SparcInstrInfo.td revision 2db3ff66f1183fa65bd5102ad255a798f76cb3b2
1//===- SparcV8Instrs.td - Target Description for SparcV8 Target -----------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the SparcV8 instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcV8InstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Instruction Pattern Stuff
22//===----------------------------------------------------------------------===//
23
24def simm13  : PatLeaf<(imm), [{
25  // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
26  return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
27}]>;
28
29def LO10 : SDNodeXForm<imm, [{
30  return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
31}]>;
32
33def HI22 : SDNodeXForm<imm, [{
34  // Transformation function: shift the immediate value down into the low bits.
35  return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
36}]>;
37
38def SETHIimm : PatLeaf<(imm), [{
39  return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
40}], HI22>;
41
42// Addressing modes.
43def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", []>;
44def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", []>;
45
46// Address operands
47def MEMrr : Operand<i32> {
48  let PrintMethod = "printMemOperand";
49  let NumMIOperands = 2;
50  let MIOperandInfo = (ops IntRegs, IntRegs);
51}
52def MEMri : Operand<i32> {
53  let PrintMethod = "printMemOperand";
54  let NumMIOperands = 2;
55  let MIOperandInfo = (ops IntRegs, i32imm);
56}
57
58// Branch targets have OtherVT type.
59def brtarget : Operand<OtherVT>;
60def calltarget : Operand<i32>;
61
62def SDTV8cmpicc : 
63SDTypeProfile<1, 2, [SDTCisVT<0, FlagVT>, SDTCisInt<1>, SDTCisSameAs<1, 2>]>;
64def SDTV8cmpfcc : 
65SDTypeProfile<1, 2, [SDTCisVT<0, FlagVT>, SDTCisFP<1>, SDTCisSameAs<1, 2>]>;
66def SDTV8brcc : 
67SDTypeProfile<0, 3, [SDTCisVT<0, OtherVT>, SDTCisVT<1, OtherVT>,
68                     SDTCisVT<2, FlagVT>]>;
69def SDTV8selectcc :
70SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, 
71                     SDTCisVT<3, i32>, SDTCisVT<4, FlagVT>]>;
72
73def V8cmpicc : SDNode<"V8ISD::CMPICC", SDTV8cmpicc>;
74def V8cmpfcc : SDNode<"V8ISD::CMPFCC", SDTV8cmpfcc>;
75def V8bricc : SDNode<"V8ISD::BRICC", SDTV8brcc, [SDNPHasChain]>;
76def V8brfcc : SDNode<"V8ISD::BRFCC", SDTV8brcc, [SDNPHasChain]>;
77
78def V8hi    : SDNode<"V8ISD::Hi", SDTIntUnaryOp>;
79def V8lo    : SDNode<"V8ISD::Lo", SDTIntUnaryOp>;
80
81def V8ftoi  : SDNode<"V8ISD::FTOI", SDTFPUnaryOp>;
82def V8itof  : SDNode<"V8ISD::ITOF", SDTFPUnaryOp>;
83
84def V8selecticc : SDNode<"V8ISD::SELECT_ICC", SDTV8selectcc>;
85def V8selectfcc : SDNode<"V8ISD::SELECT_FCC", SDTV8selectcc>;
86
87// These are target-independent nodes, but have target-specific formats.
88def SDT_V8CallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i32> ]>;
89def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_V8CallSeq, [SDNPHasChain]>;
90def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_V8CallSeq, [SDNPHasChain]>;
91
92def SDT_V8Call    : SDTypeProfile<1, 2, [SDTCisVT<0, FlagVT>, SDTCisVT<1, i32>,
93                                         SDTCisVT<2, FlagVT>]>;
94def call          : SDNode<"ISD::CALL", SDT_V8Call, [SDNPHasChain]>;
95
96//===----------------------------------------------------------------------===//
97// Instructions
98//===----------------------------------------------------------------------===//
99
100// Pseudo instructions.
