MipsInstrInfo.td revision d35d5bdfc41ff401f938e49e844d707462405428
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_ExtractLOHI : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisVT<1, untyped>,
27                                           SDTCisVT<2, i32>]>;
28def SDT_InsertLOHI : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>,
29                                          SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
30def SDT_MipsMultDiv : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisInt<1>,
31                                    SDTCisSameAs<1, 2>]>;
32def SDT_MipsMAddMSub : SDTypeProfile<1, 3,
33                                     [SDTCisVT<0, untyped>, SDTCisSameAs<0, 3>,
34                                      SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
35def SDT_MipsDivRem16 : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
36
37def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
38
39def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
40
41def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
42                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
43def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
44                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
45                                   SDTCisSameAs<0, 4>]>;
46
47def SDTMipsLoadLR  : SDTypeProfile<1, 2,
48                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
49                                    SDTCisSameAs<0, 2>]>;
50
51// Call
52def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
53                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
54                          SDNPVariadic]>;
55
56// Tail call
57def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
58                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
59
60// Hi and Lo nodes are used to handle global addresses. Used on
61// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
62// static model. (nothing to do with Mips Registers Hi and Lo)
63def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
64def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
65def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
66
67// TlsGd node is used to handle General Dynamic TLS
68def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
69
70// TprelHi and TprelLo nodes are used to handle Local Exec TLS
71def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
72def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
73
74// Thread pointer
75def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
76
77// Return
78def MipsRet : SDNode<"MipsISD::Ret", SDTNone,
79                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
80
81// These are target-independent nodes, but have target-specific formats.
82def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
83                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
84def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
85                           [SDNPHasChain, SDNPSideEffect,
86                            SDNPOptInGlue, SDNPOutGlue]>;
87
88// Node used to extract integer from LO/HI register.
89def ExtractLOHI : SDNode<"MipsISD::ExtractLOHI", SDT_ExtractLOHI>;
90
91// Node used to insert 32-bit integers to LOHI register pair.
92def InsertLOHI : SDNode<"MipsISD::InsertLOHI", SDT_InsertLOHI>;
93
94// Mult nodes.
95def MipsMult  : SDNode<"MipsISD::Mult", SDT_MipsMultDiv>;
96def MipsMultu : SDNode<"MipsISD::Multu", SDT_MipsMultDiv>;
97
98// MAdd*/MSub* nodes
99def MipsMAdd  : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub>;
100def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub>;
101def MipsMSub  : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub>;
102def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub>;
103
104// DivRem(u) nodes
105def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsMultDiv>;
106def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsMultDiv>;
107def MipsDivRem16  : SDNode<"MipsISD::DivRem16", SDT_MipsDivRem16, [SDNPOutGlue]>;
108def MipsDivRemU16 : SDNode<"MipsISD::DivRemU16", SDT_MipsDivRem16,
109                           [SDNPOutGlue]>;
110
111// Target constant nodes that are not part of any isel patterns and remain
112// unchanged can cause instructions with illegal operands to be emitted.
113// Wrapper node patterns give the instruction selector a chance to replace
114// target constant nodes that would otherwise remain unchanged with ADDiu
115// nodes. Without these wrapper node patterns, the following conditional move
116// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
117// compiled:
118//  movn  %got(d)($gp), %got(c)($gp), $4
119// This instruction is illegal since movn can take only register operands.
120
121def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
122
123def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
124
125def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
126def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
127
128def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
129                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
130def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
131                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
132def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
133                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
134def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
135                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
136def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
137                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
138def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
139                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
140def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
141                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
142def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
143                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
144
145//===----------------------------------------------------------------------===//
146// Mips Instruction Predicate Definitions.
147//===----------------------------------------------------------------------===//
148def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
149                      AssemblerPredicate<"FeatureSEInReg">;
150def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
151                      AssemblerPredicate<"FeatureBitCount">;
152def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
153                      AssemblerPredicate<"FeatureSwap">;
154def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
155                      AssemblerPredicate<"FeatureCondMov">;
156def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
157                      AssemblerPredicate<"FeatureFPIdx">;
158def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
159                      AssemblerPredicate<"FeatureMips32">;
160def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
161                      AssemblerPredicate<"FeatureMips32r2">;
162def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
163                      AssemblerPredicate<"FeatureMips64">;
164def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
165                      AssemblerPredicate<"!FeatureMips64">;
166def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
167                      AssemblerPredicate<"FeatureMips64r2">;
168def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
169                      AssemblerPredicate<"FeatureN64">;
170def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
171                      AssemblerPredicate<"!FeatureN64">;
172def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
173                      AssemblerPredicate<"FeatureMips16">;
174def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
175                      AssemblerPredicate<"FeatureMips32">;
176def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
177                      AssemblerPredicate<"FeatureMips32">;
178def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
179                      AssemblerPredicate<"FeatureMips32">;
180def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
181                      AssemblerPredicate<"!FeatureMips16">;
182
183class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
184  let Predicates = [HasStdEnc];
185}
186
187class IsCommutable {
188  bit isCommutable = 1;
189}
190
191class IsBranch {
192  bit isBranch = 1;
193}
194
195class IsReturn {
196  bit isReturn = 1;
197}
198
199class IsCall {
200  bit isCall = 1;
201}
202
203class IsTailCall {
204  bit isCall = 1;
205  bit isTerminator = 1;
206  bit isReturn = 1;
207  bit isBarrier = 1;
208  bit hasExtraSrcRegAllocReq = 1;
209  bit isCodeGenOnly = 1;
210}
211
212class IsAsCheapAsAMove {
213  bit isAsCheapAsAMove = 1;
214}
215
216class NeverHasSideEffects {
217  bit neverHasSideEffects = 1;
218}
219
220//===----------------------------------------------------------------------===//
221// Instruction format superclass
222//===----------------------------------------------------------------------===//
223
224include "MipsInstrFormats.td"
225
226//===----------------------------------------------------------------------===//
227// Mips Operand, Complex Patterns and Transformations Definitions.
