MipsInstrInfo.td revision 72e9b6aeb48d9496bac9db8b02c88a618b464588
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
27                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
28                                          SDTCisSameAs<1, 2>,
29                                          SDTCisSameAs<2, 3>]>;
30def SDT_MipsDivRem       : SDTypeProfile<0, 2,
31                                         [SDTCisInt<0>,
32                                          SDTCisSameAs<0, 1>]>;
33
34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
35
36def SDT_MipsDynAlloc    : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>,
37                                               SDTCisSameAs<0, 1>]>;
38def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
39
40def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
42def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
43                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
44                                   SDTCisSameAs<0, 4>]>;
45
46def SDTMipsLoadLR  : SDTypeProfile<1, 2,
47                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
48                                    SDTCisSameAs<0, 2>]>;
49
50// Call
51def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
52                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
53                          SDNPVariadic]>;
54
55// Hi and Lo nodes are used to handle global addresses. Used on
56// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
57// static model. (nothing to do with Mips Registers Hi and Lo)
58def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
59def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
60def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
61
62// TlsGd node is used to handle General Dynamic TLS
63def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
64
65// TprelHi and TprelLo nodes are used to handle Local Exec TLS
66def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
67def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
68
69// Thread pointer
70def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
71
72// Return
73def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue]>;
74
75// These are target-independent nodes, but have target-specific formats.
76def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
77                           [SDNPHasChain, SDNPOutGlue]>;
78def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
79                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
80
81// MAdd*/MSub* nodes
82def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
83                           [SDNPOptInGlue, SDNPOutGlue]>;
84def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
85                           [SDNPOptInGlue, SDNPOutGlue]>;
86def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
87                           [SDNPOptInGlue, SDNPOutGlue]>;
88def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
89                           [SDNPOptInGlue, SDNPOutGlue]>;
90
91// DivRem(u) nodes
92def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
93                           [SDNPOutGlue]>;
94def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
95                           [SDNPOutGlue]>;
96
97// Target constant nodes that are not part of any isel patterns and remain
98// unchanged can cause instructions with illegal operands to be emitted.
99// Wrapper node patterns give the instruction selector a chance to replace
100// target constant nodes that would otherwise remain unchanged with ADDiu
101// nodes. Without these wrapper node patterns, the following conditional move
102// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
103// compiled:
104//  movn  %got(d)($gp), %got(c)($gp), $4
105// This instruction is illegal since movn can take only register operands.
106
107def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
108
109// Pointer to dynamically allocated stack area.
110def MipsDynAlloc  : SDNode<"MipsISD::DynAlloc", SDT_MipsDynAlloc,
111                           [SDNPHasChain, SDNPInGlue]>;
112
113def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain]>;
114
115def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
116def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
117
118def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
119                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
120def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
121                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
122def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
123                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
124def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
125                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
126def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
127                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
128def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
129                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
130def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
131                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
132def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
133                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
134
135//===----------------------------------------------------------------------===//
136// Mips Instruction Predicate Definitions.
137//===----------------------------------------------------------------------===//
138def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
139                      AssemblerPredicate<"FeatureSEInReg">;
140def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
141                      AssemblerPredicate<"FeatureBitCount">;
142def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
143                      AssemblerPredicate<"FeatureSwap">;
144def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
145                      AssemblerPredicate<"FeatureCondMov">;
146def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
147                      AssemblerPredicate<"FeatureMips32">;
148def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
149                      AssemblerPredicate<"FeatureMips32r2">;
150def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
151                      AssemblerPredicate<"FeatureMips64">;
152def HasMips32r2Or64 : Predicate<"Subtarget.hasMips32r2Or64()">,
153                      AssemblerPredicate<"FeatureMips32r2,FeatureMips64">;
154def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
155                      AssemblerPredicate<"!FeatureMips64">;
156def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
157                      AssemblerPredicate<"FeatureMips64r2">;
158def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
159                      AssemblerPredicate<"FeatureN64">;
160def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
161                      AssemblerPredicate<"!FeatureN64">;
162def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
163                      AssemblerPredicate<"FeatureMips16">;
164def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
165                      AssemblerPredicate<"FeatureMips32">;
166def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
167                      AssemblerPredicate<"FeatureMips32">;
168def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
169                      AssemblerPredicate<"FeatureMips32">;
170def HasStandardEncoding : Predicate<"Subtarget.hasStandardEncoding()">,
171                          AssemblerPredicate<"!FeatureMips16">;
172
173class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
174  let Predicates = [HasStandardEncoding];
175}
176
177//===----------------------------------------------------------------------===//
178// Instruction format superclass
179//===----------------------------------------------------------------------===//
180
181include "MipsInstrFormats.td"
182
183//===----------------------------------------------------------------------===//
184// Mips Operand, Complex Patterns and Transformations Definitions.
