MipsInstrInfo.td revision 9d577c861414c28967d77c2a1edf64b68efdeaee
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
27                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
28                                          SDTCisSameAs<1, 2>,
29                                          SDTCisSameAs<2, 3>]>;
30def SDT_MipsDivRem       : SDTypeProfile<0, 2,
31                                         [SDTCisInt<0>,
32                                          SDTCisSameAs<0, 1>]>;
33
34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
35
36def SDT_MipsDynAlloc    : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>,
37                                               SDTCisSameAs<0, 1>]>;
38def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
39
40def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
42def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
43                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
44                                   SDTCisSameAs<0, 4>]>;
45
46def SDTMipsLoadLR  : SDTypeProfile<1, 2,
47                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
48                                    SDTCisSameAs<0, 2>]>;
49
50// Call
51def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
52                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
53                          SDNPVariadic]>;
54
55// Hi and Lo nodes are used to handle global addresses. Used on
56// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
57// static model. (nothing to do with Mips Registers Hi and Lo)
58def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
59def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
60def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
61
62// TlsGd node is used to handle General Dynamic TLS
63def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
64
65// TprelHi and TprelLo nodes are used to handle Local Exec TLS
66def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
67def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
68
69// Thread pointer
70def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
71
72// Return
73def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue]>;
74
75// These are target-independent nodes, but have target-specific formats.
76def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
77                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
78def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
79                           [SDNPHasChain, SDNPSideEffect,
80                            SDNPOptInGlue, SDNPOutGlue]>;
81
82// MAdd*/MSub* nodes
83def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
84                           [SDNPOptInGlue, SDNPOutGlue]>;
85def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
86                           [SDNPOptInGlue, SDNPOutGlue]>;
87def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
88                           [SDNPOptInGlue, SDNPOutGlue]>;
89def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
90                           [SDNPOptInGlue, SDNPOutGlue]>;
91
92// DivRem(u) nodes
93def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
94                           [SDNPOutGlue]>;
95def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
96                           [SDNPOutGlue]>;
97
98// Target constant nodes that are not part of any isel patterns and remain
99// unchanged can cause instructions with illegal operands to be emitted.
100// Wrapper node patterns give the instruction selector a chance to replace
101// target constant nodes that would otherwise remain unchanged with ADDiu
102// nodes. Without these wrapper node patterns, the following conditional move
103// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
104// compiled:
105//  movn  %got(d)($gp), %got(c)($gp), $4
106// This instruction is illegal since movn can take only register operands.
107
108def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
109
110// Pointer to dynamically allocated stack area.
111def MipsDynAlloc  : SDNode<"MipsISD::DynAlloc", SDT_MipsDynAlloc,
112                           [SDNPHasChain, SDNPInGlue]>;
113
114def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
115
116def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
117def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
118
119def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
120                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
121def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
122                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
123def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
124                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
125def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
126                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
127def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
128                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
129def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
130                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
131def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
132                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
133def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
134                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
135
136//===----------------------------------------------------------------------===//
137// Mips Instruction Predicate Definitions.
138//===----------------------------------------------------------------------===//
139def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
140                      AssemblerPredicate<"FeatureSEInReg">;
141def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
142                      AssemblerPredicate<"FeatureBitCount">;
143def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
144                      AssemblerPredicate<"FeatureSwap">;
145def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
146                      AssemblerPredicate<"FeatureCondMov">;
147def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
148                      AssemblerPredicate<"FeatureMips32">;
149def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
150                      AssemblerPredicate<"FeatureMips32r2">;
151def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
152                      AssemblerPredicate<"FeatureMips64">;
153def HasMips32r2Or64 : Predicate<"Subtarget.hasMips32r2Or64()">,
154                      AssemblerPredicate<"FeatureMips32r2,FeatureMips64">;
155def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
156                      AssemblerPredicate<"!FeatureMips64">;
157def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
158                      AssemblerPredicate<"FeatureMips64r2">;
159def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
160                      AssemblerPredicate<"FeatureN64">;
161def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
162                      AssemblerPredicate<"!FeatureN64">;
163def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
164                      AssemblerPredicate<"FeatureMips16">;
165def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
166                      AssemblerPredicate<"FeatureMips32">;
167def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
168                      AssemblerPredicate<"FeatureMips32">;
169def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
170                      AssemblerPredicate<"FeatureMips32">;
171def HasStandardEncoding : Predicate<"Subtarget.hasStandardEncoding()">,
172                          AssemblerPredicate<"!FeatureMips16">;
173
174class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
175  let Predicates = [HasStandardEncoding];
176}
177
178//===----------------------------------------------------------------------===//
179// Instruction format superclass
180//===----------------------------------------------------------------------===//
181
182include "MipsInstrFormats.td"
183
184//===----------------------------------------------------------------------===//
185// Mips Operand, Complex Patterns and Transformations Definitions.