101class Pseudo<dag ops, string asmstr, list<dag> pattern>
102   : InstV8<ops, asmstr, pattern>;
103
104def PHI : Pseudo<(ops variable_ops), "PHI", []>;
105def ADJCALLSTACKDOWN : Pseudo<(ops i32imm:$amt),
106                               "!ADJCALLSTACKDOWN $amt",
107                               [(callseq_start imm:$amt)]>;
108def ADJCALLSTACKUP : Pseudo<(ops i32imm:$amt),
109                            "!ADJCALLSTACKUP $amt",
110                            [(callseq_end imm:$amt)]>;
111def IMPLICIT_DEF : Pseudo<(ops IntRegs:$dst), "!IMPLICIT_DEF $dst", []>;
112def FpMOVD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
113                    "!FpMOVD", []>;      // pseudo 64-bit double move
114
115// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded by the
116// scheduler into a branch sequence.  This has to handle all permutations of
117// selection between i32/f32/f64 on ICC and FCC.
118let usesCustomDAGSchedInserter = 1 in {  // Expanded by the scheduler.
119  def SELECT_CC_Int_ICC
120   : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
121            "; SELECT_CC_Int_ICC PSEUDO!",
122            [(set IntRegs:$dst, (V8selecticc IntRegs:$T, IntRegs:$F,
123                                             imm:$Cond, ICC))]>;
124  def SELECT_CC_Int_FCC
125   : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
126            "; SELECT_CC_Int_FCC PSEUDO!",
127            [(set IntRegs:$dst, (V8selectfcc IntRegs:$T, IntRegs:$F,
128                                             imm:$Cond, FCC))]>;
129  def SELECT_CC_FP_ICC
130   : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
131            "; SELECT_CC_FP_ICC PSEUDO!",
132            [(set FPRegs:$dst, (V8selecticc FPRegs:$T, FPRegs:$F,
133                                            imm:$Cond, ICC))]>;
134  def SELECT_CC_FP_FCC
135   : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
136            "; SELECT_CC_FP_FCC PSEUDO!",
137            [(set FPRegs:$dst, (V8selectfcc FPRegs:$T, FPRegs:$F,
138                                            imm:$Cond, FCC))]>;
139  def SELECT_CC_DFP_ICC
140   : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
141            "; SELECT_CC_DFP_ICC PSEUDO!",
142            [(set DFPRegs:$dst, (V8selecticc DFPRegs:$T, DFPRegs:$F,
143                                             imm:$Cond, ICC))]>;
144  def SELECT_CC_DFP_FCC
145   : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
146            "; SELECT_CC_DFP_FCC PSEUDO!",
147            [(set DFPRegs:$dst, (V8selectfcc DFPRegs:$T, DFPRegs:$F,
148                                             imm:$Cond, FCC))]>;
149}
150
151// Section A.3 - Synthetic Instructions, p. 85
152// special cases of JMPL:
153let isReturn = 1, isTerminator = 1, hasDelaySlot = 1 in {
154  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
155    def RETL: F3_2<2, 0b111000, (ops),
156                   "retl", [(ret)]>;
157}
158
159// Section B.1 - Load Integer Instructions, p. 90
160def LDSBrr : F3_1<3, 0b001001,
161                  (ops IntRegs:$dst, MEMrr:$addr),
162                  "ldsb [$addr], $dst",
163                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i8))]>;
164def LDSBri : F3_2<3, 0b001001,
165                  (ops IntRegs:$dst, MEMri:$addr),
166                  "ldsb [$addr], $dst",
167                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i8))]>;
168def LDSHrr : F3_1<3, 0b001010,
169                  (ops IntRegs:$dst, MEMrr:$addr),
170                  "ldsh [$addr], $dst",
171                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i16))]>;
172def LDSHri : F3_2<3, 0b001010,
173                  (ops IntRegs:$dst, MEMri:$addr),
174                  "ldsh [$addr], $dst",
175                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i16))]>;
176def LDUBrr : F3_1<3, 0b000001,
177                  (ops IntRegs:$dst, MEMrr:$addr),
178                  "ldub [$addr], $dst",
179                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i8))]>;
180def LDUBri : F3_2<3, 0b000001,
181                  (ops IntRegs:$dst, MEMri:$addr),
182                  "ldub [$addr], $dst",
