SparcInstrInfo.td revision 53ec2035eb686c25013d47405fd0b178b60d59c8
1//===- SparcV8Instrs.td - Target Description for SparcV8 Target -----------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the SparcV8 instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18class InstV8 : Instruction {          // SparcV8 instruction baseline
19  field bits<32> Inst;
20
21  let Namespace = "V8";
22
23  bits<2> op;
24  let Inst{31-30} = op;               // Top two bits are the 'op' field
25
26  // Bit attributes specific to SparcV8 instructions
27  bit isPasi       = 0; // Does this instruction affect an alternate addr space?
28  bit isPrivileged = 0; // Is this a privileged instruction?
29}
30
31include "SparcV8InstrFormats.td"
32
33//===----------------------------------------------------------------------===//
34// Instruction Pattern Stuff
35//===----------------------------------------------------------------------===//
36
37def simm13  : PatLeaf<(imm), [{
38  // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
39  return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
40}]>;
41
42def LO10 : SDNodeXForm<imm, [{
43  return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
44}]>;
45
46def HI22 : SDNodeXForm<imm, [{
47  // Transformation function: shift the immediate value down into the low bits.
48  return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
49}]>;
50
51def SETHIimm : PatLeaf<(imm), [{
52  return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
53}], HI22>;
54
55// Addressing modes.
56def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", []>;
57def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", []>;
58
59// Address operands
60def MEMrr : Operand<i32> {
61  let PrintMethod = "printMemOperand";
62  let NumMIOperands = 2;
63  let MIOperandInfo = (ops IntRegs, IntRegs);
64}
65def MEMri : Operand<i32> {
66  let PrintMethod = "printMemOperand";
67  let NumMIOperands = 2;
68  let MIOperandInfo = (ops IntRegs, i32imm);
69}
70
71//===----------------------------------------------------------------------===//
72// Instructions
73//===----------------------------------------------------------------------===//
74
75// Pseudo instructions.
76class PseudoInstV8<string asmstr, dag ops> : InstV8  {
77  let AsmString = asmstr;
78  dag OperandList = ops;
79}
80def PHI : PseudoInstV8<"PHI", (ops variable_ops)>;
81def ADJCALLSTACKDOWN : PseudoInstV8<"!ADJCALLSTACKDOWN $amt",
82                                    (ops i32imm:$amt)>;
83def ADJCALLSTACKUP : PseudoInstV8<"!ADJCALLSTACKUP $amt",
84                                  (ops i32imm:$amt)>;
85//def IMPLICIT_USE : PseudoInstV8<"!IMPLICIT_USE",(ops variable_ops)>;
86def IMPLICIT_DEF : PseudoInstV8<"!IMPLICIT_DEF $dst", 
87                                (ops IntRegs:$dst)>;
88def FpMOVD : PseudoInstV8<"!FpMOVD", (ops)>; // pseudo 64-bit double move
89
90// Section A.3 - Synthetic Instructions, p. 85
91// special cases of JMPL:
92let isReturn = 1, isTerminator = 1, hasDelaySlot = 1 in {
93  let rd = I7.Num, rs1 = G0.Num, simm13 = 8 in
94    def RET : F3_2<2, 0b111000,
95                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
96                   "ret $b, $c, $dst", []>;
97  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
98    def RETL: F3_2<2, 0b111000, (ops),
99                   "retl", [(ret)]>;
100}
101// CMP is a special case of SUBCC where destination is ignored, by setting it to
102// %g0 (hardwired zero).
