SparcInstrInfo.td revision 75ddb2bb34f96c2bda48d0e86331fb52b55b8d03
1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// True when generating 32-bit code.
25def Is32Bit : Predicate<"!Subtarget.is64Bit()">;
26
27// True when generating 64-bit code. This also implies HasV9.
28def Is64Bit : Predicate<"Subtarget.is64Bit()">;
29
30// HasV9 - This predicate is true when the target processor supports V9
31// instructions.  Note that the machine may be running in 32-bit mode.
32def HasV9   : Predicate<"Subtarget.isV9()">;
33
34// HasNoV9 - This predicate is true when the target doesn't have V9
35// instructions.  Use of this is just a hack for the isel not having proper
36// costs for V8 instructions that are more expensive than their V9 ones.
37def HasNoV9 : Predicate<"!Subtarget.isV9()">;
38
39// HasVIS - This is true when the target processor has VIS extensions.
40def HasVIS : Predicate<"Subtarget.isVIS()">;
41
42// HasHardQuad - This is true when the target processor supports quad floating
43// point instructions.
44def HasHardQuad : Predicate<"Subtarget.hasHardQuad()">;
45
46// UseDeprecatedInsts - This predicate is true when the target processor is a
47// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
48// to use when appropriate.  In either of these cases, the instruction selector
49// will pick deprecated instructions.
50def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
51
52//===----------------------------------------------------------------------===//
53// Instruction Pattern Stuff
54//===----------------------------------------------------------------------===//
55
56def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
57
58def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
59
60def LO10 : SDNodeXForm<imm, [{
61  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
62                                   MVT::i32);
63}]>;
64
65def HI22 : SDNodeXForm<imm, [{
66  // Transformation function: shift the immediate value down into the low bits.
67  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
68}]>;
69
70def SETHIimm : PatLeaf<(imm), [{
71  return isShiftedUInt<22, 10>(N->getZExtValue());
72}], HI22>;
73
74// Addressing modes.
75def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
76def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
77
78// Address operands
79def MEMrr : Operand<iPTR> {
80  let PrintMethod = "printMemOperand";
81  let MIOperandInfo = (ops ptr_rc, ptr_rc);
82}
83def MEMri : Operand<iPTR> {
84  let PrintMethod = "printMemOperand";
85  let MIOperandInfo = (ops ptr_rc, i32imm);
86}
87
88// Branch targets have OtherVT type.
89def brtarget : Operand<OtherVT>;
90def calltarget : Operand<i32>;
91
92// Operand for printing out a condition code.
93let PrintMethod = "printCCOperand" in
94  def CCOp : Operand<i32>;
95
96def SDTSPcmpicc :
97SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
98def SDTSPcmpfcc :
99SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
100def SDTSPbrcc :
101SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
102def SDTSPselectcc :
103SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
104def SDTSPFTOI :
105SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
106def SDTSPITOF :
107SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
108
109def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
110def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
111def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
112def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
113def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
114
115def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
116def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
117
118def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
119def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
120
121def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
122def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
123def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
124
125//  These are target-independent nodes, but have target-specific formats.
126def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
127def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
128                                        SDTCisVT<1, i32> ]>;
129
130def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
131                           [SDNPHasChain, SDNPOutGlue]>;
132def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
133                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
134
135def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
136def call          : SDNode<"SPISD::CALL", SDT_SPCall,
137                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
138                            SDNPVariadic]>;
139
140def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
141def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
142                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
143
144def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
145                           [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
146
147def getPCX        : Operand<i32> {
148  let PrintMethod = "printGetPCX";
149}
150
151//===----------------------------------------------------------------------===//
152// SPARC Flag Conditions
153//===----------------------------------------------------------------------===//
154
155// Note that these values must be kept in sync with the CCOp::CondCode enum
156// values.