228//===----------------------------------------------------------------------===//
229
230// Instruction operand types
231def jmptarget   : Operand<OtherVT> {
232  let EncoderMethod = "getJumpTargetOpValue";
233}
234def brtarget    : Operand<OtherVT> {
235  let EncoderMethod = "getBranchTargetOpValue";
236  let OperandType = "OPERAND_PCREL";
237  let DecoderMethod = "DecodeBranchTarget";
238}
239def calltarget  : Operand<iPTR> {
240  let EncoderMethod = "getJumpTargetOpValue";
241}
242def calltarget64: Operand<i64>;
243def simm16      : Operand<i32> {
244  let DecoderMethod= "DecodeSimm16";
245}
246
247def simm20      : Operand<i32> {
248}
249
250def simm16_64   : Operand<i64>;
251def shamt       : Operand<i32>;
252
253// Unsigned Operand
254def uimm16      : Operand<i32> {
255  let PrintMethod = "printUnsignedImm";
256}
257
258def MipsMemAsmOperand : AsmOperandClass {
259  let Name = "Mem";
260  let ParserMethod = "parseMemOperand";
261}
262
263// Address operand
264def mem : Operand<i32> {
265  let PrintMethod = "printMemOperand";
266  let MIOperandInfo = (ops CPURegs, simm16);
267  let EncoderMethod = "getMemEncoding";
268  let ParserMatchClass = MipsMemAsmOperand;
269  let OperandType = "OPERAND_MEMORY";
270}
271
272def mem64 : Operand<i64> {
273  let PrintMethod = "printMemOperand";
274  let MIOperandInfo = (ops CPU64Regs, simm16_64);
275  let EncoderMethod = "getMemEncoding";
276  let ParserMatchClass = MipsMemAsmOperand;
277  let OperandType = "OPERAND_MEMORY";
278}
279
280def mem_ea : Operand<i32> {
281  let PrintMethod = "printMemOperandEA";
282  let MIOperandInfo = (ops CPURegs, simm16);
283  let EncoderMethod = "getMemEncoding";
284  let OperandType = "OPERAND_MEMORY";
285}
286
287def mem_ea_64 : Operand<i64> {
288  let PrintMethod = "printMemOperandEA";
289  let MIOperandInfo = (ops CPU64Regs, simm16_64);
290  let EncoderMethod = "getMemEncoding";
291  let OperandType = "OPERAND_MEMORY";
292}
293
294// size operand of ext instruction
295def size_ext : Operand<i32> {
296  let EncoderMethod = "getSizeExtEncoding";
297  let DecoderMethod = "DecodeExtSize";
298}
299
300// size operand of ins instruction
301def size_ins : Operand<i32> {
302  let EncoderMethod = "getSizeInsEncoding";
303  let DecoderMethod = "DecodeInsSize";
304}
305
306// Transformation Function - get the lower 16 bits.
307def LO16 : SDNodeXForm<imm, [{
308  return getImm(N, N->getZExtValue() & 0xFFFF);
309}]>;
310
311// Transformation Function - get the higher 16 bits.
312def HI16 : SDNodeXForm<imm, [{
313  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
314}]>;
315
316// Plus 1.
317def Plus1 : SDNodeXForm<imm, [{ return getImm(N, N->getSExtValue() + 1); }]>;
318
319// Node immediate fits as 16-bit sign extended on target immediate.
320// e.g. addi, andi
321def immSExt8  : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>;
322
323// Node immediate fits as 16-bit sign extended on target immediate.
324// e.g. addi, andi
325def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
326
327// Node immediate fits as 15-bit sign extended on target immediate.
328// e.g. addi, andi
329def immSExt15  : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>;
330
331// Node immediate fits as 16-bit zero extended on target immediate.
332// The LO16 param means that only the lower 16 bits of the node
333// immediate are caught.
334// e.g. addiu, sltiu
335def immZExt16  : PatLeaf<(imm), [{
336  if (N->getValueType(0) == MVT::i32)
337    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
338  else
339    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
340}], LO16>;
341
342// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
343def immLow16Zero : PatLeaf<(imm), [{
344  int64_t Val = N->getSExtValue();
345  return isInt<32>(Val) && !(Val & 0xffff);
346}]>;
347
348// shamt field must fit in 5 bits.
349def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
350
351// True if (N + 1) fits in 16-bit field.
352def immSExt16Plus1 : PatLeaf<(imm), [{
353  return isInt<17>(N->getSExtValue()) && isInt<16>(N->getSExtValue() + 1);
354}]>;
355
356// Mips Address Mode! SDNode frameindex could possibily be a match
357// since load and store instructions from stack used it.
358def addr :
359  ComplexPattern<iPTR, 2, "selectIntAddr", [frameindex]>;
360
361def addrRegImm :
362  ComplexPattern<iPTR, 2, "selectAddrRegImm", [frameindex]>;
363
364def addrDefault :
365  ComplexPattern<iPTR, 2, "selectAddrDefault", [frameindex]>;
366
367//===----------------------------------------------------------------------===//
368// Instructions specific format
369//===----------------------------------------------------------------------===//
370
371// Arithmetic and logical instructions with 3 register operands.
372class ArithLogicR<string opstr, RegisterOperand RO, bit isComm = 0,
373                  InstrItinClass Itin = NoItinerary,
374                  SDPatternOperator OpNode = null_frag>:
375  InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
376         !strconcat(opstr, "\t$rd, $rs, $rt"),
377         [(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR> {
378  let isCommutable = isComm;
379  let isReMaterializable = 1;
380  string BaseOpcode;
381  string Arch;
382}
383
384// Arithmetic and logical instructions with 2 register operands.
