MipsInstrInfo.td revision c9e30ea42c428ca3ccf9d70a88c4171c6be71f41
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
27                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
28                                          SDTCisSameAs<1, 2>,
29                                          SDTCisSameAs<2, 3>]>;
30def SDT_MipsDivRem       : SDTypeProfile<0, 2,
31                                         [SDTCisInt<0>,
32                                          SDTCisSameAs<0, 1>]>;
33
34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
35
36def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
37
38def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
39                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
40def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
42                                   SDTCisSameAs<0, 4>]>;
43
44def SDTMipsLoadLR  : SDTypeProfile<1, 2,
45                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
46                                    SDTCisSameAs<0, 2>]>;
47
48// Call
49def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
50                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
51                          SDNPVariadic]>;
52
53// Tail call
54def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
55                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
56
57// Hi and Lo nodes are used to handle global addresses. Used on
58// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
59// static model. (nothing to do with Mips Registers Hi and Lo)
60def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
61def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
62def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
63
64// TlsGd node is used to handle General Dynamic TLS
65def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
66
67// TprelHi and TprelLo nodes are used to handle Local Exec TLS
68def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
69def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
70
71// Thread pointer
72def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
73
74// Return
75def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue]>;
76
77// These are target-independent nodes, but have target-specific formats.
78def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
79                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
80def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
81                           [SDNPHasChain, SDNPSideEffect,
82                            SDNPOptInGlue, SDNPOutGlue]>;
83
84// MAdd*/MSub* nodes
85def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
86                           [SDNPOptInGlue, SDNPOutGlue]>;
87def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
88                           [SDNPOptInGlue, SDNPOutGlue]>;
89def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
90                           [SDNPOptInGlue, SDNPOutGlue]>;
91def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
92                           [SDNPOptInGlue, SDNPOutGlue]>;
93
94// DivRem(u) nodes
95def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
96                           [SDNPOutGlue]>;
97def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
98                           [SDNPOutGlue]>;
99
100// Target constant nodes that are not part of any isel patterns and remain
101// unchanged can cause instructions with illegal operands to be emitted.
102// Wrapper node patterns give the instruction selector a chance to replace
103// target constant nodes that would otherwise remain unchanged with ADDiu
104// nodes. Without these wrapper node patterns, the following conditional move
105// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
106// compiled:
107//  movn  %got(d)($gp), %got(c)($gp), $4
108// This instruction is illegal since movn can take only register operands.
109
110def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
111
112def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
113
114def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
115def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
116
117def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
118                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
119def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
120                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
121def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
122                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
123def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
124                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
125def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
126                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
127def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
128                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
129def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
130                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
131def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
132                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
133
134//===----------------------------------------------------------------------===//
135// Mips Instruction Predicate Definitions.
136//===----------------------------------------------------------------------===//
137def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
138                      AssemblerPredicate<"FeatureSEInReg">;
139def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
140                      AssemblerPredicate<"FeatureBitCount">;
141def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
142                      AssemblerPredicate<"FeatureSwap">;
143def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
144                      AssemblerPredicate<"FeatureCondMov">;
145def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
146                      AssemblerPredicate<"FeatureFPIdx">;
147def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
148                      AssemblerPredicate<"FeatureMips32">;
149def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
150                      AssemblerPredicate<"FeatureMips32r2">;
151def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
152                      AssemblerPredicate<"FeatureMips64">;
153def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
154                      AssemblerPredicate<"!FeatureMips64">;
155def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
156                      AssemblerPredicate<"FeatureMips64r2">;
157def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
158                      AssemblerPredicate<"FeatureN64">;
159def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
160                      AssemblerPredicate<"!FeatureN64">;
161def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
162                      AssemblerPredicate<"FeatureMips16">;
163def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
164                      AssemblerPredicate<"FeatureMips32">;
165def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
166                      AssemblerPredicate<"FeatureMips32">;
167def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
168                      AssemblerPredicate<"FeatureMips32">;
169def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
170                      AssemblerPredicate<"!FeatureMips16">;
171
172class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
173  let Predicates = [HasStdEnc];
174}
175
176class IsCommutable {
177  bit isCommutable = 1;
178}
179
180class IsBranch {
181  bit isBranch = 1;
182}
183
184class IsReturn {
185  bit isReturn = 1;
186}
187
188class IsCall {
189  bit isCall = 1;
190}
191
192class IsTailCall {
193  bit isCall = 1;
194  bit isTerminator = 1;
195  bit isReturn = 1;
196  bit isBarrier = 1;
197  bit hasExtraSrcRegAllocReq = 1;
198  bit isCodeGenOnly = 1;
199}
200
201class IsAsCheapAsAMove {
202  bit isAsCheapAsAMove = 1;
203}
204
205class NeverHasSideEffects {
206  bit neverHasSideEffects = 1;
207}
208
209//===----------------------------------------------------------------------===//
210// Instruction format superclass
211//===----------------------------------------------------------------------===//
212
213include "MipsInstrFormats.td"
214
215//===----------------------------------------------------------------------===//
216// Mips Operand, Complex Patterns and Transformations Definitions.
