegisterOperand RO>: JumpFR<opstr, RO> {
613  let isReturn = 1;
614  let isCodeGenOnly = 1;
615  let hasCtrlDep = 1;
616  let hasExtraSrcRegAllocReq = 1;
617}
618
619// Jump and Link (Call)
620let isCall=1, hasDelaySlot=1, Defs = [RA] in {
621  class JumpLink<string opstr, DAGOperand opnd> :
622    InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
623           [(MipsJmpLink imm:$target)], IIBranch, FrmJ, opstr> {
624    let DecoderMethod = "DecodeJumpTarget";
625  }
626
627  class JumpLinkRegPseudo<RegisterOperand RO, Instruction JALRInst,
628                          Register RetReg, RegisterOperand ResRO = RO>:
629    PseudoSE<(outs), (ins RO:$rs), [(MipsJmpLink RO:$rs)], IIBranch>,
630    PseudoInstExpansion<(JALRInst RetReg, ResRO:$rs)>;
631
632  class JumpLinkReg<string opstr, RegisterOperand RO>:
633    InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
634           [], IIBranch, FrmR>;
635
636  class BGEZAL_FT<string opstr, DAGOperand opnd, RegisterOperand RO> :
637    InstSE<(outs), (ins RO:$rs, opnd:$offset),
638           !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI, opstr>;
639
640}
641
642let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, hasDelaySlot = 1,
643    hasExtraSrcRegAllocReq = 1, Defs = [AT] in {
644  class TailCall<Instruction JumpInst> :
645    PseudoSE<(outs), (ins calltarget:$target), [], IIBranch>,
646    PseudoInstExpansion<(JumpInst jmptarget:$target)>;
647
648  class TailCallReg<RegisterOperand RO, Instruction JRInst,
649                    RegisterOperand ResRO = RO> :
650    PseudoSE<(outs), (ins RO:$rs), [(MipsTailCall RO:$rs)], IIBranch>,
651    PseudoInstExpansion<(JRInst ResRO:$rs)>;
652}
653
654class BAL_BR_Pseudo<Instruction RealInst> :
655  PseudoSE<(outs), (ins brtarget:$offset), [], IIBranch>,
656  PseudoInstExpansion<(RealInst ZERO, brtarget:$offset)> {
657  let isBranch = 1;
658  let isTerminator = 1;
659  let isBarrier = 1;
660  let hasDelaySlot = 1;
661  let Defs = [RA];
662}
663
664// Syscall
665class SYS_FT<string opstr> :
666  InstSE<(outs), (ins uimm20:$code_),
667         !strconcat(opstr, "\t$code_"), [], NoItinerary, FrmI, opstr>;
668// Break
669class BRK_FT<string opstr> :
670  InstSE<(outs), (ins uimm10:$code_1, uimm10:$code_2),
671         !strconcat(opstr, "\t$code_1, $code_2"), [], NoItinerary,
672         FrmOther, opstr>;
673
674// (D)Eret
675class ER_FT<string opstr> :
676  InstSE<(outs), (ins),
677         opstr, [], NoItinerary, FrmOther, opstr>;
678
679// Interrupts
680class DEI_FT<string opstr, RegisterOperand RO> :
681  InstSE<(outs RO:$rt), (ins),
682         !strconcat(opstr, "\t$rt"), [], NoItinerary, FrmOther, opstr>;
683
684// Wait
685class WAIT_FT<string opstr> :
686  InstSE<(outs), (ins), opstr, [], NoItinerary, FrmOther, opstr>;
687
688// Sync
689let hasSideEffects = 1 in
690class SYNC_FT<string opstr> :
691  InstSE<(outs), (ins i32imm:$stype), "sync $stype", [(MipsSync imm:$stype)],
692         NoItinerary, FrmOther, opstr>;
693
694let hasSideEffects = 1 in
695class TEQ_FT<string opstr, RegisterOperand RO> :
696  InstSE<(outs), (ins RO:$rs, RO:$rt, uimm16:$code_),
697         !strconcat(opstr, "\t$rs, $rt, $code_"), [], NoItinerary,
698         FrmI, opstr>;
699
700class TEQI_FT<string opstr, RegisterOperand RO> :
701  InstSE<(outs), (ins RO:$rs, uimm16:$imm16),
702         !strconcat(opstr, "\t$rs, $imm16"), [], NoItinerary, FrmOther, opstr>;
703// Mul, Div
704class Mult<string opstr, InstrItinClass itin, RegisterOperand RO,
705           list<Register> DefRegs> :
706  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [],
707         itin, FrmR, opstr> {
708  let isCommutable = 1;
709  let Defs = DefRegs;
710  let neverHasSideEffects = 1;
711}
712
713// Pseudo multiply/divide instruction with explicit accumulator register
714// operands.
715class MultDivPseudo<Instruction RealInst, RegisterClass R0, RegisterOperand R1,
716                    SDPatternOperator OpNode, InstrItinClass Itin,
717                    bit IsComm = 1, bit HasSideEffects = 0,
718                    bit UsesCustomInserter = 0> :
719  PseudoSE<(outs R0:$ac), (ins R1:$rs, R1:$rt),
720           [(set R0:$ac, (OpNode R1:$rs, R1:$rt))], Itin>,
721  PseudoInstExpansion<(RealInst R1:$rs, R1:$rt)> {
722  let isCommutable = IsComm;
723  let hasSideEffects = HasSideEffects;
724  let usesCustomInserter = UsesCustomInserter;
725}
726
727// Pseudo multiply add/sub instruction with explicit accumulator register
728// operands.