186//===----------------------------------------------------------------------===//
187
188// Instruction operand types
189def jmptarget   : Operand<OtherVT> {
190  let EncoderMethod = "getJumpTargetOpValue";
191}
192def brtarget    : Operand<OtherVT> {
193  let EncoderMethod = "getBranchTargetOpValue";
194  let OperandType = "OPERAND_PCREL";
195  let DecoderMethod = "DecodeBranchTarget";
196}
197def calltarget  : Operand<iPTR> {
198  let EncoderMethod = "getJumpTargetOpValue";
199}
200def calltarget64: Operand<i64>;
201def simm16      : Operand<i32> {
202  let DecoderMethod= "DecodeSimm16";
203}
204def simm16_64   : Operand<i64>;
205def shamt       : Operand<i32>;
206
207// Unsigned Operand
208def uimm16      : Operand<i32> {
209  let PrintMethod = "printUnsignedImm";
210}
211
212def MipsMemAsmOperand : AsmOperandClass {
213  let Name = "Mem";
214  let ParserMethod = "parseMemOperand";
215}
216
217// Address operand
218def mem : Operand<i32> {
219  let PrintMethod = "printMemOperand";
220  let MIOperandInfo = (ops CPURegs, simm16);
221  let EncoderMethod = "getMemEncoding";
222  let ParserMatchClass = MipsMemAsmOperand;
223}
224
225def mem64 : Operand<i64> {
226  let PrintMethod = "printMemOperand";
227  let MIOperandInfo = (ops CPU64Regs, simm16_64);
228  let EncoderMethod = "getMemEncoding";
229  let ParserMatchClass = MipsMemAsmOperand;
230}
231
232def mem_ea : Operand<i32> {
233  let PrintMethod = "printMemOperandEA";
234  let MIOperandInfo = (ops CPURegs, simm16);
235  let EncoderMethod = "getMemEncoding";
236}
237
238def mem_ea_64 : Operand<i64> {
239  let PrintMethod = "printMemOperandEA";
240  let MIOperandInfo = (ops CPU64Regs, simm16_64);
241  let EncoderMethod = "getMemEncoding";
242}
243
244// size operand of ext instruction
245def size_ext : Operand<i32> {
246  let EncoderMethod = "getSizeExtEncoding";
247  let DecoderMethod = "DecodeExtSize";
248}
249
250// size operand of ins instruction
251def size_ins : Operand<i32> {
252  let EncoderMethod = "getSizeInsEncoding";
253  let DecoderMethod = "DecodeInsSize";
254}
255
256// Transformation Function - get the lower 16 bits.
257def LO16 : SDNodeXForm<imm, [{
258  return getImm(N, N->getZExtValue() & 0xFFFF);
259}]>;
260
261// Transformation Function - get the higher 16 bits.
262def HI16 : SDNodeXForm<imm, [{
263  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
264}]>;
265
266// Node immediate fits as 16-bit sign extended on target immediate.
267// e.g. addi, andi
268def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
269
270// Node immediate fits as 16-bit zero extended on target immediate.
271// The LO16 param means that only the lower 16 bits of the node
272// immediate are caught.
273// e.g. addiu, sltiu
274def immZExt16  : PatLeaf<(imm), [{
275  if (N->getValueType(0) == MVT::i32)
276    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
277  else
278    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
279}], LO16>;
280
281// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
282def immLow16Zero : PatLeaf<(imm), [{
283  int64_t Val = N->getSExtValue();
284  return isInt<32>(Val) && !(Val & 0xffff);
285}]>;
286
287// shamt field must fit in 5 bits.
288def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
289
290// Mips Address Mode! SDNode frameindex could possibily be a match
291// since load and store instructions from stack used it.
292def addr :
293  ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
294
295//===----------------------------------------------------------------------===//
296// Instructions specific format
297//===----------------------------------------------------------------------===//
298
299// Arithmetic and logical instructions with 3 register operands.
300class ArithLogicR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
301                  InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
302  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
303     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
304     [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], itin> {
305  let shamt = 0;
306  let isCommutable = isComm;
307  let isReMaterializable = 1;
308}
309
310class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm,
311                    InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
312  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
313     !strconcat(instr_asm, "\t$rd, $rs, $rt"), [], itin> {
314  let shamt = 0;
315  let isCommutable = isComm;
316}
317
318// Arithmetic and logical instructions with 2 register operands.
319class ArithLogicI<bits<6> op, string instr_asm, SDNode OpNode,
320                  Operand Od, PatLeaf imm_type, RegisterClass RC> :
321  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
322     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
323     [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu> {
324  let isReMaterializable = 1;
325}
326
327class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode,
328                     Operand Od, PatLeaf imm_type, RegisterClass RC> :
329  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
330     !strconcat(instr_asm, "\t$rt, $rs, $imm16"), [], IIAlu>;
331
332// Arithmetic Multiply ADD/SUB
333let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
334class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
335  FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
336     !strconcat(instr_asm, "\t$rs, $rt"),
337     [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
338  let rd = 0;
339  let shamt = 0;
340  let isCommutable = isComm;
341}
342
343//  Logical
344class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
345  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
346     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
347     [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> {
348  let shamt = 0;
349  let isCommutable = 1;
350}
351
352// Shifts
353class shift_rotate_imm<bits<6> func, bits<5> isRotate, string instr_asm,
354                       SDNode OpNode, PatFrag PF, Operand ImmOpnd,
355                       RegisterClass RC>:
356  FR<0x00, func, (outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
357     !strconcat(instr_asm, "\t$rd, $rt, $shamt"),
358     [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu> {
359  let rs = isRotate;
360}
361
362// 32-bit shift instructions.
