PPCISelDAGToDAG.cpp revision c23197a26f34f559ea9797de51e187087c039c42
1//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a pattern matching instruction selector for PowerPC,
11// converting from a legalized dag to a PPC dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "ppc-codegen"
16#include "PPC.h"
17#include "PPCPredicates.h"
18#include "PPCTargetMachine.h"
19#include "PPCISelLowering.h"
20#include "PPCHazardRecognizers.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/SelectionDAGISel.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Constants.h"
28#include "llvm/Function.h"
29#include "llvm/GlobalValue.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/Compiler.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/raw_ostream.h"
36using namespace llvm;
37
38namespace {
39  //===--------------------------------------------------------------------===//
40  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
41  /// instructions for SelectionDAG operations.
42  ///
43  class VISIBILITY_HIDDEN PPCDAGToDAGISel : public SelectionDAGISel {
44    PPCTargetMachine &TM;
45    PPCTargetLowering &PPCLowering;
46    const PPCSubtarget &PPCSubTarget;
47    unsigned GlobalBaseReg;
48  public:
49    explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
50      : SelectionDAGISel(tm), TM(tm),
51        PPCLowering(*TM.getTargetLowering()),
52        PPCSubTarget(*TM.getSubtargetImpl()) {}
53
54    virtual bool runOnFunction(Function &Fn) {
55      // Do not codegen any 'available_externally' functions at all, they have
56      // definitions outside the translation unit.
57      if (Fn.hasAvailableExternallyLinkage())
58        return false;
59
60      // Make sure we re-emit a set of the global base reg if necessary
61      GlobalBaseReg = 0;
62      SelectionDAGISel::runOnFunction(Fn);
63
64      InsertVRSaveCode(Fn);
65      return true;
66    }
67
68    /// getI32Imm - Return a target constant with the specified value, of type
69    /// i32.
70    inline SDValue getI32Imm(unsigned Imm) {
71      return CurDAG->getTargetConstant(Imm, MVT::i32);
72    }
73
74    /// getI64Imm - Return a target constant with the specified value, of type
75    /// i64.
76    inline SDValue getI64Imm(uint64_t Imm) {
77      return CurDAG->getTargetConstant(Imm, MVT::i64);
78    }
79
80    /// getSmallIPtrImm - Return a target constant of pointer type.
81    inline SDValue getSmallIPtrImm(unsigned Imm) {
82      return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
83    }
84
85    /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
86    /// with any number of 0s on either side.  The 1s are allowed to wrap from
87    /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
88    /// 0x0F0F0000 is not, since all 1s are not contiguous.
89    static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
90
91
92    /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
93    /// rotate and mask opcode and mask operation.
94    static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
95                                unsigned &SH, unsigned &MB, unsigned &ME);
96
97    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
98    /// base register.  Return the virtual register that holds this value.
99    SDNode *getGlobalBaseReg();
100
101    // Select - Convert the specified operand from a target-independent to a
102    // target-specific node if it hasn't already been changed.
103    SDNode *Select(SDValue Op);
104
105    SDNode *SelectBitfieldInsert(SDNode *N);
106
107    /// SelectCC - Select a comparison of the specified values with the
108    /// specified condition code, returning the CR# of the expression.
109    SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, DebugLoc dl);
110
111    /// SelectAddrImm - Returns true if the address N can be represented by
112    /// a base register plus a signed 16-bit displacement [r+imm].
113    bool SelectAddrImm(SDValue Op, SDValue N, SDValue &Disp,
114                       SDValue &Base) {
115      return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
116    }
117
118    /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
119    /// immediate field.  Because preinc imms have already been validated, just
120    /// accept it.
121    bool SelectAddrImmOffs(SDValue Op, SDValue N, SDValue &Out) const {
122      Out = N;
123      return true;
124    }
125
126    /// SelectAddrIdx - Given the specified addressed, check to see if it can be
127    /// represented as an indexed [r+r] operation.  Returns false if it can
128    /// be represented by [r+imm], which are preferred.
129    bool SelectAddrIdx(SDValue Op, SDValue N, SDValue &Base,
130                       SDValue &Index) {
131      return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
132    }
133
134    /// SelectAddrIdxOnly - Given the specified addressed, force it to be
135    /// represented as an indexed [r+r] operation.
136    bool SelectAddrIdxOnly(SDValue Op, SDValue N, SDValue &Base,
137                           SDValue &Index) {
138      return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
139    }
140
141    /// SelectAddrImmShift - Returns true if the address N can be represented by
142    /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
143    /// for use by STD and friends.
144    bool SelectAddrImmShift(SDValue Op, SDValue N, SDValue &Disp,
145                            SDValue &Base) {
146      return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
147    }
148
149    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
150    /// inline asm expressions.
151    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
152                                              char ConstraintCode,
153                                              std::vector<SDValue> &OutOps) {
154      SDValue Op0, Op1;
155      switch (ConstraintCode) {
156      default: return true;
157      case 'm':   // memory
158        if (!SelectAddrIdx(Op, Op, Op0, Op1))
159          SelectAddrImm(Op, Op, Op0, Op1);
160        break;
161      case 'o':   // offsetable
162        if (!SelectAddrImm(Op, Op, Op0, Op1)) {
163          Op0 = Op;
164          Op1 = getSmallIPtrImm(0);
165        }
166        break;
167      case 'v':   // not offsetable
168        SelectAddrIdxOnly(Op, Op, Op0, Op1);
169        break;
170      }
171
172      OutOps.push_back(Op0);
173      OutOps.push_back(Op1);
174      return false;
175    }
176
177    SDValue BuildSDIVSequence(SDNode *N);
178    SDValue BuildUDIVSequence(SDNode *N);
179
180    /// InstructionSelect - This callback is invoked by
181    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
182    virtual void InstructionSelect();
183
184    void InsertVRSaveCode(Function &Fn);
185
186    virtual const char *getPassName() const {
187      return "PowerPC DAG->DAG Pattern Instruction Selection";
188    }
189
190    /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
191    /// this target when scheduling the DAG.
