MipsInstrInfo.td revision de3322746280b957d552cc5e69e121b38c07406c
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
27                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
28                                          SDTCisSameAs<1, 2>,
29                                          SDTCisSameAs<2, 3>]>;
30def SDT_MipsDivRem       : SDTypeProfile<0, 2,
31                                         [SDTCisInt<0>,
32                                          SDTCisSameAs<0, 1>]>;
33
34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
35
36def SDT_MipsDynAlloc    : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>,
37                                               SDTCisSameAs<0, 1>]>;
38def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
39
40def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
42def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
43                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
44                                   SDTCisSameAs<0, 4>]>;
45
46def SDTMipsLoadLR  : SDTypeProfile<1, 2,
47                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
48                                    SDTCisSameAs<0, 2>]>;
49
50// Call
51def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
52                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
53                          SDNPVariadic]>;
54
55// Hi and Lo nodes are used to handle global addresses. Used on
56// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
57// static model. (nothing to do with Mips Registers Hi and Lo)
58def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
59def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
60def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
61
62// TlsGd node is used to handle General Dynamic TLS
63def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
64
65// TprelHi and TprelLo nodes are used to handle Local Exec TLS
66def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
67def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
68
69// Thread pointer
70def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
71
72// Return
73def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue]>;
74
75// These are target-independent nodes, but have target-specific formats.
76def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
77                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
78def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
79                           [SDNPHasChain, SDNPSideEffect,
80                            SDNPOptInGlue, SDNPOutGlue]>;
81
82// MAdd*/MSub* nodes
83def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
84                           [SDNPOptInGlue, SDNPOutGlue]>;
85def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
86                           [SDNPOptInGlue, SDNPOutGlue]>;
87def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
88                           [SDNPOptInGlue, SDNPOutGlue]>;
89def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
90                           [SDNPOptInGlue, SDNPOutGlue]>;
91
92// DivRem(u) nodes
93def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
94                           [SDNPOutGlue]>;
95def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
96                           [SDNPOutGlue]>;
97
98// Target constant nodes that are not part of any isel patterns and remain
99// unchanged can cause instructions with illegal operands to be emitted.
100// Wrapper node patterns give the instruction selector a chance to replace
101// target constant nodes that would otherwise remain unchanged with ADDiu
102// nodes. Without these wrapper node patterns, the following conditional move
103// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
104// compiled:
105//  movn  %got(d)($gp), %got(c)($gp), $4
106// This instruction is illegal since movn can take only register operands.
107
108def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
109
110// Pointer to dynamically allocated stack area.
111def MipsDynAlloc  : SDNode<"MipsISD::DynAlloc", SDT_MipsDynAlloc,
112                           [SDNPHasChain, SDNPInGlue]>;
113
114def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
115
116def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
117def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
118
119def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
120                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
121def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
122                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
123def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
124                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
125def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
126                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
127def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
128                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
129def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
130                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
131def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
132                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
133def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
134                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
135
136//===----------------------------------------------------------------------===//
137// Mips Instruction Predicate Definitions.
138//===----------------------------------------------------------------------===//
139def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
140                      AssemblerPredicate<"FeatureSEInReg">;
141def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
142                      AssemblerPredicate<"FeatureBitCount">;
143def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
144                      AssemblerPredicate<"FeatureSwap">;
145def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
146                      AssemblerPredicate<"FeatureCondMov">;
147def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
148                      AssemblerPredicate<"FeatureMips32">;
149def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
150                      AssemblerPredicate<"FeatureMips32r2">;
151def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
152                      AssemblerPredicate<"FeatureMips64">;
153def HasMips32r2Or64 : Predicate<"Subtarget.hasMips32r2Or64()">,
154                      AssemblerPredicate<"FeatureMips32r2,FeatureMips64">;
155def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
156                      AssemblerPredicate<"!FeatureMips64">;
157def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
158                      AssemblerPredicate<"FeatureMips64r2">;
159def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
160                      AssemblerPredicate<"FeatureN64">;
161def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
162                      AssemblerPredicate<"!FeatureN64">;
163def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
164                      AssemblerPredicate<"FeatureMips16">;
165def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
166                      AssemblerPredicate<"FeatureMips32">;
167def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
168                      AssemblerPredicate<"FeatureMips32">;
169def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
170                      AssemblerPredicate<"FeatureMips32">;
171def HasStandardEncoding : Predicate<"Subtarget.hasStandardEncoding()">,
172                          AssemblerPredicate<"!FeatureMips16">;
173
174class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
175  let Predicates = [HasStandardEncoding];
176}
177
178//===----------------------------------------------------------------------===//
179// Instruction format superclass
180//===----------------------------------------------------------------------===//
181
182include "MipsInstrFormats.td"
183
184//===----------------------------------------------------------------------===//
185// Mips Operand, Complex Patterns and Transformations Definitions.
