PPCInstrInfo.cpp revision 80ada583f3b40ffb201e54cd57c42f9518039c9e
1//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the PowerPC implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCInstrInfo.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPC.h"
17#include "PPCHazardRecognizers.h"
18#include "PPCInstrBuilder.h"
19#include "PPCMachineFunctionInfo.h"
20#include "PPCTargetMachine.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunctionPass.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineMemOperand.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/PseudoSourceValue.h"
29#include "llvm/MC/MCAsmInfo.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/TargetRegistry.h"
33#include "llvm/Support/raw_ostream.h"
34
35#define GET_INSTRMAP_INFO
36#define GET_INSTRINFO_CTOR
37#include "PPCGenInstrInfo.inc"
38
39using namespace llvm;
40
41static cl::
42opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
43            cl::desc("Disable analysis for CTR loops"));
44
45static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
46cl::desc("Disable compare instruction optimization"), cl::Hidden);
47
48PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm)
49  : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
50    TM(tm), RI(*TM.getSubtargetImpl()) {}
51
52/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
53/// this target when scheduling the DAG.
54ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetHazardRecognizer(
55  const TargetMachine *TM,
56  const ScheduleDAG *DAG) const {
57  unsigned Directive = TM->getSubtarget<PPCSubtarget>().getDarwinDirective();
58  if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
59      Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
60    const InstrItineraryData *II = TM->getInstrItineraryData();
61    return new PPCScoreboardHazardRecognizer(II, DAG);
62  }
63
64  return TargetInstrInfo::CreateTargetHazardRecognizer(TM, DAG);
65}
66
67/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
68/// to use for this target when scheduling the DAG.
69ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer(
70  const InstrItineraryData *II,
71  const ScheduleDAG *DAG) const {
72  unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective();
73
74  // Most subtargets use a PPC970 recognizer.
75  if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
76      Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
77    const TargetInstrInfo *TII = TM.getInstrInfo();
78    assert(TII && "No InstrInfo?");
79
80    return new PPCHazardRecognizer970(TM);
81  }
82
83  return new PPCScoreboardHazardRecognizer(II, DAG);
84}
85
86// Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
87bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
88                                         unsigned &SrcReg, unsigned &DstReg,
89                                         unsigned &SubIdx) const {
90  switch (MI.getOpcode()) {
91  default: return false;
92  case PPC::EXTSW:
93  case PPC::EXTSW_32_64:
94    SrcReg = MI.getOperand(1).getReg();
95    DstReg = MI.getOperand(0).getReg();
96    SubIdx = PPC::sub_32;
97    return true;
98  }
99}
100
101unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
102                                           int &FrameIndex) const {
103  // Note: This list must be kept consistent with LoadRegFromStackSlot.
104  switch (MI->getOpcode()) {
105  default: break;
106  case PPC::LD:
107  case PPC::LWZ:
108  case PPC::LFS:
109  case PPC::LFD:
110  case PPC::RESTORE_CR:
111  case PPC::LVX:
112  case PPC::RESTORE_VRSAVE:
113    // Check for the operands added by addFrameReference (the immediate is the
114    // offset which defaults to 0).
115    if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
116        MI->getOperand(2).isFI()) {
117      FrameIndex = MI->getOperand(2).getIndex();
118      return MI->getOperand(0).getReg();
119    }
120    break;
121  }
122  return 0;
123}
124
125unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
126                                          int &FrameIndex) const {
127  // Note: This list must be kept consistent with StoreRegToStackSlot.
128  switch (MI->getOpcode()) {
129  default: break;
130  case PPC::STD:
131  case PPC::STW:
132  case PPC::STFS:
133  case PPC::STFD:
134  case PPC::SPILL_CR:
135  case PPC::STVX:
136  case PPC::SPILL_VRSAVE:
137    // Check for the operands added by addFrameReference (the immediate is the
138    // offset which defaults to 0).
139    if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
140        MI->getOperand(2).isFI()) {
141      FrameIndex = MI->getOperand(2).getIndex();
142      return MI->getOperand(0).getReg();
143    }
144    break;
145  }
146  return 0;
147}
148
149// commuteInstruction - We can commute rlwimi instructions, but only if the
150// rotate amt is zero.  We also have to munge the immediates a bit.
151MachineInstr *
152PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
153  MachineFunction &MF = *MI->getParent()->getParent();
154
155  // Normal instructions can be commuted the obvious way.
156  if (MI->getOpcode() != PPC::RLWIMI &&
157      MI->getOpcode() != PPC::RLWIMIo)
158    return TargetInstrInfo::commuteInstruction(MI, NewMI);
159
160  // Cannot commute if it has a non-zero rotate count.
161  if (MI->getOperand(3).getImm() != 0)
162    return 0;
163
164  // If we have a zero rotate count, we have:
165  //   M = mask(MB,ME)
166  //   Op0 = (Op1 & ~M) | (Op2 & M)
167  // Change this to:
168  //   M = mask((ME+1)&31, (MB-1)&31)
169  //   Op0 = (Op2 & ~M) | (Op1 & M)
170
171  // Swap op1/op2
172  unsigned Reg0 = MI->getOperand(0).getReg();
173  unsigned Reg1 = MI->getOperand(1).getReg();
174  unsigned Reg2 = MI->getOperand(2).getReg();
175  bool Reg1IsKill = MI->getOperand(1).isKill();
176  bool Reg2IsKill = MI->getOperand(2).isKill();
177  bool ChangeReg0 = false;
178  // If machine instrs are no longer in two-address forms, update
179  // destination register as well.
180  if (Reg0 == Reg1) {
181    // Must be two address instruction!
182    assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
183           "Expecting a two-address instruction!");
184    Reg2IsKill = false;
185    ChangeReg0 = true;
186  }
187
188  // Masks.
189  unsigned MB = MI->getOperand(4).getImm();
190  unsigned ME = MI->getOperand(5).getImm();
191
192  if (NewMI) {
193    // Create a new instruction.
194    unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
195    bool Reg0IsDead = MI->getOperand(0).isDead();
196    return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
197      .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
198      .addReg(Reg2, getKillRegState(Reg2IsKill))
199      .addReg(Reg1, getKillRegState(Reg1IsKill))
200      .addImm((ME+1) & 31)
201      .addImm((MB-1) & 31);
202  }
203
204  if (ChangeReg0)
205    MI->getOperand(0).setReg(Reg2);
206  MI->getOperand(2).setReg(Reg1);
207  MI->getOperand(1).setReg(Reg2);
208  MI->getOperand(2).setIsKill(Reg1IsKill);
209  MI->getOperand(1).setIsKill(Reg2IsKill);
210
211  // Swap the mask around.
