MipsInstrInfo.td revision 9bf571fe2c24305aee6a930ed3b2561f6d4ff237
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
27                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
28                                          SDTCisSameAs<1, 2>,
29                                          SDTCisSameAs<2, 3>]>;
30def SDT_MipsDivRem       : SDTypeProfile<0, 2,
31                                         [SDTCisInt<0>,
32                                          SDTCisSameAs<0, 1>]>;
33
34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
35
36def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
37
38def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
39                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
40def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
42                                   SDTCisSameAs<0, 4>]>;
43
44def SDTMipsLoadLR  : SDTypeProfile<1, 2,
45                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
46                                    SDTCisSameAs<0, 2>]>;
47
48// Call
49def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
50                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
51                          SDNPVariadic]>;
52
53// Tail call
54def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
55                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
56
57// Hi and Lo nodes are used to handle global addresses. Used on
58// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
59// static model. (nothing to do with Mips Registers Hi and Lo)
60def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
61def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
62def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
63
64// TlsGd node is used to handle General Dynamic TLS
65def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
66
67// TprelHi and TprelLo nodes are used to handle Local Exec TLS
68def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
69def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
70
71// Thread pointer
72def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
73
74// Return
75def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue]>;
76
77// These are target-independent nodes, but have target-specific formats.
78def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
79                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
80def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
81                           [SDNPHasChain, SDNPSideEffect,
82                            SDNPOptInGlue, SDNPOutGlue]>;
83
84// MAdd*/MSub* nodes
85def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
86                           [SDNPOptInGlue, SDNPOutGlue]>;
87def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
88                           [SDNPOptInGlue, SDNPOutGlue]>;
89def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
90                           [SDNPOptInGlue, SDNPOutGlue]>;
91def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
92                           [SDNPOptInGlue, SDNPOutGlue]>;
93
94// DivRem(u) nodes
95def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
96                           [SDNPOutGlue]>;
97def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
98                           [SDNPOutGlue]>;
99
100// Target constant nodes that are not part of any isel patterns and remain
101// unchanged can cause instructions with illegal operands to be emitted.
102// Wrapper node patterns give the instruction selector a chance to replace
103// target constant nodes that would otherwise remain unchanged with ADDiu
104// nodes. Without these wrapper node patterns, the following conditional move
105// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
106// compiled:
107//  movn  %got(d)($gp), %got(c)($gp), $4
108// This instruction is illegal since movn can take only register operands.
109
110def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
111
112def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
113
114def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
115def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
116
117def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
118                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
119def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
120                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
121def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
122                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
123def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
124                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
125def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
126                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
127def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
128                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
129def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
130                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
131def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
132                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
133
134//===----------------------------------------------------------------------===//
135// Mips Instruction Predicate Definitions.
136//===----------------------------------------------------------------------===//
137def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
138                      AssemblerPredicate<"FeatureSEInReg">;
139def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
140                      AssemblerPredicate<"FeatureBitCount">;
141def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
142                      AssemblerPredicate<"FeatureSwap">;
143def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
144                      AssemblerPredicate<"FeatureCondMov">;
145def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
146                      AssemblerPredicate<"FeatureFPIdx">;
147def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
148                      AssemblerPredicate<"FeatureMips32">;
149def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
150                      AssemblerPredicate<"FeatureMips32r2">;
151def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
152                      AssemblerPredicate<"FeatureMips64">;
153def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
154                      AssemblerPredicate<"!FeatureMips64">;
155def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
156                      AssemblerPredicate<"FeatureMips64r2">;
157def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
158                      AssemblerPredicate<"FeatureN64">;
159def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
160                      AssemblerPredicate<"!FeatureN64">;
161def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
162                      AssemblerPredicate<"FeatureMips16">;
163def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
164                      AssemblerPredicate<"FeatureMips32">;
165def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
166                      AssemblerPredicate<"FeatureMips32">;
167def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
168                      AssemblerPredicate<"FeatureMips32">;
169def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
170                      AssemblerPredicate<"!FeatureMips16">;
171
172class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
173  let Predicates = [HasStdEnc];
174}
175
176class IsCommutable {
177  bit isCommutable = 1;
178}
179
180class IsBranch {
181  bit isBranch = 1;
182}
183
184class IsReturn {
185  bit isReturn = 1;
186}
187
188class IsCall {
189  bit isCall = 1;
190}
191
192class IsTailCall {
193  bit isCall = 1;
194  bit isTerminator = 1;
195  bit isReturn = 1;
196  bit isBarrier = 1;
197  bit hasExtraSrcRegAllocReq = 1;
198  bit isCodeGenOnly = 1;
199}
200
201class IsAsCheapAsAMove {
202  bit isAsCheapAsAMove = 1;
203}
204
205class NeverHasSideEffects {
206  bit neverHasSideEffects = 1;
207}
208
209//===----------------------------------------------------------------------===//
210// Instruction format superclass
211//===----------------------------------------------------------------------===//
212
213include "MipsInstrFormats.td"
214
215//===----------------------------------------------------------------------===//
216// Mips Operand, Complex Patterns and Transformations Definitions.