192    virtual ScheduleHazardRecognizer *CreateTargetHazardRecognizer() {
193      // Should use subtarget info to pick the right hazard recognizer.  For
194      // now, always return a PPC970 recognizer.
195      const TargetInstrInfo *II = TM.getInstrInfo();
196      assert(II && "No InstrInfo?");
197      return new PPCHazardRecognizer970(*II);
198    }
199
200// Include the pieces autogenerated from the target description.
201#include "PPCGenDAGISel.inc"
202
203private:
204    SDNode *SelectSETCC(SDValue Op);
205  };
206}
207
208/// InstructionSelect - This callback is invoked by
209/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
210void PPCDAGToDAGISel::InstructionSelect() {
211  DEBUG(BB->dump());
212
213  // Select target instructions for the DAG.
214  SelectRoot(*CurDAG);
215  CurDAG->RemoveDeadNodes();
216}
217
218/// InsertVRSaveCode - Once the entire function has been instruction selected,
219/// all virtual registers are created and all machine instructions are built,
220/// check to see if we need to save/restore VRSAVE.  If so, do it.
221void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) {
222  // Check to see if this function uses vector registers, which means we have to
223  // save and restore the VRSAVE register and update it with the regs we use.
224  //
225  // In this case, there will be virtual registers of vector type type created
226  // by the scheduler.  Detect them now.
227  MachineFunction &Fn = MachineFunction::get(&F);
228  bool HasVectorVReg = false;
229  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
230       e = RegInfo->getLastVirtReg()+1; i != e; ++i)
231    if (RegInfo->getRegClass(i) == &PPC::VRRCRegClass) {
232      HasVectorVReg = true;
233      break;
234    }
235  if (!HasVectorVReg) return;  // nothing to do.
236
237  // If we have a vector register, we want to emit code into the entry and exit
238  // blocks to save and restore the VRSAVE register.  We do this here (instead
239  // of marking all vector instructions as clobbering VRSAVE) for two reasons:
240  //
241  // 1. This (trivially) reduces the load on the register allocator, by not
242  //    having to represent the live range of the VRSAVE register.
243  // 2. This (more significantly) allows us to create a temporary virtual
244  //    register to hold the saved VRSAVE value, allowing this temporary to be
245  //    register allocated, instead of forcing it to be spilled to the stack.
246
247  // Create two vregs - one to hold the VRSAVE register that is live-in to the
248  // function and one for the value after having bits or'd into it.
249  unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
250  unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
251
252  const TargetInstrInfo &TII = *TM.getInstrInfo();
253  MachineBasicBlock &EntryBB = *Fn.begin();
254  DebugLoc dl = DebugLoc::getUnknownLoc();
255  // Emit the following code into the entry block:
256  // InVRSAVE = MFVRSAVE
257  // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
258  // MTVRSAVE UpdatedVRSAVE
259  MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
260  BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
261  BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
262          UpdatedVRSAVE).addReg(InVRSAVE);
263  BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
264
265  // Find all return blocks, outputting a restore in each epilog.
266  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
267    if (!BB->empty() && BB->back().getDesc().isReturn()) {
268      IP = BB->end(); --IP;
269
270      // Skip over all terminator instructions, which are part of the return
271      // sequence.
272      MachineBasicBlock::iterator I2 = IP;
273      while (I2 != BB->begin() && (--I2)->getDesc().isTerminator())
274        IP = I2;
275
276      // Emit: MTVRSAVE InVRSave
277      BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
278    }
279  }
280}
281
282
283/// getGlobalBaseReg - Output the instructions required to put the
284/// base address to use for accessing globals into a register.
285///
286SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
287  if (!GlobalBaseReg) {
288    const TargetInstrInfo &TII = *TM.getInstrInfo();
289    // Insert the set of GlobalBaseReg into the first MBB of the function
290    MachineBasicBlock &FirstMBB = BB->getParent()->front();
291    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
292    DebugLoc dl = DebugLoc::getUnknownLoc();
293
294    if (PPCLowering.getPointerTy() == MVT::i32) {
295      GlobalBaseReg = RegInfo->createVirtualRegister(PPC::GPRCRegisterClass);
296      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR), PPC::LR);
297      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
298    } else {
299      GlobalBaseReg = RegInfo->createVirtualRegister(PPC::G8RCRegisterClass);
300      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8), PPC::LR8);
301      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
302    }
303  }
304  return CurDAG->getRegister(GlobalBaseReg,
305                             PPCLowering.getPointerTy()).getNode();
306}
307
308/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
309/// or 64-bit immediate, and if the value can be accurately represented as a
310/// sign extension from a 16-bit value.  If so, this returns true and the
311/// immediate.