212  MI->getOperand(4).setImm((ME+1) & 31);
213  MI->getOperand(5).setImm((MB-1) & 31);
214  return MI;
215}
216
217void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
218                              MachineBasicBlock::iterator MI) const {
219  DebugLoc DL;
220  BuildMI(MBB, MI, DL, get(PPC::NOP));
221}
222
223
224// Branch analysis.
225// Note: If the condition register is set to CTR or CTR8 then this is a
226// BDNZ (imm == 1) or BDZ (imm == 0) branch.
227bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
228                                 MachineBasicBlock *&FBB,
229                                 SmallVectorImpl<MachineOperand> &Cond,
230                                 bool AllowModify) const {
231  bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
232
233  // If the block has no terminators, it just falls into the block after it.
234  MachineBasicBlock::iterator I = MBB.end();
235  if (I == MBB.begin())
236    return false;
237  --I;
238  while (I->isDebugValue()) {
239    if (I == MBB.begin())
240      return false;
241    --I;
242  }
243  if (!isUnpredicatedTerminator(I))
244    return false;
245
246  // Get the last instruction in the block.
247  MachineInstr *LastInst = I;
248
249  // If there is only one terminator instruction, process it.
250  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
251    if (LastInst->getOpcode() == PPC::B) {
252      if (!LastInst->getOperand(0).isMBB())
253        return true;
254      TBB = LastInst->getOperand(0).getMBB();
255      return false;
256    } else if (LastInst->getOpcode() == PPC::BCC) {
257      if (!LastInst->getOperand(2).isMBB())
258        return true;
259      // Block ends with fall-through condbranch.
260      TBB = LastInst->getOperand(2).getMBB();
261      Cond.push_back(LastInst->getOperand(0));
262      Cond.push_back(LastInst->getOperand(1));
263      return false;
264    } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
265               LastInst->getOpcode() == PPC::BDNZ) {
266      if (!LastInst->getOperand(0).isMBB())
267        return true;
268      if (DisableCTRLoopAnal)
269        return true;
270      TBB = LastInst->getOperand(0).getMBB();
271      Cond.push_back(MachineOperand::CreateImm(1));
272      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
273                                               true));
274      return false;
275    } else if (LastInst->getOpcode() == PPC::BDZ8 ||
276               LastInst->getOpcode() == PPC::BDZ) {
277      if (!LastInst->getOperand(0).isMBB())
278        return true;
279      if (DisableCTRLoopAnal)
280        return true;
281      TBB = LastInst->getOperand(0).getMBB();
282      Cond.push_back(MachineOperand::CreateImm(0));
283      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
284                                               true));
285      return false;
286    }
287
288    // Otherwise, don't know what this is.
289    return true;
290  }
291
292  // Get the instruction before it if it's a terminator.
293  MachineInstr *SecondLastInst = I;
294
295  // If there are three terminators, we don't know what sort of block this is.
296  if (SecondLastInst && I != MBB.begin() &&
297      isUnpredicatedTerminator(--I))
298    return true;
299
300  // If the block ends with PPC::B and PPC:BCC, handle it.
301  if (SecondLastInst->getOpcode() == PPC::BCC &&
302      LastInst->getOpcode() == PPC::B) {
303    if (!SecondLastInst->getOperand(2).isMBB() ||
304        !LastInst->getOperand(0).isMBB())
305      return true;
306    TBB =  SecondLastInst->getOperand(2).getMBB();
307    Cond.push_back(SecondLastInst->getOperand(0));
308    Cond.push_back(SecondLastInst->getOperand(1));
309    FBB = LastInst->getOperand(0).getMBB();
310    return false;
311  } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
312              SecondLastInst->getOpcode() == PPC::BDNZ) &&
313      LastInst->getOpcode() == PPC::B) {
314    if (!SecondLastInst->getOperand(0).isMBB() ||
315        !LastInst->getOperand(0).isMBB())
316      return true;
317    if (DisableCTRLoopAnal)
318      return true;
319    TBB = SecondLastInst->getOperand(0).getMBB();
320    Cond.push_back(MachineOperand::CreateImm(1));
321    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
322                                             true));
323    FBB = LastInst->getOperand(0).getMBB();
324    return false;
325  } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
326              SecondLastInst->getOpcode() == PPC::BDZ) &&
327      LastInst->getOpcode() == PPC::B) {
328    if (!SecondLastInst->getOperand(0).isMBB() ||
329        !LastInst->getOperand(0).isMBB())
330      return true;
331    if (DisableCTRLoopAnal)
332      return true;
333    TBB = SecondLastInst->getOperand(0).getMBB();
334    Cond.push_back(MachineOperand::CreateImm(0));
335    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
336                                             true));
337    FBB = LastInst->getOperand(0).getMBB();
338    return false;
339  }
340
341  // If the block ends with two PPC:Bs, handle it.  The second one is not
342  // executed, so remove it.
343  if (SecondLastInst->getOpcode() == PPC::B &&
344      LastInst->getOpcode() == PPC::B) {
345    if (!SecondLastInst->getOperand(0).isMBB())
346      return true;
347    TBB = SecondLastInst->getOperand(0).getMBB();
348    I = LastInst;
349    if (AllowModify)
350      I->eraseFromParent();
351    return false;
352  }
353
354  // Otherwise, can't handle this.
355  return true;
356}
357
358unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
359  MachineBasicBlock::iterator I = MBB.end();
360  if (I == MBB.begin()) return 0;
361  --I;
362  while (I->isDebugValue()) {
363    if (I == MBB.begin())
364      return 0;
365    --I;
366  }
367  if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
368      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
369      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
370    return 0;
371
372  // Remove the branch.
373  I->eraseFromParent();
374
375  I = MBB.end();
376
377  if (I == MBB.begin()) return 1;
378  --I;
379  if (I->getOpcode() != PPC::BCC &&
380      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
381      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
382    return 1;
383
384  // Remove the branch.
385  I->eraseFromParent();
386  return 2;
387}
388
389unsigned
390PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
391                           MachineBasicBlock *FBB,
392                           const SmallVectorImpl<MachineOperand> &Cond,
393                           DebugLoc DL) const {
394  // Shouldn't be a fall through.
395  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
396  assert((Cond.size() == 2 || Cond.size() == 0) &&
397         "PPC branch conditions have two components!");
398
399  bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
400
401  // One-way branch.