185//===----------------------------------------------------------------------===//
186
187// Instruction operand types
188def jmptarget   : Operand<OtherVT> {
189  let EncoderMethod = "getJumpTargetOpValue";
190}
191def brtarget    : Operand<OtherVT> {
192  let EncoderMethod = "getBranchTargetOpValue";
193  let OperandType = "OPERAND_PCREL";
194  let DecoderMethod = "DecodeBranchTarget";
195}
196def calltarget  : Operand<iPTR> {
197  let EncoderMethod = "getJumpTargetOpValue";
198}
199def calltarget64: Operand<i64>;
200def simm16      : Operand<i32> {
201  let DecoderMethod= "DecodeSimm16";
202}
203def simm16_64   : Operand<i64>;
204def shamt       : Operand<i32>;
205
206// Unsigned Operand
207def uimm16      : Operand<i32> {
208  let PrintMethod = "printUnsignedImm";
209}
210
211def MipsMemAsmOperand : AsmOperandClass {
212  let Name = "Mem";
213  let ParserMethod = "parseMemOperand";
214}
215
216// Address operand
217def mem : Operand<i32> {
218  let PrintMethod = "printMemOperand";
219  let MIOperandInfo = (ops CPURegs, simm16);
220  let EncoderMethod = "getMemEncoding";
221  let ParserMatchClass = MipsMemAsmOperand;
222}
223
224def mem64 : Operand<i64> {
225  let PrintMethod = "printMemOperand";
226  let MIOperandInfo = (ops CPU64Regs, simm16_64);
227  let EncoderMethod = "getMemEncoding";
228  let ParserMatchClass = MipsMemAsmOperand;
229}
230
231def mem_ea : Operand<i32> {
232  let PrintMethod = "printMemOperandEA";
233  let MIOperandInfo = (ops CPURegs, simm16);
234  let EncoderMethod = "getMemEncoding";
235}
236
237def mem_ea_64 : Operand<i64> {
238  let PrintMethod = "printMemOperandEA";
239  let MIOperandInfo = (ops CPU64Regs, simm16_64);
240  let EncoderMethod = "getMemEncoding";
241}
242
243// size operand of ext instruction
244def size_ext : Operand<i32> {
245  let EncoderMethod = "getSizeExtEncoding";
246  let DecoderMethod = "DecodeExtSize";
247}
248
249// size operand of ins instruction
250def size_ins : Operand<i32> {
251  let EncoderMethod = "getSizeInsEncoding";
252  let DecoderMethod = "DecodeInsSize";
253}
254
255// Transformation Function - get the lower 16 bits.
256def LO16 : SDNodeXForm<imm, [{
257  return getImm(N, N->getZExtValue() & 0xFFFF);
258}]>;
259
260// Transformation Function - get the higher 16 bits.
261def HI16 : SDNodeXForm<imm, [{
262  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
263}]>;
264
265// Node immediate fits as 16-bit sign extended on target immediate.
266// e.g. addi, andi
267def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
268
269// Node immediate fits as 16-bit zero extended on target immediate.
270// The LO16 param means that only the lower 16 bits of the node
271// immediate are caught.
272// e.g. addiu, sltiu
273def immZExt16  : PatLeaf<(imm), [{
274  if (N->getValueType(0) == MVT::i32)
275    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
276  else
277    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
278}], LO16>;
279
280// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
281def immLow16Zero : PatLeaf<(imm), [{
282  int64_t Val = N->getSExtValue();
283  return isInt<32>(Val) && !(Val & 0xffff);
284}]>;
285
286// shamt field must fit in 5 bits.
287def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
288
289// Mips Address Mode! SDNode frameindex could possibily be a match
290// since load and store instructions from stack used it.
291def addr :
292  ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
293
294//===----------------------------------------------------------------------===//
295// Pattern fragment for load/store
296//===----------------------------------------------------------------------===//
297class UnalignedLoad<PatFrag Node> :
298  PatFrag<(ops node:$ptr), (Node node:$ptr), [{
299  LoadSDNode *LD = cast<LoadSDNode>(N);
300  return LD->getMemoryVT().getSizeInBits()/8 > LD->getAlignment();
301}]>;
302
303class AlignedLoad<PatFrag Node> :
304  PatFrag<(ops node:$ptr), (Node node:$ptr), [{
305  LoadSDNode *LD = cast<LoadSDNode>(N);
306  return LD->getMemoryVT().getSizeInBits()/8 <= LD->getAlignment();
307}]>;
308
309class UnalignedStore<PatFrag Node> :
310  PatFrag<(ops node:$val, node:$ptr), (Node node:$val, node:$ptr), [{
311  StoreSDNode *SD = cast<StoreSDNode>(N);
312  return SD->getMemoryVT().getSizeInBits()/8 > SD->getAlignment();
313}]>;
314
315class AlignedStore<PatFrag Node> :
316  PatFrag<(ops node:$val, node:$ptr), (Node node:$val, node:$ptr), [{
317  StoreSDNode *SD = cast<StoreSDNode>(N);
318  return SD->getMemoryVT().getSizeInBits()/8 <= SD->getAlignment();
319}]>;
320
321// Load/Store PatFrags.
322def sextloadi16_a   : AlignedLoad<sextloadi16>;
323def zextloadi16_a   : AlignedLoad<zextloadi16>;
324def extloadi16_a    : AlignedLoad<extloadi16>;
325def load_a          : AlignedLoad<load>;
326def sextloadi32_a   : AlignedLoad<sextloadi32>;
327def zextloadi32_a   : AlignedLoad<zextloadi32>;
328def extloadi32_a    : AlignedLoad<extloadi32>;
329def truncstorei16_a : AlignedStore<truncstorei16>;
330def store_a         : AlignedStore<store>;
331def truncstorei32_a : AlignedStore<truncstorei32>;
332def sextloadi16_u   : UnalignedLoad<sextloadi16>;
333def zextloadi16_u   : UnalignedLoad<zextloadi16>;
334def extloadi16_u    : UnalignedLoad<extloadi16>;
335def load_u          : UnalignedLoad<load>;
336def sextloadi32_u   : UnalignedLoad<sextloadi32>;
337def zextloadi32_u   : UnalignedLoad<zextloadi32>;
338def extloadi32_u    : UnalignedLoad<extloadi32>;
339def truncstorei16_u : UnalignedStore<truncstorei16>;
340def store_u         : UnalignedStore<store>;
341def truncstorei32_u : UnalignedStore<truncstorei32>;
342
343//===----------------------------------------------------------------------===//
344// Instructions specific format
345//===----------------------------------------------------------------------===//
346
347// Arithmetic and logical instructions with 3 register operands.