312static bool isIntS16Immediate(SDNode *N, short &Imm) {
313  if (N->getOpcode() != ISD::Constant)
314    return false;
315
316  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
317  if (N->getValueType(0) == MVT::i32)
318    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
319  else
320    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
321}
322
323static bool isIntS16Immediate(SDValue Op, short &Imm) {
324  return isIntS16Immediate(Op.getNode(), Imm);
325}
326
327
328/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
329/// operand. If so Imm will receive the 32-bit value.
330static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
331  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
332    Imm = cast<ConstantSDNode>(N)->getZExtValue();
333    return true;
334  }
335  return false;
336}
337
338/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
339/// operand.  If so Imm will receive the 64-bit value.
340static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
341  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
342    Imm = cast<ConstantSDNode>(N)->getZExtValue();
343    return true;
344  }
345  return false;
346}
347
348// isInt32Immediate - This method tests to see if a constant operand.
349// If so Imm will receive the 32 bit value.
350static bool isInt32Immediate(SDValue N, unsigned &Imm) {
351  return isInt32Immediate(N.getNode(), Imm);
352}
353
354
355// isOpcWithIntImmediate - This method tests to see if the node is a specific
356// opcode and that it has a immediate integer right operand.
357// If so Imm will receive the 32 bit value.
358static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
359  return N->getOpcode() == Opc
360         && isInt32Immediate(N->getOperand(1).getNode(), Imm);
361}
362
363bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
364  if (isShiftedMask_32(Val)) {
365    // look for the first non-zero bit
366    MB = CountLeadingZeros_32(Val);
367    // look for the first zero bit after the run of ones
368    ME = CountLeadingZeros_32((Val - 1) ^ Val);
369    return true;
370  } else {
371    Val = ~Val; // invert mask
372    if (isShiftedMask_32(Val)) {
373      // effectively look for the first zero bit
374      ME = CountLeadingZeros_32(Val) - 1;
375      // effectively look for the first one bit after the run of zeros
376      MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
377      return true;
378    }
379  }
380  // no run present
381  return false;
382}
383
384bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
385                                      bool IsShiftMask, unsigned &SH,
386                                      unsigned &MB, unsigned &ME) {
387  // Don't even go down this path for i64, since different logic will be
388  // necessary for rldicl/rldicr/rldimi.
389  if (N->getValueType(0) != MVT::i32)
390    return false;
391
392  unsigned Shift  = 32;
393  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
394  unsigned Opcode = N->getOpcode();
395  if (N->getNumOperands() != 2 ||
396      !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
397    return false;
398
399  if (Opcode == ISD::SHL) {
400    // apply shift left to mask if it comes first
401    if (IsShiftMask) Mask = Mask << Shift;
402    // determine which bits are made indeterminant by shift
403    Indeterminant = ~(0xFFFFFFFFu << Shift);
404  } else if (Opcode == ISD::SRL) {
405    // apply shift right to mask if it comes first
406    if (IsShiftMask) Mask = Mask >> Shift;
407    // determine which bits are made indeterminant by shift
408    Indeterminant = ~(0xFFFFFFFFu >> Shift);
409    // adjust for the left rotate
410    Shift = 32 - Shift;
411  } else if (Opcode == ISD::ROTL) {
412    Indeterminant = 0;
413  } else {
414    return false;
415  }
416
417  // if the mask doesn't intersect any Indeterminant bits
418  if (Mask && !(Mask & Indeterminant)) {
419    SH = Shift & 31;
420    // make sure the mask is still a mask (wrap arounds may not be)
421    return isRunOfOnes(Mask, MB, ME);
422  }
423  return false;
424}
425
426/// SelectBitfieldInsert - turn an or of two masked values into
427/// the rotate left word immediate then mask insert (rlwimi) instruction.
428SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
429  SDValue Op0 = N->getOperand(0);
430  SDValue Op1 = N->getOperand(1);
431  DebugLoc dl = N->getDebugLoc();
432
433  APInt LKZ, LKO, RKZ, RKO;
434  CurDAG->ComputeMaskedBits(Op0, APInt::getAllOnesValue(32), LKZ, LKO);
435  CurDAG->ComputeMaskedBits(Op1, APInt::getAllOnesValue(32), RKZ, RKO);
436
437  unsigned TargetMask = LKZ.getZExtValue();
438  unsigned InsertMask = RKZ.getZExtValue();
439
440  if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
441    unsigned Op0Opc = Op0.getOpcode();
442    unsigned Op1Opc = Op1.getOpcode();
443    unsigned Value, SH = 0;
444    TargetMask = ~TargetMask;
445    InsertMask = ~InsertMask;
446
447    // If the LHS has a foldable shift and the RHS does not, then swap it to the
448    // RHS so that we can fold the shift into the insert.
449    if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
450      if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
451          Op0.getOperand(0).getOpcode() == ISD::SRL) {
452        if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
453            Op1.getOperand(0).getOpcode() != ISD::SRL) {
454          std::swap(Op0, Op1);
455          std::swap(Op0Opc, Op1Opc);
456          std::swap(TargetMask, InsertMask);
457        }
458      }
459    } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
460      if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
461          Op1.getOperand(0).getOpcode() != ISD::SRL) {
462        std::swap(Op0, Op1);
463        std::swap(Op0Opc, Op1Opc);
464        std::swap(TargetMask, InsertMask);
465      }
466    }
467
468    unsigned MB, ME;
469    if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
470      SDValue Tmp1, Tmp2, Tmp3;
471      bool DisjointMask = (TargetMask ^ InsertMask) == 0xFFFFFFFF;
472
473      if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
474          isInt32Immediate(Op1.getOperand(1), Value)) {
475        Op1 = Op1.getOperand(0);
476        SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
477      }
478      if (Op1Opc == ISD::AND) {
479        unsigned SHOpc = Op1.getOperand(0).getOpcode();
480        if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
481            isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
482          Op1 = Op1.getOperand(0).getOperand(0);
483          SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
484        } else {
485          Op1 = Op1.getOperand(0);
486        }
487      }
488
489      Tmp3 = (Op0Opc == ISD::AND && DisjointMask) ? Op0.getOperand(0) : Op0;
490      SH &= 31;
491      SDValue Ops[] = { Tmp3, Op1, getI32Imm(SH), getI32Imm(MB),
492                          getI32Imm(ME) };
493      return CurDAG->getTargetNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
494    }
495  }
496  return 0;
497}
498
499/// SelectCC - Select a comparison of the specified values with the specified
500/// condition code, returning the CR# of the expression.
501SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
502                                    ISD::CondCode CC, DebugLoc dl) {
503  // Always select the LHS.
504  unsigned Opc;
505
506  if (LHS.getValueType() == MVT::i32) {
507    unsigned Imm;
508    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
509      if (isInt32Immediate(RHS, Imm)) {
510        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
511        if (isUInt16(Imm))
512          return SDValue(CurDAG->getTargetNode(PPC::CMPLWI, dl, MVT::i32, LHS,
513                                                 getI32Imm(Imm & 0xFFFF)), 0);
514        // If this is a 16-bit signed immediate, fold it.
515        if (isInt16((int)Imm))
516          return SDValue(CurDAG->getTargetNode(PPC::CMPWI, dl, MVT::i32, LHS,
517                                                 getI32Imm(Imm & 0xFFFF)), 0);
518
519        // For non-equality comparisons, the default code would materialize the
520        // constant, then compare against it, like this:
521        //   lis r2, 4660
522        //   ori r2, r2, 22136
523        //   cmpw cr0, r3, r2
524        // Since we are just comparing for equality, we can emit this instead:
525        //   xoris r0,r3,0x1234
526        //   cmplwi cr0,r0,0x5678
527        //   beq cr0,L6
528        SDValue Xor(CurDAG->getTargetNode(PPC::XORIS, dl, MVT::i32, LHS,
529                                            getI32Imm(Imm >> 16)), 0);
530        return SDValue(CurDAG->getTargetNode(PPC::CMPLWI, dl, MVT::i32, Xor,
531                                               getI32Imm(Imm & 0xFFFF)), 0);
532      }
533      Opc = PPC::CMPLW;
534    } else if (ISD::isUnsignedIntSetCC(CC)) {
535      if (isInt32Immediate(RHS, Imm) && isUInt16(Imm))
536        return SDValue(CurDAG->getTargetNode(PPC::CMPLWI, dl, MVT::i32, LHS,
537                                               getI32Imm(Imm & 0xFFFF)), 0);
538      Opc = PPC::CMPLW;
539    } else {
540      short SImm;
541      if (isIntS16Immediate(RHS, SImm))
542        return SDValue(CurDAG->getTargetNode(PPC::CMPWI, dl, MVT::i32, LHS,
543                                               getI32Imm((int)SImm & 0xFFFF)),
544                         0);
545      Opc = PPC::CMPW;
546    }
547  } else if (LHS.getValueType() == MVT::i64) {
548    uint64_t Imm;
549    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
550      if (isInt64Immediate(RHS.getNode(), Imm)) {
551        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
552        if (isUInt16(Imm))
553          return SDValue(CurDAG->getTargetNode(PPC::CMPLDI, dl, MVT::i64, LHS,
554                                                 getI32Imm(Imm & 0xFFFF)), 0);
555        // If this is a 16-bit signed immediate, fold it.
556        if (isInt16(Imm))
557          return SDValue(CurDAG->getTargetNode(PPC::CMPDI, dl, MVT::i64, LHS,
558                                                 getI32Imm(Imm & 0xFFFF)), 0);
559
560        // For non-equality comparisons, the default code would materialize the
561        // constant, then compare against it, like this:
562        //   lis r2, 4660
563        //   ori r2, r2, 22136
564        //   cmpd cr0, r3, r2
565        // Since we are just comparing for equality, we can emit this instead:
566        //   xoris r0,r3,0x1234
567        //   cmpldi cr0,r0,0x5678
568        //   beq cr0,L6
569        if (isUInt32(Imm)) {
570          SDValue Xor(CurDAG->getTargetNode(PPC::XORIS8, dl, MVT::i64, LHS,
571                                              getI64Imm(Imm >> 16)), 0);
572          return SDValue(CurDAG->getTargetNode(PPC::CMPLDI, dl, MVT::i64, Xor,
573                                                 getI64Imm(Imm & 0xFFFF)), 0);
574        }
575      }
576      Opc = PPC::CMPLD;
577    } else if (ISD::isUnsignedIntSetCC(CC)) {
578      if (isInt64Immediate(RHS.getNode(), Imm) && isUInt16(Imm))
579        return SDValue(CurDAG->getTargetNode(PPC::CMPLDI, dl, MVT::i64, LHS,
580                                               getI64Imm(Imm & 0xFFFF)), 0);
581      Opc = PPC::CMPLD;
582    } else {
583      short SImm;
584      if (isIntS16Immediate(RHS, SImm))
585        return SDValue(CurDAG->getTargetNode(PPC::CMPDI, dl, MVT::i64, LHS,
586                                               getI64Imm(SImm & 0xFFFF)),
587                         0);
588      Opc = PPC::CMPD;
589    }
590  } else if (LHS.getValueType() == MVT::f32) {
591    Opc = PPC::FCMPUS;
592  } else {
593    assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
594    Opc = PPC::FCMPUD;
595  }
596  return SDValue(CurDAG->getTargetNode(Opc, dl, MVT::i32, LHS, RHS), 0);
597}
598
599static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
600  switch (CC) {
601  case ISD::SETUEQ:
602  case ISD::SETONE:
603  case ISD::SETOLE:
604  case ISD::SETOGE:
605    llvm_unreachable("Should be lowered by legalize!");
606  default: llvm_unreachable("Unknown condition!");
607  case ISD::SETOEQ:
608  case ISD::SETEQ:  return PPC::PRED_EQ;
609  case ISD::SETUNE:
610  case ISD::SETNE:  return PPC::PRED_NE;
611  case ISD::SETOLT:
612  case ISD::SETLT:  return PPC::PRED_LT;
613  case ISD::SETULE:
614  case ISD::SETLE:  return PPC::PRED_LE;
615  case ISD::SETOGT:
616  case ISD::SETGT:  return PPC::PRED_GT;
617  case ISD::SETUGE:
618  case ISD::SETGE:  return PPC::PRED_GE;
619  case ISD::SETO:   return PPC::PRED_NU;
620  case ISD::SETUO:  return PPC::PRED_UN;
621    // These two are invalid for floating point.  Assume we have int.