402  if (FBB == 0) {
403    if (Cond.empty())   // Unconditional branch
404      BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
405    else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
406      BuildMI(&MBB, DL, get(Cond[0].getImm() ?
407                              (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
408                              (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
409    else                // Conditional branch
410      BuildMI(&MBB, DL, get(PPC::BCC))
411        .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB);
412    return 1;
413  }
414
415  // Two-way Conditional Branch.
416  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
417    BuildMI(&MBB, DL, get(Cond[0].getImm() ?
418                            (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
419                            (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
420  else
421    BuildMI(&MBB, DL, get(PPC::BCC))
422      .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB);
423  BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
424  return 2;
425}
426
427// Select analysis.
428bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
429                const SmallVectorImpl<MachineOperand> &Cond,
430                unsigned TrueReg, unsigned FalseReg,
431                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
432  if (!TM.getSubtargetImpl()->hasISEL())
433    return false;
434
435  if (Cond.size() != 2)
436    return false;
437
438  // If this is really a bdnz-like condition, then it cannot be turned into a
439  // select.
440  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
441    return false;
442
443  // Check register classes.
444  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
445  const TargetRegisterClass *RC =
446    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
447  if (!RC)
448    return false;
449
450  // isel is for regular integer GPRs only.
451  if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
452      !PPC::G8RCRegClass.hasSubClassEq(RC))
453    return false;
454
455  // FIXME: These numbers are for the A2, how well they work for other cores is
456  // an open question. On the A2, the isel instruction has a 2-cycle latency
457  // but single-cycle throughput. These numbers are used in combination with
458  // the MispredictPenalty setting from the active SchedMachineModel.
459  CondCycles = 1;
460  TrueCycles = 1;
461  FalseCycles = 1;
462
463  return true;
464}
465
466void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
467                                MachineBasicBlock::iterator MI, DebugLoc dl,
468                                unsigned DestReg,
469                                const SmallVectorImpl<MachineOperand> &Cond,
470                                unsigned TrueReg, unsigned FalseReg) const {
471  assert(Cond.size() == 2 &&
472         "PPC branch conditions have two components!");
473
474  assert(TM.getSubtargetImpl()->hasISEL() &&
475         "Cannot insert select on target without ISEL support");
476
477  // Get the register classes.
478  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
479  const TargetRegisterClass *RC =
480    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
481  assert(RC && "TrueReg and FalseReg must have overlapping register classes");
482  assert((PPC::GPRCRegClass.hasSubClassEq(RC) ||
483          PPC::G8RCRegClass.hasSubClassEq(RC)) &&
484         "isel is for regular integer GPRs only");
485
486  unsigned OpCode =
487    PPC::GPRCRegClass.hasSubClassEq(RC) ? PPC::ISEL : PPC::ISEL8;
488  unsigned SelectPred = Cond[0].getImm();
489
490  unsigned SubIdx;
491  bool SwapOps;
492  switch (SelectPred) {
493  default: llvm_unreachable("invalid predicate for isel");
494  case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
495  case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
496  case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
497  case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
498  case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
499  case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
500  case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
501  case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
502  }
503
504  unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
505           SecondReg = SwapOps ? TrueReg  : FalseReg;
506
507  // The first input register of isel cannot be r0. If it is a member
508  // of a register class that can be r0, then copy it first (the
509  // register allocator should eliminate the copy).
510  if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
511      MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
512    const TargetRegisterClass *FirstRC =
513      MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
514        &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
515    unsigned OldFirstReg = FirstReg;
516    FirstReg = MRI.createVirtualRegister(FirstRC);
517    BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
518      .addReg(OldFirstReg);
519  }
520
521  BuildMI(MBB, MI, dl, get(OpCode), DestReg)
522    .addReg(FirstReg).addReg(SecondReg)
523    .addReg(Cond[1].getReg(), 0, SubIdx);
524}
525
526void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
527                               MachineBasicBlock::iterator I, DebugLoc DL,
528                               unsigned DestReg, unsigned SrcReg,
529                               bool KillSrc) const {
530  unsigned Opc;
531  if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
532    Opc = PPC::OR;
533  else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
534    Opc = PPC::OR8;
535  else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
536    Opc = PPC::FMR;
537  else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
538    Opc = PPC::MCRF;
539  else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
540    Opc = PPC::VOR;
541  else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
542    Opc = PPC::CROR;
543  else
544    llvm_unreachable("Impossible reg-to-reg copy");
545
546  const MCInstrDesc &MCID = get(Opc);
547  if (MCID.getNumOperands() == 3)
548    BuildMI(MBB, I, DL, MCID, DestReg)
549      .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
550  else
551    BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
552}
553
554// This function returns true if a CR spill is necessary and false otherwise.
555bool
556PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
557                                  unsigned SrcReg, bool isKill,
558                                  int FrameIdx,
559                                  const TargetRegisterClass *RC,
560                                  SmallVectorImpl<MachineInstr*> &NewMIs,
561                                  bool &NonRI, bool &SpillsVRS) const{
562  // Note: If additional store instructions are added here,
563  // update isStoreToStackSlot.
564
565  DebugLoc DL;
566  if (PPC::GPRCRegClass.hasSubClassEq(RC)) {
567    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
568                                       .addReg(SrcReg,
569                                               getKillRegState(isKill)),
570                                       FrameIdx));
571  } else if (PPC::G8RCRegClass.hasSubClassEq(RC)) {
572    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
573                                       .addReg(SrcReg,
574                                               getKillRegState(isKill)),
575                                       FrameIdx));
576  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
577    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
578                                       .addReg(SrcReg,
579                                               getKillRegState(isKill)),
580                                       FrameIdx));
581  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
582    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
583                                       .addReg(SrcReg,
584                                               getKillRegState(isKill)),
585                                       FrameIdx));
586  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
587    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
588                                       .addReg(SrcReg,
589                                               getKillRegState(isKill)),
590                                       FrameIdx));
591    return true;
592  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
593    // FIXME: We use CRi here because there is no mtcrf on a bit. Since the
594    // backend currently only uses CR1EQ as an individual bit, this should
595    // not cause any bug. If we need other uses of CR bits, the following
596    // code may be invalid.