186//===----------------------------------------------------------------------===//
187
188// Instruction operand types
189def jmptarget   : Operand<OtherVT> {
190  let EncoderMethod = "getJumpTargetOpValue";
191}
192def brtarget    : Operand<OtherVT> {
193  let EncoderMethod = "getBranchTargetOpValue";
194  let OperandType = "OPERAND_PCREL";
195  let DecoderMethod = "DecodeBranchTarget";
196}
197def calltarget  : Operand<iPTR> {
198  let EncoderMethod = "getJumpTargetOpValue";
199}
200def calltarget64: Operand<i64>;
201def simm16      : Operand<i32> {
202  let DecoderMethod= "DecodeSimm16";
203}
204def simm16_64   : Operand<i64>;
205def shamt       : Operand<i32>;
206
207// Unsigned Operand
208def uimm16      : Operand<i32> {
209  let PrintMethod = "printUnsignedImm";
210}
211
212def MipsMemAsmOperand : AsmOperandClass {
213  let Name = "Mem";
214  let ParserMethod = "parseMemOperand";
215}
216
217// Address operand
218def mem : Operand<i32> {
219  let PrintMethod = "printMemOperand";
220  let MIOperandInfo = (ops CPURegs, simm16);
221  let EncoderMethod = "getMemEncoding";
222  let ParserMatchClass = MipsMemAsmOperand;
223}
224
225def mem64 : Operand<i64> {
226  let PrintMethod = "printMemOperand";
227  let MIOperandInfo = (ops CPU64Regs, simm16_64);
228  let EncoderMethod = "getMemEncoding";
229  let ParserMatchClass = MipsMemAsmOperand;
230}
231
232def mem_ea : Operand<i32> {
233  let PrintMethod = "printMemOperandEA";
234  let MIOperandInfo = (ops CPURegs, simm16);
235  let EncoderMethod = "getMemEncoding";
236}
237
238def mem_ea_64 : Operand<i64> {
239  let PrintMethod = "printMemOperandEA";
240  let MIOperandInfo = (ops CPU64Regs, simm16_64);
241  let EncoderMethod = "getMemEncoding";
242}
243
244// size operand of ext instruction
245def size_ext : Operand<i32> {
246  let EncoderMethod = "getSizeExtEncoding";
247  let DecoderMethod = "DecodeExtSize";
248}
249
250// size operand of ins instruction
251def size_ins : Operand<i32> {
252  let EncoderMethod = "getSizeInsEncoding";
253  let DecoderMethod = "DecodeInsSize";
254}
255
256// Transformation Function - get the lower 16 bits.
257def LO16 : SDNodeXForm<imm, [{
258  return getImm(N, N->getZExtValue() & 0xFFFF);
259}]>;
260
261// Transformation Function - get the higher 16 bits.
262def HI16 : SDNodeXForm<imm, [{
263  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
264}]>;
265
266// Node immediate fits as 16-bit sign extended on target immediate.
267// e.g. addi, andi
268def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
269
270// Node immediate fits as 16-bit zero extended on target immediate.
271// The LO16 param means that only the lower 16 bits of the node
272// immediate are caught.
273// e.g. addiu, sltiu
274def immZExt16  : PatLeaf<(imm), [{
275  if (N->getValueType(0) == MVT::i32)
276    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
277  else
278    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
279}], LO16>;
280
281// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
282def immLow16Zero : PatLeaf<(imm), [{
283  int64_t Val = N->getSExtValue();
284  return isInt<32>(Val) && !(Val & 0xffff);
285}]>;
286
287// shamt field must fit in 5 bits.
288def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
289
290// Mips Address Mode! SDNode frameindex could possibily be a match
291// since load and store instructions from stack used it.
292def addr :
293  ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
294
295//===----------------------------------------------------------------------===//
296// Instructions specific format
297//===----------------------------------------------------------------------===//
298
299/// Move Control Registers From/To CPU Registers
300def MFC0_3OP  : MFC3OP<0x10, 0, (outs CPURegs:$rt),
301                       (ins CPURegs:$rd, uimm16:$sel),"mfc0\t$rt, $rd, $sel">;
302def : InstAlias<"mfc0 $rt, $rd", (MFC0_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
303
304def MTC0_3OP  : MFC3OP<0x10, 4, (outs CPURegs:$rd, uimm16:$sel),
305                       (ins CPURegs:$rt),"mtc0\t$rt, $rd, $sel">;
306def : InstAlias<"mtc0 $rt, $rd", (MTC0_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
307
308def MFC2_3OP  : MFC3OP<0x12, 0, (outs CPURegs:$rt),
309                       (ins CPURegs:$rd, uimm16:$sel),"mfc2\t$rt, $rd, $sel">;
310def : InstAlias<"mfc2 $rt, $rd", (MFC2_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
311
312def MTC2_3OP  : MFC3OP<0x12, 4, (outs CPURegs:$rd, uimm16:$sel),
313                       (ins CPURegs:$rt),"mtc2\t$rt, $rd, $sel">;
314def : InstAlias<"mtc2 $rt, $rd", (MTC2_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
315
316// Arithmetic and logical instructions with 3 register operands.
317class ArithLogicR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
318                  InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
319  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
320     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
321     [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], itin> {
322  let shamt = 0;
323  let isCommutable = isComm;
324  let isReMaterializable = 1;
325}
326
327class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm,
328                    InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
329  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
330     !strconcat(instr_asm, "\t$rd, $rs, $rt"), [], itin> {
331  let shamt = 0;
332  let isCommutable = isComm;
333}
334
335// Arithmetic and logical instructions with 2 register operands.