183                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i8))]>;
184def LDUHrr : F3_1<3, 0b000010,
185                  (ops IntRegs:$dst, MEMrr:$addr),
186                  "lduh [$addr], $dst",
187                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i16))]>;
188def LDUHri : F3_2<3, 0b000010,
189                  (ops IntRegs:$dst, MEMri:$addr),
190                  "lduh [$addr], $dst",
191                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i16))]>;
192def LDrr   : F3_1<3, 0b000000,
193                  (ops IntRegs:$dst, MEMrr:$addr),
194                  "ld [$addr], $dst",
195                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
196def LDri   : F3_2<3, 0b000000,
197                  (ops IntRegs:$dst, MEMri:$addr),
198                  "ld [$addr], $dst",
199                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
200
201// Section B.2 - Load Floating-point Instructions, p. 92
202def LDFrr  : F3_1<3, 0b100000,
203                  (ops FPRegs:$dst, MEMrr:$addr),
204                  "ld [$addr], $dst",
205                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
206def LDFri  : F3_2<3, 0b100000,
207                  (ops FPRegs:$dst, MEMri:$addr),
208                  "ld [$addr], $dst",
209                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
210def LDDFrr : F3_1<3, 0b100011,
211                  (ops DFPRegs:$dst, MEMrr:$addr),
212                  "ldd [$addr], $dst",
213                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
214def LDDFri : F3_2<3, 0b100011,
215                  (ops DFPRegs:$dst, MEMri:$addr),
216                  "ldd [$addr], $dst",
217                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
218
219// Section B.4 - Store Integer Instructions, p. 95
220def STBrr : F3_1<3, 0b000101,
221                 (ops MEMrr:$addr, IntRegs:$src),
222                 "stb $src, [$addr]",
223                 [(truncstore IntRegs:$src, ADDRrr:$addr, i8)]>;
224def STBri : F3_2<3, 0b000101,
225                 (ops MEMri:$addr, IntRegs:$src),
226                 "stb $src, [$addr]",
227                 [(truncstore IntRegs:$src, ADDRri:$addr, i8)]>;
228def STHrr : F3_1<3, 0b000110,
229                 (ops MEMrr:$addr, IntRegs:$src),
230                 "sth $src, [$addr]",
231                 [(truncstore IntRegs:$src, ADDRrr:$addr, i16)]>;
232def STHri : F3_2<3, 0b000110,
233                 (ops MEMri:$addr, IntRegs:$src),
234                 "sth $src, [$addr]",
235                 [(truncstore IntRegs:$src, ADDRri:$addr, i16)]>;
236def STrr  : F3_1<3, 0b000100,
237                 (ops MEMrr:$addr, IntRegs:$src),
238                 "st $src, [$addr]",
239                 [(store IntRegs:$src, ADDRrr:$addr)]>;
240def STri  : F3_2<3, 0b000100,
241                 (ops MEMri:$addr, IntRegs:$src),
242                 "st $src, [$addr]",
243                 [(store IntRegs:$src, ADDRri:$addr)]>;
244
245// Section B.5 - Store Floating-point Instructions, p. 97
246def STFrr   : F3_1<3, 0b100100,
247                   (ops MEMrr:$addr, FPRegs:$src),
248                   "st $src, [$addr]",
249                   [(store FPRegs:$src, ADDRrr:$addr)]>;
250def STFri   : F3_2<3, 0b100100,
251                   (ops MEMri:$addr, FPRegs:$src),
252                   "st $src, [$addr]",
253                   [(store FPRegs:$src, ADDRri:$addr)]>;
254def STDFrr  : F3_1<3, 0b100111,
255                   (ops MEMrr:$addr, DFPRegs:$src),
256                   "std  $src, [$addr]",
257                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
258def STDFri  : F3_2<3, 0b100111,
259                   (ops MEMri:$addr, DFPRegs:$src),
260                   "std $src, [$addr]",
261                   [(store DFPRegs:$src, ADDRri:$addr)]>;
262
263// Section B.9 - SETHI Instruction, p. 104
264def SETHIi: F2_1<0b100,
265                 (ops IntRegs:$dst, i32imm:$src),
266                 "sethi $src, $dst",
267                 [(set IntRegs:$dst, SETHIimm:$src)]>;
268
269// Section B.10 - NOP Instruction, p. 105