217//===----------------------------------------------------------------------===//
218
219// Instruction operand types
220def jmptarget   : Operand<OtherVT> {
221  let EncoderMethod = "getJumpTargetOpValue";
222}
223def brtarget    : Operand<OtherVT> {
224  let EncoderMethod = "getBranchTargetOpValue";
225  let OperandType = "OPERAND_PCREL";
226  let DecoderMethod = "DecodeBranchTarget";
227}
228def calltarget  : Operand<iPTR> {
229  let EncoderMethod = "getJumpTargetOpValue";
230}
231def calltarget64: Operand<i64>;
232def simm16      : Operand<i32> {
233  let DecoderMethod= "DecodeSimm16";
234}
235def simm16_64   : Operand<i64>;
236def shamt       : Operand<i32>;
237
238// Unsigned Operand
239def uimm16      : Operand<i32> {
240  let PrintMethod = "printUnsignedImm";
241}
242
243def MipsMemAsmOperand : AsmOperandClass {
244  let Name = "Mem";
245  let ParserMethod = "parseMemOperand";
246}
247
248// Address operand
249def mem : Operand<i32> {
250  let PrintMethod = "printMemOperand";
251  let MIOperandInfo = (ops CPURegs, simm16);
252  let EncoderMethod = "getMemEncoding";
253  let ParserMatchClass = MipsMemAsmOperand;
254}
255
256def mem64 : Operand<i64> {
257  let PrintMethod = "printMemOperand";
258  let MIOperandInfo = (ops CPU64Regs, simm16_64);
259  let EncoderMethod = "getMemEncoding";
260  let ParserMatchClass = MipsMemAsmOperand;
261}
262
263def mem_ea : Operand<i32> {
264  let PrintMethod = "printMemOperandEA";
265  let MIOperandInfo = (ops CPURegs, simm16);
266  let EncoderMethod = "getMemEncoding";
267}
268
269def mem_ea_64 : Operand<i64> {
270  let PrintMethod = "printMemOperandEA";
271  let MIOperandInfo = (ops CPU64Regs, simm16_64);
272  let EncoderMethod = "getMemEncoding";
273}
274
275// size operand of ext instruction
276def size_ext : Operand<i32> {
277  let EncoderMethod = "getSizeExtEncoding";
278  let DecoderMethod = "DecodeExtSize";
279}
280
281// size operand of ins instruction
282def size_ins : Operand<i32> {
283  let EncoderMethod = "getSizeInsEncoding";
284  let DecoderMethod = "DecodeInsSize";
285}
286
287// Transformation Function - get the lower 16 bits.
288def LO16 : SDNodeXForm<imm, [{
289  return getImm(N, N->getZExtValue() & 0xFFFF);
290}]>;
291
292// Transformation Function - get the higher 16 bits.
293def HI16 : SDNodeXForm<imm, [{
294  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
295}]>;
296
297// Node immediate fits as 16-bit sign extended on target immediate.
298// e.g. addi, andi
299def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
300
301// Node immediate fits as 16-bit zero extended on target immediate.
302// The LO16 param means that only the lower 16 bits of the node
303// immediate are caught.
304// e.g. addiu, sltiu
305def immZExt16  : PatLeaf<(imm), [{
306  if (N->getValueType(0) == MVT::i32)
307    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
308  else
309    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
310}], LO16>;
311
312// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
313def immLow16Zero : PatLeaf<(imm), [{
314  int64_t Val = N->getSExtValue();
315  return isInt<32>(Val) && !(Val & 0xffff);
316}]>;
317
318// shamt field must fit in 5 bits.
319def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
320
321// Mips Address Mode! SDNode frameindex could possibily be a match
322// since load and store instructions from stack used it.
323def addr :
324  ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
325
326//===----------------------------------------------------------------------===//
327// Instructions specific format
328//===----------------------------------------------------------------------===//
329
330/// Move Control Registers From/To CPU Registers
331def MFC0_3OP  : MFC3OP<0x10, 0, (outs CPURegs:$rt),
332                       (ins CPURegs:$rd, uimm16:$sel),"mfc0\t$rt, $rd, $sel">;
333def : InstAlias<"mfc0 $rt, $rd", (MFC0_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
334
335def MTC0_3OP  : MFC3OP<0x10, 4, (outs CPURegs:$rd, uimm16:$sel),
336                       (ins CPURegs:$rt),"mtc0\t$rt, $rd, $sel">;
337def : InstAlias<"mtc0 $rt, $rd", (MTC0_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
338
339def MFC2_3OP  : MFC3OP<0x12, 0, (outs CPURegs:$rt),
340                       (ins CPURegs:$rd, uimm16:$sel),"mfc2\t$rt, $rd, $sel">;
341def : InstAlias<"mfc2 $rt, $rd", (MFC2_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
342
343def MTC2_3OP  : MFC3OP<0x12, 4, (outs CPURegs:$rd, uimm16:$sel),
344                       (ins CPURegs:$rt),"mtc2\t$rt, $rd, $sel">;
345def : InstAlias<"mtc2 $rt, $rd", (MTC2_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
346
347// Arithmetic and logical instructions with 3 register operands.
348class ArithLogicR<bits<6> op, bits<6> func, string instr_asm,
349                  InstrItinClass itin, RegisterClass RC, bit isComm = 0,
350                  SDPatternOperator OpNode = null_frag>:
351  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
352     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
353     [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], itin> {
354  let shamt = 0;
355  let isCommutable = isComm;
356  let isReMaterializable = 1;
357}
358
359// Arithmetic and logical instructions with 2 register operands.