729class MAddSubPseudo<Instruction RealInst, SDPatternOperator OpNode,
730                    InstrItinClass itin>
731  : PseudoSE<(outs ACC64:$ac),
732             (ins GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin),
733             [(set ACC64:$ac,
734              (OpNode GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin))],
735             itin>,
736    PseudoInstExpansion<(RealInst GPR32Opnd:$rs, GPR32Opnd:$rt)> {
737  string Constraints = "$acin = $ac";
738}
739
740class Div<string opstr, InstrItinClass itin, RegisterOperand RO,
741          list<Register> DefRegs> :
742  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$$zero, $rs, $rt"),
743         [], itin, FrmR, opstr> {
744  let Defs = DefRegs;
745}
746
747// Move from Hi/Lo
748class PseudoMFLOHI<RegisterClass DstRC, RegisterClass SrcRC, SDNode OpNode>
749  : PseudoSE<(outs DstRC:$rd), (ins SrcRC:$hilo),
750             [(set DstRC:$rd, (OpNode SrcRC:$hilo))], II_MFHI_MFLO>;
751
752class MoveFromLOHI<string opstr, RegisterOperand RO, Register UseReg>:
753  InstSE<(outs RO:$rd), (ins), !strconcat(opstr, "\t$rd"), [], II_MFHI_MFLO,
754         FrmR, opstr> {
755  let Uses = [UseReg];
756  let neverHasSideEffects = 1;
757}
758
759class PseudoMTLOHI<RegisterClass DstRC, RegisterClass SrcRC>
760  : PseudoSE<(outs DstRC:$lohi), (ins SrcRC:$lo, SrcRC:$hi),
761             [(set DstRC:$lohi, (MipsMTLOHI SrcRC:$lo, SrcRC:$hi))],
762             II_MTHI_MTLO>;
763
764class MoveToLOHI<string opstr, RegisterOperand RO, list<Register> DefRegs>:
765  InstSE<(outs), (ins RO:$rs), !strconcat(opstr, "\t$rs"), [], II_MTHI_MTLO,
766  FrmR, opstr> {
767  let Defs = DefRegs;
768  let neverHasSideEffects = 1;
769}
770
771class EffectiveAddress<string opstr, RegisterOperand RO> :
772  InstSE<(outs RO:$rt), (ins mem_ea:$addr), !strconcat(opstr, "\t$rt, $addr"),
773         [(set RO:$rt, addr:$addr)], NoItinerary, FrmI,
774         !strconcat(opstr, "_lea")> {
775  let isCodeGenOnly = 1;
776  let DecoderMethod = "DecodeMem";
777}
778
779// Count Leading Ones/Zeros in Word
780class CountLeading0<string opstr, RegisterOperand RO>:
781  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
782         [(set RO:$rd, (ctlz RO:$rs))], II_CLZ, FrmR, opstr>,
783  Requires<[HasBitCount, HasStdEnc]>;
784
785class CountLeading1<string opstr, RegisterOperand RO>:
786  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
787         [(set RO:$rd, (ctlz (not RO:$rs)))], II_CLO, FrmR, opstr>,
788  Requires<[HasBitCount, HasStdEnc]>;
789
790// Sign Extend in Register.
791class SignExtInReg<string opstr, ValueType vt, RegisterOperand RO,
792                   InstrItinClass itin> :
793  InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"),
794         [(set RO:$rd, (sext_inreg RO:$rt, vt))], itin, FrmR, opstr> {
795  let Predicates = [HasSEInReg, HasStdEnc];
796}
797
798// Subword Swap
799class SubwordSwap<string opstr, RegisterOperand RO>:
800  InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [],
801         NoItinerary, FrmR, opstr> {
802  let Predicates = [HasSwap, HasStdEnc];
803  let neverHasSideEffects = 1;
804}
805
806// Read Hardware
807class ReadHardware<RegisterOperand CPURegOperand, RegisterOperand RO> :
808  InstSE<(outs CPURegOperand:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [],
809         II_RDHWR, FrmR>;
810
811// Ext and Ins
812class ExtBase<string opstr, RegisterOperand RO, Operand PosOpnd,
813              SDPatternOperator Op = null_frag>:
814  InstSE<(outs RO:$rt), (ins RO:$rs, PosOpnd:$pos, size_ext:$size),
815         !strconcat(opstr, " $rt, $rs, $pos, $size"),
816         [(set RO:$rt, (Op RO:$rs, imm:$pos, imm:$size))], NoItinerary,
817         FrmR, opstr> {
818  let Predicates = [HasMips32r2, HasStdEnc];
819}
820
821class InsBase<string opstr, RegisterOperand RO, Operand PosOpnd,
822              SDPatternOperator Op = null_frag>:
823  InstSE<(outs RO:$rt), (ins RO:$rs, PosOpnd:$pos, size_ins:$size, RO:$src),
824         !strconcat(opstr, " $rt, $rs, $pos, $size"),
825         [(set RO:$rt, (Op RO:$rs, imm:$pos, imm:$size, RO:$src))],
826         NoItinerary, FrmR, opstr> {
827  let Predicates = [HasMips32r2, HasStdEnc];
828  let Constraints = "$src = $rt";
829}
830
831// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
832class Atomic2Ops<PatFrag Op, RegisterClass DRC> :
833  PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$incr),
834           [(set DRC:$dst, (Op iPTR:$ptr, DRC:$incr))]>;
835
836// Atomic Compare & Swap.
837class AtomicCmpSwap<PatFrag Op, RegisterClass DRC> :
838  PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$cmp, DRC:$swap),
839           [(set DRC:$dst, (Op iPTR:$ptr, DRC:$cmp, DRC:$swap))]>;
840
841class LLBase<string opstr, RegisterOperand RO> :
842  InstSE<(outs RO:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
843         [], NoItinerary, FrmI> {
844  let DecoderMethod = "DecodeMem";
845  let mayLoad = 1;
846}
847
848class SCBase<string opstr, RegisterOperand RO> :
849  InstSE<(outs RO:$dst), (ins RO:$rt, mem:$addr),
850         !strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
851  let DecoderMethod = "DecodeMem";
852  let mayStore = 1;
853  let Constraints = "$rt = $dst";
854}
855
856class MFC3OP<string asmstr, RegisterOperand RO> :
857  InstSE<(outs RO:$rt, RO:$rd, uimm16:$sel), (ins),
858         !strconcat(asmstr, "\t$rt, $rd, $sel"), [], NoItinerary, FrmFR>;
859
860class TrapBase<Instruction RealInst>
861  : PseudoSE<(outs), (ins), [(trap)], NoItinerary>,
862    PseudoInstExpansion<(RealInst 0, 0)> {
863  let isBarrier = 1;
864  let isTerminator = 1;
865  let isCodeGenOnly = 1;
866}
867
868//===----------------------------------------------------------------------===//
869// Pseudo instructions
870//===----------------------------------------------------------------------===//
871
872// Return RA.