270// (It's a special case of SETHI)
271let rd = 0, imm22 = 0 in
272  def NOP : F2_1<0b100, (ops), "nop", []>;
273
274// Section B.11 - Logical Instructions, p. 106
275def ANDrr   : F3_1<2, 0b000001,
276                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
277                   "and $b, $c, $dst",
278                   [(set IntRegs:$dst, (and IntRegs:$b, IntRegs:$c))]>;
279def ANDri   : F3_2<2, 0b000001,
280                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
281                   "and $b, $c, $dst",
282                   [(set IntRegs:$dst, (and IntRegs:$b, simm13:$c))]>;
283def ANDNrr  : F3_1<2, 0b000101,
284                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
285                   "andn $b, $c, $dst",
286                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
287def ANDNri  : F3_2<2, 0b000101,
288                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
289                   "andn $b, $c, $dst", []>;
290def ORrr    : F3_1<2, 0b000010,
291                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
292                   "or $b, $c, $dst",
293                   [(set IntRegs:$dst, (or IntRegs:$b, IntRegs:$c))]>;
294def ORri    : F3_2<2, 0b000010,
295                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
296                   "or $b, $c, $dst",
297                   [(set IntRegs:$dst, (or IntRegs:$b, simm13:$c))]>;
298def ORNrr   : F3_1<2, 0b000110,
299                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
300                   "orn $b, $c, $dst",
301                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
302def ORNri   : F3_2<2, 0b000110,
303                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
304                   "orn $b, $c, $dst", []>;
305def XORrr   : F3_1<2, 0b000011,
306                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
307                   "xor $b, $c, $dst",
308                   [(set IntRegs:$dst, (xor IntRegs:$b, IntRegs:$c))]>;
309def XORri   : F3_2<2, 0b000011,
310                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
311                   "xor $b, $c, $dst",
312                   [(set IntRegs:$dst, (xor IntRegs:$b, simm13:$c))]>;
313def XNORrr  : F3_1<2, 0b000111,
314                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
315                   "xnor $b, $c, $dst",
316                   [(set IntRegs:$dst, (xor IntRegs:$b, (not IntRegs:$c)))]>;
317def XNORri  : F3_2<2, 0b000111,
318                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
319                   "xnor $b, $c, $dst", []>;
320
321// Section B.12 - Shift Instructions, p. 107
322def SLLrr : F3_1<2, 0b100101,
323                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
324                 "sll $b, $c, $dst",
325                 [(set IntRegs:$dst, (shl IntRegs:$b, IntRegs:$c))]>;
326def SLLri : F3_2<2, 0b100101,
327                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
328                 "sll $b, $c, $dst",
329                 [(set IntRegs:$dst, (shl IntRegs:$b, simm13:$c))]>;
330def SRLrr : F3_1<2, 0b100110, 
331                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
332                  "srl $b, $c, $dst",
333                  [(set IntRegs:$dst, (srl IntRegs:$b, IntRegs:$c))]>;
334def SRLri : F3_2<2, 0b100110,
335                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
336                 "srl $b, $c, $dst", 
337                 [(set IntRegs:$dst, (srl IntRegs:$b, simm13:$c))]>;
338def SRArr : F3_1<2, 0b100111, 
339                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
340                  "sra $b, $c, $dst",
341                  [(set IntRegs:$dst, (sra IntRegs:$b, IntRegs:$c))]>;
342def SRAri : F3_2<2, 0b100111,
343                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
344                 "sra $b, $c, $dst",
345                 [(set IntRegs:$dst, (sra IntRegs:$b, simm13:$c))]>;
346
347// Section B.13 - Add Instructions, p. 108
348def ADDrr   : F3_1<2, 0b000000, 