360class ArithLogicI<bits<6> op, string instr_asm, Operand Od, PatLeaf imm_type,
361                  RegisterClass RC, SDPatternOperator OpNode = null_frag> :
362  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
363     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
364     [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu> {
365  let isReMaterializable = 1;
366}
367
368// Arithmetic Multiply ADD/SUB
369let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
370class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
371  FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
372     !strconcat(instr_asm, "\t$rs, $rt"),
373     [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
374  let rd = 0;
375  let shamt = 0;
376  let isCommutable = isComm;
377}
378
379//  Logical
380class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
381  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
382     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
383     [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> {
384  let shamt = 0;
385  let isCommutable = 1;
386}
387
388// Shifts
389class shift_rotate_imm<bits<6> func, bits<5> isRotate, string instr_asm,
390                       SDNode OpNode, PatFrag PF, Operand ImmOpnd,
391                       RegisterClass RC>:
392  FR<0x00, func, (outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
393     !strconcat(instr_asm, "\t$rd, $rt, $shamt"),
394     [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu> {
395  let rs = isRotate;
396}
397
398// 32-bit shift instructions.
399class shift_rotate_imm32<bits<6> func, bits<5> isRotate, string instr_asm,
400                         SDNode OpNode>:
401  shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt, CPURegs>;
402
403class shift_rotate_reg<bits<6> func, bits<5> isRotate, string instr_asm,
404                       SDNode OpNode, RegisterClass RC>:
405  FR<0x00, func, (outs RC:$rd), (ins CPURegs:$rs, RC:$rt),
406     !strconcat(instr_asm, "\t$rd, $rt, $rs"),
407     [(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu> {
408  let shamt = isRotate;
409}
410
411// Load Upper Imediate
412class LoadUpper<bits<6> op, string instr_asm, RegisterClass RC, Operand Imm>:
413  FI<op, (outs RC:$rt), (ins Imm:$imm16),
414     !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu>, IsAsCheapAsAMove {
415  let rs = 0;
416  let neverHasSideEffects = 1;
417  let isReMaterializable = 1;
418}
419
420class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
421          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
422  bits<21> addr;
423  let Inst{25-21} = addr{20-16};
424  let Inst{15-0}  = addr{15-0};
425  let DecoderMethod = "DecodeMem";
426}
427
428// Memory Load/Store
429let canFoldAsLoad = 1 in
430class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
431            Operand MemOpnd, bit Pseudo>:
432  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
433     !strconcat(instr_asm, "\t$rt, $addr"),
434     [(set RC:$rt, (OpNode addr:$addr))], IILoad> {
435  let isPseudo = Pseudo;
436}
437
438class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
439             Operand MemOpnd, bit Pseudo>:
440  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
441     !strconcat(instr_asm, "\t$rt, $addr"),
442     [(OpNode RC:$rt, addr:$addr)], IIStore> {
443  let isPseudo = Pseudo;
444}
445
446// 32-bit load.
447multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
448                   bit Pseudo = 0> {
449  def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
450               Requires<[NotN64, HasStdEnc]>;
451  def _P8    : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
452               Requires<[IsN64, HasStdEnc]> {
453    let DecoderNamespace = "Mips64";
454    let isCodeGenOnly = 1;
455  }
456}
457
458// 64-bit load.
459multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
460                   bit Pseudo = 0> {
461  def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
462               Requires<[NotN64, HasStdEnc]>;
463  def _P8    : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
464               Requires<[IsN64, HasStdEnc]> {
465    let DecoderNamespace = "Mips64";
466    let isCodeGenOnly = 1;
467  }
468}
469
470// 32-bit store.
471multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
472                    bit Pseudo = 0> {
473  def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
474               Requires<[NotN64, HasStdEnc]>;
475  def _P8    : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
476               Requires<[IsN64, HasStdEnc]> {
477    let DecoderNamespace = "Mips64";
478    let isCodeGenOnly = 1;
479  }
480}
481
482// 64-bit store.
483multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
484                    bit Pseudo = 0> {
485  def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
486               Requires<[NotN64, HasStdEnc]>;
487  def _P8    : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
488               Requires<[IsN64, HasStdEnc]> {
489    let DecoderNamespace = "Mips64";
490    let isCodeGenOnly = 1;
491  }
492}
493
494// Load/Store Left/Right
495let canFoldAsLoad = 1 in
496class LoadLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
497                    RegisterClass RC, Operand MemOpnd> :
498  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
499       !strconcat(instr_asm, "\t$rt, $addr"),
500       [(set RC:$rt, (OpNode addr:$addr, RC:$src))], IILoad> {
501  string Constraints = "$src = $rt";
502}
503
504class StoreLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
505                     RegisterClass RC, Operand MemOpnd>:
506  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
507       !strconcat(instr_asm, "\t$rt, $addr"), [(OpNode RC:$rt, addr:$addr)],
508       IIStore>;
509
510// 32-bit load left/right.
511multiclass LoadLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
512  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
513               Requires<[NotN64, HasStdEnc]>;
514  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
515               Requires<[IsN64, HasStdEnc]> {
516    let DecoderNamespace = "Mips64";
517    let isCodeGenOnly = 1;
518  }
519}
520
521// 64-bit load left/right.
522multiclass LoadLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
523  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
524               Requires<[NotN64, HasStdEnc]>;
525  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
526               Requires<[IsN64, HasStdEnc]> {
527    let DecoderNamespace = "Mips64";
528    let isCodeGenOnly = 1;
529  }
530}
531
532// 32-bit store left/right.