103// FIXME: should keep track of the fact that it defs the integer condition codes
104let rd = 0 in
105  def CMPri: F3_2<2, 0b010100,
106                  (ops IntRegs:$b, i32imm:$c),
107                  "cmp $b, $c", []>;
108
109// Section B.1 - Load Integer Instructions, p. 90
110def LDSBrr : F3_1<3, 0b001001,
111                  (ops IntRegs:$dst, MEMrr:$addr),
112                  "ldsb [$addr], $dst",
113                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i8))]>;
114def LDSBri : F3_2<3, 0b001001,
115                  (ops IntRegs:$dst, MEMri:$addr),
116                  "ldsb [$addr], $dst",
117                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i8))]>;
118def LDSHrr : F3_1<3, 0b001010,
119                  (ops IntRegs:$dst, MEMrr:$addr),
120                  "ldsh [$addr], $dst",
121                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i16))]>;
122def LDSHri : F3_2<3, 0b001010,
123                  (ops IntRegs:$dst, MEMri:$addr),
124                  "ldsh [$addr], $dst",
125                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i16))]>;
126def LDUBrr : F3_1<3, 0b000001,
127                  (ops IntRegs:$dst, MEMrr:$addr),
128                  "ldub [$addr], $dst",
129                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i8))]>;
130def LDUBri : F3_2<3, 0b000001,
131                  (ops IntRegs:$dst, MEMri:$addr),
132                  "ldub [$addr], $dst",
133                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i8))]>;
134def LDUHrr : F3_1<3, 0b000010,
135                  (ops IntRegs:$dst, MEMrr:$addr),
136                  "lduh [$addr], $dst",
137                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i16))]>;
138def LDUHri : F3_2<3, 0b000010,
139                  (ops IntRegs:$dst, MEMri:$addr),
140                  "lduh [$addr], $dst",
141                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i16))]>;
142def LDrr   : F3_1<3, 0b000000,
143                  (ops IntRegs:$dst, MEMrr:$addr),
144                  "ld [$addr], $dst",
145                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
146def LDri   : F3_2<3, 0b000000,
147                  (ops IntRegs:$dst, MEMri:$addr),
148                  "ld [$addr], $dst",
149                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
150def LDDrr  : F3_1<3, 0b000011,
151                  (ops IntRegs:$dst, MEMrr:$addr),
152                  "ldd [$addr], $dst", []>;
153def LDDri  : F3_2<3, 0b000011,
154                  (ops IntRegs:$dst, MEMri:$addr),
155                  "ldd [$addr], $dst", []>;
156
157// Section B.2 - Load Floating-point Instructions, p. 92
158def LDFrr  : F3_1<3, 0b100000,
159                  (ops FPRegs:$dst, MEMrr:$addr),
160                  "ld [$addr], $dst",
161                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
162def LDFri  : F3_2<3, 0b100000,
163                  (ops FPRegs:$dst, MEMri:$addr),
164                  "ld [$addr], $dst",
165                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
166def LDDFrr : F3_1<3, 0b100011,
167                  (ops DFPRegs:$dst, MEMrr:$addr),
168                  "ldd [$addr], $dst",
169                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
170def LDDFri : F3_2<3, 0b100011,
171                  (ops DFPRegs:$dst, MEMri:$addr),
172                  "ldd [$addr], $dst",
173                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
174
175// Section B.4 - Store Integer Instructions, p. 95
176def STBrr : F3_1<3, 0b000101,
177                 (ops MEMrr:$addr, IntRegs:$src),
178                 "stb $src, [$addr]",
179                 [(truncstore IntRegs:$src, ADDRrr:$addr, i8)]>;
180def STBri : F3_2<3, 0b000101,
181                 (ops MEMri:$addr, IntRegs:$src),
182                 "stb $src, [$addr]",
183                 [(truncstore IntRegs:$src, ADDRri:$addr, i8)]>;
184def STHrr : F3_1<3, 0b000110,
185                 (ops MEMrr:$addr, IntRegs:$src),
186                 "sth $src, [$addr]",
187                 [(truncstore IntRegs:$src, ADDRrr:$addr, i16)]>;
188def STHri : F3_2<3, 0b000110,
189                 (ops MEMri:$addr, IntRegs:$src),
190                 "sth $src, [$addr]",
191                 [(truncstore IntRegs:$src, ADDRri:$addr, i16)]>;
192def STrr  : F3_1<3, 0b000100,