363class shift_rotate_imm32<bits<6> func, bits<5> isRotate, string instr_asm,
364                         SDNode OpNode>:
365  shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt, CPURegs>;
366
367class shift_rotate_reg<bits<6> func, bits<5> isRotate, string instr_asm,
368                       SDNode OpNode, RegisterClass RC>:
369  FR<0x00, func, (outs RC:$rd), (ins CPURegs:$rs, RC:$rt),
370     !strconcat(instr_asm, "\t$rd, $rt, $rs"),
371     [(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu> {
372  let shamt = isRotate;
373}
374
375// Load Upper Imediate
376class LoadUpper<bits<6> op, string instr_asm, RegisterClass RC, Operand Imm>:
377  FI<op, (outs RC:$rt), (ins Imm:$imm16),
378     !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu> {
379  let rs = 0;
380  let neverHasSideEffects = 1;
381  let isReMaterializable = 1;
382}
383
384class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
385          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
386  bits<21> addr;
387  let Inst{25-21} = addr{20-16};
388  let Inst{15-0}  = addr{15-0};
389  let DecoderMethod = "DecodeMem";
390}
391
392// Memory Load/Store
393let canFoldAsLoad = 1 in
394class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
395            Operand MemOpnd, bit Pseudo>:
396  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
397     !strconcat(instr_asm, "\t$rt, $addr"),
398     [(set RC:$rt, (OpNode addr:$addr))], IILoad> {
399  let isPseudo = Pseudo;
400}
401
402class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
403             Operand MemOpnd, bit Pseudo>:
404  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
405     !strconcat(instr_asm, "\t$rt, $addr"),
406     [(OpNode RC:$rt, addr:$addr)], IIStore> {
407  let isPseudo = Pseudo;
408}
409
410// 32-bit load.
411multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
412                   bit Pseudo = 0> {
413  def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
414               Requires<[NotN64, HasStandardEncoding]>;
415  def _P8    : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
416               Requires<[IsN64, HasStandardEncoding]> {
417    let DecoderNamespace = "Mips64";
418    let isCodeGenOnly = 1;
419  }
420}
421
422// 64-bit load.
423multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
424                   bit Pseudo = 0> {
425  def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
426               Requires<[NotN64, HasStandardEncoding]>;
427  def _P8    : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
428               Requires<[IsN64, HasStandardEncoding]> {
429    let DecoderNamespace = "Mips64";
430    let isCodeGenOnly = 1;
431  }
432}
433
434// 32-bit store.
435multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
436                    bit Pseudo = 0> {
437  def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
438               Requires<[NotN64, HasStandardEncoding]>;
439  def _P8    : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
440               Requires<[IsN64, HasStandardEncoding]> {
441    let DecoderNamespace = "Mips64";
442    let isCodeGenOnly = 1;
443  }
444}
445
446// 64-bit store.
447multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
448                    bit Pseudo = 0> {
449  def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
450               Requires<[NotN64, HasStandardEncoding]>;
451  def _P8    : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
452               Requires<[IsN64, HasStandardEncoding]> {
453    let DecoderNamespace = "Mips64";
454    let isCodeGenOnly = 1;
455  }
456}
457
458// Load/Store Left/Right
459let canFoldAsLoad = 1 in
460class LoadLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
461                    RegisterClass RC, Operand MemOpnd> :
462  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
463       !strconcat(instr_asm, "\t$rt, $addr"),
464       [(set RC:$rt, (OpNode addr:$addr, RC:$src))], IILoad> {
465  string Constraints = "$src = $rt";
466}
467
468class StoreLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
469                     RegisterClass RC, Operand MemOpnd>:
470  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
471       !strconcat(instr_asm, "\t$rt, $addr"), [(OpNode RC:$rt, addr:$addr)],
472       IIStore>;
473
474// 32-bit load left/right.
475multiclass LoadLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
476  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
477               Requires<[NotN64, HasStandardEncoding]>;
478  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
479               Requires<[IsN64, HasStandardEncoding]> {
480    let DecoderNamespace = "Mips64";
481    let isCodeGenOnly = 1;
482  }
483}
484
485// 64-bit load left/right.
486multiclass LoadLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
487  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
488               Requires<[NotN64, HasStandardEncoding]>;
489  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
490               Requires<[IsN64, HasStandardEncoding]> {
491    let DecoderNamespace = "Mips64";
492    let isCodeGenOnly = 1;
493  }
494}
495
496// 32-bit store left/right.
497multiclass StoreLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
498  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
499               Requires<[NotN64, HasStandardEncoding]>;
500  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
501               Requires<[IsN64, HasStandardEncoding]> {
502    let DecoderNamespace = "Mips64";
503    let isCodeGenOnly = 1;
504  }
505}
506
507// 64-bit store left/right.