217//===----------------------------------------------------------------------===//
218
219// Instruction operand types
220def jmptarget   : Operand<OtherVT> {
221  let EncoderMethod = "getJumpTargetOpValue";
222}
223def brtarget    : Operand<OtherVT> {
224  let EncoderMethod = "getBranchTargetOpValue";
225  let OperandType = "OPERAND_PCREL";
226  let DecoderMethod = "DecodeBranchTarget";
227}
228def calltarget  : Operand<iPTR> {
229  let EncoderMethod = "getJumpTargetOpValue";
230}
231def calltarget64: Operand<i64>;
232def simm16      : Operand<i32> {
233  let DecoderMethod= "DecodeSimm16";
234}
235def simm16_64   : Operand<i64>;
236def shamt       : Operand<i32>;
237
238// Unsigned Operand
239def uimm16      : Operand<i32> {
240  let PrintMethod = "printUnsignedImm";
241}
242
243def MipsMemAsmOperand : AsmOperandClass {
244  let Name = "Mem";
245  let ParserMethod = "parseMemOperand";
246}
247
248// Address operand
249def mem : Operand<i32> {
250  let PrintMethod = "printMemOperand";
251  let MIOperandInfo = (ops CPURegs, simm16);
252  let EncoderMethod = "getMemEncoding";
253  let ParserMatchClass = MipsMemAsmOperand;
254}
255
256def mem64 : Operand<i64> {
257  let PrintMethod = "printMemOperand";
258  let MIOperandInfo = (ops CPU64Regs, simm16_64);
259  let EncoderMethod = "getMemEncoding";
260  let ParserMatchClass = MipsMemAsmOperand;
261}
262
263def mem_ea : Operand<i32> {
264  let PrintMethod = "printMemOperandEA";
265  let MIOperandInfo = (ops CPURegs, simm16);
266  let EncoderMethod = "getMemEncoding";
267}
268
269def mem_ea_64 : Operand<i64> {
270  let PrintMethod = "printMemOperandEA";
271  let MIOperandInfo = (ops CPU64Regs, simm16_64);
272  let EncoderMethod = "getMemEncoding";
273}
274
275// size operand of ext instruction
276def size_ext : Operand<i32> {
277  let EncoderMethod = "getSizeExtEncoding";
278  let DecoderMethod = "DecodeExtSize";
279}
280
281// size operand of ins instruction
282def size_ins : Operand<i32> {
283  let EncoderMethod = "getSizeInsEncoding";
284  let DecoderMethod = "DecodeInsSize";
285}
286
287// Transformation Function - get the lower 16 bits.
288def LO16 : SDNodeXForm<imm, [{
289  return getImm(N, N->getZExtValue() & 0xFFFF);
290}]>;
291
292// Transformation Function - get the higher 16 bits.
293def HI16 : SDNodeXForm<imm, [{
294  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
295}]>;
296
297// Node immediate fits as 16-bit sign extended on target immediate.
298// e.g. addi, andi
299def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
300
301// Node immediate fits as 16-bit zero extended on target immediate.
302// The LO16 param means that only the lower 16 bits of the node
303// immediate are caught.
304// e.g. addiu, sltiu
305def immZExt16  : PatLeaf<(imm), [{
306  if (N->getValueType(0) == MVT::i32)
307    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
308  else
309    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
310}], LO16>;
311
312// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
313def immLow16Zero : PatLeaf<(imm), [{
314  int64_t Val = N->getSExtValue();
315  return isInt<32>(Val) && !(Val & 0xffff);
316}]>;
317
318// shamt field must fit in 5 bits.
319def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
320
321// Mips Address Mode! SDNode frameindex could possibily be a match
322// since load and store instructions from stack used it.
323def addr :
324  ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
325
326//===----------------------------------------------------------------------===//
327// Instructions specific format
328//===----------------------------------------------------------------------===//
329
330/// Move Control Registers From/To CPU Registers
331def MFC0_3OP  : MFC3OP<0x10, 0, (outs CPURegs:$rt),
332                       (ins CPURegs:$rd, uimm16:$sel),"mfc0\t$rt, $rd, $sel">;
333def : InstAlias<"mfc0 $rt, $rd", (MFC0_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
334
335def MTC0_3OP  : MFC3OP<0x10, 4, (outs CPURegs:$rd, uimm16:$sel),
336                       (ins CPURegs:$rt),"mtc0\t$rt, $rd, $sel">;
337def : InstAlias<"mtc0 $rt, $rd", (MTC0_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
338
339def MFC2_3OP  : MFC3OP<0x12, 0, (outs CPURegs:$rt),
340                       (ins CPURegs:$rd, uimm16:$sel),"mfc2\t$rt, $rd, $sel">;
341def : InstAlias<"mfc2 $rt, $rd", (MFC2_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
342
343def MTC2_3OP  : MFC3OP<0x12, 4, (outs CPURegs:$rd, uimm16:$sel),
344                       (ins CPURegs:$rt),"mtc2\t$rt, $rd, $sel">;
345def : InstAlias<"mtc2 $rt, $rd", (MTC2_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
346
347// Arithmetic and logical instructions with 3 register operands.
348class ArithLogicR<string opstr, RegisterClass RC, bit isComm = 0,
349                  InstrItinClass Itin = NoItinerary,
350                  SDPatternOperator OpNode = null_frag>:
351  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
352         !strconcat(opstr, "\t$rd, $rs, $rt"),
353         [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], Itin, FrmR> {
354  let isCommutable = isComm;
355  let isReMaterializable = 1;
356}
357
358// Arithmetic and logical instructions with 2 register operands.