193                 (ops MEMrr:$addr, IntRegs:$src),
194                 "st $src, [$addr]",
195                 [(store IntRegs:$src, ADDRrr:$addr)]>;
196def STri  : F3_2<3, 0b000100,
197                 (ops MEMri:$addr, IntRegs:$src),
198                 "st $src, [$addr]",
199                 [(store IntRegs:$src, ADDRri:$addr)]>;
200def STDrr : F3_1<3, 0b000111,
201                 (ops MEMrr:$addr, IntRegs:$src),
202                 "std $src, [$addr]", []>;
203def STDri : F3_2<3, 0b000111,
204                 (ops MEMri:$addr, IntRegs:$src),
205                 "std $src, [$addr]", []>;
206
207// Section B.5 - Store Floating-point Instructions, p. 97
208def STFrr   : F3_1<3, 0b100100,
209                   (ops MEMrr:$addr, FPRegs:$src),
210                   "st $src, [$addr]",
211                   [(store FPRegs:$src, ADDRrr:$addr)]>;
212def STFri   : F3_2<3, 0b100100,
213                   (ops MEMri:$addr, FPRegs:$src),
214                   "st $src, [$addr]",
215                   [(store FPRegs:$src, ADDRri:$addr)]>;
216def STDFrr  : F3_1<3, 0b100111,
217                   (ops MEMrr:$addr, DFPRegs:$src),
218                   "std  $src, [$addr]",
219                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
220def STDFri  : F3_2<3, 0b100111,
221                   (ops MEMri:$addr, DFPRegs:$src),
222                   "std $src, [$addr]",
223                   [(store DFPRegs:$src, ADDRri:$addr)]>;
224
225// Section B.9 - SETHI Instruction, p. 104
226def SETHIi: F2_1<0b100,
227                 (ops IntRegs:$dst, i32imm:$src),
228                 "sethi $src, $dst",
229                 [(set IntRegs:$dst, SETHIimm:$src)]>;
230
231// Section B.10 - NOP Instruction, p. 105
232// (It's a special case of SETHI)
233let rd = 0, imm22 = 0 in
234  def NOP : F2_1<0b100, (ops), "nop", []>;
235
236// Section B.11 - Logical Instructions, p. 106
237def ANDrr   : F3_1<2, 0b000001,
238                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
239                   "and $b, $c, $dst",
240                   [(set IntRegs:$dst, (and IntRegs:$b, IntRegs:$c))]>;
241def ANDri   : F3_2<2, 0b000001,
242                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
243                   "and $b, $c, $dst",
244                   [(set IntRegs:$dst, (and IntRegs:$b, simm13:$c))]>;
245def ANDCCrr : F3_1<2, 0b010001,
246                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
247                   "andcc $b, $c, $dst", []>;
248def ANDCCri : F3_2<2, 0b010001,
249                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
250                   "andcc $b, $c, $dst", []>;
251def ANDNrr  : F3_1<2, 0b000101,
252                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
253                   "andn $b, $c, $dst", []>;
254def ANDNri  : F3_2<2, 0b000101,
255                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
256                   "andn $b, $c, $dst", []>;
257def ANDNCCrr: F3_1<2, 0b010101,
258                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
259                   "andncc $b, $c, $dst", []>;
260def ANDNCCri: F3_2<2, 0b010101,
261                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
262                   "andncc $b, $c, $dst", []>;
263def ORrr    : F3_1<2, 0b000010,
264                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
265                   "or $b, $c, $dst",
266                   [(set IntRegs:$dst, (or IntRegs:$b, IntRegs:$c))]>;
267def ORri    : F3_2<2, 0b000010,
268                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
269                   "or $b, $c, $dst",
270                   [(set IntRegs:$dst, (or IntRegs:$b, simm13:$c))]>;
271def ORCCrr  : F3_1<2, 0b010010,
272                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
273                   "orcc $b, $c, $dst", []>;
274def ORCCri  : F3_2<2, 0b010010,
275                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
276                   "orcc $b, $c, $dst", []>;
277def ORNrr   : F3_1<2, 0b000110,
278                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
279                   "orn $b, $c, $dst", []>;
280def ORNri   : F3_2<2, 0b000110,
281                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
282                   "orn $b, $c, $dst", []>;
283def ORNCCrr : F3_1<2, 0b010110,