508multiclass StoreLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
509  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
510               Requires<[NotN64, HasStandardEncoding]>;
511  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
512               Requires<[IsN64, HasStandardEncoding]> {
513    let DecoderNamespace = "Mips64";
514    let isCodeGenOnly = 1;
515  }
516}
517
518// Conditional Branch
519class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>:
520  BranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16),
521             !strconcat(instr_asm, "\t$rs, $rt, $imm16"),
522             [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> {
523  let isBranch = 1;
524  let isTerminator = 1;
525  let hasDelaySlot = 1;
526  let Defs = [AT];
527}
528
529class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op,
530                  RegisterClass RC>:
531  BranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16),
532             !strconcat(instr_asm, "\t$rs, $imm16"),
533             [(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> {
534  let rt = _rt;
535  let isBranch = 1;
536  let isTerminator = 1;
537  let hasDelaySlot = 1;
538  let Defs = [AT];
539}
540
541// SetCC
542class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op,
543              RegisterClass RC>:
544  FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
545     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
546     [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))],
547     IIAlu> {
548  let shamt = 0;
549}
550
551class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od,
552              PatLeaf imm_type, RegisterClass RC>:
553  FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
554     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
555     [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))],
556     IIAlu>;
557
558// Jump
559class JumpFJ<bits<6> op, string instr_asm>:
560  FJ<op, (outs), (ins jmptarget:$target),
561     !strconcat(instr_asm, "\t$target"), [(br bb:$target)], IIBranch> {
562  let isBranch=1;
563  let isTerminator=1;
564  let isBarrier=1;
565  let hasDelaySlot = 1;
566  let Predicates = [RelocStatic, HasStandardEncoding];
567  let DecoderMethod = "DecodeJumpTarget";
568  let Defs = [AT];
569}
570
571// Unconditional branch
572class UncondBranch<bits<6> op, string instr_asm>:
573  BranchBase<op, (outs), (ins brtarget:$imm16),
574             !strconcat(instr_asm, "\t$imm16"), [(br bb:$imm16)], IIBranch> {
575  let rs = 0;
576  let rt = 0;
577  let isBranch = 1;
578  let isTerminator = 1;
579  let isBarrier = 1;
580  let hasDelaySlot = 1;
581  let Predicates = [RelocPIC, HasStandardEncoding];
582  let Defs = [AT];
583}
584
585// Base class for indirect branch and return instruction classes.
586let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
587class JumpFR<RegisterClass RC, list<dag> pattern>:
588  FR<0, 0x8, (outs), (ins RC:$rs), "jr\t$rs", pattern, IIBranch> {
589  let rt = 0;
590  let rd = 0;
591  let shamt = 0;
592}
593
594// Indirect branch
595class IndirectBranch<RegisterClass RC>: JumpFR<RC, [(brind RC:$rs)]> {
596  let isBranch = 1;
597  let isIndirectBranch = 1;
598}
599
600// Return instruction
601class RetBase<RegisterClass RC>: JumpFR<RC, []> {
602  let isReturn = 1;
603  let isCodeGenOnly = 1;
604  let hasCtrlDep = 1;
605  let hasExtraSrcRegAllocReq = 1;
606}
607
608// Jump and Link (Call)
609let isCall=1, hasDelaySlot=1, Defs = [RA] in {
610  class JumpLink<bits<6> op, string instr_asm>:
611    FJ<op, (outs), (ins calltarget:$target),
612       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
613       IIBranch> {
614       let DecoderMethod = "DecodeJumpTarget";
615       }
616
617  class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm,
618                    RegisterClass RC>:
619    FR<op, func, (outs), (ins RC:$rs),
620       !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink RC:$rs)], IIBranch> {
621    let rt = 0;
622    let rd = 31;
623    let shamt = 0;
624  }
625
626  class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>:
627    FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16),
628       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> {
629    let rt = _rt;
630  }
631}
632
633// Mul, Div
634class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
635           RegisterClass RC, list<Register> DefRegs>:
636  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
637     !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
638  let rd = 0;
639  let shamt = 0;
640  let isCommutable = 1;
641  let Defs = DefRegs;
642  let neverHasSideEffects = 1;
643}
644
645class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
646  Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
647
648class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
649          RegisterClass RC, list<Register> DefRegs>:
650  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
651     !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
652     [(op RC:$rs, RC:$rt)], itin> {
653  let rd = 0;
654  let shamt = 0;
655  let Defs = DefRegs;
656}
657
658class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
659  Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
660
661// Move from Hi/Lo
662class MoveFromLOHI<bits<6> func, string instr_asm, RegisterClass RC,
663                   list<Register> UseRegs>:
664  FR<0x00, func, (outs RC:$rd), (ins),
665     !strconcat(instr_asm, "\t$rd"), [], IIHiLo> {
666  let rs = 0;
667  let rt = 0;
668  let shamt = 0;
669  let Uses = UseRegs;
670  let neverHasSideEffects = 1;
671}
672
673class MoveToLOHI<bits<6> func, string instr_asm, RegisterClass RC,
674                 list<Register> DefRegs>:
675  FR<0x00, func, (outs), (ins RC:$rs),
676     !strconcat(instr_asm, "\t$rs"), [], IIHiLo> {
677  let rt = 0;
678  let rd = 0;
679  let shamt = 0;
680  let Defs = DefRegs;
681  let neverHasSideEffects = 1;
682}
683
684class EffectiveAddress<bits<6> opc, string instr_asm, RegisterClass RC, Operand Mem> :
685  FMem<opc, (outs RC:$rt), (ins Mem:$addr),
686     instr_asm, [(set RC:$rt, addr:$addr)], IIAlu> {
687 let isCodeGenOnly = 1;
688}
689
690// Count Leading Ones/Zeros in Word
691class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>:
692  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
693     !strconcat(instr_asm, "\t$rd, $rs"),
694     [(set RC:$rd, (ctlz RC:$rs))], IIAlu>,
695     Requires<[HasBitCount, HasStandardEncoding]> {
696  let shamt = 0;
697  let rt = rd;
698}
699
700class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>:
701  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
702     !strconcat(instr_asm, "\t$rd, $rs"),
703     [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>,
704     Requires<[HasBitCount, HasStandardEncoding]> {
705  let shamt = 0;
706  let rt = rd;
707}
708
709// Sign Extend in Register.