359class ArithLogicI<string opstr, Operand Od, RegisterClass RC,
360                  SDPatternOperator imm_type = null_frag,
361                  SDPatternOperator OpNode = null_frag> :
362  InstSE<(outs RC:$rt), (ins RC:$rs, Od:$imm16),
363         !strconcat(opstr, "\t$rt, $rs, $imm16"),
364         [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu, FrmI> {
365  let isReMaterializable = 1;
366}
367
368// Arithmetic Multiply ADD/SUB
369let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
370class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
371  FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
372     !strconcat(instr_asm, "\t$rs, $rt"),
373     [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
374  let rd = 0;
375  let shamt = 0;
376  let isCommutable = isComm;
377}
378
379//  Logical
380class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
381  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
382     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
383     [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> {
384  let shamt = 0;
385  let isCommutable = 1;
386}
387
388// Shifts
389class shift_rotate_imm<string opstr, PatFrag PF, Operand ImmOpnd,
390                       RegisterClass RC, SDPatternOperator OpNode> :
391  InstSE<(outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
392         !strconcat(opstr, "\t$rd, $rt, $shamt"),
393         [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu, FrmR>;
394
395// 32-bit shift instructions.
396class shift_rotate_imm32<string opstr, SDPatternOperator OpNode = null_frag> :
397  shift_rotate_imm<opstr, immZExt5, shamt, CPURegs, OpNode>;
398
399class shift_rotate_reg<string opstr, SDNode OpNode, RegisterClass RC>:
400  InstSE<(outs RC:$rd), (ins CPURegs:$rs, RC:$rt),
401         !strconcat(opstr, "\t$rd, $rt, $rs"),
402         [(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu, FrmR>;
403
404// Load Upper Imediate
405class LoadUpper<bits<6> op, string instr_asm, RegisterClass RC, Operand Imm>:
406  FI<op, (outs RC:$rt), (ins Imm:$imm16),
407     !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu>, IsAsCheapAsAMove {
408  let rs = 0;
409  let neverHasSideEffects = 1;
410  let isReMaterializable = 1;
411}
412
413class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
414          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
415  bits<21> addr;
416  let Inst{25-21} = addr{20-16};
417  let Inst{15-0}  = addr{15-0};
418  let DecoderMethod = "DecodeMem";
419}
420
421// Memory Load/Store
422let canFoldAsLoad = 1 in
423class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
424            Operand MemOpnd, bit Pseudo>:
425  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
426     !strconcat(instr_asm, "\t$rt, $addr"),
427     [(set RC:$rt, (OpNode addr:$addr))], IILoad> {
428  let isPseudo = Pseudo;
429}
430
431class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
432             Operand MemOpnd, bit Pseudo>:
433  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
434     !strconcat(instr_asm, "\t$rt, $addr"),
435     [(OpNode RC:$rt, addr:$addr)], IIStore> {
436  let isPseudo = Pseudo;
437}
438
439// 32-bit load.
440multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
441                   bit Pseudo = 0> {
442  def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
443               Requires<[NotN64, HasStdEnc]>;
444  def _P8    : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
445               Requires<[IsN64, HasStdEnc]> {
446    let DecoderNamespace = "Mips64";
447    let isCodeGenOnly = 1;
448  }
449}
450
451// 64-bit load.
452multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
453                   bit Pseudo = 0> {
454  def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
455               Requires<[NotN64, HasStdEnc]>;
456  def _P8    : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
457               Requires<[IsN64, HasStdEnc]> {
458    let DecoderNamespace = "Mips64";
459    let isCodeGenOnly = 1;
460  }
461}
462
463// 32-bit store.
464multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
465                    bit Pseudo = 0> {
466  def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
467               Requires<[NotN64, HasStdEnc]>;
468  def _P8    : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
469               Requires<[IsN64, HasStdEnc]> {
470    let DecoderNamespace = "Mips64";
471    let isCodeGenOnly = 1;
472  }
473}
474
475// 64-bit store.
476multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
477                    bit Pseudo = 0> {
478  def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
479               Requires<[NotN64, HasStdEnc]>;
480  def _P8    : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
481               Requires<[IsN64, HasStdEnc]> {
482    let DecoderNamespace = "Mips64";
483    let isCodeGenOnly = 1;
484  }
485}
486
487// Load/Store Left/Right
488let canFoldAsLoad = 1 in
489class LoadLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
490                    RegisterClass RC, Operand MemOpnd> :
491  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
492       !strconcat(instr_asm, "\t$rt, $addr"),
493       [(set RC:$rt, (OpNode addr:$addr, RC:$src))], IILoad> {
494  string Constraints = "$src = $rt";
495}
496
497class StoreLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
498                     RegisterClass RC, Operand MemOpnd>:
499  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
500       !strconcat(instr_asm, "\t$rt, $addr"), [(OpNode RC:$rt, addr:$addr)],
501       IIStore>;
502
503// 32-bit load left/right.
504multiclass LoadLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
505  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
506               Requires<[NotN64, HasStdEnc]>;
507  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
508               Requires<[IsN64, HasStdEnc]> {
509    let DecoderNamespace = "Mips64";
510    let isCodeGenOnly = 1;
511  }
512}
513
514// 64-bit load left/right.