873let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
874def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;
875
876let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
877def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
878                                  [(callseq_start timm:$amt)]>;
879def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
880                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
881}
882
883let usesCustomInserter = 1 in {
884  def ATOMIC_LOAD_ADD_I8   : Atomic2Ops<atomic_load_add_8, GPR32>;
885  def ATOMIC_LOAD_ADD_I16  : Atomic2Ops<atomic_load_add_16, GPR32>;
886  def ATOMIC_LOAD_ADD_I32  : Atomic2Ops<atomic_load_add_32, GPR32>;
887  def ATOMIC_LOAD_SUB_I8   : Atomic2Ops<atomic_load_sub_8, GPR32>;
888  def ATOMIC_LOAD_SUB_I16  : Atomic2Ops<atomic_load_sub_16, GPR32>;
889  def ATOMIC_LOAD_SUB_I32  : Atomic2Ops<atomic_load_sub_32, GPR32>;
890  def ATOMIC_LOAD_AND_I8   : Atomic2Ops<atomic_load_and_8, GPR32>;
891  def ATOMIC_LOAD_AND_I16  : Atomic2Ops<atomic_load_and_16, GPR32>;
892  def ATOMIC_LOAD_AND_I32  : Atomic2Ops<atomic_load_and_32, GPR32>;
893  def ATOMIC_LOAD_OR_I8    : Atomic2Ops<atomic_load_or_8, GPR32>;
894  def ATOMIC_LOAD_OR_I16   : Atomic2Ops<atomic_load_or_16, GPR32>;
895  def ATOMIC_LOAD_OR_I32   : Atomic2Ops<atomic_load_or_32, GPR32>;
896  def ATOMIC_LOAD_XOR_I8   : Atomic2Ops<atomic_load_xor_8, GPR32>;
897  def ATOMIC_LOAD_XOR_I16  : Atomic2Ops<atomic_load_xor_16, GPR32>;
898  def ATOMIC_LOAD_XOR_I32  : Atomic2Ops<atomic_load_xor_32, GPR32>;
899  def ATOMIC_LOAD_NAND_I8  : Atomic2Ops<atomic_load_nand_8, GPR32>;
900  def ATOMIC_LOAD_NAND_I16 : Atomic2Ops<atomic_load_nand_16, GPR32>;
901  def ATOMIC_LOAD_NAND_I32 : Atomic2Ops<atomic_load_nand_32, GPR32>;
902
903  def ATOMIC_SWAP_I8       : Atomic2Ops<atomic_swap_8, GPR32>;
904  def ATOMIC_SWAP_I16      : Atomic2Ops<atomic_swap_16, GPR32>;
905  def ATOMIC_SWAP_I32      : Atomic2Ops<atomic_swap_32, GPR32>;
906
907  def ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap<atomic_cmp_swap_8, GPR32>;
908  def ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap<atomic_cmp_swap_16, GPR32>;
909  def ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap<atomic_cmp_swap_32, GPR32>;
910}
911
912/// Pseudo instructions for loading and storing accumulator registers.
913let isPseudo = 1, isCodeGenOnly = 1 in {
914  def LOAD_ACC64  : Load<"", ACC64>;
915  def STORE_ACC64 : Store<"", ACC64>;
916}
917
918//===----------------------------------------------------------------------===//
919// Instruction definition
920//===----------------------------------------------------------------------===//
921//===----------------------------------------------------------------------===//
922// MipsI Instructions
923//===----------------------------------------------------------------------===//
924
925/// Arithmetic Instructions (ALU Immediate)
926def ADDiu : MMRel, ArithLogicI<"addiu", simm16, GPR32Opnd, II_ADDIU, immSExt16,
927                               add>,
928            ADDI_FM<0x9>, IsAsCheapAsAMove;
929def ADDi  : MMRel, ArithLogicI<"addi", simm16, GPR32Opnd>, ADDI_FM<0x8>;
930def SLTi  : MMRel, SetCC_I<"slti", setlt, simm16, immSExt16, GPR32Opnd>,
931            SLTI_FM<0xa>;
932def SLTiu : MMRel, SetCC_I<"sltiu", setult, simm16, immSExt16, GPR32Opnd>,
933            SLTI_FM<0xb>;
934def ANDi  : MMRel, ArithLogicI<"andi", uimm16, GPR32Opnd, II_ANDI, immZExt16,
935                               and>,
936            ADDI_FM<0xc>;
937def ORi   : MMRel, ArithLogicI<"ori", uimm16, GPR32Opnd, II_ORI, immZExt16,
938                               or>,
939            ADDI_FM<0xd>;
940def XORi  : MMRel, ArithLogicI<"xori", uimm16, GPR32Opnd, II_XORI, immZExt16,
941                               xor>,
942            ADDI_FM<0xe>;
943def LUi   : MMRel, LoadUpper<"lui", GPR32Opnd, uimm16>, LUI_FM;
944
945/// Arithmetic Instructions (3-Operand, R-Type)
946def ADDu  : MMRel, ArithLogicR<"addu", GPR32Opnd, 1, II_ADDU, add>,