336class ArithLogicI<bits<6> op, string instr_asm, SDNode OpNode,
337                  Operand Od, PatLeaf imm_type, RegisterClass RC> :
338  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
339     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
340     [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu> {
341  let isReMaterializable = 1;
342}
343
344class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode,
345                     Operand Od, PatLeaf imm_type, RegisterClass RC> :
346  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
347     !strconcat(instr_asm, "\t$rt, $rs, $imm16"), [], IIAlu>;
348
349// Arithmetic Multiply ADD/SUB
350let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
351class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
352  FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
353     !strconcat(instr_asm, "\t$rs, $rt"),
354     [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
355  let rd = 0;
356  let shamt = 0;
357  let isCommutable = isComm;
358}
359
360//  Logical
361class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
362  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
363     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
364     [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> {
365  let shamt = 0;
366  let isCommutable = 1;
367}
368
369// Shifts
370class shift_rotate_imm<bits<6> func, bits<5> isRotate, string instr_asm,
371                       SDNode OpNode, PatFrag PF, Operand ImmOpnd,
372                       RegisterClass RC>:
373  FR<0x00, func, (outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
374     !strconcat(instr_asm, "\t$rd, $rt, $shamt"),
375     [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu> {
376  let rs = isRotate;
377}
378
379// 32-bit shift instructions.
380class shift_rotate_imm32<bits<6> func, bits<5> isRotate, string instr_asm,
381                         SDNode OpNode>:
382  shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt, CPURegs>;
383
384class shift_rotate_reg<bits<6> func, bits<5> isRotate, string instr_asm,
385                       SDNode OpNode, RegisterClass RC>:
386  FR<0x00, func, (outs RC:$rd), (ins CPURegs:$rs, RC:$rt),
387     !strconcat(instr_asm, "\t$rd, $rt, $rs"),
388     [(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu> {
389  let shamt = isRotate;
390}
391
392// Load Upper Imediate
393class LoadUpper<bits<6> op, string instr_asm, RegisterClass RC, Operand Imm>:
394  FI<op, (outs RC:$rt), (ins Imm:$imm16),
395     !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu> {
396  let rs = 0;
397  let neverHasSideEffects = 1;
398  let isReMaterializable = 1;
399}
400
401class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
402          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
403  bits<21> addr;
404  let Inst{25-21} = addr{20-16};
405  let Inst{15-0}  = addr{15-0};
406  let DecoderMethod = "DecodeMem";
407}
408
409// Memory Load/Store
410let canFoldAsLoad = 1 in
411class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
412            Operand MemOpnd, bit Pseudo>:
413  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
414     !strconcat(instr_asm, "\t$rt, $addr"),
415     [(set RC:$rt, (OpNode addr:$addr))], IILoad> {
416  let isPseudo = Pseudo;
417}
418
419class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
420             Operand MemOpnd, bit Pseudo>:
421  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
422     !strconcat(instr_asm, "\t$rt, $addr"),
423     [(OpNode RC:$rt, addr:$addr)], IIStore> {
424  let isPseudo = Pseudo;
425}
426
427// 32-bit load.
428multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
429                   bit Pseudo = 0> {
430  def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
431               Requires<[NotN64, HasStandardEncoding]>;
432  def _P8    : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
433               Requires<[IsN64, HasStandardEncoding]> {
434    let DecoderNamespace = "Mips64";
435    let isCodeGenOnly = 1;
436  }
437}
438
439// 64-bit load.
440multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
441                   bit Pseudo = 0> {
442  def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
443               Requires<[NotN64, HasStandardEncoding]>;
444  def _P8    : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
445               Requires<[IsN64, HasStandardEncoding]> {
446    let DecoderNamespace = "Mips64";
447    let isCodeGenOnly = 1;
448  }
449}
450
451// 32-bit store.
452multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
453                    bit Pseudo = 0> {
454  def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
455               Requires<[NotN64, HasStandardEncoding]>;
456  def _P8    : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
457               Requires<[IsN64, HasStandardEncoding]> {
458    let DecoderNamespace = "Mips64";
459    let isCodeGenOnly = 1;
460  }
461}
462
463// 64-bit store.
464multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
465                    bit Pseudo = 0> {
466  def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
467               Requires<[NotN64, HasStandardEncoding]>;
468  def _P8    : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
469               Requires<[IsN64, HasStandardEncoding]> {
470    let DecoderNamespace = "Mips64";
471    let isCodeGenOnly = 1;
472  }
473}
474
475// Load/Store Left/Right
476let canFoldAsLoad = 1 in
477class LoadLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
478                    RegisterClass RC, Operand MemOpnd> :
479  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
480       !strconcat(instr_asm, "\t$rt, $addr"),
481       [(set RC:$rt, (OpNode addr:$addr, RC:$src))], IILoad> {
482  string Constraints = "$src = $rt";
483}
484
485class StoreLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
486                     RegisterClass RC, Operand MemOpnd>:
487  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
488       !strconcat(instr_asm, "\t$rt, $addr"), [(OpNode RC:$rt, addr:$addr)],
489       IIStore>;
490
491// 32-bit load left/right.
492multiclass LoadLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
493  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
494               Requires<[NotN64, HasStandardEncoding]>;
495  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
496               Requires<[IsN64, HasStandardEncoding]> {
497    let DecoderNamespace = "Mips64";
498    let isCodeGenOnly = 1;
499  }
500}
501
502// 64-bit load left/right.