515multiclass LoadLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
516  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
517               Requires<[NotN64, HasStdEnc]>;
518  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
519               Requires<[IsN64, HasStdEnc]> {
520    let DecoderNamespace = "Mips64";
521    let isCodeGenOnly = 1;
522  }
523}
524
525// 32-bit store left/right.
526multiclass StoreLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
527  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
528               Requires<[NotN64, HasStdEnc]>;
529  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
530               Requires<[IsN64, HasStdEnc]> {
531    let DecoderNamespace = "Mips64";
532    let isCodeGenOnly = 1;
533  }
534}
535
536// 64-bit store left/right.
537multiclass StoreLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
538  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
539               Requires<[NotN64, HasStdEnc]>;
540  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
541               Requires<[IsN64, HasStdEnc]> {
542    let DecoderNamespace = "Mips64";
543    let isCodeGenOnly = 1;
544  }
545}
546
547// Conditional Branch
548class CBranch<string opstr, PatFrag cond_op, RegisterClass RC> :
549  InstSE<(outs), (ins RC:$rs, RC:$rt, brtarget:$offset),
550         !strconcat(opstr, "\t$rs, $rt, $offset"),
551         [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$offset)], IIBranch,
552         FrmI> {
553  let isBranch = 1;
554  let isTerminator = 1;
555  let hasDelaySlot = 1;
556  let Defs = [AT];
557}
558
559class CBranchZero<string opstr, PatFrag cond_op, RegisterClass RC> :
560  InstSE<(outs), (ins RC:$rs, brtarget:$offset),
561         !strconcat(opstr, "\t$rs, $offset"),
562         [(brcond (i32 (cond_op RC:$rs, 0)), bb:$offset)], IIBranch, FrmI> {
563  let isBranch = 1;
564  let isTerminator = 1;
565  let hasDelaySlot = 1;
566  let Defs = [AT];
567}
568
569// SetCC
570class SetCC_R<string opstr, PatFrag cond_op, RegisterClass RC> :
571  InstSE<(outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
572         !strconcat(opstr, "\t$rd, $rs, $rt"),
573         [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))], IIAlu, FrmR>;
574
575class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
576              RegisterClass RC>:
577  InstSE<(outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
578         !strconcat(opstr, "\t$rt, $rs, $imm16"),
579         [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))], IIAlu, FrmI>;
580
581// Jump
582class JumpFJ<bits<6> op, DAGOperand opnd, string instr_asm,
583             SDPatternOperator operator, SDPatternOperator targetoperator>:
584  FJ<op, (outs), (ins opnd:$target), !strconcat(instr_asm, "\t$target"),
585     [(operator targetoperator:$target)], IIBranch> {
586  let isTerminator=1;
587  let isBarrier=1;
588  let hasDelaySlot = 1;
589  let DecoderMethod = "DecodeJumpTarget";
590  let Defs = [AT];
591}
592
593// Unconditional branch
594class UncondBranch<string opstr> :
595  InstSE<(outs), (ins brtarget:$offset), !strconcat(opstr, "\t$offset"),
596         [(br bb:$offset)], IIBranch, FrmI> {
597  let isBranch = 1;
598  let isTerminator = 1;
599  let isBarrier = 1;
600  let hasDelaySlot = 1;
601  let Predicates = [RelocPIC, HasStdEnc];
602  let Defs = [AT];
603}
604
605// Base class for indirect branch and return instruction classes.
606let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
607class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
608  FR<0, 0x8, (outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch> {
609  let rt = 0;
610  let rd = 0;
611  let shamt = 0;
612}
613
614// Indirect branch
615class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
616  let isBranch = 1;
617  let isIndirectBranch = 1;
618}
619
620// Return instruction
621class RetBase<RegisterClass RC>: JumpFR<RC> {
622  let isReturn = 1;
623  let isCodeGenOnly = 1;
624  let hasCtrlDep = 1;
625  let hasExtraSrcRegAllocReq = 1;
626}
627
628// Jump and Link (Call)
629let isCall=1, hasDelaySlot=1, Defs = [RA] in {
630  class JumpLink<bits<6> op, string instr_asm>:
631    FJ<op, (outs), (ins calltarget:$target),
632       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
633       IIBranch> {
634       let DecoderMethod = "DecodeJumpTarget";
635       }
636
637  class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm,
638                    RegisterClass RC>:
639    FR<op, func, (outs), (ins RC:$rs),
640       !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink RC:$rs)], IIBranch> {
641    let rt = 0;
642    let rd = 31;
643    let shamt = 0;
644  }
645
646  class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>:
647    FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16),
648       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> {
649    let rt = _rt;
650  }
651}
652
653// Mul, Div
654class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
655           RegisterClass RC, list<Register> DefRegs>:
656  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
657     !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
658  let rd = 0;
659  let shamt = 0;
660  let isCommutable = 1;
661  let Defs = DefRegs;
662  let neverHasSideEffects = 1;
663}
664
665class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
666  Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
667
668class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
669          RegisterClass RC, list<Register> DefRegs>:
670  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
671     !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
672     [(op RC:$rs, RC:$rt)], itin> {
673  let rd = 0;
674  let shamt = 0;
675  let Defs = DefRegs;
676}
677
678class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
679  Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
680
681// Move from Hi/Lo
682class MoveFromLOHI<bits<6> func, string instr_asm, RegisterClass RC,
683                   list<Register> UseRegs>:
684  FR<0x00, func, (outs RC:$rd), (ins),
685     !strconcat(instr_asm, "\t$rd"), [], IIHiLo> {
686  let rs = 0;
687  let rt = 0;
688  let shamt = 0;
689  let Uses = UseRegs;
690  let neverHasSideEffects = 1;
691}
692
693class MoveToLOHI<bits<6> func, string instr_asm, RegisterClass RC,
694                 list<Register> DefRegs>:
695  FR<0x00, func, (outs), (ins RC:$rs),
696     !strconcat(instr_asm, "\t$rs"), [], IIHiLo> {
697  let rt = 0;
698  let rd = 0;
699  let shamt = 0;
700  let Defs = DefRegs;
701  let neverHasSideEffects = 1;
702}
703
704class EffectiveAddress<bits<6> opc, string instr_asm, RegisterClass RC, Operand Mem> :
705  FMem<opc, (outs RC:$rt), (ins Mem:$addr),
706     instr_asm, [(set RC:$rt, addr:$addr)], IIAlu> {
707 let isCodeGenOnly = 1;
708}
709
710// Count Leading Ones/Zeros in Word
711class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>:
712  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
713     !strconcat(instr_asm, "\t$rd, $rs"),
714     [(set RC:$rd, (ctlz RC:$rs))], IIAlu>,
715     Requires<[HasBitCount, HasStdEnc]> {
716  let shamt = 0;
717  let rt = rd;
718}
719
720class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>:
721  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
722     !strconcat(instr_asm, "\t$rd, $rs"),
723     [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>,
724     Requires<[HasBitCount, HasStdEnc]> {
725  let shamt = 0;
726  let rt = rd;
727}
728
729// Sign Extend in Register.
730class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt,
731                   RegisterClass RC>:
732  FR<0x1f, 0x20, (outs RC:$rd), (ins RC:$rt),
733     !strconcat(instr_asm, "\t$rd, $rt"),
734     [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary> {
735  let rs = 0;
736  let shamt = sa;
737  let Predicates = [HasSEInReg, HasStdEnc];
738}
739
740// Subword Swap
741class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>:
742  FR<0x1f, func, (outs RC:$rd), (ins RC:$rt),
743     !strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> {
744  let rs = 0;
745  let shamt = sa;
746  let Predicates = [HasSwap, HasStdEnc];
747  let neverHasSideEffects = 1;
748}
749
750// Read Hardware
751class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass>
752  : FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd),
753       "rdhwr\t$rt, $rd", [], IIAlu> {
754  let rs = 0;
755  let shamt = 0;
756}
757
758// Ext and Ins
759class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
760  FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz),
761     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
762     [(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> {
763  bits<5> pos;
764  bits<5> sz;
765  let rd = sz;
766  let shamt = pos;
767  let Predicates = [HasMips32r2, HasStdEnc];
768}
769
770class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
771  FR<0x1f, _funct, (outs RC:$rt),
772     (ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src),
773     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
774     [(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))],
775     NoItinerary> {
776  bits<5> pos;
777  bits<5> sz;
778  let rd = sz;
779  let shamt = pos;
780  let Predicates = [HasMips32r2, HasStdEnc];
781  let Constraints = "$src = $rt";
782}
783
784// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
785class Atomic2Ops<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
786  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
787           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
788
789multiclass Atomic2Ops32<PatFrag Op> {
790  def #NAME# : Atomic2Ops<Op, CPURegs, CPURegs>, Requires<[NotN64, HasStdEnc]>;
791  def _P8    : Atomic2Ops<Op, CPURegs, CPU64Regs>,
792               Requires<[IsN64, HasStdEnc]> {
793    let DecoderNamespace = "Mips64";
794  }
795}
796
797// Atomic Compare & Swap.
798class AtomicCmpSwap<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
799  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
800           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
801
802multiclass AtomicCmpSwap32<PatFrag Op>  {
803  def #NAME# : AtomicCmpSwap<Op, CPURegs, CPURegs>,
804               Requires<[NotN64, HasStdEnc]>;
805  def _P8    : AtomicCmpSwap<Op, CPURegs, CPU64Regs>,
806                             Requires<[IsN64, HasStdEnc]> {
807    let DecoderNamespace = "Mips64";
808  }
809}
810
811class LLBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
812  FMem<Opc, (outs RC:$rt), (ins Mem:$addr),
813       !strconcat(opstring, "\t$rt, $addr"), [], IILoad> {
814  let mayLoad = 1;
815}
816
817class SCBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
818  FMem<Opc, (outs RC:$dst), (ins RC:$rt, Mem:$addr),
819       !strconcat(opstring, "\t$rt, $addr"), [], IIStore> {
820  let mayStore = 1;
821  let Constraints = "$rt = $dst";
822}
823
824//===----------------------------------------------------------------------===//
825// Pseudo instructions
826//===----------------------------------------------------------------------===//
827
828// Return RA.