349                  (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
350                  "add $b, $c, $dst",
351                   [(set IntRegs:$dst, (add IntRegs:$b, IntRegs:$c))]>;
352def ADDri   : F3_2<2, 0b000000,
353                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
354                   "add $b, $c, $dst",
355                   [(set IntRegs:$dst, (add IntRegs:$b, simm13:$c))]>;
356def ADDCCrr : F3_1<2, 0b010000, 
357                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
358                   "addcc $b, $c, $dst", []>;
359def ADDCCri : F3_2<2, 0b010000,
360                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
361                   "addcc $b, $c, $dst", []>;
362def ADDXrr  : F3_1<2, 0b001000, 
363                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
364                   "addx $b, $c, $dst", []>;
365def ADDXri  : F3_2<2, 0b001000,
366                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
367                   "addx $b, $c, $dst", []>;
368
369// Section B.15 - Subtract Instructions, p. 110
370def SUBrr   : F3_1<2, 0b000100, 
371                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
372                   "sub $b, $c, $dst",
373                   [(set IntRegs:$dst, (sub IntRegs:$b, IntRegs:$c))]>;
374def SUBri   : F3_2<2, 0b000100,
375                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
376                   "sub $b, $c, $dst",
377                   [(set IntRegs:$dst, (sub IntRegs:$b, simm13:$c))]>;
378def SUBXrr  : F3_1<2, 0b001100, 
379                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
380                   "subx $b, $c, $dst", []>;
381def SUBXri  : F3_2<2, 0b001100,
382                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
383                   "subx $b, $c, $dst", []>;
384def SUBCCrr : F3_1<2, 0b010100, 
385                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
386                   "subcc $b, $c, $dst", []>;
387def SUBCCri : F3_2<2, 0b010100,
388                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
389                   "subcc $b, $c, $dst", []>;
390def SUBXCCrr: F3_1<2, 0b011100, 
391                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
392                   "subxcc $b, $c, $dst", []>;
393
394// Section B.18 - Multiply Instructions, p. 113
395def UMULrr  : F3_1<2, 0b001010, 
396                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
397                   "umul $b, $c, $dst", []>;
398def UMULri  : F3_2<2, 0b001010,
399                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
400                   "umul $b, $c, $dst", []>;
401def SMULrr  : F3_1<2, 0b001011, 
402                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
403                   "smul $b, $c, $dst",
404                   [(set IntRegs:$dst, (mul IntRegs:$b, IntRegs:$c))]>;
405def SMULri  : F3_2<2, 0b001011,
406                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
407                   "smul $b, $c, $dst",
408                   [(set IntRegs:$dst, (mul IntRegs:$b, simm13:$c))]>;
409
410// Section B.19 - Divide Instructions, p. 115
411def UDIVrr   : F3_1<2, 0b001110, 
412                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
413                    "udiv $b, $c, $dst", []>;
414def UDIVri   : F3_2<2, 0b001110,
415                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
416                    "udiv $b, $c, $dst", []>;
417def SDIVrr   : F3_1<2, 0b001111,
418                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
419                    "sdiv $b, $c, $dst", []>;
420def SDIVri   : F3_2<2, 0b001111,
421                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
422                    "sdiv $b, $c, $dst", []>;
423
424// Section B.20 - SAVE and RESTORE, p. 117
425def SAVErr    : F3_1<2, 0b111100,
426                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
427                     "save $b, $c, $dst", []>;
428def SAVEri    : F3_2<2, 0b111100,
429                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