622  case ISD::SETULT: return PPC::PRED_LT;
623  case ISD::SETUGT: return PPC::PRED_GT;
624  }
625}
626
627/// getCRIdxForSetCC - Return the index of the condition register field
628/// associated with the SetCC condition, and whether or not the field is
629/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
630///
631/// If this returns with Other != -1, then the returned comparison is an or of
632/// two simpler comparisons.  In this case, Invert is guaranteed to be false.
633static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) {
634  Invert = false;
635  Other = -1;
636  switch (CC) {
637  default: llvm_unreachable("Unknown condition!");
638  case ISD::SETOLT:
639  case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
640  case ISD::SETOGT:
641  case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
642  case ISD::SETOEQ:
643  case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
644  case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
645  case ISD::SETUGE:
646  case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
647  case ISD::SETULE:
648  case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
649  case ISD::SETUNE:
650  case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
651  case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
652  case ISD::SETUEQ:
653  case ISD::SETOGE:
654  case ISD::SETOLE:
655  case ISD::SETONE:
656    llvm_unreachable("Invalid branch code: should be expanded by legalize");
657  // These are invalid for floating point.  Assume integer.
658  case ISD::SETULT: return 0;
659  case ISD::SETUGT: return 1;
660  }
661  return 0;
662}
663
664SDNode *PPCDAGToDAGISel::SelectSETCC(SDValue Op) {
665  SDNode *N = Op.getNode();
666  DebugLoc dl = N->getDebugLoc();
667  unsigned Imm;
668  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
669  if (isInt32Immediate(N->getOperand(1), Imm)) {
670    // We can codegen setcc op, imm very efficiently compared to a brcond.
671    // Check for those cases here.
672    // setcc op, 0
673    if (Imm == 0) {
674      SDValue Op = N->getOperand(0);
675      switch (CC) {
676      default: break;
677      case ISD::SETEQ: {
678        Op = SDValue(CurDAG->getTargetNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
679        SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
680        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
681      }
682      case ISD::SETNE: {
683        SDValue AD =
684          SDValue(CurDAG->getTargetNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
685                                          Op, getI32Imm(~0U)), 0);
686        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
687                                    AD.getValue(1));
688      }
689      case ISD::SETLT: {
690        SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
691        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
692      }
693      case ISD::SETGT: {
694        SDValue T =
695          SDValue(CurDAG->getTargetNode(PPC::NEG, dl, MVT::i32, Op), 0);
696        T = SDValue(CurDAG->getTargetNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
697        SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
698        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
699      }
700      }
701    } else if (Imm == ~0U) {        // setcc op, -1
702      SDValue Op = N->getOperand(0);
703      switch (CC) {
704      default: break;
705      case ISD::SETEQ:
706        Op = SDValue(CurDAG->getTargetNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
707                                             Op, getI32Imm(1)), 0);
708        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
709                              SDValue(CurDAG->getTargetNode(PPC::LI, dl,
710                                                            MVT::i32,
711                                                            getI32Imm(0)), 0),
712                                      Op.getValue(1));
713      case ISD::SETNE: {
714        Op = SDValue(CurDAG->getTargetNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
715        SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
716                                           Op, getI32Imm(~0U));
717        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
718                                    Op, SDValue(AD, 1));
719      }
720      case ISD::SETLT: {
721        SDValue AD = SDValue(CurDAG->getTargetNode(PPC::ADDI, dl, MVT::i32, Op,
722                                                       getI32Imm(1)), 0);
723        SDValue AN = SDValue(CurDAG->getTargetNode(PPC::AND, dl, MVT::i32, AD,
724                                                       Op), 0);
725        SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
726        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
727      }
728      case ISD::SETGT: {
729        SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
730        Op = SDValue(CurDAG->getTargetNode(PPC::RLWINM, dl, MVT::i32, Ops, 4),
731                     0);
732        return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
733                                    getI32Imm(1));
734      }
735      }
736    }
737  }
738
739  bool Inv;
740  int OtherCondIdx;
741  unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx);
742  SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
743  SDValue IntCR;
744
745  // Force the ccreg into CR7.