385class ArithLogicI<string opstr, Operand Od, RegisterOperand RO,
386                  SDPatternOperator imm_type = null_frag,
387                  SDPatternOperator OpNode = null_frag> :
388  InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16),
389         !strconcat(opstr, "\t$rt, $rs, $imm16"),
390         [(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))], IIAlu, FrmI> {
391  let isReMaterializable = 1;
392}
393
394// Arithmetic Multiply ADD/SUB
395class MArithR<string opstr, bit isComm = 0> :
396  InstSE<(outs), (ins CPURegsOpnd:$rs, CPURegsOpnd:$rt),
397         !strconcat(opstr, "\t$rs, $rt"), [], IIImul, FrmR> {
398  let Defs = [HI, LO];
399  let Uses = [HI, LO];
400  let isCommutable = isComm;
401}
402
403//  Logical
404class LogicNOR<string opstr, RegisterOperand RC>:
405  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
406         !strconcat(opstr, "\t$rd, $rs, $rt"),
407         [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu, FrmR> {
408  let isCommutable = 1;
409}
410
411// Shifts
412class shift_rotate_imm<string opstr, Operand ImmOpnd,
413                       RegisterOperand RC, SDPatternOperator OpNode = null_frag,
414                       SDPatternOperator PF = null_frag> :
415  InstSE<(outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
416         !strconcat(opstr, "\t$rd, $rt, $shamt"),
417         [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu, FrmR>;
418
419class shift_rotate_reg<string opstr, RegisterOperand RC,
420                       SDPatternOperator OpNode = null_frag>:
421  InstSE<(outs RC:$rd), (ins CPURegsOpnd:$rs, RC:$rt),
422         !strconcat(opstr, "\t$rd, $rt, $rs"),
423         [(set RC:$rd, (OpNode RC:$rt, CPURegsOpnd:$rs))], IIAlu, FrmR>;
424
425// Load Upper Imediate
426class LoadUpper<string opstr, RegisterClass RC, Operand Imm>:
427  InstSE<(outs RC:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"),
428         [], IIAlu, FrmI>, IsAsCheapAsAMove {
429  let neverHasSideEffects = 1;
430  let isReMaterializable = 1;
431}
432
433class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
434          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
435  bits<21> addr;
436  let Inst{25-21} = addr{20-16};
437  let Inst{15-0}  = addr{15-0};
438  let DecoderMethod = "DecodeMem";
439}
440
441// Memory Load/Store
442class Load<string opstr, SDPatternOperator OpNode, RegisterClass RC,
443           Operand MemOpnd, ComplexPattern Addr> :
444  InstSE<(outs RC:$rt), (ins MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
445         [(set RC:$rt, (OpNode Addr:$addr))], NoItinerary, FrmI> {
446  let DecoderMethod = "DecodeMem";
447  let canFoldAsLoad = 1;
448  let mayLoad = 1;
449}
450
451class Store<string opstr, SDPatternOperator OpNode, RegisterClass RC,
452            Operand MemOpnd, ComplexPattern Addr> :
453  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
454         [(OpNode RC:$rt, Addr:$addr)], NoItinerary, FrmI> {
455  let DecoderMethod = "DecodeMem";
456  let mayStore = 1;
457}
458
459multiclass LoadM<string opstr, RegisterClass RC,
460                 SDPatternOperator OpNode = null_frag,
461                 ComplexPattern Addr = addr> {
462  def NAME : Load<opstr, OpNode, RC, mem, Addr>, Requires<[NotN64, HasStdEnc]>;
463  def _P8  : Load<opstr, OpNode, RC, mem64, Addr>,
464             Requires<[IsN64, HasStdEnc]> {
465    let DecoderNamespace = "Mips64";
466    let isCodeGenOnly = 1;
467  }
468}
469
470multiclass StoreM<string opstr, RegisterClass RC,
471                  SDPatternOperator OpNode = null_frag,
472                  ComplexPattern Addr = addr> {
473  def NAME : Store<opstr, OpNode, RC, mem, Addr>, Requires<[NotN64, HasStdEnc]>;
474  def _P8  : Store<opstr, OpNode, RC, mem64, Addr>,
475             Requires<[IsN64, HasStdEnc]> {
476    let DecoderNamespace = "Mips64";
477    let isCodeGenOnly = 1;
478  }
479}
480
481// Load/Store Left/Right
482let canFoldAsLoad = 1 in
483class LoadLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
484                    Operand MemOpnd> :
485  InstSE<(outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
486         !strconcat(opstr, "\t$rt, $addr"),
487         [(set RC:$rt, (OpNode addr:$addr, RC:$src))], NoItinerary, FrmI> {
488  let DecoderMethod = "DecodeMem";
489  string Constraints = "$src = $rt";
490}
491
492class StoreLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
493                     Operand MemOpnd>:
494  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
495         [(OpNode RC:$rt, addr:$addr)], NoItinerary, FrmI> {
496  let DecoderMethod = "DecodeMem";
497}
498
499multiclass LoadLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
500  def NAME : LoadLeftRight<opstr, OpNode, RC, mem>,
501             Requires<[NotN64, HasStdEnc]>;
502  def _P8  : LoadLeftRight<opstr, OpNode, RC, mem64>,
503             Requires<[IsN64, HasStdEnc]> {
504    let DecoderNamespace = "Mips64";
505    let isCodeGenOnly = 1;
506  }
507}
508
509multiclass StoreLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
510  def NAME : StoreLeftRight<opstr, OpNode, RC, mem>,
511             Requires<[NotN64, HasStdEnc]>;
512  def _P8  : StoreLeftRight<opstr, OpNode, RC, mem64>,
513             Requires<[IsN64, HasStdEnc]> {
514    let DecoderNamespace = "Mips64";
515    let isCodeGenOnly = 1;
516  }
517}
518
519// Conditional Branch
520class CBranch<string opstr, PatFrag cond_op, RegisterClass RC> :
521  InstSE<(outs), (ins RC:$rs, RC:$rt, brtarget:$offset),
522         !strconcat(opstr, "\t$rs, $rt, $offset"),
523         [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$offset)], IIBranch,
524         FrmI> {
525  let isBranch = 1;
526  let isTerminator = 1;
527  let hasDelaySlot = 1;
528  let Defs = [AT];
529}
530
531class CBranchZero<string opstr, PatFrag cond_op, RegisterClass RC> :
532  InstSE<(outs), (ins RC:$rs, brtarget:$offset),
533         !strconcat(opstr, "\t$rs, $offset"),
534         [(brcond (i32 (cond_op RC:$rs, 0)), bb:$offset)], IIBranch, FrmI> {
535  let isBranch = 1;
536  let isTerminator = 1;
537  let hasDelaySlot = 1;
538  let Defs = [AT];
539}
540
541// SetCC
542class SetCC_R<string opstr, PatFrag cond_op, RegisterClass RC> :
543  InstSE<(outs CPURegsOpnd:$rd), (ins RC:$rs, RC:$rt),
544         !strconcat(opstr, "\t$rd, $rs, $rt"),
545         [(set CPURegsOpnd:$rd, (cond_op RC:$rs, RC:$rt))], IIAlu, FrmR>;
546
547class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
548              RegisterClass RC>:
549  InstSE<(outs CPURegsOpnd:$rt), (ins RC:$rs, Od:$imm16),
550         !strconcat(opstr, "\t$rt, $rs, $imm16"),
551         [(set CPURegsOpnd:$rt, (cond_op RC:$rs, imm_type:$imm16))],
552         IIAlu, FrmI>;
553
554// Jump
555class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator,
556             SDPatternOperator targetoperator> :
557  InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
558         [(operator targetoperator:$target)], IIBranch, FrmJ> {
559  let isTerminator=1;
560  let isBarrier=1;
561  let hasDelaySlot = 1;
562  let DecoderMethod = "DecodeJumpTarget";
563  let Defs = [AT];
564}
565
566// Unconditional branch
567class UncondBranch<string opstr> :
568  InstSE<(outs), (ins brtarget:$offset), !strconcat(opstr, "\t$offset"),
569         [(br bb:$offset)], IIBranch, FrmI> {
570  let isBranch = 1;
571  let isTerminator = 1;
572  let isBarrier = 1;
573  let hasDelaySlot = 1;
574  let Predicates = [RelocPIC, HasStdEnc];
575  let Defs = [AT];
576}
577
578// Base class for indirect branch and return instruction classes.