284                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
285                   "orncc $b, $c, $dst", []>;
286def ORNCCri : F3_2<2, 0b010110,
287                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
288                   "orncc $b, $c, $dst", []>;
289def XORrr   : F3_1<2, 0b000011,
290                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
291                   "xor $b, $c, $dst",
292                   [(set IntRegs:$dst, (xor IntRegs:$b, IntRegs:$c))]>;
293def XORri   : F3_2<2, 0b000011,
294                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
295                   "xor $b, $c, $dst",
296                   [(set IntRegs:$dst, (xor IntRegs:$b, simm13:$c))]>;
297def XORCCrr : F3_1<2, 0b010011,
298                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
299                   "xorcc $b, $c, $dst", []>;
300def XORCCri : F3_2<2, 0b010011,
301                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
302                   "xorcc $b, $c, $dst", []>;
303def XNORrr  : F3_1<2, 0b000111,
304                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
305                   "xnor $b, $c, $dst", []>;
306def XNORri  : F3_2<2, 0b000111,
307                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
308                   "xnor $b, $c, $dst", []>;
309def XNORCCrr: F3_1<2, 0b010111,
310                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
311                   "xnorcc $b, $c, $dst", []>;
312def XNORCCri: F3_2<2, 0b010111,
313                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
314                   "xnorcc $b, $c, $dst", []>;
315
316// Section B.12 - Shift Instructions, p. 107
317def SLLrr : F3_1<2, 0b100101,
318                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
319                 "sll $b, $c, $dst",
320                 [(set IntRegs:$dst, (shl IntRegs:$b, IntRegs:$c))]>;
321def SLLri : F3_2<2, 0b100101,
322                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
323                 "sll $b, $c, $dst",
324                 [(set IntRegs:$dst, (shl IntRegs:$b, simm13:$c))]>;
325def SRLrr : F3_1<2, 0b100110, 
326                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
327                  "srl $b, $c, $dst",
328                  [(set IntRegs:$dst, (srl IntRegs:$b, IntRegs:$c))]>;
329def SRLri : F3_2<2, 0b100110,
330                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
331                 "srl $b, $c, $dst", 
332                 [(set IntRegs:$dst, (srl IntRegs:$b, simm13:$c))]>;
333def SRArr : F3_1<2, 0b100111, 
334                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
335                  "sra $b, $c, $dst",
336                  [(set IntRegs:$dst, (sra IntRegs:$b, IntRegs:$c))]>;
337def SRAri : F3_2<2, 0b100111,
338                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
339                 "sra $b, $c, $dst",
340                 [(set IntRegs:$dst, (sra IntRegs:$b, simm13:$c))]>;
341
342// Section B.13 - Add Instructions, p. 108
343def ADDrr   : F3_1<2, 0b000000, 
344                  (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
345                  "add $b, $c, $dst",
346                   [(set IntRegs:$dst, (add IntRegs:$b, IntRegs:$c))]>;
347def ADDri   : F3_2<2, 0b000000,
348                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
349                   "add $b, $c, $dst",
350                   [(set IntRegs:$dst, (add IntRegs:$b, simm13:$c))]>;
351def ADDCCrr : F3_1<2, 0b010000, 
352                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
353                   "addcc $b, $c, $dst", []>;
354def ADDCCri : F3_2<2, 0b010000,
355                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
356                   "addcc $b, $c, $dst", []>;
357def ADDXrr  : F3_1<2, 0b001000, 
358                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
359                   "addx $b, $c, $dst", []>;
360def ADDXri  : F3_2<2, 0b001000,
361                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
362                   "addx $b, $c, $dst", []>;
363def ADDXCCrr: F3_1<2, 0b011000, 
364                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
365                   "addxcc $b, $c, $dst", []>;
366def ADDXCCri: F3_2<2, 0b011000,