710class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt,
711                   RegisterClass RC>:
712  FR<0x1f, 0x20, (outs RC:$rd), (ins RC:$rt),
713     !strconcat(instr_asm, "\t$rd, $rt"),
714     [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary> {
715  let rs = 0;
716  let shamt = sa;
717  let Predicates = [HasSEInReg, HasStandardEncoding];
718}
719
720// Subword Swap
721class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>:
722  FR<0x1f, func, (outs RC:$rd), (ins RC:$rt),
723     !strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> {
724  let rs = 0;
725  let shamt = sa;
726  let Predicates = [HasSwap, HasStandardEncoding];
727  let neverHasSideEffects = 1;
728}
729
730// Read Hardware
731class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass>
732  : FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd),
733       "rdhwr\t$rt, $rd", [], IIAlu> {
734  let rs = 0;
735  let shamt = 0;
736}
737
738// Ext and Ins
739class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
740  FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz),
741     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
742     [(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> {
743  bits<5> pos;
744  bits<5> sz;
745  let rd = sz;
746  let shamt = pos;
747  let Predicates = [HasMips32r2, HasStandardEncoding];
748}
749
750class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
751  FR<0x1f, _funct, (outs RC:$rt),
752     (ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src),
753     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
754     [(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))],
755     NoItinerary> {
756  bits<5> pos;
757  bits<5> sz;
758  let rd = sz;
759  let shamt = pos;
760  let Predicates = [HasMips32r2, HasStandardEncoding];
761  let Constraints = "$src = $rt";
762}
763
764// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
765class Atomic2Ops<PatFrag Op, string Opstr, RegisterClass DRC,
766                 RegisterClass PRC> :
767  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
768           !strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
769           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
770
771multiclass Atomic2Ops32<PatFrag Op, string Opstr> {
772  def #NAME# : Atomic2Ops<Op, Opstr, CPURegs, CPURegs>,
773                          Requires<[NotN64, HasStandardEncoding]>;
774  def _P8    : Atomic2Ops<Op, Opstr, CPURegs, CPU64Regs>,
775                          Requires<[IsN64, HasStandardEncoding]> {
776    let DecoderNamespace = "Mips64";
777  }
778}
779
780// Atomic Compare & Swap.
781class AtomicCmpSwap<PatFrag Op, string Width, RegisterClass DRC,
782                    RegisterClass PRC> :
783  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
784           !strconcat("atomic_cmp_swap_", Width, "\t$dst, $ptr, $cmp, $swap"),
785           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
786
787multiclass AtomicCmpSwap32<PatFrag Op, string Width>  {
788  def #NAME# : AtomicCmpSwap<Op, Width, CPURegs, CPURegs>,
789                             Requires<[NotN64, HasStandardEncoding]>;
790  def _P8    : AtomicCmpSwap<Op, Width, CPURegs, CPU64Regs>,
791                             Requires<[IsN64, HasStandardEncoding]> {
792    let DecoderNamespace = "Mips64";
793  }
794}
795
796class LLBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
797  FMem<Opc, (outs RC:$rt), (ins Mem:$addr),
798       !strconcat(opstring, "\t$rt, $addr"), [], IILoad> {
799  let mayLoad = 1;
800}
801
802class SCBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
803  FMem<Opc, (outs RC:$dst), (ins RC:$rt, Mem:$addr),
804       !strconcat(opstring, "\t$rt, $addr"), [], IIStore> {
805  let mayStore = 1;
806  let Constraints = "$rt = $dst";
807}
808
809//===----------------------------------------------------------------------===//
810// Pseudo instructions
811//===----------------------------------------------------------------------===//
812
813// Return RA.
814let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
815def RetRA : PseudoSE<(outs), (ins), "", [(MipsRet)]>;
816
817let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
818def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
819                                  "!ADJCALLSTACKDOWN $amt",
820                                  [(callseq_start timm:$amt)]>;
821def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
822                                  "!ADJCALLSTACKUP $amt1",
823                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
824}
825
826// When handling PIC code the assembler needs .cpload and .cprestore
827// directives. If the real instructions corresponding these directives
828// are used, we have the same behavior, but get also a bunch of warnings
829// from the assembler.