430                     "save $b, $c, $dst", []>;
431def RESTORErr : F3_1<2, 0b111101,
432                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
433                     "restore $b, $c, $dst", []>;
434def RESTOREri : F3_2<2, 0b111101,
435                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
436                     "restore $b, $c, $dst", []>;
437
438// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
439
440// conditional branch class:
441class BranchV8<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
442 : F2_2<cc, 0b010, ops, asmstr, pattern> {
443  let isBranch = 1;
444  let isTerminator = 1;
445  let hasDelaySlot = 1;
446}
447
448let isBarrier = 1 in
449  def BA   : BranchV8<0b1000, (ops brtarget:$dst),
450                      "ba $dst",
451                      [(br bb:$dst)]>;
452def BNE  : BranchV8<0b1001, (ops brtarget:$dst),
453                    "bne $dst",
454                    [(V8bricc bb:$dst, SETNE, ICC)]>;
455def BE   : BranchV8<0b0001, (ops brtarget:$dst),
456                    "be $dst",
457                    [(V8bricc bb:$dst, SETEQ, ICC)]>;
458def BG   : BranchV8<0b1010, (ops brtarget:$dst),
459                    "bg $dst",
460                    [(V8bricc bb:$dst, SETGT, ICC)]>;
461def BLE  : BranchV8<0b0010, (ops brtarget:$dst),
462                    "ble $dst",
463                    [(V8bricc bb:$dst, SETLE, ICC)]>;
464def BGE  : BranchV8<0b1011, (ops brtarget:$dst),
465                    "bge $dst",
466                    [(V8bricc bb:$dst, SETGE, ICC)]>;
467def BL   : BranchV8<0b0011, (ops brtarget:$dst),
468                    "bl $dst",
469                    [(V8bricc bb:$dst, SETLT, ICC)]>;
470def BGU  : BranchV8<0b1100, (ops brtarget:$dst),
471                    "bgu $dst",
472                    [(V8bricc bb:$dst, SETUGT, ICC)]>;
473def BLEU : BranchV8<0b0100, (ops brtarget:$dst),
474                    "bleu $dst",
475                    [(V8bricc bb:$dst, SETULE, ICC)]>;
476def BCC  : BranchV8<0b1101, (ops brtarget:$dst),
477                    "bcc $dst",
478                    [(V8bricc bb:$dst, SETUGE, ICC)]>;
479def BCS  : BranchV8<0b0101, (ops brtarget:$dst),
480                    "bcs $dst",
481                    [(V8bricc bb:$dst, SETULT, ICC)]>;
482
483// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
484
485// floating-point conditional branch class:
486class FPBranchV8<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
487 : F2_2<cc, 0b110, ops, asmstr, pattern> {
488  let isBranch = 1;
489  let isTerminator = 1;
490  let hasDelaySlot = 1;
491}
492
493def FBU  : FPBranchV8<0b0111, (ops brtarget:$dst),
494                      "fbu $dst",
495                      [(V8brfcc bb:$dst, SETUO, FCC)]>;
496def FBG  : FPBranchV8<0b0110, (ops brtarget:$dst),
497                      "fbg $dst",
498                      [(V8brfcc bb:$dst, SETGT, FCC)]>;
499def FBUG : FPBranchV8<0b0101, (ops brtarget:$dst),
500                      "fbug $dst",
501                      [(V8brfcc bb:$dst, SETUGT, FCC)]>;
502def FBL  : FPBranchV8<0b0100, (ops brtarget:$dst),
503                      "fbl $dst",
504                      [(V8brfcc bb:$dst, SETLT, FCC)]>;
505def FBUL : FPBranchV8<0b0011, (ops brtarget:$dst),
506                      "fbul $dst",
507                      [(V8brfcc bb:$dst, SETULT, FCC)]>;
508def FBLG : FPBranchV8<0b0010, (ops brtarget:$dst),
509                      "fblg $dst",
510                      [(V8brfcc bb:$dst, SETONE, FCC)]>;
511def FBNE : FPBranchV8<0b0001, (ops brtarget:$dst),
512                      "fbne $dst",
513                      [(V8brfcc bb:$dst, SETNE, FCC)]>;
514def FBE  : FPBranchV8<0b1001, (ops brtarget:$dst),
515                      "fbe $dst",
516                      [(V8brfcc bb:$dst, SETEQ, FCC)]>;
517def FBUE : FPBranchV8<0b1010, (ops brtarget:$dst),
518                      "fbue $dst",
519                      [(V8brfcc bb:$dst, SETUEQ, FCC)]>;
520def FBGE : FPBranchV8<0b1011, (ops brtarget:$dst),
521                      "fbge $dst",
522                      [(V8brfcc bb:$dst, SETGE, FCC)]>;
523def FBUGE: FPBranchV8<0b1100, (ops brtarget:$dst),