367                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
368                   "addxcc $b, $c, $dst", []>;
369
370// Section B.15 - Subtract Instructions, p. 110
371def SUBrr   : F3_1<2, 0b000100, 
372                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
373                   "sub $b, $c, $dst",
374                   [(set IntRegs:$dst, (sub IntRegs:$b, IntRegs:$c))]>;
375def SUBri   : F3_2<2, 0b000100,
376                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
377                   "sub $b, $c, $dst",
378                   [(set IntRegs:$dst, (sub IntRegs:$b, simm13:$c))]>;
379def SUBCCrr : F3_1<2, 0b010100, 
380                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
381                   "subcc $b, $c, $dst", []>;
382def SUBCCri : F3_2<2, 0b010100,
383                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
384                   "subcc $b, $c, $dst", []>;
385def SUBXrr  : F3_1<2, 0b001100, 
386                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
387                   "subx $b, $c, $dst", []>;
388def SUBXri  : F3_2<2, 0b001100,
389                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
390                   "subx $b, $c, $dst", []>;
391def SUBXCCrr: F3_1<2, 0b011100, 
392                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
393                   "subxcc $b, $c, $dst", []>;
394def SUBXCCri: F3_2<2, 0b011100,
395                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
396                   "subxcc $b, $c, $dst", []>;
397
398// Section B.18 - Multiply Instructions, p. 113
399def UMULrr  : F3_1<2, 0b001010, 
400                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
401                   "umul $b, $c, $dst", []>;
402def UMULri  : F3_2<2, 0b001010,
403                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
404                   "umul $b, $c, $dst", []>;
405def SMULrr  : F3_1<2, 0b001011, 
406                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
407                   "smul $b, $c, $dst", []>;
408def SMULri  : F3_2<2, 0b001011,
409                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
410                   "smul $b, $c, $dst", []>;
411def UMULCCrr: F3_1<2, 0b011010, 
412                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
413                   "umulcc $b, $c, $dst", []>;
414def UMULCCri: F3_2<2, 0b011010,
415                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
416                   "umulcc $b, $c, $dst", []>;
417def SMULCCrr: F3_1<2, 0b011011, 
418                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
419                   "smulcc $b, $c, $dst", []>;
420def SMULCCri: F3_2<2, 0b011011,
421                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
422                   "smulcc $b, $c, $dst", []>;
423
424// Section B.19 - Divide Instructions, p. 115
425def UDIVrr   : F3_1<2, 0b001110, 
426                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
427                    "udiv $b, $c, $dst", []>;
428def UDIVri   : F3_2<2, 0b001110,
429                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
430                    "udiv $b, $c, $dst", []>;
431def SDIVrr   : F3_1<2, 0b001111,
432                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
433                    "sdiv $b, $c, $dst", []>;
434def SDIVri   : F3_2<2, 0b001111,
435                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
436                    "sdiv $b, $c, $dst", []>;
437def UDIVCCrr : F3_1<2, 0b011110,
438                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
439                    "udivcc $b, $c, $dst", []>;
440def UDIVCCri : F3_2<2, 0b011110,
441                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
442                    "udivcc $b, $c, $dst", []>;
443def SDIVCCrr : F3_1<2, 0b011111,
444                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
445                    "sdivcc $b, $c, $dst", []>;
446def SDIVCCri : F3_2<2, 0b011111,
447                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
448                    "sdivcc $b, $c, $dst", []>;
449
450// Section B.20 - SAVE and RESTORE, p. 117
451def SAVErr    : F3_1<2, 0b111100,
452                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