829let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
830def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;
831
832let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
833def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
834                                  [(callseq_start timm:$amt)]>;
835def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
836                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
837}
838
839let usesCustomInserter = 1 in {
840  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8>;
841  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16>;
842  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32>;
843  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8>;
844  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16>;
845  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32>;
846  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8>;
847  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16>;
848  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32>;
849  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8>;
850  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16>;
851  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32>;
852  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8>;
853  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16>;
854  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32>;
855  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8>;
856  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16>;
857  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32>;
858
859  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8>;
860  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16>;
861  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32>;
862
863  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8>;
864  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16>;
865  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32>;
866}
867
868//===----------------------------------------------------------------------===//
869// Instruction definition
870//===----------------------------------------------------------------------===//
871
872class LoadImm32< string instr_asm, Operand Od, RegisterClass RC> :
873  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
874                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
875def LoadImm32Reg : LoadImm32<"li", shamt,CPURegs>;
876
877class LoadAddress<string instr_asm, Operand MemOpnd, RegisterClass RC> :
878  MipsAsmPseudoInst<(outs RC:$rt), (ins MemOpnd:$addr),
879                     !strconcat(instr_asm, "\t$rt, $addr")> ;
880def LoadAddr32Reg : LoadAddress<"la", mem, CPURegs>;
881
882class LoadAddressImm<string instr_asm, Operand Od, RegisterClass RC> :
883  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
884                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
885def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegs>;
886
887//===----------------------------------------------------------------------===//
888// MipsI Instructions
889//===----------------------------------------------------------------------===//
890
891/// Arithmetic Instructions (ALU Immediate)
892def ADDiu : ArithLogicI<"addiu", simm16, CPURegs, immSExt16, add>,
893            ADDI_FM<0x9>, IsAsCheapAsAMove;
894def ADDi  : ArithLogicI<"addi", simm16, CPURegs>, ADDI_FM<0x8>;
895def SLTi  : SetCC_I<"slti", setlt, simm16, immSExt16, CPURegs>, SLTI_FM<0xa>;
896def SLTiu : SetCC_I<"sltiu", setult, simm16, immSExt16, CPURegs>, SLTI_FM<0xb>;
897def ANDi  : ArithLogicI<"andi", uimm16, CPURegs, immZExt16, and>, ADDI_FM<0xc>;
898def ORi   : ArithLogicI<"ori", uimm16, CPURegs, immZExt16, or>, ADDI_FM<0xd>;
899def XORi  : ArithLogicI<"xori", uimm16, CPURegs, immZExt16, xor>, ADDI_FM<0xe>;
900def LUi   : LoadUpper<0x0f, "lui", CPURegs, uimm16>;
901
902/// Arithmetic Instructions (3-Operand, R-Type)
903def ADDu : ArithLogicR<"addu", CPURegs, 1, IIAlu, add>, ADD_FM<0, 0x21>;
904def SUBu : ArithLogicR<"subu", CPURegs, 0, IIAlu, sub>, ADD_FM<0, 0x23>;
905def ADD  : ArithLogicR<"add", CPURegs>, ADD_FM<0, 0x20>;
906def SUB  : ArithLogicR<"sub", CPURegs>, ADD_FM<0, 0x22>;
907def SLT  : SetCC_R<"slt", setlt, CPURegs>, ADD_FM<0, 0x2a>;
908def SLTu : SetCC_R<"sltu", setult, CPURegs>, ADD_FM<0, 0x2b>;
909def AND  : ArithLogicR<"and", CPURegs, 1, IIAlu, and>, ADD_FM<0, 0x24>;
910def OR   : ArithLogicR<"or", CPURegs, 1, IIAlu, or>, ADD_FM<0, 0x25>;
911def XOR  : ArithLogicR<"xor", CPURegs, 1, IIAlu, xor>, ADD_FM<0, 0x26>;
912def NOR  : LogicNOR<0x00, 0x27, "nor", CPURegs>;
913
914/// Shift Instructions
915def SLL  : shift_rotate_imm32<"sll", shl>, SRA_FM<0, 0>;
916def SRL  : shift_rotate_imm32<"srl", srl>, SRA_FM<2, 0>;
917def SRA  : shift_rotate_imm32<"sra", sra>, SRA_FM<3, 0>;
918def SLLV : shift_rotate_reg<"sllv", shl, CPURegs>, SRLV_FM<4, 0>;