348class ArithLogicR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
349                  InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
350  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
351     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
352     [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], itin> {
353  let shamt = 0;
354  let isCommutable = isComm;
355  let isReMaterializable = 1;
356}
357
358class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm,
359                    InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
360  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
361     !strconcat(instr_asm, "\t$rd, $rs, $rt"), [], itin> {
362  let shamt = 0;
363  let isCommutable = isComm;
364}
365
366// Arithmetic and logical instructions with 2 register operands.
367class ArithLogicI<bits<6> op, string instr_asm, SDNode OpNode,
368                  Operand Od, PatLeaf imm_type, RegisterClass RC> :
369  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
370     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
371     [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu> {
372  let isReMaterializable = 1;
373}
374
375class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode,
376                     Operand Od, PatLeaf imm_type, RegisterClass RC> :
377  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
378     !strconcat(instr_asm, "\t$rt, $rs, $imm16"), [], IIAlu>;
379
380// Arithmetic Multiply ADD/SUB
381let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
382class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
383  FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
384     !strconcat(instr_asm, "\t$rs, $rt"),
385     [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
386  let rd = 0;
387  let shamt = 0;
388  let isCommutable = isComm;
389}
390
391//  Logical
392class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
393  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
394     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
395     [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> {
396  let shamt = 0;
397  let isCommutable = 1;
398}
399
400// Shifts
401class shift_rotate_imm<bits<6> func, bits<5> isRotate, string instr_asm,
402                       SDNode OpNode, PatFrag PF, Operand ImmOpnd,
403                       RegisterClass RC>:
404  FR<0x00, func, (outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
405     !strconcat(instr_asm, "\t$rd, $rt, $shamt"),
406     [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu> {
407  let rs = isRotate;
408}
409
410// 32-bit shift instructions.
411class shift_rotate_imm32<bits<6> func, bits<5> isRotate, string instr_asm,
412                         SDNode OpNode>:
413  shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt, CPURegs>;
414
415class shift_rotate_reg<bits<6> func, bits<5> isRotate, string instr_asm,
416                       SDNode OpNode, RegisterClass RC>:
417  FR<0x00, func, (outs RC:$rd), (ins CPURegs:$rs, RC:$rt),
418     !strconcat(instr_asm, "\t$rd, $rt, $rs"),
419     [(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu> {
420  let shamt = isRotate;
421}
422
423// Load Upper Imediate
424class LoadUpper<bits<6> op, string instr_asm, RegisterClass RC, Operand Imm>:
425  FI<op, (outs RC:$rt), (ins Imm:$imm16),
426     !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu> {
427  let rs = 0;
428  let neverHasSideEffects = 1;
429  let isReMaterializable = 1;
430}
431
432class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
433          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
434  bits<21> addr;
435  let Inst{25-21} = addr{20-16};
436  let Inst{15-0}  = addr{15-0};
437  let DecoderMethod = "DecodeMem";
438}
439
440// Memory Load/Store
441let canFoldAsLoad = 1 in
442class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
443            Operand MemOpnd, bit Pseudo>:
444  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
445     !strconcat(instr_asm, "\t$rt, $addr"),
446     [(set RC:$rt, (OpNode addr:$addr))], IILoad> {
447  let isPseudo = Pseudo;
448}
449
450class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
451             Operand MemOpnd, bit Pseudo>:
452  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
453     !strconcat(instr_asm, "\t$rt, $addr"),
454     [(OpNode RC:$rt, addr:$addr)], IIStore> {
455  let isPseudo = Pseudo;
456}
457
458// 32-bit load.
459multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
460                   bit Pseudo = 0> {
461  def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
462               Requires<[NotN64, HasStandardEncoding]>;
463  def _P8    : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
464               Requires<[IsN64, HasStandardEncoding]> {
465    let DecoderNamespace = "Mips64";
466    let isCodeGenOnly = 1;
467  }
468}
469
470// 64-bit load.
471multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
472                   bit Pseudo = 0> {
473  def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
474               Requires<[NotN64, HasStandardEncoding]>;
475  def _P8    : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
476               Requires<[IsN64, HasStandardEncoding]> {
477    let DecoderNamespace = "Mips64";
478    let isCodeGenOnly = 1;
479  }
480}
481
482// 32-bit store.
483multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
484                    bit Pseudo = 0> {
485  def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
486               Requires<[NotN64, HasStandardEncoding]>;
487  def _P8    : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
488               Requires<[IsN64, HasStandardEncoding]> {
489    let DecoderNamespace = "Mips64";
490    let isCodeGenOnly = 1;
491  }
492}
493
494// 64-bit store.
495multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
496                    bit Pseudo = 0> {
497  def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
498               Requires<[NotN64, HasStandardEncoding]>;
499  def _P8    : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
500               Requires<[IsN64, HasStandardEncoding]> {
501    let DecoderNamespace = "Mips64";
502    let isCodeGenOnly = 1;
503  }
504}
505
506// Load/Store Left/Right
507let canFoldAsLoad = 1 in
508class LoadLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
509                    RegisterClass RC, Operand MemOpnd> :
510  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
511       !strconcat(instr_asm, "\t$rt, $addr"),
512       [(set RC:$rt, (OpNode addr:$addr, RC:$src))], IILoad> {
513  string Constraints = "$src = $rt";
514}
515
516class StoreLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
517                     RegisterClass RC, Operand MemOpnd>:
518  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
519       !strconcat(instr_asm, "\t$rt, $addr"), [(OpNode RC:$rt, addr:$addr)],
520       IIStore>;
521
522// 32-bit load left/right.
523multiclass LoadLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
524  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
525               Requires<[NotN64, HasStandardEncoding]>;
526  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
527               Requires<[IsN64, HasStandardEncoding]> {
528    let DecoderNamespace = "Mips64";
529    let isCodeGenOnly = 1;
530  }
531}
532
533// 64-bit load left/right.
534multiclass LoadLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
535  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
536               Requires<[NotN64, HasStandardEncoding]>;
537  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
538               Requires<[IsN64, HasStandardEncoding]> {
539    let DecoderNamespace = "Mips64";
540    let isCodeGenOnly = 1;
541  }
542}
543
544// 32-bit store left/right.
545multiclass StoreLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
546  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
547               Requires<[NotN64, HasStandardEncoding]>;
548  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
549               Requires<[IsN64, HasStandardEncoding]> {
550    let DecoderNamespace = "Mips64";
551    let isCodeGenOnly = 1;
552  }
553}
554
555// 64-bit store left/right.
556multiclass StoreLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
557  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
558               Requires<[NotN64, HasStandardEncoding]>;
559  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
560               Requires<[IsN64, HasStandardEncoding]> {
561    let DecoderNamespace = "Mips64";
562    let isCodeGenOnly = 1;
563  }
564}
565
566// Conditional Branch
567class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>:
568  BranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16),
569             !strconcat(instr_asm, "\t$rs, $rt, $imm16"),
570             [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> {
571  let isBranch = 1;
572  let isTerminator = 1;
573  let hasDelaySlot = 1;
574  let Defs = [AT];
575}
576
577class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op,
578                  RegisterClass RC>:
579  BranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16),
580             !strconcat(instr_asm, "\t$rs, $imm16"),
581             [(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> {
582  let rt = _rt;
583  let isBranch = 1;
584  let isTerminator = 1;
585  let hasDelaySlot = 1;
586  let Defs = [AT];
587}
588
589// SetCC
590class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op,
591              RegisterClass RC>:
592  FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
593     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
594     [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))],
595     IIAlu> {
596  let shamt = 0;
597}
598
599class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od,
600              PatLeaf imm_type, RegisterClass RC>:
601  FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
602     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
603     [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))],
604     IIAlu>;
605
606// Jump
607class JumpFJ<bits<6> op, string instr_asm>:
608  FJ<op, (outs), (ins jmptarget:$target),
609     !strconcat(instr_asm, "\t$target"), [(br bb:$target)], IIBranch> {
610  let isBranch=1;
611  let isTerminator=1;
612  let isBarrier=1;
613  let hasDelaySlot = 1;
614  let Predicates = [RelocStatic, HasStandardEncoding];
615  let DecoderMethod = "DecodeJumpTarget";
616  let Defs = [AT];
617}
618
619// Unconditional branch
620class UncondBranch<bits<6> op, string instr_asm>:
621  BranchBase<op, (outs), (ins brtarget:$imm16),
622             !strconcat(instr_asm, "\t$imm16"), [(br bb:$imm16)], IIBranch> {
623  let rs = 0;
624  let rt = 0;
625  let isBranch = 1;
626  let isTerminator = 1;
627  let isBarrier = 1;
628  let hasDelaySlot = 1;
629  let Predicates = [RelocPIC, HasStandardEncoding];
630  let Defs = [AT];
631}
632
633// Base class for indirect branch and return instruction classes.