579let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
580class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
581  InstSE<(outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch, FrmR>;
582
583// Indirect branch
584class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
585  let isBranch = 1;
586  let isIndirectBranch = 1;
587}
588
589// Return instruction
590class RetBase<RegisterClass RC>: JumpFR<RC> {
591  let isReturn = 1;
592  let isCodeGenOnly = 1;
593  let hasCtrlDep = 1;
594  let hasExtraSrcRegAllocReq = 1;
595}
596
597// Jump and Link (Call)
598let isCall=1, hasDelaySlot=1, Defs = [RA] in {
599  class JumpLink<string opstr> :
600    InstSE<(outs), (ins calltarget:$target), !strconcat(opstr, "\t$target"),
601           [(MipsJmpLink imm:$target)], IIBranch, FrmJ> {
602    let DecoderMethod = "DecodeJumpTarget";
603  }
604
605  class JumpLinkRegPseudo<RegisterClass RC, Instruction JALRInst,
606                          Register RetReg>:
607    PseudoSE<(outs), (ins RC:$rs), [(MipsJmpLink RC:$rs)], IIBranch>,
608    PseudoInstExpansion<(JALRInst RetReg, RC:$rs)>;
609
610  class JumpLinkReg<string opstr, RegisterClass RC>:
611    InstSE<(outs RC:$rd), (ins RC:$rs), !strconcat(opstr, "\t$rd, $rs"),
612           [], IIBranch, FrmR>;
613
614  class BGEZAL_FT<string opstr, RegisterOperand RO> :
615    InstSE<(outs), (ins RO:$rs, brtarget:$offset),
616           !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI>;
617
618}
619
620class BAL_FT :
621  InstSE<(outs), (ins brtarget:$offset), "bal\t$offset", [], IIBranch, FrmI> {
622  let isBranch = 1;
623  let isTerminator = 1;
624  let isBarrier = 1;
625  let hasDelaySlot = 1;
626  let Defs = [RA];
627}
628
629// Sync
630let hasSideEffects = 1 in
631class SYNC_FT :
632  InstSE<(outs), (ins i32imm:$stype), "sync $stype", [(MipsSync imm:$stype)],
633         NoItinerary, FrmOther>;
634
635// Mul, Div
636class Mult<string opstr, InstrItinClass itin, RegisterOperand RO,
637           list<Register> DefRegs> :
638  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [],
639         itin, FrmR> {
640  let isCommutable = 1;
641  let Defs = DefRegs;
642  let neverHasSideEffects = 1;
643}
644
645// Pseudo multiply/divide instruction with explicit accumulator register
646// operands.
647class MultDivPseudo<Instruction RealInst, RegisterClass R0, RegisterOperand R1,
648                    SDPatternOperator OpNode, InstrItinClass Itin,
649                    bit IsComm = 1, bit HasSideEffects = 0> :
650  PseudoSE<(outs R0:$ac), (ins R1:$rs, R1:$rt),
651           [(set R0:$ac, (OpNode R1:$rs, R1:$rt))], Itin>,
652  PseudoInstExpansion<(RealInst R1:$rs, R1:$rt)> {
653  let isCommutable = IsComm;
654  let hasSideEffects = HasSideEffects;
655}
656
657// Pseudo multiply add/sub instruction with explicit accumulator register
658// operands.
659class MAddSubPseudo<Instruction RealInst, SDPatternOperator OpNode>
660  : PseudoSE<(outs ACRegs:$ac),
661             (ins CPURegsOpnd:$rs, CPURegsOpnd:$rt, ACRegs:$acin),
662             [(set ACRegs:$ac,
663              (OpNode CPURegsOpnd:$rs, CPURegsOpnd:$rt, ACRegs:$acin))],
664             IIImul>,
665    PseudoInstExpansion<(RealInst CPURegsOpnd:$rs, CPURegsOpnd:$rt)> {
666  string Constraints = "$acin = $ac";
667}
668
669class Div<string opstr, InstrItinClass itin, RegisterOperand RO,
670          list<Register> DefRegs> :
671  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$$zero, $rs, $rt"),
672         [], itin, FrmR> {
673  let Defs = DefRegs;
674}
675
676// Move from Hi/Lo
677class MoveFromLOHI<string opstr, RegisterClass RC, list<Register> UseRegs>:
678  InstSE<(outs RC:$rd), (ins), !strconcat(opstr, "\t$rd"), [], IIHiLo, FrmR> {
679  let Uses = UseRegs;
680  let neverHasSideEffects = 1;
681}
682
683class MoveToLOHI<string opstr, RegisterClass RC, list<Register> DefRegs>:
684  InstSE<(outs), (ins RC:$rs), !strconcat(opstr, "\t$rs"), [], IIHiLo, FrmR> {
685  let Defs = DefRegs;
686  let neverHasSideEffects = 1;
687}
688
689class EffectiveAddress<string opstr, RegisterClass RC, Operand Mem> :
690  InstSE<(outs RC:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
691         [(set RC:$rt, addr:$addr)], NoItinerary, FrmI> {
692  let isCodeGenOnly = 1;
693  let DecoderMethod = "DecodeMem";
694}
695
696// Count Leading Ones/Zeros in Word
697class CountLeading0<string opstr, RegisterOperand RO>:
698  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
699         [(set RO:$rd, (ctlz RO:$rs))], IIAlu, FrmR>,
700  Requires<[HasBitCount, HasStdEnc]>;
701
702class CountLeading1<string opstr, RegisterOperand RO>:
703  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
704         [(set RO:$rd, (ctlz (not RO:$rs)))], IIAlu, FrmR>,
705  Requires<[HasBitCount, HasStdEnc]>;
706
707
708// Sign Extend in Register.