746  SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
747
748  SDValue InFlag(0, 0);  // Null incoming flag value.
749  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
750                               InFlag).getValue(1);
751
752  if (PPCSubTarget.isGigaProcessor() && OtherCondIdx == -1)
753    IntCR = SDValue(CurDAG->getTargetNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
754                                            CCReg), 0);
755  else
756    IntCR = SDValue(CurDAG->getTargetNode(PPC::MFCR, dl, MVT::i32, CCReg), 0);
757
758  SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
759                      getI32Imm(31), getI32Imm(31) };
760  if (OtherCondIdx == -1 && !Inv)
761    return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
762
763  // Get the specified bit.
764  SDValue Tmp =
765    SDValue(CurDAG->getTargetNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
766  if (Inv) {
767    assert(OtherCondIdx == -1 && "Can't have split plus negation");
768    return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
769  }
770
771  // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT.
772  // We already got the bit for the first part of the comparison (e.g. SETULE).
773
774  // Get the other bit of the comparison.
775  Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31);
776  SDValue OtherCond =
777    SDValue(CurDAG->getTargetNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
778
779  return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond);
780}
781
782
783// Select - Convert the specified operand from a target-independent to a
784// target-specific node if it hasn't already been changed.
785SDNode *PPCDAGToDAGISel::Select(SDValue Op) {
786  SDNode *N = Op.getNode();
787  DebugLoc dl = Op.getDebugLoc();
788  if (N->isMachineOpcode())
789    return NULL;   // Already selected.
790
791  switch (N->getOpcode()) {
792  default: break;
793
794  case ISD::Constant: {
795    if (N->getValueType(0) == MVT::i64) {
796      // Get 64 bit value.
797      int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
798      // Assume no remaining bits.
799      unsigned Remainder = 0;
800      // Assume no shift required.
801      unsigned Shift = 0;
802
803      // If it can't be represented as a 32 bit value.
804      if (!isInt32(Imm)) {
805        Shift = CountTrailingZeros_64(Imm);
806        int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
807
808        // If the shifted value fits 32 bits.
809        if (isInt32(ImmSh)) {
810          // Go with the shifted value.
811          Imm = ImmSh;
812        } else {
813          // Still stuck with a 64 bit value.
814          Remainder = Imm;
815          Shift = 32;
816          Imm >>= 32;
817        }
818      }
819
820      // Intermediate operand.
821      SDNode *Result;
822
823      // Handle first 32 bits.
824      unsigned Lo = Imm & 0xFFFF;
825      unsigned Hi = (Imm >> 16) & 0xFFFF;
826
827      // Simple value.
828      if (isInt16(Imm)) {
829       // Just the Lo bits.
830        Result = CurDAG->getTargetNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
831      } else if (Lo) {
832        // Handle the Hi bits.
833        unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
834        Result = CurDAG->getTargetNode(OpC, dl, MVT::i64, getI32Imm(Hi));
835        // And Lo bits.
836        Result = CurDAG->getTargetNode(PPC::ORI8, dl, MVT::i64,
837                                       SDValue(Result, 0), getI32Imm(Lo));
838      } else {
839       // Just the Hi bits.
840        Result = CurDAG->getTargetNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
841      }
842
843      // If no shift, we're done.
844      if (!Shift) return Result;
845
846      // Shift for next step if the upper 32-bits were not zero.
847      if (Imm) {
848        Result = CurDAG->getTargetNode(PPC::RLDICR, dl, MVT::i64,
849                                       SDValue(Result, 0),
850                                       getI32Imm(Shift), getI32Imm(63 - Shift));
851      }
852
853      // Add in the last bits as required.
854      if ((Hi = (Remainder >> 16) & 0xFFFF)) {
855        Result = CurDAG->getTargetNode(PPC::ORIS8, dl, MVT::i64,
856                                       SDValue(Result, 0), getI32Imm(Hi));
857      }
858      if ((Lo = Remainder & 0xFFFF)) {
859        Result = CurDAG->getTargetNode(PPC::ORI8, dl, MVT::i64,
860                                       SDValue(Result, 0), getI32Imm(Lo));
861      }
862
863      return Result;
864    }
865    break;
866  }
867
868  case ISD::SETCC:
869    return SelectSETCC(Op);
870  case PPCISD::GlobalBaseReg:
871    return getGlobalBaseReg();
872
873  case ISD::FrameIndex: {
874    int FI = cast<FrameIndexSDNode>(N)->getIndex();
875    SDValue TFI = CurDAG->getTargetFrameIndex(FI, Op.getValueType());
876    unsigned Opc = Op.getValueType() == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
877    if (N->hasOneUse())
878      return CurDAG->SelectNodeTo(N, Opc, Op.getValueType(), TFI,
879                                  getSmallIPtrImm(0));
880    return CurDAG->getTargetNode(Opc, dl, Op.getValueType(), TFI,
881                                 getSmallIPtrImm(0));
882  }
883
884  case PPCISD::MFCR: {
885    SDValue InFlag = N->getOperand(1);
886    // Use MFOCRF if supported.
887    if (PPCSubTarget.isGigaProcessor())
888      return CurDAG->getTargetNode(PPC::MFOCRF, dl, MVT::i32,
889                                   N->getOperand(0), InFlag);
890    else
891      return CurDAG->getTargetNode(PPC::MFCR, dl, MVT::i32, InFlag);
892  }
893
894  case ISD::SDIV: {
895    // FIXME: since this depends on the setting of the carry flag from the srawi
896    //        we should really be making notes about that for the scheduler.