947            ADD_FM<0, 0x21>;
948def SUBu  : MMRel, ArithLogicR<"subu", GPR32Opnd, 0, II_SUBU, sub>,
949            ADD_FM<0, 0x23>;
950let Defs = [HI0, LO0] in
951def MUL   : MMRel, ArithLogicR<"mul", GPR32Opnd, 1, II_MUL, mul>,
952            ADD_FM<0x1c, 2>;
953def ADD   : MMRel, ArithLogicR<"add", GPR32Opnd>, ADD_FM<0, 0x20>;
954def SUB   : MMRel, ArithLogicR<"sub", GPR32Opnd>, ADD_FM<0, 0x22>;
955def SLT   : MMRel, SetCC_R<"slt", setlt, GPR32Opnd>, ADD_FM<0, 0x2a>;
956def SLTu  : MMRel, SetCC_R<"sltu", setult, GPR32Opnd>, ADD_FM<0, 0x2b>;
957def AND   : MMRel, ArithLogicR<"and", GPR32Opnd, 1, II_AND, and>,
958            ADD_FM<0, 0x24>;
959def OR    : MMRel, ArithLogicR<"or", GPR32Opnd, 1, II_OR, or>,
960            ADD_FM<0, 0x25>;
961def XOR   : MMRel, ArithLogicR<"xor", GPR32Opnd, 1, II_XOR, xor>,
962            ADD_FM<0, 0x26>;
963def NOR   : MMRel, LogicNOR<"nor", GPR32Opnd>, ADD_FM<0, 0x27>;
964
965/// Shift Instructions
966def SLL  : MMRel, shift_rotate_imm<"sll", uimm5, GPR32Opnd, II_SLL, shl,
967                                   immZExt5>, SRA_FM<0, 0>;
968def SRL  : MMRel, shift_rotate_imm<"srl", uimm5, GPR32Opnd, II_SRL, srl,
969                                   immZExt5>, SRA_FM<2, 0>;
970def SRA  : MMRel, shift_rotate_imm<"sra", uimm5, GPR32Opnd, II_SRA, sra,
971                                   immZExt5>, SRA_FM<3, 0>;
972def SLLV : MMRel, shift_rotate_reg<"sllv", GPR32Opnd, II_SLLV, shl>,
973           SRLV_FM<4, 0>;
974def SRLV : MMRel, shift_rotate_reg<"srlv", GPR32Opnd, II_SRLV, srl>,
975           SRLV_FM<6, 0>;
976def SRAV : MMRel, shift_rotate_reg<"srav", GPR32Opnd, II_SRAV, sra>,
977           SRLV_FM<7, 0>;
978
979// Rotate Instructions
980let Predicates = [HasMips32r2, HasStdEnc] in {
981  def ROTR  : MMRel, shift_rotate_imm<"rotr", uimm5, GPR32Opnd, II_ROTR, rotr,
982                                      immZExt5>, SRA_FM<2, 1>;
983  def ROTRV : MMRel, shift_rotate_reg<"rotrv", GPR32Opnd, II_ROTRV, rotr>,
984              SRLV_FM<6, 1>;
985}
986
987/// Load and Store Instructions
988///  aligned
989def LB  : Load<"lb", GPR32Opnd, sextloadi8, II_LB>, MMRel, LW_FM<0x20>;
990def LBu : Load<"lbu", GPR32Opnd, zextloadi8, II_LBU, addrDefault>, MMRel,
991          LW_FM<0x24>;
992def LH  : Load<"lh", GPR32Opnd, sextloadi16, II_LH, addrDefault>, MMRel,
993          LW_FM<0x21>;
994def LHu : Load<"lhu", GPR32Opnd, zextloadi16, II_LHU>, MMRel, LW_FM<0x25>;
995def LW  : Load<"lw", GPR32Opnd, load, II_LW, addrDefault>, MMRel,
996          LW_FM<0x23>;
997def SB  : Store<"sb", GPR32Opnd, truncstorei8, II_SB>, MMRel, LW_FM<0x28>;
998def SH  : Store<"sh", GPR32Opnd, truncstorei16, II_SH>, MMRel, LW_FM<0x29>;
999def SW  : Store<"sw", GPR32Opnd, store, II_SW>, MMRel, LW_FM<0x2b>;
1000
1001/// load/store left/right
1002let Predicates = [NotInMicroMips] in {
1003def LWL : LoadLeftRight<"lwl", MipsLWL, GPR32Opnd, II_LWL>, LW_FM<0x22>;
1004def LWR : LoadLeftRight<"lwr", MipsLWR, GPR32Opnd, II_LWR>, LW_FM<0x26>;
1005def SWL : StoreLeftRight<"swl", MipsSWL, GPR32Opnd, II_SWL>, LW_FM<0x2a>;
1006def SWR : StoreLeftRight<"swr", MipsSWR, GPR32Opnd, II_SWR>, LW_FM<0x2e>;
1007}
1008
1009def SYNC : MMRel, SYNC_FT<"sync">, SYNC_FM;
1010def TEQ : MMRel, TEQ_FT<"teq", GPR32Opnd>, TEQ_FM<0x34>;
1011def TGE : MMRel, TEQ_FT<"tge", GPR32Opnd>, TEQ_FM<0x30>;
1012def TGEU : MMRel, TEQ_FT<"tgeu", GPR32Opnd>, TEQ_FM<0x31>;
1013def TLT : MMRel, TEQ_FT<"tlt", GPR32Opnd>, TEQ_FM<0x32>;
1014def TLTU : MMRel, TEQ_FT<"tltu", GPR32Opnd>, TEQ_FM<0x33>;
1015def TNE : MMRel, TEQ_FT<"tne", GPR32Opnd>, TEQ_FM<0x36>;
1016
1017def TEQI : MMRel, TEQI_FT<"teqi", GPR32Opnd>, TEQI_FM<0xc>;
1018def TGEI : MMRel, TEQI_FT<"tgei", GPR32Opnd>, TEQI_FM<0x8>;
1019def TGEIU : MMRel, TEQI_FT<"tgeiu", GPR32Opnd>, TEQI_FM<0x9>;
1020def TLTI : MMRel, TEQI_FT<"tlti", GPR32Opnd>, TEQI_FM<0xa>;
1021def TTLTIU : MMRel, TEQI_FT<"tltiu", GPR32Opnd>, TEQI_FM<0xb>;
1022def TNEI : MMRel, TEQI_FT<"tnei", GPR32Opnd>, TEQI_FM<0xe>;
1023
1024def BREAK : MMRel, BRK_FT<"break">, BRK_FM<0xd>;