157class ICC_VAL<int N> : PatLeaf<(i32 N)>;
158def ICC_NE  : ICC_VAL< 9>;  // Not Equal
159def ICC_E   : ICC_VAL< 1>;  // Equal
160def ICC_G   : ICC_VAL<10>;  // Greater
161def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
162def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
163def ICC_L   : ICC_VAL< 3>;  // Less
164def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
165def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
166def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
167def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
168def ICC_POS : ICC_VAL<14>;  // Positive
169def ICC_NEG : ICC_VAL< 6>;  // Negative
170def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
171def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
172
173class FCC_VAL<int N> : PatLeaf<(i32 N)>;
174def FCC_U   : FCC_VAL<23>;  // Unordered
175def FCC_G   : FCC_VAL<22>;  // Greater
176def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
177def FCC_L   : FCC_VAL<20>;  // Less
178def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
179def FCC_LG  : FCC_VAL<18>;  // Less or Greater
180def FCC_NE  : FCC_VAL<17>;  // Not Equal
181def FCC_E   : FCC_VAL<25>;  // Equal
182def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
183def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
184def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
185def FCC_LE  : FCC_VAL<27>;  // Less or Equal
186def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
187def FCC_O   : FCC_VAL<29>;  // Ordered
188
189//===----------------------------------------------------------------------===//
190// Instruction Class Templates
191//===----------------------------------------------------------------------===//
192
193/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
194multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
195  def rr  : F3_1<2, Op3Val,
196                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
197                 !strconcat(OpcStr, " $b, $c, $dst"),
198                 [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
199  def ri  : F3_2<2, Op3Val,
200                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
201                 !strconcat(OpcStr, " $b, $c, $dst"),
202                 [(set i32:$dst, (OpNode i32:$b, (i32 simm13:$c)))]>;
203}
204
205/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
206/// pattern.
207multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
208  def rr  : F3_1<2, Op3Val,
209                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
210                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
211  def ri  : F3_2<2, Op3Val,
212                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
213                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
214}
215
216//===----------------------------------------------------------------------===//
217// Instructions
218//===----------------------------------------------------------------------===//
219
220// Pseudo instructions.
221class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
222   : InstSP<outs, ins, asmstr, pattern>;
223
224// GETPCX for PIC
225let Defs = [O7] in {
226  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
227}
228
229let Defs = [O6], Uses = [O6] in {
230def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
231                               "!ADJCALLSTACKDOWN $amt",
232                               [(callseq_start timm:$amt)]>;
233def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
234                            "!ADJCALLSTACKUP $amt1",
235                            [(callseq_end timm:$amt1, timm:$amt2)]>;
236}
237
238let hasSideEffects = 1, mayStore = 1 in {
239  let rd = 0, rs1 = 0, rs2 = 0 in
240    def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
241                      "flushw",
242                      [(flushw)]>, Requires<[HasV9]>;
243  let rd = 0, rs1 = 1, simm13 = 3 in
244    def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
245                   "ta 3",
246                   [(flushw)]>;
247}
248
249def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val),
250                "unimp $val", []>;
251
252// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
253// instruction selection into a branch sequence.  This has to handle all