709class SignExtInReg<string opstr, ValueType vt, RegisterClass RC> :
710  InstSE<(outs RC:$rd), (ins RC:$rt), !strconcat(opstr, "\t$rd, $rt"),
711         [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary, FrmR> {
712  let Predicates = [HasSEInReg, HasStdEnc];
713}
714
715// Subword Swap
716class SubwordSwap<string opstr, RegisterOperand RO>:
717  InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [],
718         NoItinerary, FrmR> {
719  let Predicates = [HasSwap, HasStdEnc];
720  let neverHasSideEffects = 1;
721}
722
723// Read Hardware
724class ReadHardware<RegisterClass CPURegClass, RegisterOperand RO> :
725  InstSE<(outs CPURegClass:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [],
726         IIAlu, FrmR>;
727
728// Ext and Ins
729class ExtBase<string opstr, RegisterOperand RO>:
730  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ext:$size),
731         !strconcat(opstr, " $rt, $rs, $pos, $size"),
732         [(set RO:$rt, (MipsExt RO:$rs, imm:$pos, imm:$size))], NoItinerary,
733         FrmR> {
734  let Predicates = [HasMips32r2, HasStdEnc];
735}
736
737class InsBase<string opstr, RegisterOperand RO>:
738  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ins:$size, RO:$src),
739         !strconcat(opstr, " $rt, $rs, $pos, $size"),
740         [(set RO:$rt, (MipsIns RO:$rs, imm:$pos, imm:$size, RO:$src))],
741         NoItinerary, FrmR> {
742  let Predicates = [HasMips32r2, HasStdEnc];
743  let Constraints = "$src = $rt";
744}
745
746// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
747class Atomic2Ops<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
748  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
749           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
750
751multiclass Atomic2Ops32<PatFrag Op> {
752  def NAME : Atomic2Ops<Op, CPURegs, CPURegs>, Requires<[NotN64, HasStdEnc]>;
753  def _P8  : Atomic2Ops<Op, CPURegs, CPU64Regs>,
754             Requires<[IsN64, HasStdEnc]> {
755    let DecoderNamespace = "Mips64";
756  }
757}
758
759// Atomic Compare & Swap.
760class AtomicCmpSwap<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
761  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
762           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
763
764multiclass AtomicCmpSwap32<PatFrag Op>  {
765  def NAME : AtomicCmpSwap<Op, CPURegs, CPURegs>,
766             Requires<[NotN64, HasStdEnc]>;
767  def _P8  : AtomicCmpSwap<Op, CPURegs, CPU64Regs>,
768             Requires<[IsN64, HasStdEnc]> {
769    let DecoderNamespace = "Mips64";
770  }
771}
772
773class LLBase<string opstr, RegisterOperand RO, Operand Mem> :
774  InstSE<(outs RO:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
775         [], NoItinerary, FrmI> {
776  let DecoderMethod = "DecodeMem";
777  let mayLoad = 1;
778}
779
780class SCBase<string opstr, RegisterOperand RO, Operand Mem> :
781  InstSE<(outs RO:$dst), (ins RO:$rt, Mem:$addr),
782         !strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
783  let DecoderMethod = "DecodeMem";
784  let mayStore = 1;
785  let Constraints = "$rt = $dst";
786}
787
788class MFC3OP<dag outs, dag ins, string asmstr> :
789  InstSE<outs, ins, asmstr, [], NoItinerary, FrmFR>;
790
791//===----------------------------------------------------------------------===//
792// Pseudo instructions
793//===----------------------------------------------------------------------===//
794
795// Return RA.
796let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
797def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;
798
799let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
800def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
801                                  [(callseq_start timm:$amt)]>;
802def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
803                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
804}
805
806let usesCustomInserter = 1 in {
807  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8>;
808  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16>;
809  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32>;
810  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8>;
811  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16>;
812  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32>;
813  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8>;
814  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16>;
815  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32>;
816  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8>;
817  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16>;
818  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32>;
819  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8>;
820  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16>;
821  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32>;
822  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8>;
823  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16>;
824  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32>;
825
826  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8>;
827  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16>;
828  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32>;
829
830  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8>;
831  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16>;
832  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32>;
833}
834
835/// Pseudo instructions for loading, storing and copying accumulator registers.
836let isPseudo = 1 in {
837  defm LOAD_AC64  : LoadM<"load_ac64", ACRegs>;
838  defm STORE_AC64 : StoreM<"store_ac64", ACRegs>;
839}
840
841def COPY_AC64 : PseudoSE<(outs ACRegs:$dst), (ins ACRegs:$src), []>;
842
843//===----------------------------------------------------------------------===//
844// Instruction definition
845//===----------------------------------------------------------------------===//
846//===----------------------------------------------------------------------===//
847// MipsI Instructions
848//===----------------------------------------------------------------------===//