634let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
635class JumpFR<RegisterClass RC, list<dag> pattern>:
636  FR<0, 0x8, (outs), (ins RC:$rs), "jr\t$rs", pattern, IIBranch> {
637  let rt = 0;
638  let rd = 0;
639  let shamt = 0;
640}
641
642// Indirect branch
643class IndirectBranch<RegisterClass RC>: JumpFR<RC, [(brind RC:$rs)]> {
644  let isBranch = 1;
645  let isIndirectBranch = 1;
646}
647
648// Return instruction
649class RetBase<RegisterClass RC>: JumpFR<RC, []> {
650  let isReturn = 1;
651  let isCodeGenOnly = 1;
652  let hasCtrlDep = 1;
653  let hasExtraSrcRegAllocReq = 1;
654}
655
656// Jump and Link (Call)
657let isCall=1, hasDelaySlot=1, Defs = [RA] in {
658  class JumpLink<bits<6> op, string instr_asm>:
659    FJ<op, (outs), (ins calltarget:$target),
660       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
661       IIBranch> {
662       let DecoderMethod = "DecodeJumpTarget";
663       }
664
665  class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm,
666                    RegisterClass RC>:
667    FR<op, func, (outs), (ins RC:$rs),
668       !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink RC:$rs)], IIBranch> {
669    let rt = 0;
670    let rd = 31;
671    let shamt = 0;
672  }
673
674  class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>:
675    FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16),
676       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> {
677    let rt = _rt;
678  }
679}
680
681// Mul, Div
682class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
683           RegisterClass RC, list<Register> DefRegs>:
684  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
685     !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
686  let rd = 0;
687  let shamt = 0;
688  let isCommutable = 1;
689  let Defs = DefRegs;
690  let neverHasSideEffects = 1;
691}
692
693class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
694  Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
695
696class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
697          RegisterClass RC, list<Register> DefRegs>:
698  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
699     !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
700     [(op RC:$rs, RC:$rt)], itin> {
701  let rd = 0;
702  let shamt = 0;
703  let Defs = DefRegs;
704}
705
706class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
707  Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
708
709// Move from Hi/Lo
710class MoveFromLOHI<bits<6> func, string instr_asm, RegisterClass RC,
711                   list<Register> UseRegs>:
712  FR<0x00, func, (outs RC:$rd), (ins),
713     !strconcat(instr_asm, "\t$rd"), [], IIHiLo> {
714  let rs = 0;
715  let rt = 0;
716  let shamt = 0;
717  let Uses = UseRegs;
718  let neverHasSideEffects = 1;
719}
720
721class MoveToLOHI<bits<6> func, string instr_asm, RegisterClass RC,
722                 list<Register> DefRegs>:
723  FR<0x00, func, (outs), (ins RC:$rs),
724     !strconcat(instr_asm, "\t$rs"), [], IIHiLo> {
725  let rt = 0;
726  let rd = 0;
727  let shamt = 0;
728  let Defs = DefRegs;
729  let neverHasSideEffects = 1;
730}
731
732class EffectiveAddress<bits<6> opc, string instr_asm, RegisterClass RC, Operand Mem> :
733  FMem<opc, (outs RC:$rt), (ins Mem:$addr),
734     instr_asm, [(set RC:$rt, addr:$addr)], IIAlu> {
735 let isCodeGenOnly = 1;
736}
737
738// Count Leading Ones/Zeros in Word
739class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>:
740  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
741     !strconcat(instr_asm, "\t$rd, $rs"),
742     [(set RC:$rd, (ctlz RC:$rs))], IIAlu>,
743     Requires<[HasBitCount, HasStandardEncoding]> {
744  let shamt = 0;
745  let rt = rd;
746}
747
748class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>:
749  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
750     !strconcat(instr_asm, "\t$rd, $rs"),
751     [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>,
752     Requires<[HasBitCount, HasStandardEncoding]> {
753  let shamt = 0;
754  let rt = rd;
755}
756
757// Sign Extend in Register.
758class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt,
759                   RegisterClass RC>:
760  FR<0x1f, 0x20, (outs RC:$rd), (ins RC:$rt),
761     !strconcat(instr_asm, "\t$rd, $rt"),
762     [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary> {
763  let rs = 0;
764  let shamt = sa;
765  let Predicates = [HasSEInReg, HasStandardEncoding];
766}
767
768// Subword Swap
769class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>:
770  FR<0x1f, func, (outs RC:$rd), (ins RC:$rt),
771     !strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> {
772  let rs = 0;
773  let shamt = sa;
774  let Predicates = [HasSwap, HasStandardEncoding];
775  let neverHasSideEffects = 1;
776}
777
778// Read Hardware
779class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass>
780  : FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd),
781       "rdhwr\t$rt, $rd", [], IIAlu> {
782  let rs = 0;
783  let shamt = 0;
784}
785
786// Ext and Ins
787class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
788  FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz),
789     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
790     [(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> {
791  bits<5> pos;
792  bits<5> sz;
793  let rd = sz;
794  let shamt = pos;
795  let Predicates = [HasMips32r2, HasStandardEncoding];
796}
797
798class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
799  FR<0x1f, _funct, (outs RC:$rt),
800     (ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src),
801     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
802     [(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))],
803     NoItinerary> {
804  bits<5> pos;
805  bits<5> sz;
806  let rd = sz;
807  let shamt = pos;
808  let Predicates = [HasMips32r2, HasStandardEncoding];
809  let Constraints = "$src = $rt";
810}
811
812// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
813class Atomic2Ops<PatFrag Op, string Opstr, RegisterClass DRC,
814                 RegisterClass PRC> :
815  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
816           !strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
817           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
818
819multiclass Atomic2Ops32<PatFrag Op, string Opstr> {
820  def #NAME# : Atomic2Ops<Op, Opstr, CPURegs, CPURegs>,
821                          Requires<[NotN64, HasStandardEncoding]>;
822  def _P8    : Atomic2Ops<Op, Opstr, CPURegs, CPU64Regs>,
823                          Requires<[IsN64, HasStandardEncoding]> {
824    let DecoderNamespace = "Mips64";
825  }
826}
827
828// Atomic Compare & Swap.
829class AtomicCmpSwap<PatFrag Op, string Width, RegisterClass DRC,
830                    RegisterClass PRC> :
831  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
832           !strconcat("atomic_cmp_swap_", Width, "\t$dst, $ptr, $cmp, $swap"),
833           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
834
835multiclass AtomicCmpSwap32<PatFrag Op, string Width>  {
836  def #NAME# : AtomicCmpSwap<Op, Width, CPURegs, CPURegs>,
837                             Requires<[NotN64, HasStandardEncoding]>;
838  def _P8    : AtomicCmpSwap<Op, Width, CPURegs, CPU64Regs>,
839                             Requires<[IsN64, HasStandardEncoding]> {
840    let DecoderNamespace = "Mips64";
841  }
842}
843
844class LLBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
845  FMem<Opc, (outs RC:$rt), (ins Mem:$addr),
846       !strconcat(opstring, "\t$rt, $addr"), [], IILoad> {
847  let mayLoad = 1;
848}
849
850class SCBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
851  FMem<Opc, (outs RC:$dst), (ins RC:$rt, Mem:$addr),
852       !strconcat(opstring, "\t$rt, $addr"), [], IIStore> {
853  let mayStore = 1;
854  let Constraints = "$rt = $dst";
855}
856
857//===----------------------------------------------------------------------===//
858// Pseudo instructions
859//===----------------------------------------------------------------------===//
860
861// Return RA.