830let neverHasSideEffects = 1 in
831def CPRESTORE : PseudoSE<(outs), (ins i32imm:$loc, CPURegs:$gp),
832                         ".cprestore\t$loc", []>;
833
834let usesCustomInserter = 1 in {
835  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8, "load_add_8">;
836  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16, "load_add_16">;
837  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32, "load_add_32">;
838  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8, "load_sub_8">;
839  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16, "load_sub_16">;
840  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32, "load_sub_32">;
841  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8, "load_and_8">;
842  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16, "load_and_16">;
843  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32, "load_and_32">;
844  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8, "load_or_8">;
845  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16, "load_or_16">;
846  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32, "load_or_32">;
847  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8, "load_xor_8">;
848  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16, "load_xor_16">;
849  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32, "load_xor_32">;
850  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8, "load_nand_8">;
851  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16, "load_nand_16">;
852  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32, "load_nand_32">;
853
854  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8, "swap_8">;
855  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16, "swap_16">;
856  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32, "swap_32">;
857
858  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8, "8">;
859  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16, "16">;
860  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32, "32">;
861}
862
863//===----------------------------------------------------------------------===//
864// Instruction definition
865//===----------------------------------------------------------------------===//
866
867class LoadImm32< string instr_asm, Operand Od, RegisterClass RC> :
868  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
869     !strconcat(instr_asm, "\t$rt, $imm32")> ;
870def LoadImm32Reg : LoadImm32<"li",shamt,CPURegs>;
871//===----------------------------------------------------------------------===//
872// MipsI Instructions
873//===----------------------------------------------------------------------===//
874
875/// Arithmetic Instructions (ALU Immediate)
876def ADDiu   : ArithLogicI<0x09, "addiu", add, simm16, immSExt16, CPURegs>;
877def ADDi    : ArithOverflowI<0x08, "addi", add, simm16, immSExt16, CPURegs>;
878def SLTi    : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>;
879def SLTiu   : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>;
880def ANDi    : ArithLogicI<0x0c, "andi", and, uimm16, immZExt16, CPURegs>;
881def ORi     : ArithLogicI<0x0d, "ori", or, uimm16, immZExt16, CPURegs>;
882def XORi    : ArithLogicI<0x0e, "xori", xor, uimm16, immZExt16, CPURegs>;
883def LUi     : LoadUpper<0x0f, "lui", CPURegs, uimm16>;
884
885/// Arithmetic Instructions (3-Operand, R-Type)
886def ADDu    : ArithLogicR<0x00, 0x21, "addu", add, IIAlu, CPURegs, 1>;
887def SUBu    : ArithLogicR<0x00, 0x23, "subu", sub, IIAlu, CPURegs>;
888def ADD     : ArithOverflowR<0x00, 0x20, "add", IIAlu, CPURegs, 1>;
889def SUB     : ArithOverflowR<0x00, 0x22, "sub", IIAlu, CPURegs>;
890def SLT     : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>;
891def SLTu    : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>;
892def AND     : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPURegs, 1>;
893def OR      : ArithLogicR<0x00, 0x25, "or",  or, IIAlu, CPURegs, 1>;
894def XOR     : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPURegs, 1>;
895def NOR     : LogicNOR<0x00, 0x27, "nor", CPURegs>;
896
897/// Shift Instructions
898def SLL     : shift_rotate_imm32<0x00, 0x00, "sll", shl>;
899def SRL     : shift_rotate_imm32<0x02, 0x00, "srl", srl>;
900def SRA     : shift_rotate_imm32<0x03, 0x00, "sra", sra>;
901def SLLV    : shift_rotate_reg<0x04, 0x00, "sllv", shl, CPURegs>;
902def SRLV    : shift_rotate_reg<0x06, 0x00, "srlv", srl, CPURegs>;
903def SRAV    : shift_rotate_reg<0x07, 0x00, "srav", sra, CPURegs>;
904
905// Rotate Instructions
906let Predicates = [HasMips32r2, HasStandardEncoding] in {
907    def ROTR    : shift_rotate_imm32<0x02, 0x01, "rotr", rotr>;