1025def SYSCALL : MMRel, SYS_FT<"syscall">, SYS_FM<0xc>;
1026def TRAP : TrapBase<BREAK>;
1027
1028def ERET : MMRel, ER_FT<"eret">, ER_FM<0x18>;
1029def DERET : MMRel, ER_FT<"deret">, ER_FM<0x1f>;
1030
1031def EI : MMRel, DEI_FT<"ei", GPR32Opnd>, EI_FM<1>;
1032def DI : MMRel, DEI_FT<"di", GPR32Opnd>, EI_FM<0>;
1033
1034let Predicates = [NotInMicroMips] in {
1035def WAIT : WAIT_FT<"wait">, WAIT_FM;
1036
1037/// Load-linked, Store-conditional
1038def LL : LLBase<"ll", GPR32Opnd>, LW_FM<0x30>;
1039def SC : SCBase<"sc", GPR32Opnd>, LW_FM<0x38>;
1040}
1041
1042/// Jump and Branch Instructions
1043def J       : MMRel, JumpFJ<jmptarget, "j", br, bb, "j">, FJ<2>,
1044              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
1045def JR      : MMRel, IndirectBranch<"jr", GPR32Opnd>, MTLO_FM<8>;
1046def BEQ     : MMRel, CBranch<"beq", brtarget, seteq, GPR32Opnd>, BEQ_FM<4>;
1047def BNE     : MMRel, CBranch<"bne", brtarget, setne, GPR32Opnd>, BEQ_FM<5>;
1048def BGEZ    : MMRel, CBranchZero<"bgez", brtarget, setge, GPR32Opnd>,
1049              BGEZ_FM<1, 1>;
1050def BGTZ    : MMRel, CBranchZero<"bgtz", brtarget, setgt, GPR32Opnd>,
1051              BGEZ_FM<7, 0>;
1052def BLEZ    : MMRel, CBranchZero<"blez", brtarget, setle, GPR32Opnd>,
1053              BGEZ_FM<6, 0>;
1054def BLTZ    : MMRel, CBranchZero<"bltz", brtarget, setlt, GPR32Opnd>,
1055              BGEZ_FM<1, 0>;
1056def B       : UncondBranch<BEQ>;
1057
1058def JAL  : MMRel, JumpLink<"jal", calltarget>, FJ<3>;
1059let Predicates = [NotInMicroMips, HasStdEnc] in {
1060def JALR : JumpLinkReg<"jalr", GPR32Opnd>, JALR_FM;
1061def JALRPseudo : JumpLinkRegPseudo<GPR32Opnd, JALR, RA>;
1062}
1063def JALX  : JumpLink<"jalx", calltarget>, FJ<0x1D>;
1064def BGEZAL : MMRel, BGEZAL_FT<"bgezal", brtarget, GPR32Opnd>, BGEZAL_FM<0x11>;
1065def BLTZAL : MMRel, BGEZAL_FT<"bltzal", brtarget, GPR32Opnd>, BGEZAL_FM<0x10>;
1066def BAL_BR : BAL_BR_Pseudo<BGEZAL>;
1067def TAILCALL : TailCall<J>;
1068def TAILCALL_R : TailCallReg<GPR32Opnd, JR>;
1069
1070def RET : MMRel, RetBase<"ret", GPR32Opnd>, MTLO_FM<8>;
1071
1072// Exception handling related node and instructions.
1073// The conversion sequence is:
1074// ISD::EH_RETURN -> MipsISD::EH_RETURN ->
1075// MIPSeh_return -> (stack change + indirect branch)
1076//
1077// MIPSeh_return takes the place of regular return instruction
1078// but takes two arguments (V1, V0) which are used for storing
1079// the offset and return address respectively.
1080def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
1081
1082def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET,
1083                      [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
1084
1085let Uses = [V0, V1], isTerminator = 1, isReturn = 1, isBarrier = 1 in {
1086  def MIPSeh_return32 : MipsPseudo<(outs), (ins GPR32:$spoff, GPR32:$dst),
1087                                [(MIPSehret GPR32:$spoff, GPR32:$dst)]>;
1088  def MIPSeh_return64 : MipsPseudo<(outs), (ins GPR64:$spoff,
1089                                                GPR64:$dst),
1090                                [(MIPSehret GPR64:$spoff, GPR64:$dst)]>;
1091}
1092
1093/// Multiply and Divide Instructions.
1094def MULT  : MMRel, Mult<"mult", II_MULT, GPR32Opnd, [HI0, LO0]>,
1095            MULT_FM<0, 0x18>;
1096def MULTu : MMRel, Mult<"multu", II_MULTU, GPR32Opnd, [HI0, LO0]>,
1097            MULT_FM<0, 0x19>;
1098def SDIV  : MMRel, Div<"div", II_DIV, GPR32Opnd, [HI0, LO0]>,
1099            MULT_FM<0, 0x1a>;
1100def UDIV  : MMRel, Div<"divu", II_DIVU, GPR32Opnd, [HI0, LO0]>,
1101            MULT_FM<0, 0x1b>;
1102
1103def MTHI : MMRel, MoveToLOHI<"mthi", GPR32Opnd, [HI0]>, MTLO_FM<0x11>;
1104def MTLO : MMRel, MoveToLOHI<"mtlo", GPR32Opnd, [LO0]>, MTLO_FM<0x13>;
1105let Predicates = [NotInMicroMips] in {
1106def MFHI : MMRel, MoveFromLOHI<"mfhi", GPR32Opnd, AC0>, MFLO_FM<0x10>;
1107def MFLO : MMRel, MoveFromLOHI<"mflo", GPR32Opnd, AC0>, MFLO_FM<0x12>;
1108}
1109
1110/// Sign Ext In Register Instructions.