919def SRLV : shift_rotate_reg<"srlv", srl, CPURegs>, SRLV_FM<6, 0>;
920def SRAV : shift_rotate_reg<"srav", sra, CPURegs>, SRLV_FM<7, 0>;
921
922// Rotate Instructions
923let Predicates = [HasMips32r2, HasStdEnc] in {
924  def ROTR  : shift_rotate_imm32<"rotr", rotr>, SRA_FM<2, 1>;
925  def ROTRV : shift_rotate_reg<"rotrv", rotr, CPURegs>, SRLV_FM<6, 1>;
926}
927
928/// Load and Store Instructions
929///  aligned
930defm LB      : LoadM32<0x20, "lb",  sextloadi8>;
931defm LBu     : LoadM32<0x24, "lbu", zextloadi8>;
932defm LH      : LoadM32<0x21, "lh",  sextloadi16>;
933defm LHu     : LoadM32<0x25, "lhu", zextloadi16>;
934defm LW      : LoadM32<0x23, "lw",  load>;
935defm SB      : StoreM32<0x28, "sb", truncstorei8>;
936defm SH      : StoreM32<0x29, "sh", truncstorei16>;
937defm SW      : StoreM32<0x2b, "sw", store>;
938
939/// load/store left/right
940defm LWL : LoadLeftRightM32<0x22, "lwl", MipsLWL>;
941defm LWR : LoadLeftRightM32<0x26, "lwr", MipsLWR>;
942defm SWL : StoreLeftRightM32<0x2a, "swl", MipsSWL>;
943defm SWR : StoreLeftRightM32<0x2e, "swr", MipsSWR>;
944
945let hasSideEffects = 1 in
946def SYNC : InstSE<(outs), (ins i32imm:$stype), "sync $stype",
947                  [(MipsSync imm:$stype)], NoItinerary, FrmOther>
948{
949  bits<5> stype;
950  let Opcode = 0;
951  let Inst{25-11} = 0;
952  let Inst{10-6} = stype;
953  let Inst{5-0} = 15;
954}
955
956/// Load-linked, Store-conditional
957def LL    : LLBase<0x30, "ll", CPURegs, mem>,
958            Requires<[NotN64, HasStdEnc]>;
959def LL_P8 : LLBase<0x30, "ll", CPURegs, mem64>,
960            Requires<[IsN64, HasStdEnc]> {
961  let DecoderNamespace = "Mips64";
962}
963
964def SC    : SCBase<0x38, "sc", CPURegs, mem>,
965            Requires<[NotN64, HasStdEnc]>;
966def SC_P8 : SCBase<0x38, "sc", CPURegs, mem64>,
967            Requires<[IsN64, HasStdEnc]> {
968  let DecoderNamespace = "Mips64";
969}
970
971/// Jump and Branch Instructions
972def J       : JumpFJ<0x02, jmptarget, "j", br, bb>,
973              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
974def JR      : IndirectBranch<CPURegs>;
975def B       : UncondBranch<"b">, B_FM;
976def BEQ     : CBranch<"beq", seteq, CPURegs>, BEQ_FM<4>;
977def BNE     : CBranch<"bne", setne, CPURegs>, BEQ_FM<5>;
978def BGEZ    : CBranchZero<"bgez", setge, CPURegs>, BGEZ_FM<1, 1>;
979def BGTZ    : CBranchZero<"bgtz", setgt, CPURegs>, BGEZ_FM<7, 0>;
980def BLEZ    : CBranchZero<"blez", setle, CPURegs>, BGEZ_FM<6, 0>;
981def BLTZ    : CBranchZero<"bltz", setlt, CPURegs>, BGEZ_FM<1, 0>;
982
983let rt = 0, rs = 0, isBranch = 1, isTerminator = 1, isBarrier = 1,
984    hasDelaySlot = 1, Defs = [RA] in
985def BAL_BR: FI<0x1, (outs), (ins brtarget:$imm16), "bal\t$imm16", [], IIBranch>;
986
987def JAL  : JumpLink<0x03, "jal">;
988def JALR : JumpLinkReg<0x00, 0x09, "jalr", CPURegs>;
989def BGEZAL  : BranchLink<"bgezal", 0x11, CPURegs>;
990def BLTZAL  : BranchLink<"bltzal", 0x10, CPURegs>;
991def TAILCALL : JumpFJ<0x02, calltarget, "j", MipsTailCall, imm>, IsTailCall;
992def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, IsTailCall;
993
994def RET : RetBase<CPURegs>;
995
996/// Multiply and Divide Instructions.
997def MULT    : Mult32<0x18, "mult", IIImul>;
998def MULTu   : Mult32<0x19, "multu", IIImul>;
999def SDIV    : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
1000def UDIV    : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
1001
1002def MTHI : MoveToLOHI<0x11, "mthi", CPURegs, [HI]>;
1003def MTLO : MoveToLOHI<0x13, "mtlo", CPURegs, [LO]>;
1004def MFHI : MoveFromLOHI<0x10, "mfhi", CPURegs, [HI]>;
1005def MFLO : MoveFromLOHI<0x12, "mflo", CPURegs, [LO]>;
1006
1007/// Sign Ext In Register Instructions.
1008def SEB : SignExtInReg<0x10, "seb", i8, CPURegs>;
1009def SEH : SignExtInReg<0x18, "seh", i16, CPURegs>;
1010
1011/// Count Leading
1012def CLZ : CountLeading0<0x20, "clz", CPURegs>;
1013def CLO : CountLeading1<0x21, "clo", CPURegs>;
1014
1015/// Word Swap Bytes Within Halfwords
1016def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>;
1017
1018/// No operation
1019let addr=0 in
1020  def NOP   : FJ<0, (outs), (ins), "nop", [], IIAlu>;
1021
1022// FrameIndexes are legalized when they are operands from load/store
1023// instructions. The same not happens for stack address copies, so an
1024// add op with mem ComplexPattern is used and the stack address copy
1025// can be matched. It's similar to Sparc LEA_ADDRi
1026def LEA_ADDiu : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
1027
1028// MADD*/MSUB*
1029def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
1030def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
1031def MSUB  : MArithR<4, "msub", MipsMSub>;
1032def MSUBU : MArithR<5, "msubu", MipsMSubu>;
1033
1034// MUL is a assembly macro in the current used ISAs. In recent ISA's
1035// it is a real instruction.