503multiclass LoadLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
504  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
505               Requires<[NotN64, HasStandardEncoding]>;
506  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
507               Requires<[IsN64, HasStandardEncoding]> {
508    let DecoderNamespace = "Mips64";
509    let isCodeGenOnly = 1;
510  }
511}
512
513// 32-bit store left/right.
514multiclass StoreLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
515  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
516               Requires<[NotN64, HasStandardEncoding]>;
517  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
518               Requires<[IsN64, HasStandardEncoding]> {
519    let DecoderNamespace = "Mips64";
520    let isCodeGenOnly = 1;
521  }
522}
523
524// 64-bit store left/right.
525multiclass StoreLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
526  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
527               Requires<[NotN64, HasStandardEncoding]>;
528  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
529               Requires<[IsN64, HasStandardEncoding]> {
530    let DecoderNamespace = "Mips64";
531    let isCodeGenOnly = 1;
532  }
533}
534
535// Conditional Branch
536class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>:
537  BranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16),
538             !strconcat(instr_asm, "\t$rs, $rt, $imm16"),
539             [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> {
540  let isBranch = 1;
541  let isTerminator = 1;
542  let hasDelaySlot = 1;
543  let Defs = [AT];
544}
545
546class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op,
547                  RegisterClass RC>:
548  BranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16),
549             !strconcat(instr_asm, "\t$rs, $imm16"),
550             [(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> {
551  let rt = _rt;
552  let isBranch = 1;
553  let isTerminator = 1;
554  let hasDelaySlot = 1;
555  let Defs = [AT];
556}
557
558// SetCC
559class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op,
560              RegisterClass RC>:
561  FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
562     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
563     [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))],
564     IIAlu> {
565  let shamt = 0;
566}
567
568class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od,
569              PatLeaf imm_type, RegisterClass RC>:
570  FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
571     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
572     [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))],
573     IIAlu>;
574
575// Jump
576class JumpFJ<bits<6> op, string instr_asm>:
577  FJ<op, (outs), (ins jmptarget:$target),
578     !strconcat(instr_asm, "\t$target"), [(br bb:$target)], IIBranch> {
579  let isBranch=1;
580  let isTerminator=1;
581  let isBarrier=1;
582  let hasDelaySlot = 1;
583  let Predicates = [RelocStatic, HasStandardEncoding];
584  let DecoderMethod = "DecodeJumpTarget";
585  let Defs = [AT];
586}
587
588// Unconditional branch
589class UncondBranch<bits<6> op, string instr_asm>:
590  BranchBase<op, (outs), (ins brtarget:$imm16),
591             !strconcat(instr_asm, "\t$imm16"), [(br bb:$imm16)], IIBranch> {
592  let rs = 0;
593  let rt = 0;
594  let isBranch = 1;
595  let isTerminator = 1;
596  let isBarrier = 1;
597  let hasDelaySlot = 1;
598  let Predicates = [RelocPIC, HasStandardEncoding];
599  let Defs = [AT];
600}
601
602// Base class for indirect branch and return instruction classes.
603let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
604class JumpFR<RegisterClass RC, list<dag> pattern>:
605  FR<0, 0x8, (outs), (ins RC:$rs), "jr\t$rs", pattern, IIBranch> {
606  let rt = 0;
607  let rd = 0;
608  let shamt = 0;
609}
610
611// Indirect branch
612class IndirectBranch<RegisterClass RC>: JumpFR<RC, [(brind RC:$rs)]> {
613  let isBranch = 1;
614  let isIndirectBranch = 1;
615}
616
617// Return instruction
618class RetBase<RegisterClass RC>: JumpFR<RC, []> {
619  let isReturn = 1;
620  let isCodeGenOnly = 1;
621  let hasCtrlDep = 1;
622  let hasExtraSrcRegAllocReq = 1;
623}
624
625// Jump and Link (Call)
626let isCall=1, hasDelaySlot=1, Defs = [RA] in {
627  class JumpLink<bits<6> op, string instr_asm>:
628    FJ<op, (outs), (ins calltarget:$target),
629       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
630       IIBranch> {
631       let DecoderMethod = "DecodeJumpTarget";
632       }
633
634  class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm,
635                    RegisterClass RC>:
636    FR<op, func, (outs), (ins RC:$rs),
637       !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink RC:$rs)], IIBranch> {
638    let rt = 0;
639    let rd = 31;
640    let shamt = 0;
641  }
642
643  class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>:
644    FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16),
645       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> {
646    let rt = _rt;
647  }
648}
649
650// Mul, Div
651class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
652           RegisterClass RC, list<Register> DefRegs>:
653  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
654     !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
655  let rd = 0;
656  let shamt = 0;
657  let isCommutable = 1;
658  let Defs = DefRegs;
659  let neverHasSideEffects = 1;
660}
661
662class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
663  Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
664
665class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
666          RegisterClass RC, list<Register> DefRegs>:
667  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
668     !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
669     [(op RC:$rs, RC:$rt)], itin> {
670  let rd = 0;
671  let shamt = 0;
672  let Defs = DefRegs;
673}
674
675class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
676  Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
677
678// Move from Hi/Lo
679class MoveFromLOHI<bits<6> func, string instr_asm, RegisterClass RC,
680                   list<Register> UseRegs>:
681  FR<0x00, func, (outs RC:$rd), (ins),
682     !strconcat(instr_asm, "\t$rd"), [], IIHiLo> {
683  let rs = 0;
684  let rt = 0;
685  let shamt = 0;
686  let Uses = UseRegs;
687  let neverHasSideEffects = 1;
688}
689
690class MoveToLOHI<bits<6> func, string instr_asm, RegisterClass RC,
691                 list<Register> DefRegs>:
692  FR<0x00, func, (outs), (ins RC:$rs),
693     !strconcat(instr_asm, "\t$rs"), [], IIHiLo> {
694  let rt = 0;
695  let rd = 0;
696  let shamt = 0;
697  let Defs = DefRegs;
698  let neverHasSideEffects = 1;
699}
700
701class EffectiveAddress<bits<6> opc, string instr_asm, RegisterClass RC, Operand Mem> :
702  FMem<opc, (outs RC:$rt), (ins Mem:$addr),
703     instr_asm, [(set RC:$rt, addr:$addr)], IIAlu> {
704 let isCodeGenOnly = 1;
705}
706
707// Count Leading Ones/Zeros in Word
708class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>:
709  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
710     !strconcat(instr_asm, "\t$rd, $rs"),
711     [(set RC:$rd, (ctlz RC:$rs))], IIAlu>,
712     Requires<[HasBitCount, HasStandardEncoding]> {
713  let shamt = 0;
714  let rt = rd;
715}
716
717class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>:
718  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
719     !strconcat(instr_asm, "\t$rd, $rs"),
720     [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>,
721     Requires<[HasBitCount, HasStandardEncoding]> {
722  let shamt = 0;
723  let rt = rd;
724}
725
726// Sign Extend in Register.