862let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
863def RetRA : PseudoSE<(outs), (ins), "", [(MipsRet)]>;
864
865let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
866def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
867                                  "!ADJCALLSTACKDOWN $amt",
868                                  [(callseq_start timm:$amt)]>;
869def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
870                                  "!ADJCALLSTACKUP $amt1",
871                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
872}
873
874// When handling PIC code the assembler needs .cpload and .cprestore
875// directives. If the real instructions corresponding these directives
876// are used, we have the same behavior, but get also a bunch of warnings
877// from the assembler.
878let neverHasSideEffects = 1 in
879def CPRESTORE : PseudoSE<(outs), (ins i32imm:$loc, CPURegs:$gp),
880                         ".cprestore\t$loc", []>;
881
882let usesCustomInserter = 1 in {
883  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8, "load_add_8">;
884  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16, "load_add_16">;
885  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32, "load_add_32">;
886  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8, "load_sub_8">;
887  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16, "load_sub_16">;
888  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32, "load_sub_32">;
889  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8, "load_and_8">;
890  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16, "load_and_16">;
891  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32, "load_and_32">;
892  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8, "load_or_8">;
893  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16, "load_or_16">;
894  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32, "load_or_32">;
895  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8, "load_xor_8">;
896  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16, "load_xor_16">;
897  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32, "load_xor_32">;
898  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8, "load_nand_8">;
899  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16, "load_nand_16">;
900  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32, "load_nand_32">;
901
902  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8, "swap_8">;
903  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16, "swap_16">;
904  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32, "swap_32">;
905
906  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8, "8">;
907  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16, "16">;
908  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32, "32">;
909}
910
911//===----------------------------------------------------------------------===//
912// Instruction definition
913//===----------------------------------------------------------------------===//
914
915//===----------------------------------------------------------------------===//
916// MipsI Instructions
917//===----------------------------------------------------------------------===//
918
919/// Arithmetic Instructions (ALU Immediate)
920def ADDiu   : ArithLogicI<0x09, "addiu", add, simm16, immSExt16, CPURegs>;
921def ADDi    : ArithOverflowI<0x08, "addi", add, simm16, immSExt16, CPURegs>;
922def SLTi    : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>;
923def SLTiu   : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>;
924def ANDi    : ArithLogicI<0x0c, "andi", and, uimm16, immZExt16, CPURegs>;
925def ORi     : ArithLogicI<0x0d, "ori", or, uimm16, immZExt16, CPURegs>;
926def XORi    : ArithLogicI<0x0e, "xori", xor, uimm16, immZExt16, CPURegs>;
927def LUi     : LoadUpper<0x0f, "lui", CPURegs, uimm16>;
928
929/// Arithmetic Instructions (3-Operand, R-Type)
930def ADDu    : ArithLogicR<0x00, 0x21, "addu", add, IIAlu, CPURegs, 1>;
931def SUBu    : ArithLogicR<0x00, 0x23, "subu", sub, IIAlu, CPURegs>;
932def ADD     : ArithOverflowR<0x00, 0x20, "add", IIAlu, CPURegs, 1>;
933def SUB     : ArithOverflowR<0x00, 0x22, "sub", IIAlu, CPURegs>;
934def SLT     : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>;
935def SLTu    : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>;
936def AND     : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPURegs, 1>;
937def OR      : ArithLogicR<0x00, 0x25, "or",  or, IIAlu, CPURegs, 1>;
938def XOR     : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPURegs, 1>;
939def NOR     : LogicNOR<0x00, 0x27, "nor", CPURegs>;
940
941/// Shift Instructions
942def SLL     : shift_rotate_imm32<0x00, 0x00, "sll", shl>;
943def SRL     : shift_rotate_imm32<0x02, 0x00, "srl", srl>;
944def SRA     : shift_rotate_imm32<0x03, 0x00, "sra", sra>;