849
850/// Arithmetic Instructions (ALU Immediate)
851def ADDiu : ArithLogicI<"addiu", simm16, CPURegsOpnd, immSExt16, add>,
852            ADDI_FM<0x9>, IsAsCheapAsAMove;
853def ADDi  : ArithLogicI<"addi", simm16, CPURegsOpnd>, ADDI_FM<0x8>;
854def SLTi  : SetCC_I<"slti", setlt, simm16, immSExt16, CPURegs>, SLTI_FM<0xa>;
855def SLTiu : SetCC_I<"sltiu", setult, simm16, immSExt16, CPURegs>, SLTI_FM<0xb>;
856def ANDi  : ArithLogicI<"andi", uimm16, CPURegsOpnd, immZExt16, and>,
857            ADDI_FM<0xc>;
858def ORi   : ArithLogicI<"ori", uimm16, CPURegsOpnd, immZExt16, or>,
859            ADDI_FM<0xd>;
860def XORi  : ArithLogicI<"xori", uimm16, CPURegsOpnd, immZExt16, xor>,
861            ADDI_FM<0xe>;
862def LUi   : LoadUpper<"lui", CPURegs, uimm16>, LUI_FM;
863
864/// Arithmetic Instructions (3-Operand, R-Type)
865def ADDu : ArithLogicR<"addu", CPURegsOpnd, 1, IIAlu, add>, ADD_FM<0, 0x21>;
866def SUBu : ArithLogicR<"subu", CPURegsOpnd, 0, IIAlu, sub>, ADD_FM<0, 0x23>;
867def MUL  : ArithLogicR<"mul", CPURegsOpnd, 1, IIImul, mul>, ADD_FM<0x1c, 2>;
868def ADD  : ArithLogicR<"add", CPURegsOpnd>, ADD_FM<0, 0x20>;
869def SUB  : ArithLogicR<"sub", CPURegsOpnd>, ADD_FM<0, 0x22>;
870def SLT  : SetCC_R<"slt", setlt, CPURegs>, ADD_FM<0, 0x2a>;
871def SLTu : SetCC_R<"sltu", setult, CPURegs>, ADD_FM<0, 0x2b>;
872def AND  : ArithLogicR<"and", CPURegsOpnd, 1, IIAlu, and>, ADD_FM<0, 0x24>;
873def OR   : ArithLogicR<"or", CPURegsOpnd, 1, IIAlu, or>, ADD_FM<0, 0x25>;
874def XOR  : ArithLogicR<"xor", CPURegsOpnd, 1, IIAlu, xor>, ADD_FM<0, 0x26>;
875def NOR  : LogicNOR<"nor", CPURegsOpnd>, ADD_FM<0, 0x27>;
876
877/// Shift Instructions
878def SLL  : shift_rotate_imm<"sll", shamt, CPURegsOpnd, shl, immZExt5>,
879           SRA_FM<0, 0>;
880def SRL  : shift_rotate_imm<"srl", shamt, CPURegsOpnd, srl, immZExt5>,
881           SRA_FM<2, 0>;
882def SRA  : shift_rotate_imm<"sra", shamt, CPURegsOpnd, sra, immZExt5>,
883           SRA_FM<3, 0>;
884def SLLV : shift_rotate_reg<"sllv", CPURegsOpnd, shl>, SRLV_FM<4, 0>;
885def SRLV : shift_rotate_reg<"srlv", CPURegsOpnd, srl>, SRLV_FM<6, 0>;
886def SRAV : shift_rotate_reg<"srav", CPURegsOpnd, sra>, SRLV_FM<7, 0>;
887
888// Rotate Instructions
889let Predicates = [HasMips32r2, HasStdEnc] in {
890  def ROTR  : shift_rotate_imm<"rotr", shamt, CPURegsOpnd, rotr, immZExt5>,
891              SRA_FM<2, 1>;
892  def ROTRV : shift_rotate_reg<"rotrv", CPURegsOpnd, rotr>, SRLV_FM<6, 1>;
893}
894
895/// Load and Store Instructions
896///  aligned
897defm LB  : LoadM<"lb", CPURegs, sextloadi8>, LW_FM<0x20>;
898defm LBu : LoadM<"lbu", CPURegs, zextloadi8, addrDefault>, LW_FM<0x24>;
899defm LH  : LoadM<"lh", CPURegs, sextloadi16, addrDefault>, LW_FM<0x21>;
900defm LHu : LoadM<"lhu", CPURegs, zextloadi16>, LW_FM<0x25>;
901defm LW  : LoadM<"lw", CPURegs, load, addrDefault>, LW_FM<0x23>;
902defm SB  : StoreM<"sb", CPURegs, truncstorei8>, LW_FM<0x28>;
903defm SH  : StoreM<"sh", CPURegs, truncstorei16>, LW_FM<0x29>;
904defm SW  : StoreM<"sw", CPURegs, store>, LW_FM<0x2b>;
905
906/// load/store left/right
907defm LWL : LoadLeftRightM<"lwl", MipsLWL, CPURegs>, LW_FM<0x22>;
908defm LWR : LoadLeftRightM<"lwr", MipsLWR, CPURegs>, LW_FM<0x26>;
909defm SWL : StoreLeftRightM<"swl", MipsSWL, CPURegs>, LW_FM<0x2a>;
910defm SWR : StoreLeftRightM<"swr", MipsSWR, CPURegs>, LW_FM<0x2e>;
911
912def SYNC : SYNC_FT, SYNC_FM;
913
914/// Load-linked, Store-conditional
915let Predicates = [NotN64, HasStdEnc] in {
916  def LL : LLBase<"ll", CPURegsOpnd, mem>, LW_FM<0x30>;
917  def SC : SCBase<"sc", CPURegsOpnd, mem>, LW_FM<0x38>;
918}
919
920let Predicates = [IsN64, HasStdEnc], DecoderNamespace = "Mips64" in {
921  def LL_P8 : LLBase<"ll", CPURegsOpnd, mem64>, LW_FM<0x30>;
922  def SC_P8 : SCBase<"sc", CPURegsOpnd, mem64>, LW_FM<0x38>;
923}
924
925/// Jump and Branch Instructions
926def J       : JumpFJ<jmptarget, "j", br, bb>, FJ<2>,
927              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
928def JR      : IndirectBranch<CPURegs>, MTLO_FM<8>;
929def B       : UncondBranch<"b">, B_FM;
930def BEQ     : CBranch<"beq", seteq, CPURegs>, BEQ_FM<4>;
931def BNE     : CBranch<"bne", setne, CPURegs>, BEQ_FM<5>;
932def BGEZ    : CBranchZero<"bgez", setge, CPURegs>, BGEZ_FM<1, 1>;
933def BGTZ    : CBranchZero<"bgtz", setgt, CPURegs>, BGEZ_FM<7, 0>;
934def BLEZ    : CBranchZero<"blez", setle, CPURegs>, BGEZ_FM<6, 0>;
935def BLTZ    : CBranchZero<"bltz", setlt, CPURegs>, BGEZ_FM<1, 0>;
936
937def BAL_BR: BAL_FT, BAL_FM;
938
939def JAL  : JumpLink<"jal">, FJ<3>;
940def JALR : JumpLinkReg<"jalr", CPURegs>, JALR_FM;
941def JALRPseudo : JumpLinkRegPseudo<CPURegs, JALR, RA>;
942def BGEZAL : BGEZAL_FT<"bgezal", CPURegsOpnd>, BGEZAL_FM<0x11>;
943def BLTZAL : BGEZAL_FT<"bltzal", CPURegsOpnd>, BGEZAL_FM<0x10>;
944def TAILCALL : JumpFJ<calltarget, "j", MipsTailCall, imm>, FJ<2>, IsTailCall;
945def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, MTLO_FM<8>, IsTailCall;
946
947def RET : RetBase<CPURegs>, MTLO_FM<8>;
948
949// Exception handling related node and instructions.
950// The conversion sequence is:
951// ISD::EH_RETURN -> MipsISD::EH_RETURN ->
952// MIPSeh_return -> (stack change + indirect branch)
953//
954// MIPSeh_return takes the place of regular return instruction
955// but takes two arguments (V1, V0) which are used for storing
956// the offset and return address respectively.
957def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
958
959def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET,
960                      [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
961
962let Uses = [V0, V1], isTerminator = 1, isReturn = 1, isBarrier = 1 in {
963  def MIPSeh_return32 : MipsPseudo<(outs), (ins CPURegs:$spoff, CPURegs:$dst),
964                                [(MIPSehret CPURegs:$spoff, CPURegs:$dst)]>;
965  def MIPSeh_return64 : MipsPseudo<(outs), (ins CPU64Regs:$spoff,
966                                                CPU64Regs:$dst),
967                                [(MIPSehret CPU64Regs:$spoff, CPU64Regs:$dst)]>;
968}
969
970/// Multiply and Divide Instructions.