897    // FIXME: It sure would be nice if we could cheaply recognize the
898    //        srl/add/sra pattern the dag combiner will generate for this as
899    //        sra/addze rather than having to handle sdiv ourselves.  oh well.
900    unsigned Imm;
901    if (isInt32Immediate(N->getOperand(1), Imm)) {
902      SDValue N0 = N->getOperand(0);
903      if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
904        SDNode *Op =
905          CurDAG->getTargetNode(PPC::SRAWI, dl, MVT::i32, MVT::Flag,
906                                N0, getI32Imm(Log2_32(Imm)));
907        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
908                                    SDValue(Op, 0), SDValue(Op, 1));
909      } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
910        SDNode *Op =
911          CurDAG->getTargetNode(PPC::SRAWI, dl, MVT::i32, MVT::Flag,
912                                N0, getI32Imm(Log2_32(-Imm)));
913        SDValue PT =
914          SDValue(CurDAG->getTargetNode(PPC::ADDZE, dl, MVT::i32,
915                                          SDValue(Op, 0), SDValue(Op, 1)),
916                    0);
917        return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
918      }
919    }
920
921    // Other cases are autogenerated.
922    break;
923  }
924
925  case ISD::LOAD: {
926    // Handle preincrement loads.
927    LoadSDNode *LD = cast<LoadSDNode>(Op);
928    MVT LoadedVT = LD->getMemoryVT();
929
930    // Normal loads are handled by code generated from the .td file.
931    if (LD->getAddressingMode() != ISD::PRE_INC)
932      break;
933
934    SDValue Offset = LD->getOffset();
935    if (isa<ConstantSDNode>(Offset) ||
936        Offset.getOpcode() == ISD::TargetGlobalAddress) {
937
938      unsigned Opcode;
939      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
940      if (LD->getValueType(0) != MVT::i64) {
941        // Handle PPC32 integer and normal FP loads.
942        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
943        switch (LoadedVT.getSimpleVT()) {
944          default: llvm_unreachable("Invalid PPC load type!");
945          case MVT::f64: Opcode = PPC::LFDU; break;
946          case MVT::f32: Opcode = PPC::LFSU; break;
947          case MVT::i32: Opcode = PPC::LWZU; break;
948          case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
949          case MVT::i1:
950          case MVT::i8:  Opcode = PPC::LBZU; break;
951        }
952      } else {
953        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
954        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
955        switch (LoadedVT.getSimpleVT()) {
956          default: llvm_unreachable("Invalid PPC load type!");
957          case MVT::i64: Opcode = PPC::LDU; break;
958          case MVT::i32: Opcode = PPC::LWZU8; break;
959          case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
960          case MVT::i1:
961          case MVT::i8:  Opcode = PPC::LBZU8; break;
962        }
963      }
964
965      SDValue Chain = LD->getChain();
966      SDValue Base = LD->getBasePtr();
967      SDValue Ops[] = { Offset, Base, Chain };
968      // FIXME: PPC64
969      return CurDAG->getTargetNode(Opcode, dl, LD->getValueType(0),
970                                   PPCLowering.getPointerTy(),
971                                   MVT::Other, Ops, 3);
972    } else {
973      llvm_unreachable("R+R preindex loads not supported yet!");
974    }
975  }
976
977  case ISD::AND: {
978    unsigned Imm, Imm2, SH, MB, ME;
979
980    // If this is an and of a value rotated between 0 and 31 bits and then and'd
981    // with a mask, emit rlwinm
982    if (isInt32Immediate(N->getOperand(1), Imm) &&
983        isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
984      SDValue Val = N->getOperand(0).getOperand(0);
985      SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
986      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
987    }
988    // If this is just a masked value where the input is not handled above, and
989    // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
990    if (isInt32Immediate(N->getOperand(1), Imm) &&
991        isRunOfOnes(Imm, MB, ME) &&
992        N->getOperand(0).getOpcode() != ISD::ROTL) {
993      SDValue Val = N->getOperand(0);
994      SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
995      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
996    }
997    // AND X, 0 -> 0, not "rlwinm 32".
998    if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
999      ReplaceUses(SDValue(N, 0), N->getOperand(1));
1000      return NULL;
1001    }
1002    // ISD::OR doesn't get all the bitfield insertion fun.
1003    // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
1004    if (isInt32Immediate(N->getOperand(1), Imm) &&
1005        N->getOperand(0).getOpcode() == ISD::OR &&
1006        isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
1007      unsigned MB, ME;
1008      Imm = ~(Imm^Imm2);
1009      if (isRunOfOnes(Imm, MB, ME)) {
1010        SDValue Ops[] = { N->getOperand(0).getOperand(0),
1011                            N->getOperand(0).getOperand(1),
1012                            getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
1013        return CurDAG->getTargetNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
1014      }
1015    }
1016
1017    // Other cases are autogenerated.
1018    break;
1019  }
1020  case ISD::OR:
1021    if (N->getValueType(0) == MVT::i32)
1022      if (SDNode *I = SelectBitfieldInsert(N))
1023        return I;
1024
1025    // Other cases are autogenerated.
1026    break;
1027  case ISD::SHL: {
1028    unsigned Imm, SH, MB, ME;
1029    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
1030        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1031      SDValue Ops[] = { N->getOperand(0).getOperand(0),
1032                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1033      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1034    }
1035
1036    // Other cases are autogenerated.