945def SLLV    : shift_rotate_reg<0x04, 0x00, "sllv", shl, CPURegs>;
946def SRLV    : shift_rotate_reg<0x06, 0x00, "srlv", srl, CPURegs>;
947def SRAV    : shift_rotate_reg<0x07, 0x00, "srav", sra, CPURegs>;
948
949// Rotate Instructions
950let Predicates = [HasMips32r2, HasStandardEncoding] in {
951    def ROTR    : shift_rotate_imm32<0x02, 0x01, "rotr", rotr>;
952    def ROTRV   : shift_rotate_reg<0x06, 0x01, "rotrv", rotr, CPURegs>;
953}
954
955/// Load and Store Instructions
956///  aligned
957defm LB      : LoadM32<0x20, "lb",  sextloadi8>;
958defm LBu     : LoadM32<0x24, "lbu", zextloadi8>;
959defm LH      : LoadM32<0x21, "lh",  sextloadi16_a>;
960defm LHu     : LoadM32<0x25, "lhu", zextloadi16_a>;
961defm LW      : LoadM32<0x23, "lw",  load_a>;
962defm SB      : StoreM32<0x28, "sb", truncstorei8>;
963defm SH      : StoreM32<0x29, "sh", truncstorei16_a>;
964defm SW      : StoreM32<0x2b, "sw", store_a>;
965
966///  unaligned
967defm ULH     : LoadM32<0x21, "ulh",  sextloadi16_u, 1>;
968defm ULHu    : LoadM32<0x25, "ulhu", zextloadi16_u, 1>;
969defm ULW     : LoadM32<0x23, "ulw",  load_u, 1>;
970defm USH     : StoreM32<0x29, "ush", truncstorei16_u, 1>;
971defm USW     : StoreM32<0x2b, "usw", store_u, 1>;
972
973/// load/store left/right
974defm LWL : LoadLeftRightM32<0x22, "lwl", MipsLWL>;
975defm LWR : LoadLeftRightM32<0x26, "lwr", MipsLWR>;
976defm SWL : StoreLeftRightM32<0x2a, "swl", MipsSWL>;
977defm SWR : StoreLeftRightM32<0x2e, "swr", MipsSWR>;
978
979let hasSideEffects = 1 in
980def SYNC : InstSE<(outs), (ins i32imm:$stype), "sync $stype",
981                  [(MipsSync imm:$stype)], NoItinerary, FrmOther>
982{
983  bits<5> stype;
984  let Opcode = 0;
985  let Inst{25-11} = 0;
986  let Inst{10-6} = stype;
987  let Inst{5-0} = 15;
988}
989
990/// Load-linked, Store-conditional
991def LL    : LLBase<0x30, "ll", CPURegs, mem>,
992            Requires<[NotN64, HasStandardEncoding]>;
993def LL_P8 : LLBase<0x30, "ll", CPURegs, mem64>,
994            Requires<[IsN64, HasStandardEncoding]> {
995  let DecoderNamespace = "Mips64";
996}
997
998def SC    : SCBase<0x38, "sc", CPURegs, mem>,
999            Requires<[NotN64, HasStandardEncoding]>;
1000def SC_P8 : SCBase<0x38, "sc", CPURegs, mem64>,
1001            Requires<[IsN64, HasStandardEncoding]> {
1002  let DecoderNamespace = "Mips64";
1003}
1004
1005/// Jump and Branch Instructions
1006def J       : JumpFJ<0x02, "j">;
1007def JR      : IndirectBranch<CPURegs>;
1008def B       : UncondBranch<0x04, "b">;
1009def BEQ     : CBranch<0x04, "beq", seteq, CPURegs>;
1010def BNE     : CBranch<0x05, "bne", setne, CPURegs>;
1011def BGEZ    : CBranchZero<0x01, 1, "bgez", setge, CPURegs>;
1012def BGTZ    : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>;
1013def BLEZ    : CBranchZero<0x06, 0, "blez", setle, CPURegs>;
1014def BLTZ    : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>;
1015
1016let rt = 0, rs = 0, isBranch = 1, isTerminator = 1, isBarrier = 1,
1017    hasDelaySlot = 1, Defs = [RA] in
1018def BAL_BR: FI<0x1, (outs), (ins brtarget:$imm16), "bal\t$imm16", [], IIBranch>;
1019
1020def JAL  : JumpLink<0x03, "jal">;
1021def JALR : JumpLinkReg<0x00, 0x09, "jalr", CPURegs>;
1022def BGEZAL  : BranchLink<"bgezal", 0x11, CPURegs>;
1023def BLTZAL  : BranchLink<"bltzal", 0x10, CPURegs>;
1024
1025def RET : RetBase<CPURegs>;
1026
1027/// Multiply and Divide Instructions.
1028def MULT    : Mult32<0x18, "mult", IIImul>;
1029def MULTu   : Mult32<0x19, "multu", IIImul>;
1030def SDIV    : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
1031def UDIV    : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
1032
1033def MTHI : MoveToLOHI<0x11, "mthi", CPURegs, [HI]>;
1034def MTLO : MoveToLOHI<0x13, "mtlo", CPURegs, [LO]>;
1035def MFHI : MoveFromLOHI<0x10, "mfhi", CPURegs, [HI]>;
1036def MFLO : MoveFromLOHI<0x12, "mflo", CPURegs, [LO]>;
1037
1038/// Sign Ext In Register Instructions.
1039def SEB : SignExtInReg<0x10, "seb", i8, CPURegs>;
1040def SEH : SignExtInReg<0x18, "seh", i16, CPURegs>;
1041
1042/// Count Leading
1043def CLZ : CountLeading0<0x20, "clz", CPURegs>;
1044def CLO : CountLeading1<0x21, "clo", CPURegs>;
1045
1046/// Word Swap Bytes Within Halfwords
1047def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>;
1048
1049/// No operation
1050let addr=0 in
1051  def NOP   : FJ<0, (outs), (ins), "nop", [], IIAlu>;
1052
1053// FrameIndexes are legalized when they are operands from load/store
1054// instructions. The same not happens for stack address copies, so an
1055// add op with mem ComplexPattern is used and the stack address copy
1056// can be matched. It's similar to Sparc LEA_ADDRi
1057def LEA_ADDiu : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
1058
1059// DynAlloc node points to dynamically allocated stack space.
1060// $sp is added to the list of implicitly used registers to prevent dead code
1061// elimination from removing instructions that modify $sp.