597    unsigned Reg = 0;
598    if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR0GT ||
599        SrcReg == PPC::CR0EQ || SrcReg == PPC::CR0UN)
600      Reg = PPC::CR0;
601    else if (SrcReg == PPC::CR1LT || SrcReg == PPC::CR1GT ||
602             SrcReg == PPC::CR1EQ || SrcReg == PPC::CR1UN)
603      Reg = PPC::CR1;
604    else if (SrcReg == PPC::CR2LT || SrcReg == PPC::CR2GT ||
605             SrcReg == PPC::CR2EQ || SrcReg == PPC::CR2UN)
606      Reg = PPC::CR2;
607    else if (SrcReg == PPC::CR3LT || SrcReg == PPC::CR3GT ||
608             SrcReg == PPC::CR3EQ || SrcReg == PPC::CR3UN)
609      Reg = PPC::CR3;
610    else if (SrcReg == PPC::CR4LT || SrcReg == PPC::CR4GT ||
611             SrcReg == PPC::CR4EQ || SrcReg == PPC::CR4UN)
612      Reg = PPC::CR4;
613    else if (SrcReg == PPC::CR5LT || SrcReg == PPC::CR5GT ||
614             SrcReg == PPC::CR5EQ || SrcReg == PPC::CR5UN)
615      Reg = PPC::CR5;
616    else if (SrcReg == PPC::CR6LT || SrcReg == PPC::CR6GT ||
617             SrcReg == PPC::CR6EQ || SrcReg == PPC::CR6UN)
618      Reg = PPC::CR6;
619    else if (SrcReg == PPC::CR7LT || SrcReg == PPC::CR7GT ||
620             SrcReg == PPC::CR7EQ || SrcReg == PPC::CR7UN)
621      Reg = PPC::CR7;
622
623    return StoreRegToStackSlot(MF, Reg, isKill, FrameIdx,
624                               &PPC::CRRCRegClass, NewMIs, NonRI, SpillsVRS);
625
626  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
627    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
628                                       .addReg(SrcReg,
629                                               getKillRegState(isKill)),
630                                       FrameIdx));
631    NonRI = true;
632  } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
633    assert(TM.getSubtargetImpl()->isDarwin() &&
634           "VRSAVE only needs spill/restore on Darwin");
635    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
636                                       .addReg(SrcReg,
637                                               getKillRegState(isKill)),
638                                       FrameIdx));
639    SpillsVRS = true;
640  } else {
641    llvm_unreachable("Unknown regclass!");
642  }
643
644  return false;
645}
646
647void
648PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
649                                  MachineBasicBlock::iterator MI,
650                                  unsigned SrcReg, bool isKill, int FrameIdx,
651                                  const TargetRegisterClass *RC,
652                                  const TargetRegisterInfo *TRI) const {
653  MachineFunction &MF = *MBB.getParent();
654  SmallVector<MachineInstr*, 4> NewMIs;
655
656  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
657  FuncInfo->setHasSpills();
658
659  bool NonRI = false, SpillsVRS = false;
660  if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
661                          NonRI, SpillsVRS))
662    FuncInfo->setSpillsCR();
663
664  if (SpillsVRS)
665    FuncInfo->setSpillsVRSAVE();
666
667  if (NonRI)
668    FuncInfo->setHasNonRISpills();
669
670  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
671    MBB.insert(MI, NewMIs[i]);
672
673  const MachineFrameInfo &MFI = *MF.getFrameInfo();
674  MachineMemOperand *MMO =
675    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
676                            MachineMemOperand::MOStore,
677                            MFI.getObjectSize(FrameIdx),
678                            MFI.getObjectAlignment(FrameIdx));
679  NewMIs.back()->addMemOperand(MF, MMO);
680}
681
682bool
683PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
684                                   unsigned DestReg, int FrameIdx,
685                                   const TargetRegisterClass *RC,
686                                   SmallVectorImpl<MachineInstr*> &NewMIs,
687                                   bool &NonRI, bool &SpillsVRS) const{
688  // Note: If additional load instructions are added here,
689  // update isLoadFromStackSlot.
690
691  if (PPC::GPRCRegClass.hasSubClassEq(RC)) {
692    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
693                                               DestReg), FrameIdx));
694  } else if (PPC::G8RCRegClass.hasSubClassEq(RC)) {
695    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
696                                       FrameIdx));
697  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
698    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
699                                       FrameIdx));
700  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
701    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
702                                       FrameIdx));
703  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
704    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
705                                               get(PPC::RESTORE_CR), DestReg),
706                                       FrameIdx));
707    return true;
708  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
709
710    unsigned Reg = 0;
711    if (DestReg == PPC::CR0LT || DestReg == PPC::CR0GT ||
712        DestReg == PPC::CR0EQ || DestReg == PPC::CR0UN)
713      Reg = PPC::CR0;
714    else if (DestReg == PPC::CR1LT || DestReg == PPC::CR1GT ||
715             DestReg == PPC::CR1EQ || DestReg == PPC::CR1UN)
716      Reg = PPC::CR1;
717    else if (DestReg == PPC::CR2LT || DestReg == PPC::CR2GT ||
718             DestReg == PPC::CR2EQ || DestReg == PPC::CR2UN)
719      Reg = PPC::CR2;
720    else if (DestReg == PPC::CR3LT || DestReg == PPC::CR3GT ||
721             DestReg == PPC::CR3EQ || DestReg == PPC::CR3UN)
722      Reg = PPC::CR3;
723    else if (DestReg == PPC::CR4LT || DestReg == PPC::CR4GT ||
724             DestReg == PPC::CR4EQ || DestReg == PPC::CR4UN)
725      Reg = PPC::CR4;
726    else if (DestReg == PPC::CR5LT || DestReg == PPC::CR5GT ||
727             DestReg == PPC::CR5EQ || DestReg == PPC::CR5UN)
728      Reg = PPC::CR5;
729    else if (DestReg == PPC::CR6LT || DestReg == PPC::CR6GT ||
730             DestReg == PPC::CR6EQ || DestReg == PPC::CR6UN)
731      Reg = PPC::CR6;
732    else if (DestReg == PPC::CR7LT || DestReg == PPC::CR7GT ||
733             DestReg == PPC::CR7EQ || DestReg == PPC::CR7UN)
734      Reg = PPC::CR7;
735
736    return LoadRegFromStackSlot(MF, DL, Reg, FrameIdx,
737                                &PPC::CRRCRegClass, NewMIs, NonRI, SpillsVRS);
738
739  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
740    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
741                                       FrameIdx));
742    NonRI = true;
743  } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
744    assert(TM.getSubtargetImpl()->isDarwin() &&
745           "VRSAVE only needs spill/restore on Darwin");
746    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
747                                               get(PPC::RESTORE_VRSAVE),
748                                               DestReg),
749                                       FrameIdx));
750    SpillsVRS = true;
751  } else {
752    llvm_unreachable("Unknown regclass!");
753  }
754
755  return false;
756}
757
758void
759PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
760                                   MachineBasicBlock::iterator MI,
761                                   unsigned DestReg, int FrameIdx,
762                                   const TargetRegisterClass *RC,
763                                   const TargetRegisterInfo *TRI) const {
764  MachineFunction &MF = *MBB.getParent();
765  SmallVector<MachineInstr*, 4> NewMIs;
766  DebugLoc DL;
767  if (MI != MBB.end()) DL = MI->getDebugLoc();
768
769  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
770  FuncInfo->setHasSpills();
771
772  bool NonRI = false, SpillsVRS = false;
773  if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
774                           NonRI, SpillsVRS))
775    FuncInfo->setSpillsCR();
776
777  if (SpillsVRS)
778    FuncInfo->setSpillsVRSAVE();
779
780  if (NonRI)
781    FuncInfo->setHasNonRISpills();
782
783  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
784    MBB.insert(MI, NewMIs[i]);
785
786  const MachineFrameInfo &MFI = *MF.getFrameInfo();
787  MachineMemOperand *MMO =
788    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
789                            MachineMemOperand::MOLoad,
790                            MFI.getObjectSize(FrameIdx),
791                            MFI.getObjectAlignment(FrameIdx));
792  NewMIs.back()->addMemOperand(MF, MMO);
793}
794
795MachineInstr*
796PPCInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
797                                       int FrameIx, uint64_t Offset,
798                                       const MDNode *MDPtr,
799                                       DebugLoc DL) const {
800  MachineInstrBuilder MIB = BuildMI(MF, DL, get(PPC::DBG_VALUE));
801  addFrameReference(MIB, FrameIx, 0, false).addImm(Offset).addMetadata(MDPtr);
802  return &*MIB;
803}
804
805bool PPCInstrInfo::
806ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
807  assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
808  if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
809    Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
810  else
811    // Leave the CR# the same, but invert the condition.