524                      "fbuge $dst",
525                      [(V8brfcc bb:$dst, SETUGE, FCC)]>;
526def FBLE : FPBranchV8<0b1101, (ops brtarget:$dst),
527                      "fble $dst",
528                      [(V8brfcc bb:$dst, SETLE, FCC)]>;
529def FBULE: FPBranchV8<0b1110, (ops brtarget:$dst),
530                      "fbule $dst",
531                      [(V8brfcc bb:$dst, SETULE, FCC)]>;
532def FBO  : FPBranchV8<0b1111, (ops brtarget:$dst),
533                      "fbo $dst",
534                      [(V8brfcc bb:$dst, SETO, FCC)]>;
535
536
537
538// Section B.24 - Call and Link Instruction, p. 125
539// This is the only Format 1 instruction
540let Uses = [O0, O1, O2, O3, O4, O5], hasDelaySlot = 1, isCall = 1,
541    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
542    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
543  // pc-relative call:
544  def CALL : InstV8<(ops calltarget:$dst),
545                    "call $dst",
546                  [(set ICC/*bogus*/, (call tglobaladdr:$dst, ICC/*bogus*/))]> {
547    bits<30> disp;
548    let op = 1;
549    let Inst{29-0} = disp;
550  }
551
552  // indirect calls
553  def JMPLrr : F3_1<2, 0b111000,
554                    (ops MEMrr:$ptr),
555                    "jmpl $ptr",
556                    [(set ICC/*bogus*/, (call  ADDRrr:$ptr, ICC/*bogus*/))]>;
557  def JMPLri : F3_2<2, 0b111000,
558                    (ops MEMri:$ptr),
559                    "jmpl $ptr",
560                    [(set ICC/*bogus*/, (call  ADDRri:$ptr, ICC/*bogus*/))]>;
561}
562
563// Section B.28 - Read State Register Instructions
564def RDY : F3_1<2, 0b101000,
565               (ops IntRegs:$dst),
566               "rdy $dst", []>;
567
568// Section B.29 - Write State Register Instructions
569def WRYrr : F3_1<2, 0b110000,
570                 (ops IntRegs:$b, IntRegs:$c),
571                 "wr $b, $c, %y", []>;
572def WRYri : F3_2<2, 0b110000,
573                 (ops IntRegs:$b, i32imm:$c),
574                 "wr $b, $c, %y", []>;
575
576// Convert Integer to Floating-point Instructions, p. 141
577def FITOS : F3_3<2, 0b110100, 0b011000100,
578                 (ops FPRegs:$dst, FPRegs:$src),
579                 "fitos $src, $dst",
580                 [(set FPRegs:$dst, (V8itof FPRegs:$src))]>;
581def FITOD : F3_3<2, 0b110100, 0b011001000, 
582                 (ops DFPRegs:$dst, DFPRegs:$src),
583                 "fitod $src, $dst",
584                 [(set DFPRegs:$dst, (V8itof DFPRegs:$src))]>;
585
586// Convert Floating-point to Integer Instructions, p. 142
587def FSTOI : F3_3<2, 0b110100, 0b011010001,
588                 (ops FPRegs:$dst, FPRegs:$src),
589                 "fstoi $src, $dst",
590                 [(set FPRegs:$dst, (V8ftoi FPRegs:$src))]>;
591def FDTOI : F3_3<2, 0b110100, 0b011010010,
592                 (ops DFPRegs:$dst, DFPRegs:$src),
593                 "fdtoi $src, $dst",
594                 [(set DFPRegs:$dst, (V8ftoi DFPRegs:$src))]>;
595
596// Convert between Floating-point Formats Instructions, p. 143
597def FSTOD : F3_3<2, 0b110100, 0b011001001, 
598                 (ops DFPRegs:$dst, FPRegs:$src),
599                 "fstod $src, $dst",
600                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
601def FDTOS : F3_3<2, 0b110100, 0b011000110,
602                 (ops FPRegs:$dst, DFPRegs:$src),
603                 "fdtos $src, $dst",
604                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
605
606// Floating-point Move Instructions, p. 144
607def FMOVS : F3_3<2, 0b110100, 0b000000001,
608                 (ops FPRegs:$dst, FPRegs:$src),
609                 "fmovs $src, $dst", []>;
610def FNEGS : F3_3<2, 0b110100, 0b000000101, 
611                 (ops FPRegs:$dst, FPRegs:$src),
612                 "fnegs $src, $dst",
613                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
614def FABSS : F3_3<2, 0b110100, 0b000001001, 
615                 (ops FPRegs:$dst, FPRegs:$src),
616                 "fabss $src, $dst",
617                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
618// FIXME: ADD FNEGD/FABSD pseudo instructions.