1062let Uses = [SP] in
1063def DynAlloc : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
1064
1065// MADD*/MSUB*
1066def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
1067def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
1068def MSUB  : MArithR<4, "msub", MipsMSub>;
1069def MSUBU : MArithR<5, "msubu", MipsMSubu>;
1070
1071// MUL is a assembly macro in the current used ISAs. In recent ISA's
1072// it is a real instruction.
1073def MUL   : ArithLogicR<0x1c, 0x02, "mul", mul, IIImul, CPURegs, 1>,
1074            Requires<[HasMips32, HasStandardEncoding]>;
1075
1076def RDHWR : ReadHardware<CPURegs, HWRegs>;
1077
1078def EXT : ExtBase<0, "ext", CPURegs>;
1079def INS : InsBase<4, "ins", CPURegs>;
1080
1081//===----------------------------------------------------------------------===//
1082//  Arbitrary patterns that map to one or more instructions
1083//===----------------------------------------------------------------------===//
1084
1085// Small immediates
1086def : MipsPat<(i32 immSExt16:$in),
1087              (ADDiu ZERO, imm:$in)>;
1088def : MipsPat<(i32 immZExt16:$in),
1089              (ORi ZERO, imm:$in)>;
1090def : MipsPat<(i32 immLow16Zero:$in),
1091              (LUi (HI16 imm:$in))>;
1092
1093// Arbitrary immediates
1094def : MipsPat<(i32 imm:$imm),
1095          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1096
1097// Carry MipsPatterns
1098def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1099              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1100def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1101              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1102def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1103              (ADDiu CPURegs:$src, imm:$imm)>;
1104
1105// Call
1106def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1107              (JAL tglobaladdr:$dst)>;
1108def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1109              (JAL texternalsym:$dst)>;
1110//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1111//              (JALR CPURegs:$dst)>;
1112
1113// hi/lo relocs
1114def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1115def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1116def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1117def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1118def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1119
1120def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1121def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1122def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1123def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1124def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1125
1126def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1127              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1128def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1129              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1130def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1131              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1132def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1133              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1134def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1135              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1136
1137// gp_rel relocs
1138def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1139              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1140def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1141              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1142
1143// wrapper_pic
1144class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1145      MipsPat<(MipsWrapper RC:$gp, node:$in),
1146              (ADDiuOp RC:$gp, node:$in)>;
1147
1148def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1149def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1150def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1151def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1152def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1153def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1154
1155// Mips does not have "not", so we expand our way
1156def : MipsPat<(not CPURegs:$in),
1157              (NOR CPURegs:$in, ZERO)>;
1158
1159// extended loads
1160let Predicates = [NotN64, HasStandardEncoding] in {
1161  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1162  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1163  def : MipsPat<(i32 (extloadi16_a addr:$src)), (LHu addr:$src)>;
1164  def : MipsPat<(i32 (extloadi16_u addr:$src)), (ULHu addr:$src)>;
1165}
1166let Predicates = [IsN64, HasStandardEncoding] in {
1167  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1168  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1169  def : MipsPat<(i32 (extloadi16_a addr:$src)), (LHu_P8 addr:$src)>;
1170  def : MipsPat<(i32 (extloadi16_u addr:$src)), (ULHu_P8 addr:$src)>;
1171}
1172
1173// peepholes
1174let Predicates = [NotN64, HasStandardEncoding] in {
1175  def : MipsPat<(store_a (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1176  def : MipsPat<(store_u (i32 0), addr:$dst), (USW ZERO, addr:$dst)>;
1177}
1178let Predicates = [IsN64, HasStandardEncoding] in {
1179  def : MipsPat<(store_a (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1180  def : MipsPat<(store_u (i32 0), addr:$dst), (USW_P8 ZERO, addr:$dst)>;
1181}
1182
1183// brcond patterns
1184multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1185                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1186                      Instruction SLTiuOp, Register ZEROReg> {
1187def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1188              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1189def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1190              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1191
1192def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1193              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1194def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1195              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1196def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1197              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1198def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1199              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1200
1201def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1202              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1203def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1204              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1205
1206def : MipsPat<(brcond RC:$cond, bb:$dst),
1207              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1208}
1209
1210defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1211
1212// setcc patterns
1213multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1214                     Instruction SLTuOp, Register ZEROReg> {
1215  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1216                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1217  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1218                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1219}
1220
1221multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1222  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1223                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1224  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1225                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1226}
1227
1228multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1229  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1230                (SLTOp RC:$rhs, RC:$lhs)>;
1231  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1232                (SLTuOp RC:$rhs, RC:$lhs)>;
1233}
1234
1235multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1236  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1237                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1238  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1239                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1240}
1241
1242multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1243                        Instruction SLTiuOp> {
1244  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1245                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1246  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1247                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1248}
1249
1250defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1251defm : SetlePats<CPURegs, SLT, SLTu>;
1252defm : SetgtPats<CPURegs, SLT, SLTu>;
1253defm : SetgePats<CPURegs, SLT, SLTu>;
1254defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1255
1256// select MipsDynAlloc
1257def : MipsPat<(MipsDynAlloc addr:$f), (DynAlloc addr:$f)>;
1258
1259// bswap pattern
1260def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1261
1262//===----------------------------------------------------------------------===//
1263// Floating Point Support
1264//===----------------------------------------------------------------------===//
1265
1266include "MipsInstrFPU.td"
1267include "Mips64InstrInfo.td"
1268include "MipsCondMov.td"
1269
1270//
1271// Mips16
1272
1273include "Mips16InstrFormats.td"
1274include "Mips16InstrInfo.td"
1275