812    Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
813  return false;
814}
815
816bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
817                             unsigned Reg, MachineRegisterInfo *MRI) const {
818  // For some instructions, it is legal to fold ZERO into the RA register field.
819  // A zero immediate should always be loaded with a single li.
820  unsigned DefOpc = DefMI->getOpcode();
821  if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
822    return false;
823  if (!DefMI->getOperand(1).isImm())
824    return false;
825  if (DefMI->getOperand(1).getImm() != 0)
826    return false;
827
828  // Note that we cannot here invert the arguments of an isel in order to fold
829  // a ZERO into what is presented as the second argument. All we have here
830  // is the condition bit, and that might come from a CR-logical bit operation.
831
832  const MCInstrDesc &UseMCID = UseMI->getDesc();
833
834  // Only fold into real machine instructions.
835  if (UseMCID.isPseudo())
836    return false;
837
838  unsigned UseIdx;
839  for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
840    if (UseMI->getOperand(UseIdx).isReg() &&
841        UseMI->getOperand(UseIdx).getReg() == Reg)
842      break;
843
844  assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
845  assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
846
847  const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
848
849  // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
850  // register (which might also be specified as a pointer class kind).
851  if (UseInfo->isLookupPtrRegClass()) {
852    if (UseInfo->RegClass /* Kind */ != 1)
853      return false;
854  } else {
855    if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
856        UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
857      return false;
858  }
859
860  // Make sure this is not tied to an output register (or otherwise
861  // constrained). This is true for ST?UX registers, for example, which
862  // are tied to their output registers.
863  if (UseInfo->Constraints != 0)
864    return false;
865
866  unsigned ZeroReg;
867  if (UseInfo->isLookupPtrRegClass()) {
868    bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
869    ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
870  } else {
871    ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
872              PPC::ZERO8 : PPC::ZERO;
873  }
874
875  bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
876  UseMI->getOperand(UseIdx).setReg(ZeroReg);
877
878  if (DeleteDef)
879    DefMI->eraseFromParent();
880
881  return true;
882}
883
884static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
885  for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
886       I != IE; ++I)
887    if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
888      return true;
889  return false;
890}
891
892// We should make sure that, if we're going to predicate both sides of a
893// condition (a diamond), that both sides don't define the counter register. We
894// can predicate counter-decrement-based branches, but while that predicates
895// the branching, it does not predicate the counter decrement. If we tried to
896// merge the triangle into one predicated block, we'd decrement the counter
897// twice.
898bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
899                     unsigned NumT, unsigned ExtraT,
900                     MachineBasicBlock &FMBB,
901                     unsigned NumF, unsigned ExtraF,
902                     const BranchProbability &Probability) const {
903  return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
904}
905
906
907bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const {
908  // The predicated branches are identified by their type, not really by the
909  // explicit presence of a predicate. Furthermore, some of them can be
910  // predicated more than once. Because if conversion won't try to predicate
911  // any instruction which already claims to be predicated (by returning true
912  // here), always return false. In doing so, we let isPredicable() be the
913  // final word on whether not the instruction can be (further) predicated.
914
915  return false;
916}
917
918bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
919  if (!MI->isTerminator())
920    return false;
921
922  // Conditional branch is a special case.
923  if (MI->isBranch() && !MI->isBarrier())
924    return true;
925
926  return !isPredicated(MI);
927}
928
929bool PPCInstrInfo::PredicateInstruction(
930                     MachineInstr *MI,
931                     const SmallVectorImpl<MachineOperand> &Pred) const {
932  unsigned OpC = MI->getOpcode();
933  if (OpC == PPC::BLR) {
934    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
935      bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
936      MI->setDesc(get(Pred[0].getImm() ?
937                      (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) :
938                      (isPPC64 ? PPC::BDZLR8  : PPC::BDZLR)));
939    } else {
940      MI->setDesc(get(PPC::BCLR));
941      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
942        .addImm(Pred[0].getImm())
943        .addReg(Pred[1].getReg());
944    }
945
946    return true;
947  } else if (OpC == PPC::B) {
948    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
949      bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
950      MI->setDesc(get(Pred[0].getImm() ?
951                      (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
952                      (isPPC64 ? PPC::BDZ8  : PPC::BDZ)));
953    } else {
954      MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
955      MI->RemoveOperand(0);
956
957      MI->setDesc(get(PPC::BCC));
958      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
959        .addImm(Pred[0].getImm())
960        .addReg(Pred[1].getReg())
961        .addMBB(MBB);
962    }
963
964    return true;
965  } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
966             OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
967    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
968      llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
969
970    bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
971    bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
972    MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) :
973                              (setLR ? PPC::BCCTRL  : PPC::BCCTR)));
974    MachineInstrBuilder(*MI->getParent()->getParent(), MI)
975      .addImm(Pred[0].getImm())
976      .addReg(Pred[1].getReg());
977    return true;
978  }
979
980  return false;
981}
982
983bool PPCInstrInfo::SubsumesPredicate(
984                     const SmallVectorImpl<MachineOperand> &Pred1,
985                     const SmallVectorImpl<MachineOperand> &Pred2) const {
986  assert(Pred1.size() == 2 && "Invalid PPC first predicate");
987  assert(Pred2.size() == 2 && "Invalid PPC second predicate");
988
989  if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
990    return false;
991  if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
992    return false;
993
994  PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
995  PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
996
997  if (P1 == P2)
998    return true;
999
1000  // Does P1 subsume P2, e.g. GE subsumes GT.