533multiclass StoreLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
534  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
535               Requires<[NotN64, HasStdEnc]>;
536  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
537               Requires<[IsN64, HasStdEnc]> {
538    let DecoderNamespace = "Mips64";
539    let isCodeGenOnly = 1;
540  }
541}
542
543// 64-bit store left/right.
544multiclass StoreLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
545  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
546               Requires<[NotN64, HasStdEnc]>;
547  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
548               Requires<[IsN64, HasStdEnc]> {
549    let DecoderNamespace = "Mips64";
550    let isCodeGenOnly = 1;
551  }
552}
553
554// Conditional Branch
555class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>:
556  BranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16),
557             !strconcat(instr_asm, "\t$rs, $rt, $imm16"),
558             [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> {
559  let isBranch = 1;
560  let isTerminator = 1;
561  let hasDelaySlot = 1;
562  let Defs = [AT];
563}
564
565class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op,
566                  RegisterClass RC>:
567  BranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16),
568             !strconcat(instr_asm, "\t$rs, $imm16"),
569             [(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> {
570  let rt = _rt;
571  let isBranch = 1;
572  let isTerminator = 1;
573  let hasDelaySlot = 1;
574  let Defs = [AT];
575}
576
577// SetCC
578class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op,
579              RegisterClass RC>:
580  FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
581     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
582     [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))],
583     IIAlu> {
584  let shamt = 0;
585}
586
587class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od,
588              PatLeaf imm_type, RegisterClass RC>:
589  FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
590     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
591     [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))],
592     IIAlu>;
593
594// Jump
595class JumpFJ<bits<6> op, DAGOperand opnd, string instr_asm,
596             SDPatternOperator operator, SDPatternOperator targetoperator>:
597  FJ<op, (outs), (ins opnd:$target), !strconcat(instr_asm, "\t$target"),
598     [(operator targetoperator:$target)], IIBranch> {
599  let isTerminator=1;
600  let isBarrier=1;
601  let hasDelaySlot = 1;
602  let DecoderMethod = "DecodeJumpTarget";
603  let Defs = [AT];
604}
605
606// Unconditional branch
607class UncondBranch<bits<6> op, string instr_asm>:
608  BranchBase<op, (outs), (ins brtarget:$imm16),
609             !strconcat(instr_asm, "\t$imm16"), [(br bb:$imm16)], IIBranch> {
610  let rs = 0;
611  let rt = 0;
612  let isBranch = 1;
613  let isTerminator = 1;
614  let isBarrier = 1;
615  let hasDelaySlot = 1;
616  let Predicates = [RelocPIC, HasStdEnc];
617  let Defs = [AT];
618}
619
620// Base class for indirect branch and return instruction classes.
621let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
622class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
623  FR<0, 0x8, (outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch> {
624  let rt = 0;
625  let rd = 0;
626  let shamt = 0;
627}
628
629// Indirect branch
630class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
631  let isBranch = 1;
632  let isIndirectBranch = 1;
633}
634
635// Return instruction
636class RetBase<RegisterClass RC>: JumpFR<RC> {
637  let isReturn = 1;
638  let isCodeGenOnly = 1;
639  let hasCtrlDep = 1;
640  let hasExtraSrcRegAllocReq = 1;
641}
642
643// Jump and Link (Call)
644let isCall=1, hasDelaySlot=1, Defs = [RA] in {
645  class JumpLink<bits<6> op, string instr_asm>:
646    FJ<op, (outs), (ins calltarget:$target),
647       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
648       IIBranch> {
649       let DecoderMethod = "DecodeJumpTarget";
650       }
651
652  class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm,
653                    RegisterClass RC>:
654    FR<op, func, (outs), (ins RC:$rs),
655       !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink RC:$rs)], IIBranch> {
656    let rt = 0;
657    let rd = 31;
658    let shamt = 0;
659  }
660
661  class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>:
662    FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16),
663       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> {
664    let rt = _rt;
665  }
666}
667
668// Mul, Div
669class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
670           RegisterClass RC, list<Register> DefRegs>:
671  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
672     !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
673  let rd = 0;
674  let shamt = 0;
675  let isCommutable = 1;
676  let Defs = DefRegs;
677  let neverHasSideEffects = 1;
678}
679
680class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
681  Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
682
683class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
684          RegisterClass RC, list<Register> DefRegs>:
685  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
686     !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
687     [(op RC:$rs, RC:$rt)], itin> {
688  let rd = 0;
689  let shamt = 0;
690  let Defs = DefRegs;
691}
692
693class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
694  Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
695
696// Move from Hi/Lo
697class MoveFromLOHI<bits<6> func, string instr_asm, RegisterClass RC,
698                   list<Register> UseRegs>:
699  FR<0x00, func, (outs RC:$rd), (ins),
700     !strconcat(instr_asm, "\t$rd"), [], IIHiLo> {
701  let rs = 0;
702  let rt = 0;
703  let shamt = 0;
704  let Uses = UseRegs;
705  let neverHasSideEffects = 1;
706}
707
708class MoveToLOHI<bits<6> func, string instr_asm, RegisterClass RC,
709                 list<Register> DefRegs>:
710  FR<0x00, func, (outs), (ins RC:$rs),
711     !strconcat(instr_asm, "\t$rs"), [], IIHiLo> {
712  let rt = 0;
713  let rd = 0;
714  let shamt = 0;
715  let Defs = DefRegs;
716  let neverHasSideEffects = 1;
717}
718
719class EffectiveAddress<bits<6> opc, string instr_asm, RegisterClass RC, Operand Mem> :
720  FMem<opc, (outs RC:$rt), (ins Mem:$addr),
721     instr_asm, [(set RC:$rt, addr:$addr)], IIAlu> {
722 let isCodeGenOnly = 1;
723}
724
725// Count Leading Ones/Zeros in Word
726class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>:
727  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
728     !strconcat(instr_asm, "\t$rd, $rs"),
729     [(set RC:$rd, (ctlz RC:$rs))], IIAlu>,
730     Requires<[HasBitCount, HasStdEnc]> {
731  let shamt = 0;
732  let rt = rd;
733}
734
735class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>:
736  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
737     !strconcat(instr_asm, "\t$rd, $rs"),
738     [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>,
739     Requires<[HasBitCount, HasStdEnc]> {
740  let shamt = 0;
741  let rt = rd;
742}
743
744// Sign Extend in Register.