727class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt,
728                   RegisterClass RC>:
729  FR<0x1f, 0x20, (outs RC:$rd), (ins RC:$rt),
730     !strconcat(instr_asm, "\t$rd, $rt"),
731     [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary> {
732  let rs = 0;
733  let shamt = sa;
734  let Predicates = [HasSEInReg, HasStandardEncoding];
735}
736
737// Subword Swap
738class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>:
739  FR<0x1f, func, (outs RC:$rd), (ins RC:$rt),
740     !strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> {
741  let rs = 0;
742  let shamt = sa;
743  let Predicates = [HasSwap, HasStandardEncoding];
744  let neverHasSideEffects = 1;
745}
746
747// Read Hardware
748class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass>
749  : FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd),
750       "rdhwr\t$rt, $rd", [], IIAlu> {
751  let rs = 0;
752  let shamt = 0;
753}
754
755// Ext and Ins
756class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
757  FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz),
758     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
759     [(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> {
760  bits<5> pos;
761  bits<5> sz;
762  let rd = sz;
763  let shamt = pos;
764  let Predicates = [HasMips32r2, HasStandardEncoding];
765}
766
767class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
768  FR<0x1f, _funct, (outs RC:$rt),
769     (ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src),
770     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
771     [(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))],
772     NoItinerary> {
773  bits<5> pos;
774  bits<5> sz;
775  let rd = sz;
776  let shamt = pos;
777  let Predicates = [HasMips32r2, HasStandardEncoding];
778  let Constraints = "$src = $rt";
779}
780
781// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
782class Atomic2Ops<PatFrag Op, string Opstr, RegisterClass DRC,
783                 RegisterClass PRC> :
784  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
785           !strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
786           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
787
788multiclass Atomic2Ops32<PatFrag Op, string Opstr> {
789  def #NAME# : Atomic2Ops<Op, Opstr, CPURegs, CPURegs>,
790                          Requires<[NotN64, HasStandardEncoding]>;
791  def _P8    : Atomic2Ops<Op, Opstr, CPURegs, CPU64Regs>,
792                          Requires<[IsN64, HasStandardEncoding]> {
793    let DecoderNamespace = "Mips64";
794  }
795}
796
797// Atomic Compare & Swap.
798class AtomicCmpSwap<PatFrag Op, string Width, RegisterClass DRC,
799                    RegisterClass PRC> :
800  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
801           !strconcat("atomic_cmp_swap_", Width, "\t$dst, $ptr, $cmp, $swap"),
802           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
803
804multiclass AtomicCmpSwap32<PatFrag Op, string Width>  {
805  def #NAME# : AtomicCmpSwap<Op, Width, CPURegs, CPURegs>,
806                             Requires<[NotN64, HasStandardEncoding]>;
807  def _P8    : AtomicCmpSwap<Op, Width, CPURegs, CPU64Regs>,
808                             Requires<[IsN64, HasStandardEncoding]> {
809    let DecoderNamespace = "Mips64";
810  }
811}
812
813class LLBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
814  FMem<Opc, (outs RC:$rt), (ins Mem:$addr),
815       !strconcat(opstring, "\t$rt, $addr"), [], IILoad> {
816  let mayLoad = 1;
817}
818
819class SCBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
820  FMem<Opc, (outs RC:$dst), (ins RC:$rt, Mem:$addr),
821       !strconcat(opstring, "\t$rt, $addr"), [], IIStore> {
822  let mayStore = 1;
823  let Constraints = "$rt = $dst";
824}
825
826//===----------------------------------------------------------------------===//
827// Pseudo instructions
828//===----------------------------------------------------------------------===//
829
830// Return RA.