1001  if (P1 == PPC::PRED_LE &&
1002      (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1003    return true;
1004  if (P1 == PPC::PRED_GE &&
1005      (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1006    return true;
1007
1008  return false;
1009}
1010
1011bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI,
1012                                    std::vector<MachineOperand> &Pred) const {
1013  // Note: At the present time, the contents of Pred from this function is
1014  // unused by IfConversion. This implementation follows ARM by pushing the
1015  // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1016  // predicate, instructions defining CTR or CTR8 are also included as
1017  // predicate-defining instructions.
1018
1019  const TargetRegisterClass *RCs[] =
1020    { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1021      &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1022
1023  bool Found = false;
1024  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1025    const MachineOperand &MO = MI->getOperand(i);
1026    for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1027      const TargetRegisterClass *RC = RCs[c];
1028      if (MO.isReg()) {
1029        if (MO.isDef() && RC->contains(MO.getReg())) {
1030          Pred.push_back(MO);
1031          Found = true;
1032        }
1033      } else if (MO.isRegMask()) {
1034        for (TargetRegisterClass::iterator I = RC->begin(),
1035             IE = RC->end(); I != IE; ++I)
1036          if (MO.clobbersPhysReg(*I)) {
1037            Pred.push_back(MO);
1038            Found = true;
1039          }
1040      }
1041    }
1042  }
1043
1044  return Found;
1045}
1046
1047bool PPCInstrInfo::isPredicable(MachineInstr *MI) const {
1048  unsigned OpC = MI->getOpcode();
1049  switch (OpC) {
1050  default:
1051    return false;
1052  case PPC::B:
1053  case PPC::BLR:
1054  case PPC::BCTR:
1055  case PPC::BCTR8:
1056  case PPC::BCTRL:
1057  case PPC::BCTRL8:
1058    return true;
1059  }
1060}
1061
1062bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI,
1063                                  unsigned &SrcReg, unsigned &SrcReg2,
1064                                  int &Mask, int &Value) const {
1065  unsigned Opc = MI->getOpcode();
1066
1067  switch (Opc) {
1068  default: return false;
1069  case PPC::CMPWI:
1070  case PPC::CMPLWI:
1071  case PPC::CMPDI:
1072  case PPC::CMPLDI:
1073    SrcReg = MI->getOperand(1).getReg();
1074    SrcReg2 = 0;
1075    Value = MI->getOperand(2).getImm();
1076    Mask = 0xFFFF;
1077    return true;
1078  case PPC::CMPW:
1079  case PPC::CMPLW:
1080  case PPC::CMPD:
1081  case PPC::CMPLD:
1082  case PPC::FCMPUS:
1083  case PPC::FCMPUD:
1084    SrcReg = MI->getOperand(1).getReg();
1085    SrcReg2 = MI->getOperand(2).getReg();
1086    return true;
1087  }
1088}
1089
1090bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr,
1091                                        unsigned SrcReg, unsigned SrcReg2,
1092                                        int Mask, int Value,
1093                                        const MachineRegisterInfo *MRI) const {
1094  if (DisableCmpOpt)
1095    return false;
1096
1097  int OpC = CmpInstr->getOpcode();
1098  unsigned CRReg = CmpInstr->getOperand(0).getReg();
1099
1100  // FP record forms set CR1 based on the execption status bits, not a
1101  // comparison with zero.
1102  if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1103    return false;
1104
1105  // The record forms set the condition register based on a signed comparison
1106  // with zero (so says the ISA manual). This is not as straightforward as it
1107  // seems, however, because this is always a 64-bit comparison on PPC64, even
1108  // for instructions that are 32-bit in nature (like slw for example).
1109  // So, on PPC32, for unsigned comparisons, we can use the record forms only
1110  // for equality checks (as those don't depend on the sign). On PPC64,
1111  // we are restricted to equality for unsigned 64-bit comparisons and for
1112  // signed 32-bit comparisons the applicability is more restricted.
1113  bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
1114  bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1115  bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1116  bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1117
1118  // Get the unique definition of SrcReg.
1119  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1120  if (!MI) return false;
1121  int MIOpC = MI->getOpcode();
1122
1123  bool equalityOnly = false;
1124  bool noSub = false;
1125  if (isPPC64) {
1126    if (is32BitSignedCompare) {
1127      // We can perform this optimization only if MI is sign-extending.
1128      if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
1129          MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
1130          MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
1131          MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
1132          MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
1133        noSub = true;
1134      } else
1135        return false;
1136    } else if (is32BitUnsignedCompare) {
1137      // We can perform this optimization, equality only, if MI is
1138      // zero-extending.
1139      if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
1140          MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
1141          MIOpC == PPC::SRW    || MIOpC == PPC::SRWo) {
1142        noSub = true;
1143        equalityOnly = true;
1144      } else
1145        return false;
1146    } else
1147      equalityOnly = is64BitUnsignedCompare;
1148  } else
1149    equalityOnly = is32BitUnsignedCompare;
1150
1151  if (equalityOnly) {
1152    // We need to check the uses of the condition register in order to reject
1153    // non-equality comparisons.
1154    for (MachineRegisterInfo::use_iterator I = MRI->use_begin(CRReg),
1155         IE = MRI->use_end(); I != IE; ++I) {
1156      MachineInstr *UseMI = &*I;
1157      if (UseMI->getOpcode() == PPC::BCC) {
1158        unsigned Pred = UseMI->getOperand(0).getImm();
1159        if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
1160          return false;
1161      } else if (UseMI->getOpcode() == PPC::ISEL ||
1162                 UseMI->getOpcode() == PPC::ISEL8) {
1163        unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1164        if (SubIdx != PPC::sub_eq)
1165          return false;
1166      } else
1167        return false;
1168    }
1169  }
1170
1171  MachineBasicBlock::iterator I = CmpInstr;
1172
1173  // Scan forward to find the first use of the compare.