1036def MUL   : ArithLogicR<"mul", CPURegs, 1, IIImul, mul>, ADD_FM<0x1c, 0x02>;
1037
1038def RDHWR : ReadHardware<CPURegs, HWRegs>;
1039
1040def EXT : ExtBase<0, "ext", CPURegs>;
1041def INS : InsBase<4, "ins", CPURegs>;
1042
1043//===----------------------------------------------------------------------===//
1044// Instruction aliases
1045//===----------------------------------------------------------------------===//
1046def : InstAlias<"move $dst,$src", (ADD CPURegs:$dst,CPURegs:$src,ZERO)>;
1047def : InstAlias<"bal $offset", (BGEZAL RA,brtarget:$offset)>;
1048def : InstAlias<"addu $rs,$rt,$imm",
1049                (ADDiu CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1050def : InstAlias<"add $rs,$rt,$imm",
1051                (ADDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1052def : InstAlias<"and $rs,$rt,$imm",
1053                (ANDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1054def : InstAlias<"j $rs", (JR CPURegs:$rs)>;
1055def : InstAlias<"not $rt,$rs", (NOR CPURegs:$rt,CPURegs:$rs,ZERO)>;
1056def : InstAlias<"neg $rt,$rs", (SUB CPURegs:$rt,ZERO,CPURegs:$rs)>;
1057def : InstAlias<"negu $rt,$rs", (SUBu CPURegs:$rt,ZERO,CPURegs:$rs)>;
1058def : InstAlias<"slt $rs,$rt,$imm",
1059                (SLTi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1060def : InstAlias<"xor $rs,$rt,$imm",
1061                (XORi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1062
1063//===----------------------------------------------------------------------===//
1064//  Arbitrary patterns that map to one or more instructions
1065//===----------------------------------------------------------------------===//
1066
1067// Small immediates
1068def : MipsPat<(i32 immSExt16:$in),
1069              (ADDiu ZERO, imm:$in)>;
1070def : MipsPat<(i32 immZExt16:$in),
1071              (ORi ZERO, imm:$in)>;
1072def : MipsPat<(i32 immLow16Zero:$in),
1073              (LUi (HI16 imm:$in))>;
1074
1075// Arbitrary immediates
1076def : MipsPat<(i32 imm:$imm),
1077          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1078
1079// Carry MipsPatterns
1080def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1081              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1082def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1083              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1084def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1085              (ADDiu CPURegs:$src, imm:$imm)>;
1086
1087// Call
1088def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1089              (JAL tglobaladdr:$dst)>;
1090def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1091              (JAL texternalsym:$dst)>;
1092//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1093//              (JALR CPURegs:$dst)>;
1094
1095// Tail call
1096def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1097              (TAILCALL tglobaladdr:$dst)>;
1098def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1099              (TAILCALL texternalsym:$dst)>;
1100// hi/lo relocs
1101def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1102def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1103def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1104def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1105def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1106def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1107
1108def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1109def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1110def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1111def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1112def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1113def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1114
1115def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1116              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1117def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1118              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1119def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1120              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1121def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1122              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1123def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1124              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1125
1126// gp_rel relocs
1127def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1128              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1129def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1130              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1131
1132// wrapper_pic
1133class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1134      MipsPat<(MipsWrapper RC:$gp, node:$in),
1135              (ADDiuOp RC:$gp, node:$in)>;
1136
1137def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1138def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1139def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1140def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1141def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1142def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1143
1144// Mips does not have "not", so we expand our way
1145def : MipsPat<(not CPURegs:$in),
1146              (NOR CPURegs:$in, ZERO)>;
1147
1148// extended loads
1149let Predicates = [NotN64, HasStdEnc] in {
1150  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1151  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1152  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1153}
1154let Predicates = [IsN64, HasStdEnc] in {
1155  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1156  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1157  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1158}
1159
1160// peepholes
1161let Predicates = [NotN64, HasStdEnc] in {
1162  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1163}
1164let Predicates = [IsN64, HasStdEnc] in {
1165  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1166}
1167
1168// brcond patterns
1169multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1170                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1171                      Instruction SLTiuOp, Register ZEROReg> {
1172def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1173              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1174def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1175              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1176
1177def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1178              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1179def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1180              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1181def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1182              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1183def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1184              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1185
1186def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1187              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1188def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1189              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1190
1191def : MipsPat<(brcond RC:$cond, bb:$dst),
1192              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1193}
1194
1195defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1196
1197// setcc patterns
1198multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1199                     Instruction SLTuOp, Register ZEROReg> {
1200  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1201                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1202  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1203                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1204}
1205
1206multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1207  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1208                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1209  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1210                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1211}
1212
1213multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1214  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1215                (SLTOp RC:$rhs, RC:$lhs)>;
1216  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1217                (SLTuOp RC:$rhs, RC:$lhs)>;
1218}
1219
1220multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1221  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1222                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1223  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1224                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1225}
1226
1227multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1228                        Instruction SLTiuOp> {
1229  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1230                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1231  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1232                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1233}
1234
1235defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1236defm : SetlePats<CPURegs, SLT, SLTu>;
1237defm : SetgtPats<CPURegs, SLT, SLTu>;
1238defm : SetgePats<CPURegs, SLT, SLTu>;
1239defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1240
1241// bswap pattern
1242def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1243
1244//===----------------------------------------------------------------------===//
1245// Floating Point Support
1246//===----------------------------------------------------------------------===//
1247
1248include "MipsInstrFPU.td"
1249include "Mips64InstrInfo.td"
1250include "MipsCondMov.td"
1251
1252//
1253// Mips16
1254
1255include "Mips16InstrFormats.td"
1256include "Mips16InstrInfo.td"
1257
1258// DSP
1259include "MipsDSPInstrFormats.td"
1260include "MipsDSPInstrInfo.td"
1261
1262