908    def ROTRV   : shift_rotate_reg<0x06, 0x01, "rotrv", rotr, CPURegs>;
909}
910
911/// Load and Store Instructions
912///  aligned
913defm LB      : LoadM32<0x20, "lb",  sextloadi8>;
914defm LBu     : LoadM32<0x24, "lbu", zextloadi8>;
915defm LH      : LoadM32<0x21, "lh",  sextloadi16>;
916defm LHu     : LoadM32<0x25, "lhu", zextloadi16>;
917defm LW      : LoadM32<0x23, "lw",  load>;
918defm SB      : StoreM32<0x28, "sb", truncstorei8>;
919defm SH      : StoreM32<0x29, "sh", truncstorei16>;
920defm SW      : StoreM32<0x2b, "sw", store>;
921
922/// load/store left/right
923defm LWL : LoadLeftRightM32<0x22, "lwl", MipsLWL>;
924defm LWR : LoadLeftRightM32<0x26, "lwr", MipsLWR>;
925defm SWL : StoreLeftRightM32<0x2a, "swl", MipsSWL>;
926defm SWR : StoreLeftRightM32<0x2e, "swr", MipsSWR>;
927
928let hasSideEffects = 1 in
929def SYNC : InstSE<(outs), (ins i32imm:$stype), "sync $stype",
930                  [(MipsSync imm:$stype)], NoItinerary, FrmOther>
931{
932  bits<5> stype;
933  let Opcode = 0;
934  let Inst{25-11} = 0;
935  let Inst{10-6} = stype;
936  let Inst{5-0} = 15;
937}
938
939/// Load-linked, Store-conditional
940def LL    : LLBase<0x30, "ll", CPURegs, mem>,
941            Requires<[NotN64, HasStandardEncoding]>;
942def LL_P8 : LLBase<0x30, "ll", CPURegs, mem64>,
943            Requires<[IsN64, HasStandardEncoding]> {
944  let DecoderNamespace = "Mips64";
945}
946
947def SC    : SCBase<0x38, "sc", CPURegs, mem>,
948            Requires<[NotN64, HasStandardEncoding]>;
949def SC_P8 : SCBase<0x38, "sc", CPURegs, mem64>,
950            Requires<[IsN64, HasStandardEncoding]> {
951  let DecoderNamespace = "Mips64";
952}
953
954/// Jump and Branch Instructions
955def J       : JumpFJ<0x02, "j">;
956def JR      : IndirectBranch<CPURegs>;
957def B       : UncondBranch<0x04, "b">;
958def BEQ     : CBranch<0x04, "beq", seteq, CPURegs>;
959def BNE     : CBranch<0x05, "bne", setne, CPURegs>;
960def BGEZ    : CBranchZero<0x01, 1, "bgez", setge, CPURegs>;
961def BGTZ    : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>;
962def BLEZ    : CBranchZero<0x06, 0, "blez", setle, CPURegs>;
963def BLTZ    : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>;
964
965let rt = 0, rs = 0, isBranch = 1, isTerminator = 1, isBarrier = 1,
966    hasDelaySlot = 1, Defs = [RA] in
967def BAL_BR: FI<0x1, (outs), (ins brtarget:$imm16), "bal\t$imm16", [], IIBranch>;
968
969def JAL  : JumpLink<0x03, "jal">;
970def JALR : JumpLinkReg<0x00, 0x09, "jalr", CPURegs>;
971def BGEZAL  : BranchLink<"bgezal", 0x11, CPURegs>;
972def BLTZAL  : BranchLink<"bltzal", 0x10, CPURegs>;
973
974def RET : RetBase<CPURegs>;
975
976/// Multiply and Divide Instructions.
977def MULT    : Mult32<0x18, "mult", IIImul>;
978def MULTu   : Mult32<0x19, "multu", IIImul>;
979def SDIV    : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
980def UDIV    : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
981
982def MTHI : MoveToLOHI<0x11, "mthi", CPURegs, [HI]>;
983def MTLO : MoveToLOHI<0x13, "mtlo", CPURegs, [LO]>;
984def MFHI : MoveFromLOHI<0x10, "mfhi", CPURegs, [HI]>;
985def MFLO : MoveFromLOHI<0x12, "mflo", CPURegs, [LO]>;
986
987/// Sign Ext In Register Instructions.
988def SEB : SignExtInReg<0x10, "seb", i8, CPURegs>;
989def SEH : SignExtInReg<0x18, "seh", i16, CPURegs>;
990
991/// Count Leading
992def CLZ : CountLeading0<0x20, "clz", CPURegs>;
993def CLO : CountLeading1<0x21, "clo", CPURegs>;
994
995/// Word Swap Bytes Within Halfwords
996def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>;
997
998/// No operation
999let addr=0 in
1000  def NOP   : FJ<0, (outs), (ins), "nop", [], IIAlu>;
1001
1002// FrameIndexes are legalized when they are operands from load/store
1003// instructions. The same not happens for stack address copies, so an
1004// add op with mem ComplexPattern is used and the stack address copy
1005// can be matched. It's similar to Sparc LEA_ADDRi
1006def LEA_ADDiu : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
1007
1008// DynAlloc node points to dynamically allocated stack space.
1009// $sp is added to the list of implicitly used registers to prevent dead code
1010// elimination from removing instructions that modify $sp.
1011let Uses = [SP] in
1012def DynAlloc : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
1013
1014// MADD*/MSUB*
1015def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
1016def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
1017def MSUB  : MArithR<4, "msub", MipsMSub>;
1018def MSUBU : MArithR<5, "msubu", MipsMSubu>;
1019
1020// MUL is a assembly macro in the current used ISAs. In recent ISA's
1021// it is a real instruction.