1111def SEB : MMRel, SignExtInReg<"seb", i8, GPR32Opnd, II_SEB>, SEB_FM<0x10, 0x20>;
1112def SEH : MMRel, SignExtInReg<"seh", i16, GPR32Opnd, II_SEH>, SEB_FM<0x18, 0x20>;
1113
1114/// Count Leading
1115def CLZ : MMRel, CountLeading0<"clz", GPR32Opnd>, CLO_FM<0x20>;
1116def CLO : MMRel, CountLeading1<"clo", GPR32Opnd>, CLO_FM<0x21>;
1117
1118/// Word Swap Bytes Within Halfwords
1119def WSBH : MMRel, SubwordSwap<"wsbh", GPR32Opnd>, SEB_FM<2, 0x20>;
1120
1121/// No operation.
1122def NOP : PseudoSE<(outs), (ins), []>, PseudoInstExpansion<(SLL ZERO, ZERO, 0)>;
1123
1124// FrameIndexes are legalized when they are operands from load/store
1125// instructions. The same not happens for stack address copies, so an
1126// add op with mem ComplexPattern is used and the stack address copy
1127// can be matched. It's similar to Sparc LEA_ADDRi
1128def LEA_ADDiu : MMRel, EffectiveAddress<"addiu", GPR32Opnd>, LW_FM<9>;
1129
1130// MADD*/MSUB*
1131def MADD  : MMRel, MArithR<"madd", II_MADD, 1>, MULT_FM<0x1c, 0>;
1132def MADDU : MMRel, MArithR<"maddu", II_MADDU, 1>, MULT_FM<0x1c, 1>;
1133def MSUB  : MMRel, MArithR<"msub", II_MSUB>, MULT_FM<0x1c, 4>;
1134def MSUBU : MMRel, MArithR<"msubu", II_MSUBU>, MULT_FM<0x1c, 5>;
1135
1136let Predicates = [HasStdEnc, NotDSP] in {
1137def PseudoMULT  : MultDivPseudo<MULT, ACC64, GPR32Opnd, MipsMult, II_MULT>;
1138def PseudoMULTu : MultDivPseudo<MULTu, ACC64, GPR32Opnd, MipsMultu, II_MULTU>;
1139def PseudoMFHI : PseudoMFLOHI<GPR32, ACC64, MipsMFHI>;
1140def PseudoMFLO : PseudoMFLOHI<GPR32, ACC64, MipsMFLO>;
1141def PseudoMTLOHI : PseudoMTLOHI<ACC64, GPR32>;
1142def PseudoMADD  : MAddSubPseudo<MADD, MipsMAdd, II_MADD>;
1143def PseudoMADDU : MAddSubPseudo<MADDU, MipsMAddu, II_MADDU>;
1144def PseudoMSUB  : MAddSubPseudo<MSUB, MipsMSub, II_MSUB>;
1145def PseudoMSUBU : MAddSubPseudo<MSUBU, MipsMSubu, II_MSUBU>;
1146}
1147
1148def PseudoSDIV : MultDivPseudo<SDIV, ACC64, GPR32Opnd, MipsDivRem, II_DIV,
1149                               0, 1, 1>;
1150def PseudoUDIV : MultDivPseudo<UDIV, ACC64, GPR32Opnd, MipsDivRemU, II_DIVU,
1151                               0, 1, 1>;
1152
1153def RDHWR : ReadHardware<GPR32Opnd, HWRegsOpnd>, RDHWR_FM;
1154
1155def EXT : MMRel, ExtBase<"ext", GPR32Opnd, uimm5, MipsExt>, EXT_FM<0>;
1156def INS : MMRel, InsBase<"ins", GPR32Opnd, uimm5, MipsIns>, EXT_FM<4>;
1157
1158/// Move Control Registers From/To CPU Registers
1159def MFC0 : MFC3OP<"mfc0", GPR32Opnd>, MFC3OP_FM<0x10, 0>;
1160def MTC0 : MFC3OP<"mtc0", GPR32Opnd>, MFC3OP_FM<0x10, 4>;
1161def MFC2 : MFC3OP<"mfc2", GPR32Opnd>, MFC3OP_FM<0x12, 0>;
1162def MTC2 : MFC3OP<"mtc2", GPR32Opnd>, MFC3OP_FM<0x12, 4>;
1163
1164class Barrier<string asmstr> : InstSE<(outs), (ins), asmstr, [], NoItinerary,
1165                                      FrmOther>;
1166def SSNOP : Barrier<"ssnop">, BARRIER_FM<1>;
1167def EHB : Barrier<"ehb">, BARRIER_FM<3>;
1168def PAUSE : Barrier<"pause">, BARRIER_FM<5>, Requires<[HasMips32r2]>;
1169
1170//===----------------------------------------------------------------------===//
1171// Instruction aliases
1172//===----------------------------------------------------------------------===//
1173def : InstAlias<"move $dst, $src",
1174                (ADDu GPR32Opnd:$dst, GPR32Opnd:$src,ZERO), 1>,
1175      Requires<[NotMips64, NotInMicroMips]>;
1176def : InstAlias<"bal $offset", (BGEZAL ZERO, brtarget:$offset), 0>;
1177def : InstAlias<"addu $rs, $rt, $imm",
1178                (ADDiu GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
1179def : InstAlias<"add $rs, $rt, $imm",
1180                (ADDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
1181def : InstAlias<"and $rs, $rt, $imm",
1182                (ANDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
1183def : InstAlias<"j $rs", (JR GPR32Opnd:$rs), 0>;
1184let Predicates = [NotInMicroMips] in {
1185def : InstAlias<"jalr $rs", (JALR RA, GPR32Opnd:$rs), 0>;
1186}
1187def : InstAlias<"jal $rs", (JALR RA, GPR32Opnd:$rs), 0>;
1188def : InstAlias<"jal $rd,$rs", (JALR GPR32Opnd:$rd, GPR32Opnd:$rs), 0>;
1189def : InstAlias<"not $rt, $rs",
1190                (NOR GPR32Opnd:$rt, GPR32Opnd:$rs, ZERO), 0>;
1191def : InstAlias<"neg $rt, $rs",
1192                (SUB GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>;
1193def : InstAlias<"negu $rt, $rs",
1194                (SUBu GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>;
1195def : InstAlias<"slt $rs, $rt, $imm",
1196                (SLTi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
1197def : InstAlias<"xor $rs, $rt, $imm",
1198                (XORi GPR32Opnd:$rs, GPR32Opnd:$rt, uimm16:$imm), 0>;
1199def : InstAlias<"or $rs, $rt, $imm",
1200                (ORi GPR32Opnd:$rs, GPR32Opnd:$rt, uimm16:$imm), 0>;
1201def : InstAlias<"nop", (SLL ZERO, ZERO, 0), 1>;
1202def : InstAlias<"mfc0 $rt, $rd", (MFC0 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
1203def : InstAlias<"mtc0 $rt, $rd", (MTC0 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
1204def : InstAlias<"mfc2 $rt, $rd", (MFC2 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
1205def : InstAlias<"mtc2 $rt, $rd", (MTC2 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
1206def : InstAlias<"b $offset", (BEQ ZERO, ZERO, brtarget:$offset), 0>;
1207def : InstAlias<"bnez $rs,$offset",
1208                (BNE GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>;
1209def : InstAlias<"beqz $rs,$offset",
1210                (BEQ GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>;
1211def : InstAlias<"syscall", (SYSCALL 0), 1>;
1212
1213def : InstAlias<"break $imm", (BREAK uimm10:$imm, 0), 1>;
1214def : InstAlias<"break", (BREAK 0, 0), 1>;
1215def : InstAlias<"ei", (EI ZERO), 1>;
1216def : InstAlias<"di", (DI ZERO), 1>;
1217