254// permutations of selection between i32/f32/f64 on ICC and FCC.
255// Expanded after instruction selection.
256let Uses = [ICC], usesCustomInserter = 1 in {
257  def SELECT_CC_Int_ICC
258   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
259            "; SELECT_CC_Int_ICC PSEUDO!",
260            [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
261  def SELECT_CC_FP_ICC
262   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
263            "; SELECT_CC_FP_ICC PSEUDO!",
264            [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
265
266  def SELECT_CC_DFP_ICC
267   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
268            "; SELECT_CC_DFP_ICC PSEUDO!",
269            [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
270
271  def SELECT_CC_QFP_ICC
272   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
273            "; SELECT_CC_QFP_ICC PSEUDO!",
274            [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
275}
276
277let usesCustomInserter = 1, Uses = [FCC] in {
278
279  def SELECT_CC_Int_FCC
280   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
281            "; SELECT_CC_Int_FCC PSEUDO!",
282            [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
283
284  def SELECT_CC_FP_FCC
285   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
286            "; SELECT_CC_FP_FCC PSEUDO!",
287            [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
288  def SELECT_CC_DFP_FCC
289   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
290            "; SELECT_CC_DFP_FCC PSEUDO!",
291            [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
292  def SELECT_CC_QFP_FCC
293   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
294            "; SELECT_CC_QFP_FCC PSEUDO!",
295            [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
296}
297
298
299// Section A.3 - Synthetic Instructions, p. 85
300// special cases of JMPL:
301let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
302  let rd = 0, rs1 = 15 in
303    def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
304                   "jmp %o7+$val", [(retflag simm13:$val)]>;
305
306  let rd = 0, rs1 = 31 in
307    def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
308                  "jmp %i7+$val", []>;
309}
310
311// Section B.1 - Load Integer Instructions, p. 90
312def LDSBrr : F3_1<3, 0b001001,
313                  (outs IntRegs:$dst), (ins MEMrr:$addr),
314                  "ldsb [$addr], $dst",
315                  [(set i32:$dst, (sextloadi8 ADDRrr:$addr))]>;
316def LDSBri : F3_2<3, 0b001001,
317                  (outs IntRegs:$dst), (ins MEMri:$addr),
318                  "ldsb [$addr], $dst",
319                  [(set i32:$dst, (sextloadi8 ADDRri:$addr))]>;
320def LDSHrr : F3_1<3, 0b001010,
321                  (outs IntRegs:$dst), (ins MEMrr:$addr),
322                  "ldsh [$addr], $dst",
323                  [(set i32:$dst, (sextloadi16 ADDRrr:$addr))]>;
324def LDSHri : F3_2<3, 0b001010,
325                  (outs IntRegs:$dst), (ins MEMri:$addr),
326                  "ldsh [$addr], $dst",
327                  [(set i32:$dst, (sextloadi16 ADDRri:$addr))]>;
328def LDUBrr : F3_1<3, 0b000001,
329                  (outs IntRegs:$dst), (ins MEMrr:$addr),
330                  "ldub [$addr], $dst",
331                  [(set i32:$dst, (zextloadi8 ADDRrr:$addr))]>;
332def LDUBri : F3_2<3, 0b000001,
333                  (outs IntRegs:$dst), (ins MEMri:$addr),
334                  "ldub [$addr], $dst",
335                  [(set i32:$dst, (zextloadi8 ADDRri:$addr))]>;
336def LDUHrr : F3_1<3, 0b000010,
337                  (outs IntRegs:$dst), (ins MEMrr:$addr),
338                  "lduh [$addr], $dst",
339                  [(set i32:$dst, (zextloadi16 ADDRrr:$addr))]>;
340def LDUHri : F3_2<3, 0b000010,
341                  (outs IntRegs:$dst), (ins MEMri:$addr),
342                  "lduh [$addr], $dst",
343                  [(set i32:$dst, (zextloadi16 ADDRri:$addr))]>;
344def LDrr   : F3_1<3, 0b000000,
345                  (outs IntRegs:$dst), (ins MEMrr:$addr),
346                  "ld [$addr], $dst",
347                  [(set i32:$dst, (load ADDRrr:$addr))]>;
348def LDri   : F3_2<3, 0b000000,
349                  (outs IntRegs:$dst), (ins MEMri:$addr),