453                     "save $b, $c, $dst", []>;
454def SAVEri    : F3_2<2, 0b111100,
455                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
456                     "save $b, $c, $dst", []>;
457def RESTORErr : F3_1<2, 0b111101,
458                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
459                     "restore $b, $c, $dst", []>;
460def RESTOREri : F3_2<2, 0b111101,
461                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
462                     "restore $b, $c, $dst", []>;
463
464// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
465
466// conditional branch class:
467class BranchV8<bits<4> cc, dag ops, string asmstr>
468 : F2_2<cc, 0b010, ops, asmstr> {
469  let isBranch = 1;
470  let isTerminator = 1;
471  let hasDelaySlot = 1;
472}
473
474let isBarrier = 1 in
475  def BA   : BranchV8<0b1000, (ops IntRegs:$dst), "ba $dst">;
476def BN   : BranchV8<0b0000, (ops IntRegs:$dst), "bn $dst">;
477def BNE  : BranchV8<0b1001, (ops IntRegs:$dst), "bne $dst">;
478def BE   : BranchV8<0b0001, (ops IntRegs:$dst), "be $dst">;
479def BG   : BranchV8<0b1010, (ops IntRegs:$dst), "bg $dst">;
480def BLE  : BranchV8<0b0010, (ops IntRegs:$dst), "ble $dst">;
481def BGE  : BranchV8<0b1011, (ops IntRegs:$dst), "bge $dst">;
482def BL   : BranchV8<0b0011, (ops IntRegs:$dst), "bl $dst">;
483def BGU  : BranchV8<0b1100, (ops IntRegs:$dst), "bgu $dst">;
484def BLEU : BranchV8<0b0100, (ops IntRegs:$dst), "bleu $dst">;
485def BCC  : BranchV8<0b1101, (ops IntRegs:$dst), "bcc $dst">;
486def BCS  : BranchV8<0b0101, (ops IntRegs:$dst), "bcs $dst">;
487
488// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
489
490// floating-point conditional branch class:
491class FPBranchV8<bits<4> cc, dag ops, string asmstr>
492 : F2_2<cc, 0b110, ops, asmstr> {
493  let isBranch = 1;
494  let isTerminator = 1;
495  let hasDelaySlot = 1;
496}
497
498def FBA  : FPBranchV8<0b1000, (ops IntRegs:$dst), "fba $dst">;
499def FBN  : FPBranchV8<0b0000, (ops IntRegs:$dst), "fbn $dst">;
500def FBU  : FPBranchV8<0b0111, (ops IntRegs:$dst), "fbu $dst">;
501def FBG  : FPBranchV8<0b0110, (ops IntRegs:$dst), "fbg $dst">;
502def FBUG : FPBranchV8<0b0101, (ops IntRegs:$dst), "fbug $dst">;
503def FBL  : FPBranchV8<0b0100, (ops IntRegs:$dst), "fbl $dst">;
504def FBUL : FPBranchV8<0b0011, (ops IntRegs:$dst), "fbul $dst">;
505def FBLG : FPBranchV8<0b0010, (ops IntRegs:$dst), "fblg $dst">;
506def FBNE : FPBranchV8<0b0001, (ops IntRegs:$dst), "fbne $dst">;
507def FBE  : FPBranchV8<0b1001, (ops IntRegs:$dst), "fbe $dst">;
508def FBUE : FPBranchV8<0b1010, (ops IntRegs:$dst), "fbue $dst">;
509def FBGE : FPBranchV8<0b1011, (ops IntRegs:$dst), "fbge $dst">;
510def FBUGE: FPBranchV8<0b1100, (ops IntRegs:$dst), "fbuge $dst">;
511def FBLE : FPBranchV8<0b1101, (ops IntRegs:$dst), "fble $dst">;
512def FBULE: FPBranchV8<0b1110, (ops IntRegs:$dst), "fbule $dst">;
513def FBO  : FPBranchV8<0b1111, (ops IntRegs:$dst), "fbo $dst">;
514
515
516
517// Section B.24 - Call and Link Instruction, p. 125
518// This is the only Format 1 instruction
519let Uses = [O0, O1, O2, O3, O4, O5], hasDelaySlot = 1, isCall = 1 in { 
520  // pc-relative call:
521  let Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
522    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in
523  def CALL : InstV8 {
524    let OperandList = (ops IntRegs:$dst);
525    bits<30> disp;
526    let op = 1;
527    let Inst{29-0} = disp;
528    let AsmString = "call $dst";
529  }
530
531  // indirect call (O7 is an EXPLICIT def in indirect calls, so it cannot also
532  // be an implicit def):
533  let Defs = [O0, O1, O2, O3, O4, O5, G1, G2, G3, G4, G5, G6, G7,
534    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in
535  def JMPLrr : F3_1<2, 0b111000,
536                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
537                    "jmpl $b+$c, $dst", []>;
538}
539
540// Section B.29 - Write State Register Instructions
541def WRrr : F3_1<2, 0b110000,
542                (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
543                "wr $b, $c, $dst", []>;
544def WRri : F3_2<2, 0b110000,
545                (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
546                "wr $b, $c, $dst", []>;
547
548// Convert Integer to Floating-point Instructions, p. 141
549def FITOS : F3_3<2, 0b110100, 0b011000100,
550                 (ops FPRegs:$dst, FPRegs:$src),