1218def  : InstAlias<"teq $rs, $rt", (TEQ GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1219def  : InstAlias<"tge $rs, $rt", (TGE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1220def  : InstAlias<"tgeu $rs, $rt", (TGEU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1221def  : InstAlias<"tlt $rs, $rt", (TLT GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1222def  : InstAlias<"tltu $rs, $rt", (TLTU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1223def  : InstAlias<"tne $rs, $rt", (TNE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1224def : InstAlias<"sub, $rd, $rs, $imm",
1225                (ADDi GPR32Opnd:$rd, GPR32Opnd:$rs, InvertedImOperand:$imm)>;
1226def : InstAlias<"subu, $rd, $rs, $imm",
1227                (ADDiu GPR32Opnd:$rd, GPR32Opnd:$rs, InvertedImOperand:$imm)>;
1228
1229//===----------------------------------------------------------------------===//
1230// Assembler Pseudo Instructions
1231//===----------------------------------------------------------------------===//
1232
1233class LoadImm32< string instr_asm, Operand Od, RegisterOperand RO> :
1234  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1235                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1236def LoadImm32Reg : LoadImm32<"li", uimm5, GPR32Opnd>;
1237
1238class LoadAddress<string instr_asm, Operand MemOpnd, RegisterOperand RO> :
1239  MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr),
1240                     !strconcat(instr_asm, "\t$rt, $addr")> ;
1241def LoadAddr32Reg : LoadAddress<"la", mem, GPR32Opnd>;
1242
1243class LoadAddressImm<string instr_asm, Operand Od, RegisterOperand RO> :
1244  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1245                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1246def LoadAddr32Imm : LoadAddressImm<"la", uimm5, GPR32Opnd>;
1247
1248//===----------------------------------------------------------------------===//
1249//  Arbitrary patterns that map to one or more instructions
1250//===----------------------------------------------------------------------===//
1251
1252// Load/store pattern templates.
1253class LoadRegImmPat<Instruction LoadInst, ValueType ValTy, PatFrag Node> :
1254  MipsPat<(ValTy (Node addrRegImm:$a)), (LoadInst addrRegImm:$a)>;
1255
1256class StoreRegImmPat<Instruction StoreInst, ValueType ValTy> :
1257  MipsPat<(store ValTy:$v, addrRegImm:$a), (StoreInst ValTy:$v, addrRegImm:$a)>;
1258
1259// Small immediates
1260def : MipsPat<(i32 immSExt16:$in),
1261              (ADDiu ZERO, imm:$in)>;
1262def : MipsPat<(i32 immZExt16:$in),
1263              (ORi ZERO, imm:$in)>;
1264def : MipsPat<(i32 immLow16Zero:$in),
1265              (LUi (HI16 imm:$in))>;
1266
1267// Arbitrary immediates
1268def : MipsPat<(i32 imm:$imm),
1269          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1270
1271// Carry MipsPatterns
1272def : MipsPat<(subc GPR32:$lhs, GPR32:$rhs),
1273              (SUBu GPR32:$lhs, GPR32:$rhs)>;
1274let Predicates = [HasStdEnc, NotDSP] in {
1275  def : MipsPat<(addc GPR32:$lhs, GPR32:$rhs),
1276                (ADDu GPR32:$lhs, GPR32:$rhs)>;
1277  def : MipsPat<(addc  GPR32:$src, immSExt16:$imm),
1278                (ADDiu GPR32:$src, imm:$imm)>;
1279}
1280
1281// Call
1282def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1283              (JAL tglobaladdr:$dst)>;
1284def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1285              (JAL texternalsym:$dst)>;
1286//def : MipsPat<(MipsJmpLink GPR32:$dst),
1287//              (JALR GPR32:$dst)>;
1288
1289// Tail call
1290def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1291              (TAILCALL tglobaladdr:$dst)>;
1292def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1293              (TAILCALL texternalsym:$dst)>;
1294// hi/lo relocs
1295def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1296def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1297def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1298def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1299def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1300def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1301
1302def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1303def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1304def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1305def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1306def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1307def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1308
1309def : MipsPat<(add GPR32:$hi, (MipsLo tglobaladdr:$lo)),
1310              (ADDiu GPR32:$hi, tglobaladdr:$lo)>;
1311def : MipsPat<(add GPR32:$hi, (MipsLo tblockaddress:$lo)),
1312              (ADDiu GPR32:$hi, tblockaddress:$lo)>;
1313def : MipsPat<(add GPR32:$hi, (MipsLo tjumptable:$lo)),
1314              (ADDiu GPR32:$hi, tjumptable:$lo)>;
1315def : MipsPat<(add GPR32:$hi, (MipsLo tconstpool:$lo)),
1316              (ADDiu GPR32:$hi, tconstpool:$lo)>;
1317def : MipsPat<(add GPR32:$hi, (MipsLo tglobaltlsaddr:$lo)),
1318              (ADDiu GPR32:$hi, tglobaltlsaddr:$lo)>;
1319
1320// gp_rel relocs
1321def : MipsPat<(add GPR32:$gp, (MipsGPRel tglobaladdr:$in)),
1322              (ADDiu GPR32:$gp, tglobaladdr:$in)>;
1323def : MipsPat<(add GPR32:$gp, (MipsGPRel tconstpool:$in)),
1324              (ADDiu GPR32:$gp, tconstpool:$in)>;
1325
1326// wrapper_pic
1327class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1328      MipsPat<(MipsWrapper RC:$gp, node:$in),
1329              (ADDiuOp RC:$gp, node:$in)>;
1330
1331def : WrapperPat<tglobaladdr, ADDiu, GPR32>;
1332def : WrapperPat<tconstpool, ADDiu, GPR32>;
1333def : WrapperPat<texternalsym, ADDiu, GPR32>;
1334def : WrapperPat<tblockaddress, ADDiu, GPR32>;
1335def : WrapperPat<tjumptable, ADDiu, GPR32>;
1336def : WrapperPat<tglobaltlsaddr, ADDiu, GPR32>;
1337