971def MULT  : Mult<"mult", IIImul, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x18>;
972def MULTu : Mult<"multu", IIImul, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x19>;
973def PseudoMULT  : MultDivPseudo<MULT, ACRegs, CPURegsOpnd, MipsMult, IIImul>;
974def PseudoMULTu : MultDivPseudo<MULTu, ACRegs, CPURegsOpnd, MipsMultu, IIImul>;
975def SDIV  : Div<"div", IIIdiv, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x1a>;
976def UDIV  : Div<"divu", IIIdiv, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x1b>;
977def PseudoSDIV : MultDivPseudo<SDIV, ACRegs, CPURegsOpnd, MipsDivRem, IIIdiv, 0>;
978def PseudoUDIV : MultDivPseudo<UDIV, ACRegs, CPURegsOpnd, MipsDivRemU, IIIdiv,
979                               0>;
980
981def MTHI : MoveToLOHI<"mthi", CPURegs, [HI]>, MTLO_FM<0x11>;
982def MTLO : MoveToLOHI<"mtlo", CPURegs, [LO]>, MTLO_FM<0x13>;
983def MFHI : MoveFromLOHI<"mfhi", CPURegs, [HI]>, MFLO_FM<0x10>;
984def MFLO : MoveFromLOHI<"mflo", CPURegs, [LO]>, MFLO_FM<0x12>;
985
986/// Sign Ext In Register Instructions.
987def SEB : SignExtInReg<"seb", i8, CPURegs>, SEB_FM<0x10, 0x20>;
988def SEH : SignExtInReg<"seh", i16, CPURegs>, SEB_FM<0x18, 0x20>;
989
990/// Count Leading
991def CLZ : CountLeading0<"clz", CPURegsOpnd>, CLO_FM<0x20>;
992def CLO : CountLeading1<"clo", CPURegsOpnd>, CLO_FM<0x21>;
993
994/// Word Swap Bytes Within Halfwords
995def WSBH : SubwordSwap<"wsbh", CPURegsOpnd>, SEB_FM<2, 0x20>;
996
997/// No operation.
998def NOP : PseudoSE<(outs), (ins), []>, PseudoInstExpansion<(SLL ZERO, ZERO, 0)>;
999
1000// FrameIndexes are legalized when they are operands from load/store
1001// instructions. The same not happens for stack address copies, so an
1002// add op with mem ComplexPattern is used and the stack address copy
1003// can be matched. It's similar to Sparc LEA_ADDRi
1004def LEA_ADDiu : EffectiveAddress<"addiu", CPURegs, mem_ea>, LW_FM<9>;
1005
1006// MADD*/MSUB*
1007def MADD  : MArithR<"madd", 1>, MULT_FM<0x1c, 0>;
1008def MADDU : MArithR<"maddu", 1>, MULT_FM<0x1c, 1>;
1009def MSUB  : MArithR<"msub">, MULT_FM<0x1c, 4>;
1010def MSUBU : MArithR<"msubu">, MULT_FM<0x1c, 5>;
1011def PseudoMADD  : MAddSubPseudo<MADD, MipsMAdd>;
1012def PseudoMADDU : MAddSubPseudo<MADDU, MipsMAddu>;
1013def PseudoMSUB  : MAddSubPseudo<MSUB, MipsMSub>;
1014def PseudoMSUBU : MAddSubPseudo<MSUBU, MipsMSubu>;
1015
1016def RDHWR : ReadHardware<CPURegs, HWRegsOpnd>, RDHWR_FM;
1017
1018def EXT : ExtBase<"ext", CPURegsOpnd>, EXT_FM<0>;
1019def INS : InsBase<"ins", CPURegsOpnd>, EXT_FM<4>;
1020
1021/// Move Control Registers From/To CPU Registers
1022def MFC0_3OP : MFC3OP<(outs CPURegsOpnd:$rt),
1023                      (ins CPURegsOpnd:$rd, uimm16:$sel),
1024                      "mfc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 0>;
1025
1026def MTC0_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel),
1027                      (ins CPURegsOpnd:$rt),
1028                      "mtc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 4>;
1029
1030def MFC2_3OP : MFC3OP<(outs CPURegsOpnd:$rt),
1031                      (ins CPURegsOpnd:$rd, uimm16:$sel),
1032                      "mfc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 0>;
1033
1034def MTC2_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel),
1035                      (ins CPURegsOpnd:$rt),
1036                      "mtc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 4>;
1037
1038//===----------------------------------------------------------------------===//
1039// Instruction aliases
1040//===----------------------------------------------------------------------===//
1041def : InstAlias<"move $dst, $src",
1042                (ADDu CPURegsOpnd:$dst, CPURegsOpnd:$src,ZERO), 1>,
1043      Requires<[NotMips64]>;
1044def : InstAlias<"move $dst, $src",
1045                (OR CPURegsOpnd:$dst, CPURegsOpnd:$src,ZERO), 1>,
1046      Requires<[NotMips64]>;
1047def : InstAlias<"bal $offset", (BGEZAL RA, brtarget:$offset), 1>;
1048def : InstAlias<"addu $rs, $rt, $imm",
1049                (ADDiu CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
1050def : InstAlias<"add $rs, $rt, $imm",
1051                (ADDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
1052def : InstAlias<"and $rs, $rt, $imm",
1053                (ANDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
1054def : InstAlias<"j $rs", (JR CPURegs:$rs), 0>,
1055      Requires<[NotMips64]>;
1056def : InstAlias<"jalr $rs", (JALR RA, CPURegs:$rs)>, Requires<[NotMips64]>;
1057def : InstAlias<"jal $rs", (JALR RA, CPURegs:$rs), 0>, Requires<[NotMips64]>;
1058def : InstAlias<"jal $rd,$rs", (JALR CPURegs:$rd, CPURegs:$rs), 0>,
1059                 Requires<[NotMips64]>;
1060def : InstAlias<"not $rt, $rs",
1061                (NOR CPURegsOpnd:$rt, CPURegsOpnd:$rs, ZERO), 1>;
1062def : InstAlias<"neg $rt, $rs",
1063                (SUB CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>;
1064def : InstAlias<"negu $rt, $rs",
1065                (SUBu CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>;
1066def : InstAlias<"slt $rs, $rt, $imm",
1067                (SLTi CPURegsOpnd:$rs, CPURegs:$rt, simm16:$imm), 0>;
1068def : InstAlias<"xor $rs, $rt, $imm",
1069                (XORi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>,
1070      Requires<[NotMips64]>;
1071def : InstAlias<"or $rs, $rt, $imm",
1072                (ORi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>,
1073                 Requires<[NotMips64]>;
1074def : InstAlias<"nop", (SLL ZERO, ZERO, 0), 1>;
1075def : InstAlias<"mfc0 $rt, $rd",
1076                (MFC0_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>;
1077def : InstAlias<"mtc0 $rt, $rd",
1078                (MTC0_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>;
1079def : InstAlias<"mfc2 $rt, $rd",
1080                (MFC2_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>;
1081def : InstAlias<"mtc2 $rt, $rd",
1082                (MTC2_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>;
1083
1084//===----------------------------------------------------------------------===//
1085// Assembler Pseudo Instructions
1086//===----------------------------------------------------------------------===//
1087
1088class LoadImm32< string instr_asm, Operand Od, RegisterOperand RO> :
1089  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1090                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1091def LoadImm32Reg : LoadImm32<"li", shamt,CPURegsOpnd>;
1092
1093class LoadAddress<string instr_asm, Operand MemOpnd, RegisterOperand RO> :
1094  MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr),
1095                     !strconcat(instr_asm, "\t$rt, $addr")> ;
1096def LoadAddr32Reg : LoadAddress<"la", mem, CPURegsOpnd>;
1097
1098class LoadAddressImm<string instr_asm, Operand Od, RegisterOperand RO> :
1099  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1100                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1101def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegsOpnd>;
1102
1103
1104
1105//===----------------------------------------------------------------------===//
1106//  Arbitrary patterns that map to one or more instructions
1107//===----------------------------------------------------------------------===//
1108
1109// Load/store pattern templates.