1174  for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
1175       I != EL; ++I) {
1176    bool FoundUse = false;
1177    for (MachineRegisterInfo::use_iterator J = MRI->use_begin(CRReg),
1178         JE = MRI->use_end(); J != JE; ++J)
1179      if (&*J == &*I) {
1180        FoundUse = true;
1181        break;
1182      }
1183
1184    if (FoundUse)
1185      break;
1186  }
1187
1188  // There are two possible candidates which can be changed to set CR[01].
1189  // One is MI, the other is a SUB instruction.
1190  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1191  MachineInstr *Sub = NULL;
1192  if (SrcReg2 != 0)
1193    // MI is not a candidate for CMPrr.
1194    MI = NULL;
1195  // FIXME: Conservatively refuse to convert an instruction which isn't in the
1196  // same BB as the comparison. This is to allow the check below to avoid calls
1197  // (and other explicit clobbers); instead we should really check for these
1198  // more explicitly (in at least a few predecessors).
1199  else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
1200    // PPC does not have a record-form SUBri.
1201    return false;
1202  }
1203
1204  // Search for Sub.
1205  const TargetRegisterInfo *TRI = &getRegisterInfo();
1206  --I;
1207
1208  // Get ready to iterate backward from CmpInstr.
1209  MachineBasicBlock::iterator E = MI,
1210                              B = CmpInstr->getParent()->begin();
1211
1212  for (; I != E && !noSub; --I) {
1213    const MachineInstr &Instr = *I;
1214    unsigned IOpC = Instr.getOpcode();
1215
1216    if (&*I != CmpInstr && (
1217        Instr.modifiesRegister(PPC::CR0, TRI) ||
1218        Instr.readsRegister(PPC::CR0, TRI)))
1219      // This instruction modifies or uses the record condition register after
1220      // the one we want to change. While we could do this transformation, it
1221      // would likely not be profitable. This transformation removes one
1222      // instruction, and so even forcing RA to generate one move probably
1223      // makes it unprofitable.
1224      return false;
1225
1226    // Check whether CmpInstr can be made redundant by the current instruction.
1227    if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1228         OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1229        (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1230        ((Instr.getOperand(1).getReg() == SrcReg &&
1231          Instr.getOperand(2).getReg() == SrcReg2) ||
1232        (Instr.getOperand(1).getReg() == SrcReg2 &&
1233         Instr.getOperand(2).getReg() == SrcReg))) {
1234      Sub = &*I;
1235      break;
1236    }
1237
1238    if (I == B)
1239      // The 'and' is below the comparison instruction.
1240      return false;
1241  }
1242
1243  // Return false if no candidates exist.
1244  if (!MI && !Sub)
1245    return false;
1246
1247  // The single candidate is called MI.
1248  if (!MI) MI = Sub;
1249
1250  int NewOpC = -1;
1251  MIOpC = MI->getOpcode();
1252  if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1253    NewOpC = MIOpC;
1254  else {
1255    NewOpC = PPC::getRecordFormOpcode(MIOpC);
1256    if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1257      NewOpC = MIOpC;
1258  }
1259
1260  // FIXME: On the non-embedded POWER architectures, only some of the record
1261  // forms are fast, and we should use only the fast ones.
1262
1263  // The defining instruction has a record form (or is already a record
1264  // form). It is possible, however, that we'll need to reverse the condition
1265  // code of the users.
1266  if (NewOpC == -1)
1267    return false;
1268
1269  SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1270  SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1271
1272  // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1273  // needs to be updated to be based on SUB.  Push the condition code
1274  // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1275  // condition code of these operands will be modified.
1276  bool ShouldSwap = false;
1277  if (Sub) {
1278    ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1279      Sub->getOperand(2).getReg() == SrcReg;
1280
1281    // The operands to subf are the opposite of sub, so only in the fixed-point
1282    // case, invert the order.
1283    ShouldSwap = !ShouldSwap;
1284  }
1285
1286  if (ShouldSwap)
1287    for (MachineRegisterInfo::use_iterator I = MRI->use_begin(CRReg),
1288         IE = MRI->use_end(); I != IE; ++I) {
1289      MachineInstr *UseMI = &*I;
1290      if (UseMI->getOpcode() == PPC::BCC) {
1291        PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1292        assert((!equalityOnly ||
1293                Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
1294               "Invalid predicate for equality-only optimization");
1295        PredsToUpdate.push_back(std::make_pair(&((*I).getOperand(0)),
1296                                PPC::getSwappedPredicate(Pred)));
1297      } else if (UseMI->getOpcode() == PPC::ISEL ||
1298                 UseMI->getOpcode() == PPC::ISEL8) {
1299        unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1300        assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1301               "Invalid CR bit for equality-only optimization");
1302
1303        if (NewSubReg == PPC::sub_lt)
1304          NewSubReg = PPC::sub_gt;
1305        else if (NewSubReg == PPC::sub_gt)
1306          NewSubReg = PPC::sub_lt;
1307
1308        SubRegsToUpdate.push_back(std::make_pair(&((*I).getOperand(3)),
1309                                                 NewSubReg));
1310      } else // We need to abort on a user we don't understand.
1311        return false;
1312    }
1313
1314  // Create a new virtual register to hold the value of the CR set by the
1315  // record-form instruction. If the instruction was not previously in
1316  // record form, then set the kill flag on the CR.
1317  CmpInstr->eraseFromParent();
1318
1319  MachineBasicBlock::iterator MII = MI;
1320  BuildMI(*MI->getParent(), llvm::next(MII), MI->getDebugLoc(),
1321          get(TargetOpcode::COPY), CRReg)
1322    .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1323
1324  if (MIOpC != NewOpC) {
1325    // We need to be careful here: we're replacing one instruction with
1326    // another, and we need to make sure that we get all of the right
1327    // implicit uses and defs. On the other hand, the caller may be holding
1328    // an iterator to this instruction, and so we can't delete it (this is
1329    // specifically the case if this is the instruction directly after the
1330    // compare).