350                  "ld [$addr], $dst",
351                  [(set i32:$dst, (load ADDRri:$addr))]>;
352
353// Section B.2 - Load Floating-point Instructions, p. 92
354def LDFrr  : F3_1<3, 0b100000,
355                  (outs FPRegs:$dst), (ins MEMrr:$addr),
356                  "ld [$addr], $dst",
357                  [(set f32:$dst, (load ADDRrr:$addr))]>;
358def LDFri  : F3_2<3, 0b100000,
359                  (outs FPRegs:$dst), (ins MEMri:$addr),
360                  "ld [$addr], $dst",
361                  [(set f32:$dst, (load ADDRri:$addr))]>;
362def LDDFrr : F3_1<3, 0b100011,
363                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
364                  "ldd [$addr], $dst",
365                  [(set f64:$dst, (load ADDRrr:$addr))]>;
366def LDDFri : F3_2<3, 0b100011,
367                  (outs DFPRegs:$dst), (ins MEMri:$addr),
368                  "ldd [$addr], $dst",
369                  [(set f64:$dst, (load ADDRri:$addr))]>;
370def LDQFrr : F3_1<3, 0b100010,
371                  (outs QFPRegs:$dst), (ins MEMrr:$addr),
372                  "ldq [$addr], $dst",
373                  [(set f128:$dst, (load ADDRrr:$addr))]>,
374                  Requires<[HasV9, HasHardQuad]>;
375def LDQFri : F3_2<3, 0b100010,
376                  (outs QFPRegs:$dst), (ins MEMri:$addr),
377                  "ldq [$addr], $dst",
378                  [(set f128:$dst, (load ADDRri:$addr))]>,
379                  Requires<[HasV9, HasHardQuad]>;
380
381// Section B.4 - Store Integer Instructions, p. 95
382def STBrr : F3_1<3, 0b000101,
383                 (outs), (ins MEMrr:$addr, IntRegs:$src),
384                 "stb $src, [$addr]",
385                 [(truncstorei8 i32:$src, ADDRrr:$addr)]>;
386def STBri : F3_2<3, 0b000101,
387                 (outs), (ins MEMri:$addr, IntRegs:$src),
388                 "stb $src, [$addr]",
389                 [(truncstorei8 i32:$src, ADDRri:$addr)]>;
390def STHrr : F3_1<3, 0b000110,
391                 (outs), (ins MEMrr:$addr, IntRegs:$src),
392                 "sth $src, [$addr]",
393                 [(truncstorei16 i32:$src, ADDRrr:$addr)]>;
394def STHri : F3_2<3, 0b000110,
395                 (outs), (ins MEMri:$addr, IntRegs:$src),
396                 "sth $src, [$addr]",
397                 [(truncstorei16 i32:$src, ADDRri:$addr)]>;
398def STrr  : F3_1<3, 0b000100,
399                 (outs), (ins MEMrr:$addr, IntRegs:$src),
400                 "st $src, [$addr]",
401                 [(store i32:$src, ADDRrr:$addr)]>;
402def STri  : F3_2<3, 0b000100,
403                 (outs), (ins MEMri:$addr, IntRegs:$src),
404                 "st $src, [$addr]",
405                 [(store i32:$src, ADDRri:$addr)]>;
406
407// Section B.5 - Store Floating-point Instructions, p. 97
408def STFrr   : F3_1<3, 0b100100,
409                   (outs), (ins MEMrr:$addr, FPRegs:$src),
410                   "st $src, [$addr]",
411                   [(store f32:$src, ADDRrr:$addr)]>;
412def STFri   : F3_2<3, 0b100100,
413                   (outs), (ins MEMri:$addr, FPRegs:$src),
414                   "st $src, [$addr]",
415                   [(store f32:$src, ADDRri:$addr)]>;
416def STDFrr  : F3_1<3, 0b100111,
417                   (outs), (ins MEMrr:$addr, DFPRegs:$src),
418                   "std  $src, [$addr]",
419                   [(store f64:$src, ADDRrr:$addr)]>;
420def STDFri  : F3_2<3, 0b100111,
421                   (outs), (ins MEMri:$addr, DFPRegs:$src),
422                   "std $src, [$addr]",
423                   [(store f64:$src, ADDRri:$addr)]>;
424def STQFrr  : F3_1<3, 0b100110,
425                   (outs), (ins MEMrr:$addr, QFPRegs:$src),
426                   "stq  $src, [$addr]",
427                   [(store f128:$src, ADDRrr:$addr)]>,
428                   Requires<[HasV9, HasHardQuad]>;
429def STQFri  : F3_2<3, 0b100110,
430                   (outs), (ins MEMri:$addr, QFPRegs:$src),
431                   "stq $src, [$addr]",
432                   [(store f128:$src, ADDRri:$addr)]>,
433                   Requires<[HasV9, HasHardQuad]>;
434
435// Section B.9 - SETHI Instruction, p. 104
436def SETHIi: F2_1<0b100,
437                 (outs IntRegs:$dst), (ins i32imm:$src),
438                 "sethi $src, $dst",
439                 [(set i32:$dst, SETHIimm:$src)]>;
440
441// Section B.10 - NOP Instruction, p. 105