745class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt,
746                   RegisterClass RC>:
747  FR<0x1f, 0x20, (outs RC:$rd), (ins RC:$rt),
748     !strconcat(instr_asm, "\t$rd, $rt"),
749     [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary> {
750  let rs = 0;
751  let shamt = sa;
752  let Predicates = [HasSEInReg, HasStdEnc];
753}
754
755// Subword Swap
756class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>:
757  FR<0x1f, func, (outs RC:$rd), (ins RC:$rt),
758     !strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> {
759  let rs = 0;
760  let shamt = sa;
761  let Predicates = [HasSwap, HasStdEnc];
762  let neverHasSideEffects = 1;
763}
764
765// Read Hardware
766class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass>
767  : FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd),
768       "rdhwr\t$rt, $rd", [], IIAlu> {
769  let rs = 0;
770  let shamt = 0;
771}
772
773// Ext and Ins
774class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
775  FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz),
776     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
777     [(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> {
778  bits<5> pos;
779  bits<5> sz;
780  let rd = sz;
781  let shamt = pos;
782  let Predicates = [HasMips32r2, HasStdEnc];
783}
784
785class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
786  FR<0x1f, _funct, (outs RC:$rt),
787     (ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src),
788     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
789     [(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))],
790     NoItinerary> {
791  bits<5> pos;
792  bits<5> sz;
793  let rd = sz;
794  let shamt = pos;
795  let Predicates = [HasMips32r2, HasStdEnc];
796  let Constraints = "$src = $rt";
797}
798
799// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
800class Atomic2Ops<PatFrag Op, string Opstr, RegisterClass DRC,
801                 RegisterClass PRC> :
802  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
803           !strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
804           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
805
806multiclass Atomic2Ops32<PatFrag Op, string Opstr> {
807  def #NAME# : Atomic2Ops<Op, Opstr, CPURegs, CPURegs>,
808                          Requires<[NotN64, HasStdEnc]>;
809  def _P8    : Atomic2Ops<Op, Opstr, CPURegs, CPU64Regs>,
810                          Requires<[IsN64, HasStdEnc]> {
811    let DecoderNamespace = "Mips64";
812  }
813}
814
815// Atomic Compare & Swap.
816class AtomicCmpSwap<PatFrag Op, string Width, RegisterClass DRC,
817                    RegisterClass PRC> :
818  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
819           !strconcat("atomic_cmp_swap_", Width, "\t$dst, $ptr, $cmp, $swap"),
820           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
821
822multiclass AtomicCmpSwap32<PatFrag Op, string Width>  {
823  def #NAME# : AtomicCmpSwap<Op, Width, CPURegs, CPURegs>,
824                             Requires<[NotN64, HasStdEnc]>;
825  def _P8    : AtomicCmpSwap<Op, Width, CPURegs, CPU64Regs>,
826                             Requires<[IsN64, HasStdEnc]> {
827    let DecoderNamespace = "Mips64";
828  }
829}
830
831class LLBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
832  FMem<Opc, (outs RC:$rt), (ins Mem:$addr),
833       !strconcat(opstring, "\t$rt, $addr"), [], IILoad> {
834  let mayLoad = 1;
835}
836
837class SCBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
838  FMem<Opc, (outs RC:$dst), (ins RC:$rt, Mem:$addr),
839       !strconcat(opstring, "\t$rt, $addr"), [], IIStore> {
840  let mayStore = 1;
841  let Constraints = "$rt = $dst";
842}
843
844//===----------------------------------------------------------------------===//
845// Pseudo instructions
846//===----------------------------------------------------------------------===//
847
848// Return RA.
849let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
850def RetRA : PseudoSE<(outs), (ins), "", [(MipsRet)]>;
851
852let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
853def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
854                                  "!ADJCALLSTACKDOWN $amt",
855                                  [(callseq_start timm:$amt)]>;
856def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
857                                  "!ADJCALLSTACKUP $amt1",
858                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
859}
860
861// When handling PIC code the assembler needs .cpload and .cprestore
862// directives. If the real instructions corresponding these directives
863// are used, we have the same behavior, but get also a bunch of warnings
864// from the assembler.