551                 "fitos $src, $dst">;
552def FITOD : F3_3<2, 0b110100, 0b011001000, 
553                 (ops DFPRegs:$dst, DFPRegs:$src),
554                 "fitod $src, $dst">;
555
556// Convert Floating-point to Integer Instructions, p. 142
557def FSTOI : F3_3<2, 0b110100, 0b011010001,
558                 (ops FPRegs:$dst, FPRegs:$src),
559                 "fstoi $src, $dst">;
560def FDTOI : F3_3<2, 0b110100, 0b011010010,
561                 (ops DFPRegs:$dst, DFPRegs:$src),
562                 "fdtoi $src, $dst">;
563
564// Convert between Floating-point Formats Instructions, p. 143
565def FSTOD : F3_3<2, 0b110100, 0b011001001, 
566                 (ops DFPRegs:$dst, FPRegs:$src),
567                 "fstod $src, $dst">;
568def FDTOS : F3_3<2, 0b110100, 0b011000110,
569                 (ops FPRegs:$dst, DFPRegs:$src),
570                 "fdtos $src, $dst">;
571
572// Floating-point Move Instructions, p. 144
573def FMOVS : F3_3<2, 0b110100, 0b000000001,
574                 (ops FPRegs:$dst, FPRegs:$src),
575                 "fmovs $src, $dst">;
576def FNEGS : F3_3<2, 0b110100, 0b000000101, 
577                 (ops FPRegs:$dst, FPRegs:$src),
578                 "fnegs $src, $dst">;
579def FABSS : F3_3<2, 0b110100, 0b000001001, 
580                 (ops FPRegs:$dst, FPRegs:$src),
581                 "fabss $src, $dst">;
582
583// Floating-point Add and Subtract Instructions, p. 146
584def FADDS  : F3_3<2, 0b110100, 0b001000001,
585                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
586                  "fadds $src1, $src2, $dst">;
587def FADDD  : F3_3<2, 0b110100, 0b001000010,
588                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
589                  "faddd $src1, $src2, $dst">;
590def FSUBS  : F3_3<2, 0b110100, 0b001000101,
591                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
592                  "fsubs $src1, $src2, $dst">;
593def FSUBD  : F3_3<2, 0b110100, 0b001000110,
594                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
595                  "fsubd $src1, $src2, $dst">;
596
597// Floating-point Multiply and Divide Instructions, p. 147
598def FMULS  : F3_3<2, 0b110100, 0b001001001,
599                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
600                  "fmuls $src1, $src2, $dst">;
601def FMULD  : F3_3<2, 0b110100, 0b001001010,
602                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
603                  "fmuld $src1, $src2, $dst">;
604def FSMULD : F3_3<2, 0b110100, 0b001101001,
605                  (ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
606                  "fsmuld $src1, $src2, $dst">;
607def FDIVS  : F3_3<2, 0b110100, 0b001001101,
608                 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
609                 "fdivs $src1, $src2, $dst">;
610def FDIVD  : F3_3<2, 0b110100, 0b001001110,
611                 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
612                 "fdivd $src1, $src2, $dst">;
613
614// Floating-point Compare Instructions, p. 148
615// Note: the 2nd template arg is different for these guys.
616// Note 2: the result of a FCMP is not available until the 2nd cycle
617// after the instr is retired, but there is no interlock. This behavior
618// is modelled with a forced noop after the instruction.
619def FCMPS  : F3_3<2, 0b110101, 0b001010001,
620                  (ops FPRegs:$src1, FPRegs:$src2),
621                  "fcmps $src1, $src2\n\tnop">;
622def FCMPD  : F3_3<2, 0b110101, 0b001010010,
623                  (ops DFPRegs:$src1, DFPRegs:$src2),
624                  "fcmpd $src1, $src2\n\tnop">;
625def FCMPES : F3_3<2, 0b110101, 0b001010101,
626                  (ops FPRegs:$src1, FPRegs:$src2),
627                  "fcmpes $src1, $src2\n\tnop">;
628def FCMPED : F3_3<2, 0b110101, 0b001010110,
629                  (ops DFPRegs:$src1, DFPRegs:$src2),
630                  "fcmped $src1, $src2\n\tnop">;
631
632//===----------------------------------------------------------------------===//
633// Non-Instruction Patterns
634//===----------------------------------------------------------------------===//
635
636// Small immediates.
637def : Pat<(i32 simm13:$val),
638          (ORri G0, imm:$val)>;
639// Arbitrary immediates.
640def : Pat<(i32 imm:$val),
641          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
642