831let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
832def RetRA : PseudoSE<(outs), (ins), "", [(MipsRet)]>;
833
834let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
835def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
836                                  "!ADJCALLSTACKDOWN $amt",
837                                  [(callseq_start timm:$amt)]>;
838def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
839                                  "!ADJCALLSTACKUP $amt1",
840                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
841}
842
843// When handling PIC code the assembler needs .cpload and .cprestore
844// directives. If the real instructions corresponding these directives
845// are used, we have the same behavior, but get also a bunch of warnings
846// from the assembler.
847let neverHasSideEffects = 1 in
848def CPRESTORE : PseudoSE<(outs), (ins i32imm:$loc, CPURegs:$gp),
849                         ".cprestore\t$loc", []>;
850
851let usesCustomInserter = 1 in {
852  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8, "load_add_8">;
853  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16, "load_add_16">;
854  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32, "load_add_32">;
855  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8, "load_sub_8">;
856  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16, "load_sub_16">;
857  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32, "load_sub_32">;
858  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8, "load_and_8">;
859  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16, "load_and_16">;
860  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32, "load_and_32">;
861  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8, "load_or_8">;
862  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16, "load_or_16">;
863  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32, "load_or_32">;
864  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8, "load_xor_8">;
865  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16, "load_xor_16">;
866  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32, "load_xor_32">;
867  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8, "load_nand_8">;
868  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16, "load_nand_16">;
869  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32, "load_nand_32">;
870
871  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8, "swap_8">;
872  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16, "swap_16">;
873  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32, "swap_32">;
874
875  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8, "8">;
876  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16, "16">;
877  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32, "32">;
878}
879
880//===----------------------------------------------------------------------===//
881// Instruction definition
882//===----------------------------------------------------------------------===//
883
884class LoadImm32< string instr_asm, Operand Od, RegisterClass RC> :
885  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
886     !strconcat(instr_asm, "\t$rt, $imm32")> ;
887def LoadImm32Reg : LoadImm32<"li",shamt,CPURegs>;
888//===----------------------------------------------------------------------===//
889// MipsI Instructions
890//===----------------------------------------------------------------------===//
891
892/// Arithmetic Instructions (ALU Immediate)
893def ADDiu   : ArithLogicI<0x09, "addiu", add, simm16, immSExt16, CPURegs>;
894def ADDi    : ArithOverflowI<0x08, "addi", add, simm16, immSExt16, CPURegs>;
895def SLTi    : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>;
896def SLTiu   : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>;
897def ANDi    : ArithLogicI<0x0c, "andi", and, uimm16, immZExt16, CPURegs>;
898def ORi     : ArithLogicI<0x0d, "ori", or, uimm16, immZExt16, CPURegs>;
899def XORi    : ArithLogicI<0x0e, "xori", xor, uimm16, immZExt16, CPURegs>;
900def LUi     : LoadUpper<0x0f, "lui", CPURegs, uimm16>;
901
902/// Arithmetic Instructions (3-Operand, R-Type)
903def ADDu    : ArithLogicR<0x00, 0x21, "addu", add, IIAlu, CPURegs, 1>;
904def SUBu    : ArithLogicR<0x00, 0x23, "subu", sub, IIAlu, CPURegs>;
905def ADD     : ArithOverflowR<0x00, 0x20, "add", IIAlu, CPURegs, 1>;
906def SUB     : ArithOverflowR<0x00, 0x22, "sub", IIAlu, CPURegs>;
907def SLT     : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>;
908def SLTu    : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>;
909def AND     : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPURegs, 1>;
910def OR      : ArithLogicR<0x00, 0x25, "or",  or, IIAlu, CPURegs, 1>;
911def XOR     : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPURegs, 1>;
912def NOR     : LogicNOR<0x00, 0x27, "nor", CPURegs>;
913
914/// Shift Instructions
915def SLL     : shift_rotate_imm32<0x00, 0x00, "sll", shl>;
916def SRL     : shift_rotate_imm32<0x02, 0x00, "srl", srl>;