865let neverHasSideEffects = 1 in
866def CPRESTORE : PseudoSE<(outs), (ins i32imm:$loc, CPURegs:$gp),
867                         ".cprestore\t$loc", []>;
868
869let usesCustomInserter = 1 in {
870  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8, "load_add_8">;
871  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16, "load_add_16">;
872  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32, "load_add_32">;
873  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8, "load_sub_8">;
874  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16, "load_sub_16">;
875  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32, "load_sub_32">;
876  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8, "load_and_8">;
877  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16, "load_and_16">;
878  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32, "load_and_32">;
879  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8, "load_or_8">;
880  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16, "load_or_16">;
881  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32, "load_or_32">;
882  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8, "load_xor_8">;
883  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16, "load_xor_16">;
884  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32, "load_xor_32">;
885  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8, "load_nand_8">;
886  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16, "load_nand_16">;
887  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32, "load_nand_32">;
888
889  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8, "swap_8">;
890  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16, "swap_16">;
891  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32, "swap_32">;
892
893  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8, "8">;
894  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16, "16">;
895  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32, "32">;
896}
897
898//===----------------------------------------------------------------------===//
899// Instruction definition
900//===----------------------------------------------------------------------===//
901
902class LoadImm32< string instr_asm, Operand Od, RegisterClass RC> :
903  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
904                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
905def LoadImm32Reg : LoadImm32<"li", shamt,CPURegs>;
906
907class LoadAddress<string instr_asm, Operand MemOpnd, RegisterClass RC> :
908  MipsAsmPseudoInst<(outs RC:$rt), (ins MemOpnd:$addr),
909                     !strconcat(instr_asm, "\t$rt, $addr")> ;
910def LoadAddr32Reg : LoadAddress<"la", mem, CPURegs>;
911
912class LoadAddressImm<string instr_asm, Operand Od, RegisterClass RC> :
913  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
914                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
915def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegs>;
916
917//===----------------------------------------------------------------------===//
918// MipsI Instructions
919//===----------------------------------------------------------------------===//
920
921/// Arithmetic Instructions (ALU Immediate)
922def ADDiu   : ArithLogicI<0x09, "addiu", simm16, immSExt16, CPURegs, add>,
923              IsAsCheapAsAMove;
924def ADDi    : ArithLogicI<0x08, "addi", simm16, immSExt16, CPURegs>;
925def SLTi    : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>;
926def SLTiu   : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>;
927def ANDi    : ArithLogicI<0x0c, "andi", uimm16, immZExt16, CPURegs, and>;
928def ORi     : ArithLogicI<0x0d, "ori", uimm16, immZExt16, CPURegs, or>;
929def XORi    : ArithLogicI<0x0e, "xori", uimm16, immZExt16, CPURegs, xor>;
930def LUi     : LoadUpper<0x0f, "lui", CPURegs, uimm16>;
931
932/// Arithmetic Instructions (3-Operand, R-Type)
933def ADDu    : ArithLogicR<0x00, 0x21, "addu", IIAlu, CPURegs, 1, add>;
934def SUBu    : ArithLogicR<0x00, 0x23, "subu", IIAlu, CPURegs, 0, sub>;
935def ADD     : ArithLogicR<0x00, 0x20, "add", IIAlu, CPURegs, 1>;
936def SUB     : ArithLogicR<0x00, 0x22, "sub", IIAlu, CPURegs, 0>;
937def SLT     : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>;
938def SLTu    : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>;
939def AND     : ArithLogicR<0x00, 0x24, "and", IIAlu, CPURegs, 1, and>;
940def OR      : ArithLogicR<0x00, 0x25, "or", IIAlu, CPURegs, 1, or>;
941def XOR     : ArithLogicR<0x00, 0x26, "xor", IIAlu, CPURegs, 1, xor>;
942def NOR     : LogicNOR<0x00, 0x27, "nor", CPURegs>;
943
944/// Shift Instructions
945def SLL     : shift_rotate_imm32<0x00, 0x00, "sll", shl>;
946def SRL     : shift_rotate_imm32<0x02, 0x00, "srl", srl>;
947def SRA     : shift_rotate_imm32<0x03, 0x00, "sra", sra>;
948def SLLV    : shift_rotate_reg<0x04, 0x00, "sllv", shl, CPURegs>;