1037    break;
1038  }
1039  case ISD::SRL: {
1040    unsigned Imm, SH, MB, ME;
1041    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
1042        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1043      SDValue Ops[] = { N->getOperand(0).getOperand(0),
1044                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1045      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1046    }
1047
1048    // Other cases are autogenerated.
1049    break;
1050  }
1051  case ISD::SELECT_CC: {
1052    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1053
1054    // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
1055    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1056      if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
1057        if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
1058          if (N1C->isNullValue() && N3C->isNullValue() &&
1059              N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
1060              // FIXME: Implement this optzn for PPC64.
1061              N->getValueType(0) == MVT::i32) {
1062            SDNode *Tmp =
1063              CurDAG->getTargetNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
1064                                    N->getOperand(0), getI32Imm(~0U));
1065            return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
1066                                        SDValue(Tmp, 0), N->getOperand(0),
1067                                        SDValue(Tmp, 1));
1068          }
1069
1070    SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
1071    unsigned BROpc = getPredicateForSetCC(CC);
1072
1073    unsigned SelectCCOp;
1074    if (N->getValueType(0) == MVT::i32)
1075      SelectCCOp = PPC::SELECT_CC_I4;
1076    else if (N->getValueType(0) == MVT::i64)
1077      SelectCCOp = PPC::SELECT_CC_I8;
1078    else if (N->getValueType(0) == MVT::f32)
1079      SelectCCOp = PPC::SELECT_CC_F4;
1080    else if (N->getValueType(0) == MVT::f64)
1081      SelectCCOp = PPC::SELECT_CC_F8;
1082    else
1083      SelectCCOp = PPC::SELECT_CC_VRRC;
1084
1085    SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
1086                        getI32Imm(BROpc) };
1087    return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
1088  }
1089  case PPCISD::COND_BRANCH: {
1090    // Op #0 is the Chain.
1091    // Op #1 is the PPC::PRED_* number.
1092    // Op #2 is the CR#
1093    // Op #3 is the Dest MBB
1094    // Op #4 is the Flag.
1095    // Prevent PPC::PRED_* from being selected into LI.
1096    SDValue Pred =
1097      getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
1098    SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
1099      N->getOperand(0), N->getOperand(4) };
1100    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
1101  }
1102  case ISD::BR_CC: {
1103    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
1104    SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
1105    SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode,
1106                        N->getOperand(4), N->getOperand(0) };
1107    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
1108  }
1109  case ISD::BRIND: {
1110    // FIXME: Should custom lower this.
1111    SDValue Chain = N->getOperand(0);
1112    SDValue Target = N->getOperand(1);
1113    unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
1114    Chain = SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Other, Target,
1115                                            Chain), 0);
1116    return CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain);
1117  }
1118  case ISD::DECLARE: {
1119    SDValue Chain = N->getOperand(0);
1120    SDValue N1 = N->getOperand(1);
1121    SDValue N2 = N->getOperand(2);
1122    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N1);
1123
1124    // FIXME: We need to handle this for VLAs.
1125    if (!FINode) {
1126      ReplaceUses(Op.getValue(0), Chain);
1127      return NULL;
1128    }
1129
1130    if (N2.getOpcode() == ISD::ADD) {
1131      if (N2.getOperand(0).getOpcode() == ISD::ADD &&
1132          N2.getOperand(0).getOperand(0).getOpcode() == PPCISD::GlobalBaseReg &&
1133          N2.getOperand(0).getOperand(1).getOpcode() == PPCISD::Hi &&
1134          N2.getOperand(1).getOpcode() == PPCISD::Lo)
1135        N2 = N2.getOperand(0).getOperand(1).getOperand(0);
1136      else if (N2.getOperand(0).getOpcode() == ISD::ADD &&
1137          N2.getOperand(0).getOperand(0).getOpcode() == PPCISD::GlobalBaseReg &&
1138          N2.getOperand(0).getOperand(1).getOpcode() == PPCISD::Lo &&
1139               N2.getOperand(1).getOpcode() == PPCISD::Hi)
1140        N2 = N2.getOperand(0).getOperand(1).getOperand(0);
1141      else if (N2.getOperand(0).getOpcode() == PPCISD::Hi &&
1142               N2.getOperand(1).getOpcode() == PPCISD::Lo)
1143        N2 = N2.getOperand(0).getOperand(0);
1144    }
1145
1146    // If we don't have a global address here, the debug info is mangled, just
1147    // drop it.
1148    if (!isa<GlobalAddressSDNode>(N2)) {
1149      ReplaceUses(Op.getValue(0), Chain);
1150      return NULL;
1151    }
1152    int FI = cast<FrameIndexSDNode>(N1)->getIndex();
1153    GlobalValue *GV = cast<GlobalAddressSDNode>(N2)->getGlobal();
1154    SDValue Tmp1 = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1155    SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GV, TLI.getPointerTy());
1156    return CurDAG->SelectNodeTo(N, TargetInstrInfo::DECLARE,
1157                                MVT::Other, Tmp1, Tmp2, Chain);
1158  }
1159  }
1160
1161  return SelectCode(Op);
1162}
1163
1164
1165
1166/// createPPCISelDag - This pass converts a legalized DAG into a
1167/// PowerPC-specific DAG, ready for instruction scheduling.
1168///
1169FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
1170  return new PPCDAGToDAGISel(TM);
1171}
1172
1173