619
620
621// Floating-point Square Root Instructions, p.145
622def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
623                  (ops FPRegs:$dst, FPRegs:$src),
624                  "fsqrts $src, $dst",
625                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
626def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
627                  (ops DFPRegs:$dst, DFPRegs:$src),
628                  "fsqrtd $src, $dst",
629                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
630
631
632
633// Floating-point Add and Subtract Instructions, p. 146
634def FADDS  : F3_3<2, 0b110100, 0b001000001,
635                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
636                  "fadds $src1, $src2, $dst",
637                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
638def FADDD  : F3_3<2, 0b110100, 0b001000010,
639                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
640                  "faddd $src1, $src2, $dst",
641                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
642def FSUBS  : F3_3<2, 0b110100, 0b001000101,
643                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
644                  "fsubs $src1, $src2, $dst",
645                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
646def FSUBD  : F3_3<2, 0b110100, 0b001000110,
647                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
648                  "fsubd $src1, $src2, $dst",
649                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
650
651// Floating-point Multiply and Divide Instructions, p. 147
652def FMULS  : F3_3<2, 0b110100, 0b001001001,
653                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
654                  "fmuls $src1, $src2, $dst",
655                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
656def FMULD  : F3_3<2, 0b110100, 0b001001010,
657                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
658                  "fmuld $src1, $src2, $dst",
659                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
660def FSMULD : F3_3<2, 0b110100, 0b001101001,
661                  (ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
662                  "fsmuld $src1, $src2, $dst",
663                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
664                                            (fextend FPRegs:$src2)))]>;
665def FDIVS  : F3_3<2, 0b110100, 0b001001101,
666                 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
667                 "fdivs $src1, $src2, $dst",
668                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
669def FDIVD  : F3_3<2, 0b110100, 0b001001110,
670                 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
671                 "fdivd $src1, $src2, $dst",
672                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
673
674// Floating-point Compare Instructions, p. 148
675// Note: the 2nd template arg is different for these guys.
676// Note 2: the result of a FCMP is not available until the 2nd cycle
677// after the instr is retired, but there is no interlock. This behavior
678// is modelled with a forced noop after the instruction.
679def FCMPS  : F3_3<2, 0b110101, 0b001010001,
680                  (ops FPRegs:$src1, FPRegs:$src2),
681                  "fcmps $src1, $src2\n\tnop",
682                  [(set FCC, (V8cmpfcc FPRegs:$src1, FPRegs:$src2))]>;
683def FCMPD  : F3_3<2, 0b110101, 0b001010010,
684                  (ops DFPRegs:$src1, DFPRegs:$src2),
685                  "fcmpd $src1, $src2\n\tnop",
686                  [(set FCC, (V8cmpfcc DFPRegs:$src1, DFPRegs:$src2))]>;
687
688//===----------------------------------------------------------------------===//
689// Non-Instruction Patterns
690//===----------------------------------------------------------------------===//
691
692// Small immediates.
693def : Pat<(i32 simm13:$val),
694          (ORri G0, imm:$val)>;
695// Arbitrary immediates.
696def : Pat<(i32 imm:$val),
697          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
698
699// Global addresses, constant pool entries
700def : Pat<(V8hi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
701def : Pat<(V8lo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
702def : Pat<(V8hi tconstpool:$in), (SETHIi tconstpool:$in)>;
703def : Pat<(V8lo tconstpool:$in), (ORri G0, tconstpool:$in)>;
704