949def SRLV    : shift_rotate_reg<0x06, 0x00, "srlv", srl, CPURegs>;
950def SRAV    : shift_rotate_reg<0x07, 0x00, "srav", sra, CPURegs>;
951
952// Rotate Instructions
953let Predicates = [HasMips32r2, HasStdEnc] in {
954    def ROTR    : shift_rotate_imm32<0x02, 0x01, "rotr", rotr>;
955    def ROTRV   : shift_rotate_reg<0x06, 0x01, "rotrv", rotr, CPURegs>;
956}
957
958/// Load and Store Instructions
959///  aligned
960defm LB      : LoadM32<0x20, "lb",  sextloadi8>;
961defm LBu     : LoadM32<0x24, "lbu", zextloadi8>;
962defm LH      : LoadM32<0x21, "lh",  sextloadi16>;
963defm LHu     : LoadM32<0x25, "lhu", zextloadi16>;
964defm LW      : LoadM32<0x23, "lw",  load>;
965defm SB      : StoreM32<0x28, "sb", truncstorei8>;
966defm SH      : StoreM32<0x29, "sh", truncstorei16>;
967defm SW      : StoreM32<0x2b, "sw", store>;
968
969/// load/store left/right
970defm LWL : LoadLeftRightM32<0x22, "lwl", MipsLWL>;
971defm LWR : LoadLeftRightM32<0x26, "lwr", MipsLWR>;
972defm SWL : StoreLeftRightM32<0x2a, "swl", MipsSWL>;
973defm SWR : StoreLeftRightM32<0x2e, "swr", MipsSWR>;
974
975let hasSideEffects = 1 in
976def SYNC : InstSE<(outs), (ins i32imm:$stype), "sync $stype",
977                  [(MipsSync imm:$stype)], NoItinerary, FrmOther>
978{
979  bits<5> stype;
980  let Opcode = 0;
981  let Inst{25-11} = 0;
982  let Inst{10-6} = stype;
983  let Inst{5-0} = 15;
984}
985
986/// Load-linked, Store-conditional
987def LL    : LLBase<0x30, "ll", CPURegs, mem>,
988            Requires<[NotN64, HasStdEnc]>;
989def LL_P8 : LLBase<0x30, "ll", CPURegs, mem64>,
990            Requires<[IsN64, HasStdEnc]> {
991  let DecoderNamespace = "Mips64";
992}
993
994def SC    : SCBase<0x38, "sc", CPURegs, mem>,
995            Requires<[NotN64, HasStdEnc]>;
996def SC_P8 : SCBase<0x38, "sc", CPURegs, mem64>,
997            Requires<[IsN64, HasStdEnc]> {
998  let DecoderNamespace = "Mips64";
999}
1000
1001/// Jump and Branch Instructions
1002def J       : JumpFJ<0x02, jmptarget, "j", br, bb>,
1003              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
1004def JR      : IndirectBranch<CPURegs>;
1005def B       : UncondBranch<0x04, "b">;
1006def BEQ     : CBranch<0x04, "beq", seteq, CPURegs>;
1007def BNE     : CBranch<0x05, "bne", setne, CPURegs>;
1008def BGEZ    : CBranchZero<0x01, 1, "bgez", setge, CPURegs>;
1009def BGTZ    : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>;
1010def BLEZ    : CBranchZero<0x06, 0, "blez", setle, CPURegs>;
1011def BLTZ    : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>;
1012
1013let rt = 0, rs = 0, isBranch = 1, isTerminator = 1, isBarrier = 1,
1014    hasDelaySlot = 1, Defs = [RA] in
1015def BAL_BR: FI<0x1, (outs), (ins brtarget:$imm16), "bal\t$imm16", [], IIBranch>;
1016
1017def JAL  : JumpLink<0x03, "jal">;
1018def JALR : JumpLinkReg<0x00, 0x09, "jalr", CPURegs>;
1019def BGEZAL  : BranchLink<"bgezal", 0x11, CPURegs>;
1020def BLTZAL  : BranchLink<"bltzal", 0x10, CPURegs>;
1021def TAILCALL : JumpFJ<0x02, calltarget, "j", MipsTailCall, imm>, IsTailCall;
1022def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, IsTailCall;
1023
1024def RET : RetBase<CPURegs>;
1025
1026/// Multiply and Divide Instructions.
1027def MULT    : Mult32<0x18, "mult", IIImul>;
1028def MULTu   : Mult32<0x19, "multu", IIImul>;
1029def SDIV    : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
1030def UDIV    : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
1031
1032def MTHI : MoveToLOHI<0x11, "mthi", CPURegs, [HI]>;
1033def MTLO : MoveToLOHI<0x13, "mtlo", CPURegs, [LO]>;
1034def MFHI : MoveFromLOHI<0x10, "mfhi", CPURegs, [HI]>;
1035def MFLO : MoveFromLOHI<0x12, "mflo", CPURegs, [LO]>;
1036
1037/// Sign Ext In Register Instructions.
1038def SEB : SignExtInReg<0x10, "seb", i8, CPURegs>;
1039def SEH : SignExtInReg<0x18, "seh", i16, CPURegs>;
1040
1041/// Count Leading
1042def CLZ : CountLeading0<0x20, "clz", CPURegs>;
1043def CLO : CountLeading1<0x21, "clo", CPURegs>;
1044
1045/// Word Swap Bytes Within Halfwords
1046def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>;
1047
1048/// No operation
1049let addr=0 in
1050  def NOP   : FJ<0, (outs), (ins), "nop", [], IIAlu>;
1051
1052// FrameIndexes are legalized when they are operands from load/store
1053// instructions. The same not happens for stack address copies, so an
1054// add op with mem ComplexPattern is used and the stack address copy
1055// can be matched. It's similar to Sparc LEA_ADDRi
1056def LEA_ADDiu : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
1057
1058// MADD*/MSUB*
1059def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
1060def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
1061def MSUB  : MArithR<4, "msub", MipsMSub>;
1062def MSUBU : MArithR<5, "msubu", MipsMSubu>;
1063
1064// MUL is a assembly macro in the current used ISAs. In recent ISA's
1065// it is a real instruction.