1022def MUL   : ArithLogicR<0x1c, 0x02, "mul", mul, IIImul, CPURegs, 1>,
1023            Requires<[HasMips32, HasStandardEncoding]>;
1024
1025def RDHWR : ReadHardware<CPURegs, HWRegs>;
1026
1027def EXT : ExtBase<0, "ext", CPURegs>;
1028def INS : InsBase<4, "ins", CPURegs>;
1029
1030//===----------------------------------------------------------------------===//
1031// Instruction aliases
1032//===----------------------------------------------------------------------===//
1033def : InstAlias<"move $dst,$src", (ADD CPURegs:$dst,CPURegs:$src,ZERO)>;
1034def : InstAlias<"bal $offset", (BGEZAL RA,brtarget:$offset)>;
1035def : InstAlias<"addu $rs,$rt,$imm",
1036                (ADDiu CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1037def : InstAlias<"add $rs,$rt,$imm",
1038                (ADDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1039def : InstAlias<"and $rs,$rt,$imm",
1040                (ANDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1041def : InstAlias<"j $rs", (JR CPURegs:$rs)>;
1042def : InstAlias<"not $rt,$rs", (NOR CPURegs:$rt,CPURegs:$rs,ZERO)>;
1043def : InstAlias<"neg $rt,$rs", (SUB CPURegs:$rt,ZERO,CPURegs:$rs)>;
1044def : InstAlias<"negu $rt,$rs", (SUBu CPURegs:$rt,ZERO,CPURegs:$rs)>;
1045def : InstAlias<"slt $rs,$rt,$imm",
1046                (SLTi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1047def : InstAlias<"xor $rs,$rt,$imm",
1048                (XORi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1049
1050//===----------------------------------------------------------------------===//
1051//  Arbitrary patterns that map to one or more instructions
1052//===----------------------------------------------------------------------===//
1053
1054// Small immediates
1055def : MipsPat<(i32 immSExt16:$in),
1056              (ADDiu ZERO, imm:$in)>;
1057def : MipsPat<(i32 immZExt16:$in),
1058              (ORi ZERO, imm:$in)>;
1059def : MipsPat<(i32 immLow16Zero:$in),
1060              (LUi (HI16 imm:$in))>;
1061
1062// Arbitrary immediates
1063def : MipsPat<(i32 imm:$imm),
1064          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1065
1066// Carry MipsPatterns
1067def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1068              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1069def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1070              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1071def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1072              (ADDiu CPURegs:$src, imm:$imm)>;
1073
1074// Call
1075def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1076              (JAL tglobaladdr:$dst)>;
1077def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1078              (JAL texternalsym:$dst)>;
1079//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1080//              (JALR CPURegs:$dst)>;
1081
1082// hi/lo relocs
1083def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1084def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1085def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1086def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1087def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1088
1089def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1090def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1091def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1092def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1093def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1094
1095def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1096              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1097def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1098              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1099def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1100              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1101def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1102              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1103def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1104              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1105
1106// gp_rel relocs
1107def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1108              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1109def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1110              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1111
1112// wrapper_pic
1113class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1114      MipsPat<(MipsWrapper RC:$gp, node:$in),
1115              (ADDiuOp RC:$gp, node:$in)>;
1116
1117def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1118def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1119def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1120def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1121def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1122def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1123
1124// Mips does not have "not", so we expand our way
1125def : MipsPat<(not CPURegs:$in),
1126              (NOR CPURegs:$in, ZERO)>;
1127
1128// extended loads
1129let Predicates = [NotN64, HasStandardEncoding] in {
1130  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1131  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1132  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1133}
1134let Predicates = [IsN64, HasStandardEncoding] in {
1135  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1136  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1137  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1138}
1139
1140// peepholes
1141let Predicates = [NotN64, HasStandardEncoding] in {
1142  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1143}
1144let Predicates = [IsN64, HasStandardEncoding] in {
1145  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1146}
1147
1148// brcond patterns
1149multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1150                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1151                      Instruction SLTiuOp, Register ZEROReg> {
1152def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1153              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1154def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1155              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1156
1157def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1158              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1159def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1160              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1161def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1162              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1163def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1164              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1165
1166def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1167              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1168def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1169              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1170
1171def : MipsPat<(brcond RC:$cond, bb:$dst),
1172              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1173}
1174
1175defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1176
1177// setcc patterns
1178multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1179                     Instruction SLTuOp, Register ZEROReg> {
1180  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1181                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1182  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1183                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1184}
1185
1186multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1187  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1188                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1189  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1190                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1191}
1192
1193multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1194  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1195                (SLTOp RC:$rhs, RC:$lhs)>;
1196  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1197                (SLTuOp RC:$rhs, RC:$lhs)>;
1198}
1199
1200multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1201  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1202                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1203  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1204                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1205}
1206
1207multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1208                        Instruction SLTiuOp> {
1209  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1210                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1211  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1212                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1213}
1214
1215defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1216defm : SetlePats<CPURegs, SLT, SLTu>;
1217defm : SetgtPats<CPURegs, SLT, SLTu>;
1218defm : SetgePats<CPURegs, SLT, SLTu>;
1219defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1220
1221// select MipsDynAlloc
1222def : MipsPat<(MipsDynAlloc addr:$f), (DynAlloc addr:$f)>;
1223
1224// bswap pattern
1225def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1226
1227//===----------------------------------------------------------------------===//
1228// Floating Point Support
1229//===----------------------------------------------------------------------===//
1230
1231include "MipsInstrFPU.td"
1232include "Mips64InstrInfo.td"
1233include "MipsCondMov.td"
1234
1235//
1236// Mips16
1237
1238include "Mips16InstrFormats.td"
1239include "Mips16InstrInfo.td"
1240
1241// DSP
1242include "MipsDSPInstrFormats.td"
1243include "MipsDSPInstrInfo.td"
1244
1245