1338// Mips does not have "not", so we expand our way
1339def : MipsPat<(not GPR32:$in),
1340              (NOR GPR32Opnd:$in, ZERO)>;
1341
1342// extended loads
1343let Predicates = [HasStdEnc] in {
1344  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1345  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1346  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1347}
1348
1349// peepholes
1350let Predicates = [HasStdEnc] in
1351def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1352
1353// brcond patterns
1354multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1355                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1356                      Instruction SLTiuOp, Register ZEROReg> {
1357def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1358              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1359def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1360              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1361
1362def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1363              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1364def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1365              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1366def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1367              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1368def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1369              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1370def : MipsPat<(brcond (i32 (setgt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
1371              (BEQ (SLTiOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;
1372def : MipsPat<(brcond (i32 (setugt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
1373              (BEQ (SLTiuOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;
1374
1375def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1376              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1377def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1378              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1379
1380def : MipsPat<(brcond RC:$cond, bb:$dst),
1381              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1382}
1383
1384defm : BrcondPats<GPR32, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1385
1386def : MipsPat<(brcond (i32 (setlt i32:$lhs, 1)), bb:$dst),
1387              (BLEZ i32:$lhs, bb:$dst)>;
1388def : MipsPat<(brcond (i32 (setgt i32:$lhs, -1)), bb:$dst),
1389              (BGEZ i32:$lhs, bb:$dst)>;
1390
1391// setcc patterns
1392multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1393                     Instruction SLTuOp, Register ZEROReg> {
1394  def : MipsPat<(seteq RC:$lhs, 0),
1395                (SLTiuOp RC:$lhs, 1)>;
1396  def : MipsPat<(setne RC:$lhs, 0),
1397                (SLTuOp ZEROReg, RC:$lhs)>;
1398  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1399                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1400  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1401                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1402}
1403
1404multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1405  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1406                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1407  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1408                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1409}
1410
1411multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1412  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1413                (SLTOp RC:$rhs, RC:$lhs)>;
1414  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1415                (SLTuOp RC:$rhs, RC:$lhs)>;
1416}
1417
1418multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1419  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1420                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1421  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1422                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1423}
1424
1425multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1426                        Instruction SLTiuOp> {
1427  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1428                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1429  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1430                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1431}
1432
1433defm : SeteqPats<GPR32, SLTiu, XOR, SLTu, ZERO>;
1434defm : SetlePats<GPR32, SLT, SLTu>;
1435defm : SetgtPats<GPR32, SLT, SLTu>;
1436defm : SetgePats<GPR32, SLT, SLTu>;
1437defm : SetgeImmPats<GPR32, SLTi, SLTiu>;
1438
1439// bswap pattern
1440def : MipsPat<(bswap GPR32:$rt), (ROTR (WSBH GPR32:$rt), 16)>;
1441
1442// Load halfword/word patterns.
1443let AddedComplexity = 40 in {
1444  let Predicates = [HasStdEnc] in {
1445    def : LoadRegImmPat<LBu, i32, zextloadi8>;
1446    def : LoadRegImmPat<LH, i32, sextloadi16>;
1447    def : LoadRegImmPat<LW, i32, load>;
1448  }
1449}
1450
1451//===----------------------------------------------------------------------===//
1452// Floating Point Support
1453//===----------------------------------------------------------------------===//
1454
1455include "MipsInstrFPU.td"
1456include "Mips64InstrInfo.td"
1457include "MipsCondMov.td"
1458
1459//
1460// Mips16
1461
1462include "Mips16InstrFormats.td"
1463include "Mips16InstrInfo.td"
1464
1465// DSP
1466include "MipsDSPInstrFormats.td"
1467include "MipsDSPInstrInfo.td"
1468
1469// MSA
1470include "MipsMSAInstrFormats.td"
1471include "MipsMSAInstrInfo.td"
1472
1473// Micromips
1474include "MicroMipsInstrFormats.td"
1475include "MicroMipsInstrInfo.td"
1476include "MicroMipsInstrFPU.td"
1477