1066def MUL   : ArithLogicR<0x1c, 0x02, "mul", IIImul, CPURegs, 1, mul>,
1067            Requires<[HasStdEnc]>;
1068
1069def RDHWR : ReadHardware<CPURegs, HWRegs>;
1070
1071def EXT : ExtBase<0, "ext", CPURegs>;
1072def INS : InsBase<4, "ins", CPURegs>;
1073
1074//===----------------------------------------------------------------------===//
1075// Instruction aliases
1076//===----------------------------------------------------------------------===//
1077def : InstAlias<"move $dst,$src", (ADD CPURegs:$dst,CPURegs:$src,ZERO)>;
1078def : InstAlias<"bal $offset", (BGEZAL RA,brtarget:$offset)>;
1079def : InstAlias<"addu $rs,$rt,$imm",
1080                (ADDiu CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1081def : InstAlias<"add $rs,$rt,$imm",
1082                (ADDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1083def : InstAlias<"and $rs,$rt,$imm",
1084                (ANDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1085def : InstAlias<"j $rs", (JR CPURegs:$rs)>;
1086def : InstAlias<"not $rt,$rs", (NOR CPURegs:$rt,CPURegs:$rs,ZERO)>;
1087def : InstAlias<"neg $rt,$rs", (SUB CPURegs:$rt,ZERO,CPURegs:$rs)>;
1088def : InstAlias<"negu $rt,$rs", (SUBu CPURegs:$rt,ZERO,CPURegs:$rs)>;
1089def : InstAlias<"slt $rs,$rt,$imm",
1090                (SLTi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1091def : InstAlias<"xor $rs,$rt,$imm",
1092                (XORi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1093
1094//===----------------------------------------------------------------------===//
1095//  Arbitrary patterns that map to one or more instructions
1096//===----------------------------------------------------------------------===//
1097
1098// Small immediates
1099def : MipsPat<(i32 immSExt16:$in),
1100              (ADDiu ZERO, imm:$in)>;
1101def : MipsPat<(i32 immZExt16:$in),
1102              (ORi ZERO, imm:$in)>;
1103def : MipsPat<(i32 immLow16Zero:$in),
1104              (LUi (HI16 imm:$in))>;
1105
1106// Arbitrary immediates
1107def : MipsPat<(i32 imm:$imm),
1108          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1109
1110// Carry MipsPatterns
1111def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1112              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1113def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1114              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1115def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1116              (ADDiu CPURegs:$src, imm:$imm)>;
1117
1118// Call
1119def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1120              (JAL tglobaladdr:$dst)>;
1121def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1122              (JAL texternalsym:$dst)>;
1123//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1124//              (JALR CPURegs:$dst)>;
1125
1126// Tail call
1127def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1128              (TAILCALL tglobaladdr:$dst)>;
1129def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1130              (TAILCALL texternalsym:$dst)>;
1131// hi/lo relocs
1132def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1133def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1134def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1135def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1136def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1137def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1138
1139def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1140def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1141def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1142def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1143def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1144def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1145
1146def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1147              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1148def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1149              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1150def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1151              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1152def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1153              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1154def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1155              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1156
1157// gp_rel relocs
1158def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1159              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1160def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1161              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1162
1163// wrapper_pic
1164class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1165      MipsPat<(MipsWrapper RC:$gp, node:$in),
1166              (ADDiuOp RC:$gp, node:$in)>;
1167
1168def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1169def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1170def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1171def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1172def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1173def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1174
1175// Mips does not have "not", so we expand our way
1176def : MipsPat<(not CPURegs:$in),
1177              (NOR CPURegs:$in, ZERO)>;
1178
1179// extended loads
1180let Predicates = [NotN64, HasStdEnc] in {
1181  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1182  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1183  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1184}
1185let Predicates = [IsN64, HasStdEnc] in {
1186  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1187  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1188  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1189}
1190
1191// peepholes
1192let Predicates = [NotN64, HasStdEnc] in {
1193  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1194}
1195let Predicates = [IsN64, HasStdEnc] in {
1196  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1197}
1198
1199// brcond patterns
1200multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1201                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1202                      Instruction SLTiuOp, Register ZEROReg> {
1203def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1204              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1205def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1206              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1207
1208def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1209              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1210def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1211              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1212def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1213              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1214def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1215              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1216
1217def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1218              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1219def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1220              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1221
1222def : MipsPat<(brcond RC:$cond, bb:$dst),
1223              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1224}
1225
1226defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1227
1228// setcc patterns
1229multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1230                     Instruction SLTuOp, Register ZEROReg> {
1231  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1232                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1233  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1234                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1235}
1236
1237multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1238  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1239                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1240  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1241                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1242}
1243
1244multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1245  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1246                (SLTOp RC:$rhs, RC:$lhs)>;
1247  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1248                (SLTuOp RC:$rhs, RC:$lhs)>;
1249}
1250
1251multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1252  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1253                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1254  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1255                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1256}
1257
1258multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1259                        Instruction SLTiuOp> {
1260  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1261                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1262  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1263                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1264}
1265
1266defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1267defm : SetlePats<CPURegs, SLT, SLTu>;
1268defm : SetgtPats<CPURegs, SLT, SLTu>;
1269defm : SetgePats<CPURegs, SLT, SLTu>;
1270defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1271
1272// bswap pattern
1273def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1274
1275//===----------------------------------------------------------------------===//
1276// Floating Point Support
1277//===----------------------------------------------------------------------===//
1278
1279include "MipsInstrFPU.td"
1280include "Mips64InstrInfo.td"
1281include "MipsCondMov.td"
1282
1283//
1284// Mips16
1285
1286include "Mips16InstrFormats.td"
1287include "Mips16InstrInfo.td"
1288
1289// DSP
1290include "MipsDSPInstrFormats.td"
1291include "MipsDSPInstrInfo.td"
1292
1293