1110class LoadRegImmPat<Instruction LoadInst, ValueType ValTy, PatFrag Node> :
1111  MipsPat<(ValTy (Node addrRegImm:$a)), (LoadInst addrRegImm:$a)>;
1112
1113class StoreRegImmPat<Instruction StoreInst, ValueType ValTy> :
1114  MipsPat<(store ValTy:$v, addrRegImm:$a), (StoreInst ValTy:$v, addrRegImm:$a)>;
1115
1116// Small immediates
1117def : MipsPat<(i32 immSExt16:$in),
1118              (ADDiu ZERO, imm:$in)>;
1119def : MipsPat<(i32 immZExt16:$in),
1120              (ORi ZERO, imm:$in)>;
1121def : MipsPat<(i32 immLow16Zero:$in),
1122              (LUi (HI16 imm:$in))>;
1123
1124// Arbitrary immediates
1125def : MipsPat<(i32 imm:$imm),
1126          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1127
1128// Carry MipsPatterns
1129def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1130              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1131def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1132              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1133def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1134              (ADDiu CPURegs:$src, imm:$imm)>;
1135
1136// Call
1137def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1138              (JAL tglobaladdr:$dst)>;
1139def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1140              (JAL texternalsym:$dst)>;
1141//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1142//              (JALR CPURegs:$dst)>;
1143
1144// Tail call
1145def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1146              (TAILCALL tglobaladdr:$dst)>;
1147def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1148              (TAILCALL texternalsym:$dst)>;
1149// hi/lo relocs
1150def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1151def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1152def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1153def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1154def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1155def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1156
1157def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1158def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1159def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1160def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1161def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1162def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1163
1164def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1165              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1166def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1167              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1168def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1169              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1170def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1171              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1172def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1173              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1174
1175// gp_rel relocs
1176def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1177              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1178def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1179              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1180
1181// wrapper_pic
1182class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1183      MipsPat<(MipsWrapper RC:$gp, node:$in),
1184              (ADDiuOp RC:$gp, node:$in)>;
1185
1186def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1187def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1188def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1189def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1190def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1191def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1192
1193// Mips does not have "not", so we expand our way
1194def : MipsPat<(not CPURegs:$in),
1195              (NOR CPURegsOpnd:$in, ZERO)>;
1196
1197// extended loads
1198let Predicates = [NotN64, HasStdEnc] in {
1199  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1200  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1201  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1202}
1203let Predicates = [IsN64, HasStdEnc] in {
1204  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1205  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1206  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1207}
1208
1209// peepholes
1210let Predicates = [NotN64, HasStdEnc] in {
1211  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1212}
1213let Predicates = [IsN64, HasStdEnc] in {
1214  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1215}
1216
1217// brcond patterns
1218multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1219                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1220                      Instruction SLTiuOp, Register ZEROReg> {
1221def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1222              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1223def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1224              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1225
1226def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1227              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1228def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1229              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1230def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1231              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1232def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1233              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1234
1235def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1236              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1237def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1238              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1239
1240def : MipsPat<(brcond RC:$cond, bb:$dst),
1241              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1242}
1243
1244defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1245
1246// setcc patterns
1247multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1248                     Instruction SLTuOp, Register ZEROReg> {
1249  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1250                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1251  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1252                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1253}
1254
1255multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1256  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1257                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1258  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1259                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1260}
1261
1262multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1263  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1264                (SLTOp RC:$rhs, RC:$lhs)>;
1265  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1266                (SLTuOp RC:$rhs, RC:$lhs)>;
1267}
1268
1269multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1270  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1271                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1272  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1273                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1274}
1275
1276multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1277                        Instruction SLTiuOp> {
1278  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1279                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1280  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1281                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1282}
1283
1284defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1285defm : SetlePats<CPURegs, SLT, SLTu>;
1286defm : SetgtPats<CPURegs, SLT, SLTu>;
1287defm : SetgePats<CPURegs, SLT, SLTu>;
1288defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1289
1290// bswap pattern
1291def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1292
1293// mflo/hi patterns.
1294def : MipsPat<(i32 (ExtractLOHI ACRegs:$ac, imm:$lohi_idx)),
1295              (EXTRACT_SUBREG ACRegs:$ac, imm:$lohi_idx)>;
1296
1297// Load halfword/word patterns.
1298let AddedComplexity = 40 in {
1299  let Predicates = [NotN64, HasStdEnc] in {
1300    def : LoadRegImmPat<LBu, i32, zextloadi8>;
1301    def : LoadRegImmPat<LH, i32, sextloadi16>;
1302    def : LoadRegImmPat<LW, i32, load>;
1303  }
1304  let Predicates = [IsN64, HasStdEnc] in {
1305    def : LoadRegImmPat<LBu_P8, i32, zextloadi8>;
1306    def : LoadRegImmPat<LH_P8, i32, sextloadi16>;
1307    def : LoadRegImmPat<LW_P8, i32, load>;
1308  }
1309}
1310
1311//===----------------------------------------------------------------------===//
1312// Floating Point Support
1313//===----------------------------------------------------------------------===//
1314
1315include "MipsInstrFPU.td"
1316include "Mips64InstrInfo.td"
1317include "MipsCondMov.td"
1318
1319//
1320// Mips16
1321
1322include "Mips16InstrFormats.td"
1323include "Mips16InstrInfo.td"
1324
1325// DSP
1326include "MipsDSPInstrFormats.td"
1327include "MipsDSPInstrInfo.td"
1328
1329