917def SRA     : shift_rotate_imm32<0x03, 0x00, "sra", sra>;
918def SLLV    : shift_rotate_reg<0x04, 0x00, "sllv", shl, CPURegs>;
919def SRLV    : shift_rotate_reg<0x06, 0x00, "srlv", srl, CPURegs>;
920def SRAV    : shift_rotate_reg<0x07, 0x00, "srav", sra, CPURegs>;
921
922// Rotate Instructions
923let Predicates = [HasMips32r2, HasStandardEncoding] in {
924    def ROTR    : shift_rotate_imm32<0x02, 0x01, "rotr", rotr>;
925    def ROTRV   : shift_rotate_reg<0x06, 0x01, "rotrv", rotr, CPURegs>;
926}
927
928/// Load and Store Instructions
929///  aligned
930defm LB      : LoadM32<0x20, "lb",  sextloadi8>;
931defm LBu     : LoadM32<0x24, "lbu", zextloadi8>;
932defm LH      : LoadM32<0x21, "lh",  sextloadi16>;
933defm LHu     : LoadM32<0x25, "lhu", zextloadi16>;
934defm LW      : LoadM32<0x23, "lw",  load>;
935defm SB      : StoreM32<0x28, "sb", truncstorei8>;
936defm SH      : StoreM32<0x29, "sh", truncstorei16>;
937defm SW      : StoreM32<0x2b, "sw", store>;
938
939/// load/store left/right
940defm LWL : LoadLeftRightM32<0x22, "lwl", MipsLWL>;
941defm LWR : LoadLeftRightM32<0x26, "lwr", MipsLWR>;
942defm SWL : StoreLeftRightM32<0x2a, "swl", MipsSWL>;
943defm SWR : StoreLeftRightM32<0x2e, "swr", MipsSWR>;
944
945let hasSideEffects = 1 in
946def SYNC : InstSE<(outs), (ins i32imm:$stype), "sync $stype",
947                  [(MipsSync imm:$stype)], NoItinerary, FrmOther>
948{
949  bits<5> stype;
950  let Opcode = 0;
951  let Inst{25-11} = 0;
952  let Inst{10-6} = stype;
953  let Inst{5-0} = 15;
954}
955
956/// Load-linked, Store-conditional
957def LL    : LLBase<0x30, "ll", CPURegs, mem>,
958            Requires<[NotN64, HasStandardEncoding]>;
959def LL_P8 : LLBase<0x30, "ll", CPURegs, mem64>,
960            Requires<[IsN64, HasStandardEncoding]> {
961  let DecoderNamespace = "Mips64";
962}
963
964def SC    : SCBase<0x38, "sc", CPURegs, mem>,
965            Requires<[NotN64, HasStandardEncoding]>;
966def SC_P8 : SCBase<0x38, "sc", CPURegs, mem64>,
967            Requires<[IsN64, HasStandardEncoding]> {
968  let DecoderNamespace = "Mips64";
969}
970
971/// Jump and Branch Instructions
972def J       : JumpFJ<0x02, "j">;
973def JR      : IndirectBranch<CPURegs>;
974def B       : UncondBranch<0x04, "b">;
975def BEQ     : CBranch<0x04, "beq", seteq, CPURegs>;
976def BNE     : CBranch<0x05, "bne", setne, CPURegs>;
977def BGEZ    : CBranchZero<0x01, 1, "bgez", setge, CPURegs>;
978def BGTZ    : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>;
979def BLEZ    : CBranchZero<0x06, 0, "blez", setle, CPURegs>;
980def BLTZ    : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>;
981
982let rt = 0, rs = 0, isBranch = 1, isTerminator = 1, isBarrier = 1,
983    hasDelaySlot = 1, Defs = [RA] in
984def BAL_BR: FI<0x1, (outs), (ins brtarget:$imm16), "bal\t$imm16", [], IIBranch>;
985
986def JAL  : JumpLink<0x03, "jal">;
987def JALR : JumpLinkReg<0x00, 0x09, "jalr", CPURegs>;
988def BGEZAL  : BranchLink<"bgezal", 0x11, CPURegs>;
989def BLTZAL  : BranchLink<"bltzal", 0x10, CPURegs>;
990
991def RET : RetBase<CPURegs>;
992
993/// Multiply and Divide Instructions.
994def MULT    : Mult32<0x18, "mult", IIImul>;
995def MULTu   : Mult32<0x19, "multu", IIImul>;
996def SDIV    : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
997def UDIV    : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
998
999def MTHI : MoveToLOHI<0x11, "mthi", CPURegs, [HI]>;
1000def MTLO : MoveToLOHI<0x13, "mtlo", CPURegs, [LO]>;
1001def MFHI : MoveFromLOHI<0x10, "mfhi", CPURegs, [HI]>;
1002def MFLO : MoveFromLOHI<0x12, "mflo", CPURegs, [LO]>;
1003
1004/// Sign Ext In Register Instructions.
1005def SEB : SignExtInReg<0x10, "seb", i8, CPURegs>;
1006def SEH : SignExtInReg<0x18, "seh", i16, CPURegs>;
1007
1008/// Count Leading
1009def CLZ : CountLeading0<0x20, "clz", CPURegs>;
1010def CLO : CountLeading1<0x21, "clo", CPURegs>;
1011
1012/// Word Swap Bytes Within Halfwords
1013def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>;
1014
1015/// No operation
1016let addr=0 in
1017  def NOP   : FJ<0, (outs), (ins), "nop", [], IIAlu>;
1018
1019// FrameIndexes are legalized when they are operands from load/store
1020// instructions. The same not happens for stack address copies, so an
1021// add op with mem ComplexPattern is used and the stack address copy
1022// can be matched. It's similar to Sparc LEA_ADDRi
1023def LEA_ADDiu : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
1024
1025// DynAlloc node points to dynamically allocated stack space.
1026// $sp is added to the list of implicitly used registers to prevent dead code
1027// elimination from removing instructions that modify $sp.
1028let Uses = [SP] in
1029def DynAlloc : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
1030
1031// MADD*/MSUB*
1032def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
1033def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
1034def MSUB  : MArithR<4, "msub", MipsMSub>;
1035def MSUBU : MArithR<5, "msubu", MipsMSubu>;
1036
1037// MUL is a assembly macro in the current used ISAs. In recent ISA's
1038// it is a real instruction.