1331
1332    const MCInstrDesc &NewDesc = get(NewOpC);
1333    MI->setDesc(NewDesc);
1334
1335    if (NewDesc.ImplicitDefs)
1336      for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs();
1337           *ImpDefs; ++ImpDefs)
1338        if (!MI->definesRegister(*ImpDefs))
1339          MI->addOperand(*MI->getParent()->getParent(),
1340                         MachineOperand::CreateReg(*ImpDefs, true, true));
1341    if (NewDesc.ImplicitUses)
1342      for (const uint16_t *ImpUses = NewDesc.getImplicitUses();
1343           *ImpUses; ++ImpUses)
1344        if (!MI->readsRegister(*ImpUses))
1345          MI->addOperand(*MI->getParent()->getParent(),
1346                         MachineOperand::CreateReg(*ImpUses, false, true));
1347  }
1348
1349  // Modify the condition code of operands in OperandsToUpdate.
1350  // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1351  // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1352  for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1353    PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1354
1355  for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1356    SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1357
1358  return true;
1359}
1360
1361/// GetInstSize - Return the number of bytes of code the specified
1362/// instruction may be.  This returns the maximum number of bytes.
1363///
1364unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
1365  switch (MI->getOpcode()) {
1366  case PPC::INLINEASM: {       // Inline Asm: Variable size.
1367    const MachineFunction *MF = MI->getParent()->getParent();
1368    const char *AsmStr = MI->getOperand(0).getSymbolName();
1369    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1370  }
1371  case PPC::PROLOG_LABEL:
1372  case PPC::EH_LABEL:
1373  case PPC::GC_LABEL:
1374  case PPC::DBG_VALUE:
1375    return 0;
1376  case PPC::BL8_NOP:
1377  case PPC::BLA8_NOP:
1378    return 8;
1379  default:
1380    return 4; // PowerPC instructions are all 4 bytes
1381  }
1382}
1383
1384#undef DEBUG_TYPE
1385#define DEBUG_TYPE "ppc-early-ret"
1386STATISTIC(NumBCLR, "Number of early conditional returns");
1387STATISTIC(NumBLR,  "Number of early returns");
1388
1389namespace llvm {
1390  void initializePPCEarlyReturnPass(PassRegistry&);
1391}
1392
1393namespace {
1394  // PPCEarlyReturn pass - For simple functions without epilogue code, move
1395  // returns up, and create conditional returns, to avoid unnecessary
1396  // branch-to-blr sequences.
1397  struct PPCEarlyReturn : public MachineFunctionPass {
1398    static char ID;
1399    PPCEarlyReturn() : MachineFunctionPass(ID) {
1400      initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry());
1401    }
1402
1403    const PPCTargetMachine *TM;
1404    const PPCInstrInfo *TII;
1405
1406protected:
1407    bool processBlock(MachineBasicBlock &ReturnMBB) {
1408      bool Changed = false;
1409
1410      MachineBasicBlock::iterator I = ReturnMBB.begin();
1411      I = ReturnMBB.SkipPHIsAndLabels(I);
1412
1413      // The block must be essentially empty except for the blr.
1414      if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR ||
1415          I != ReturnMBB.getLastNonDebugInstr())
1416        return Changed;
1417
1418      SmallVector<MachineBasicBlock*, 8> PredToRemove;
1419      for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(),
1420           PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) {
1421        bool OtherReference = false, BlockChanged = false;
1422        for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) {
1423          if (J->getOpcode() == PPC::B) {
1424            if (J->getOperand(0).getMBB() == &ReturnMBB) {
1425              // This is an unconditional branch to the return. Replace the
1426	      // branch with a blr.
1427              BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR));
1428              MachineBasicBlock::iterator K = J--;
1429              K->eraseFromParent();
1430              BlockChanged = true;
1431              ++NumBLR;
1432              continue;
1433            }
1434          } else if (J->getOpcode() == PPC::BCC) {
1435            if (J->getOperand(2).getMBB() == &ReturnMBB) {
1436              // This is a conditional branch to the return. Replace the branch
1437              // with a bclr.
1438              BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCLR))
1439                .addImm(J->getOperand(0).getImm())
1440                .addReg(J->getOperand(1).getReg());
1441              MachineBasicBlock::iterator K = J--;
1442              K->eraseFromParent();
1443              BlockChanged = true;
1444              ++NumBCLR;
1445              continue;
1446            }
1447          } else if (J->isBranch()) {
1448            if (J->isIndirectBranch()) {
1449              if (ReturnMBB.hasAddressTaken())
1450                OtherReference = true;
1451            } else
1452              for (unsigned i = 0; i < J->getNumOperands(); ++i)
1453                if (J->getOperand(i).isMBB() &&
1454                    J->getOperand(i).getMBB() == &ReturnMBB)
1455                  OtherReference = true;
1456          } else if (!J->isTerminator() && !J->isDebugValue())
1457            break;
1458
1459          if (J == (*PI)->begin())
1460            break;
1461
1462          --J;
1463        }
1464
1465        if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB))
1466          OtherReference = true;
1467
1468	// Predecessors are stored in a vector and can't be removed here.
1469        if (!OtherReference && BlockChanged) {
1470          PredToRemove.push_back(*PI);
1471        }
1472
1473        if (BlockChanged)
1474          Changed = true;
1475      }
1476
1477      for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i)
1478        PredToRemove[i]->removeSuccessor(&ReturnMBB);
1479
1480      if (Changed && !ReturnMBB.hasAddressTaken()) {
1481        // We now might be able to merge this blr-only block into its
1482        // by-layout predecessor.
1483        if (ReturnMBB.pred_size() == 1 &&
1484            (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) {
1485          // Move the blr into the preceding block.
1486          MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin();
1487          PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I);
1488          PrevMBB.removeSuccessor(&ReturnMBB);
1489        }
1490
1491        if (ReturnMBB.pred_empty())
1492          ReturnMBB.eraseFromParent();
1493      }
1494
1495      return Changed;
1496    }
1497
1498public:
1499    virtual bool runOnMachineFunction(MachineFunction &MF) {
1500      TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
1501      TII = TM->getInstrInfo();
1502
1503      bool Changed = false;
1504
1505      // If the function does not have at least two blocks, then there is
1506      // nothing to do.
1507      if (MF.size() < 2)
1508        return Changed;
1509
1510      for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
1511        MachineBasicBlock &B = *I++;
1512        if (processBlock(B))
1513          Changed = true;
1514      }
1515
1516      return Changed;
1517    }
1518
1519    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1520      MachineFunctionPass::getAnalysisUsage(AU);
1521    }
1522  };
1523}
1524
1525INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE,
1526                "PowerPC Early-Return Creation", false, false)
1527
1528char PPCEarlyReturn::ID = 0;
1529FunctionPass*
1530llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); }
1531
1532