1039def MUL   : ArithLogicR<0x1c, 0x02, "mul", mul, IIImul, CPURegs, 1>,
1040            Requires<[HasMips32, HasStandardEncoding]>;
1041
1042def RDHWR : ReadHardware<CPURegs, HWRegs>;
1043
1044def EXT : ExtBase<0, "ext", CPURegs>;
1045def INS : InsBase<4, "ins", CPURegs>;
1046
1047//===----------------------------------------------------------------------===//
1048// Instruction aliases
1049//===----------------------------------------------------------------------===//
1050def : InstAlias<"move $dst,$src", (ADD CPURegs:$dst,CPURegs:$src,ZERO)>;
1051def : InstAlias<"bal $offset", (BGEZAL RA,brtarget:$offset)>;
1052def : InstAlias<"addu $rs,$rt,$imm",
1053                (ADDiu CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1054def : InstAlias<"add $rs,$rt,$imm",
1055                (ADDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1056def : InstAlias<"and $rs,$rt,$imm",
1057                (ANDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1058def : InstAlias<"j $rs", (JR CPURegs:$rs)>;
1059def : InstAlias<"not $rt,$rs", (NOR CPURegs:$rt,CPURegs:$rs,ZERO)>;
1060def : InstAlias<"neg $rt,$rs", (SUB CPURegs:$rt,ZERO,CPURegs:$rs)>;
1061def : InstAlias<"negu $rt,$rs", (SUBu CPURegs:$rt,ZERO,CPURegs:$rs)>;
1062def : InstAlias<"slt $rs,$rt,$imm",
1063                (SLTi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1064def : InstAlias<"xor $rs,$rt,$imm",
1065                (XORi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1066
1067//===----------------------------------------------------------------------===//
1068//  Arbitrary patterns that map to one or more instructions
1069//===----------------------------------------------------------------------===//
1070
1071// Small immediates
1072def : MipsPat<(i32 immSExt16:$in),
1073              (ADDiu ZERO, imm:$in)>;
1074def : MipsPat<(i32 immZExt16:$in),
1075              (ORi ZERO, imm:$in)>;
1076def : MipsPat<(i32 immLow16Zero:$in),
1077              (LUi (HI16 imm:$in))>;
1078
1079// Arbitrary immediates
1080def : MipsPat<(i32 imm:$imm),
1081          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1082
1083// Carry MipsPatterns
1084def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1085              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1086def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1087              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1088def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1089              (ADDiu CPURegs:$src, imm:$imm)>;
1090
1091// Call
1092def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1093              (JAL tglobaladdr:$dst)>;
1094def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1095              (JAL texternalsym:$dst)>;
1096//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1097//              (JALR CPURegs:$dst)>;
1098
1099// hi/lo relocs
1100def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1101def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1102def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1103def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1104def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1105
1106def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1107def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1108def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1109def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1110def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1111
1112def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1113              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1114def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1115              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1116def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1117              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1118def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1119              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1120def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1121              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1122
1123// gp_rel relocs
1124def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1125              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1126def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1127              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1128
1129// wrapper_pic
1130class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1131      MipsPat<(MipsWrapper RC:$gp, node:$in),
1132              (ADDiuOp RC:$gp, node:$in)>;
1133
1134def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1135def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1136def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1137def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1138def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1139def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1140
1141// Mips does not have "not", so we expand our way
1142def : MipsPat<(not CPURegs:$in),
1143              (NOR CPURegs:$in, ZERO)>;
1144
1145// extended loads
1146let Predicates = [NotN64, HasStandardEncoding] in {
1147  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1148  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1149  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1150}
1151let Predicates = [IsN64, HasStandardEncoding] in {
1152  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1153  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1154  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1155}
1156
1157// peepholes
1158let Predicates = [NotN64, HasStandardEncoding] in {
1159  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1160}
1161let Predicates = [IsN64, HasStandardEncoding] in {
1162  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1163}
1164
1165// brcond patterns
1166multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1167                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1168                      Instruction SLTiuOp, Register ZEROReg> {
1169def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1170              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1171def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1172              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1173
1174def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1175              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1176def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1177              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1178def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1179              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1180def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1181              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1182
1183def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1184              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1185def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1186              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1187
1188def : MipsPat<(brcond RC:$cond, bb:$dst),
1189              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1190}
1191
1192defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1193
1194// setcc patterns
1195multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1196                     Instruction SLTuOp, Register ZEROReg> {
1197  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1198                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1199  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1200                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1201}
1202
1203multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1204  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1205                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1206  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1207                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1208}
1209
1210multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1211  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1212                (SLTOp RC:$rhs, RC:$lhs)>;
1213  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1214                (SLTuOp RC:$rhs, RC:$lhs)>;
1215}
1216
1217multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1218  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1219                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1220  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1221                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1222}
1223
1224multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1225                        Instruction SLTiuOp> {
1226  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1227                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1228  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1229                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1230}
1231
1232defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1233defm : SetlePats<CPURegs, SLT, SLTu>;
1234defm : SetgtPats<CPURegs, SLT, SLTu>;
1235defm : SetgePats<CPURegs, SLT, SLTu>;
1236defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1237
1238// select MipsDynAlloc
1239def : MipsPat<(MipsDynAlloc addr:$f), (DynAlloc addr:$f)>;
1240
1241// bswap pattern
1242def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1243
1244//===----------------------------------------------------------------------===//
1245// Floating Point Support
1246//===----------------------------------------------------------------------===//
1247
1248include "MipsInstrFPU.td"
1249include "Mips64InstrInfo.td"
1250include "MipsCondMov.td"
1251
1252//
1253// Mips16
1254
1255include "Mips16InstrFormats.td"
1256include "Mips16InstrInfo.td"
1257
1258// DSP
1259include "MipsDSPInstrFormats.td"
1260include "MipsDSPInstrInfo.td"
1261
1262