442// (It's a special case of SETHI)
443let rd = 0, imm22 = 0 in
444  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
445
446// Section B.11 - Logical Instructions, p. 106
447defm AND    : F3_12<"and", 0b000001, and>;
448
449def ANDNrr  : F3_1<2, 0b000101,
450                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
451                   "andn $b, $c, $dst",
452                   [(set i32:$dst, (and i32:$b, (not i32:$c)))]>;
453def ANDNri  : F3_2<2, 0b000101,
454                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
455                   "andn $b, $c, $dst", []>;
456
457defm OR     : F3_12<"or", 0b000010, or>;
458
459def ORNrr   : F3_1<2, 0b000110,
460                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
461                   "orn $b, $c, $dst",
462                   [(set i32:$dst, (or i32:$b, (not i32:$c)))]>;
463def ORNri   : F3_2<2, 0b000110,
464                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
465                   "orn $b, $c, $dst", []>;
466defm XOR    : F3_12<"xor", 0b000011, xor>;
467
468def XNORrr  : F3_1<2, 0b000111,
469                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
470                   "xnor $b, $c, $dst",
471                   [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
472def XNORri  : F3_2<2, 0b000111,
473                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
474                   "xnor $b, $c, $dst", []>;
475
476// Section B.12 - Shift Instructions, p. 107
477defm SLL : F3_12<"sll", 0b100101, shl>;
478defm SRL : F3_12<"srl", 0b100110, srl>;
479defm SRA : F3_12<"sra", 0b100111, sra>;
480
481// Section B.13 - Add Instructions, p. 108
482defm ADD   : F3_12<"add", 0b000000, add>;
483
484// "LEA" forms of add (patterns to make tblgen happy)
485def LEA_ADDri   : F3_2<2, 0b000000,
486                   (outs IntRegs:$dst), (ins MEMri:$addr),
487                   "add ${addr:arith}, $dst",
488                   [(set iPTR:$dst, ADDRri:$addr)]>;
489
490let Defs = [ICC] in
491  defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
492
493let Uses = [ICC] in
494  defm ADDX  : F3_12<"addx", 0b001000, adde>;
495
496// Section B.15 - Subtract Instructions, p. 110
497defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
498let Uses = [ICC] in
499  defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
500
501let Defs = [ICC] in {
502  defm SUBCC  : F3_12  <"subcc", 0b010100, subc>;
503
504  def CMPrr   : F3_1<2, 0b010100,
505                     (outs), (ins IntRegs:$b, IntRegs:$c),
506                     "cmp $b, $c",
507                     [(SPcmpicc i32:$b, i32:$c)]>;
508  def CMPri   : F3_1<2, 0b010100,
509                     (outs), (ins IntRegs:$b, i32imm:$c),
510                     "cmp $b, $c",
511                     [(SPcmpicc i32:$b, (i32 simm13:$c))]>;
512}
513
514let Uses = [ICC], Defs = [ICC] in
515  def SUBXCCrr: F3_1<2, 0b011100,
516                (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
517                "subxcc $b, $c, $dst", []>;
518
519
520// Section B.18 - Multiply Instructions, p. 113
521let Defs = [Y] in {
522  defm UMUL : F3_12np<"umul", 0b001010>;
523  defm SMUL : F3_12  <"smul", 0b001011, mul>;
524}
525
526// Section B.19 - Divide Instructions, p. 115
527let Defs = [Y] in {
528  defm UDIV : F3_12np<"udiv", 0b001110>;
529  defm SDIV : F3_12np<"sdiv", 0b001111>;
530}
531
532// Section B.20 - SAVE and RESTORE, p. 117
533defm SAVE    : F3_12np<"save"   , 0b111100>;
534defm RESTORE : F3_12np<"restore", 0b111101>;
535
536// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
537
538// conditional branch class:
539class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
540 : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
541  let isBranch = 1;
542  let isTerminator = 1;
543  let hasDelaySlot = 1;
544}
545
546let isBarrier = 1 in
547  def BA   : BranchSP<0b1000, (ins brtarget:$dst),
548                      "ba $dst",
549                      [(br bb:$dst)]>;
550
551// Indirect branch instructions.
552let isTerminator = 1, isBarrier = 1,
553     hasDelaySlot = 1, isBranch =1,
554     isIndirectBranch = 1 in {
555  def BINDrr  : F3_1<2, 0b111000,
556                   (outs), (ins MEMrr:$ptr),
557                   "jmp $ptr",
558                   [(brind ADDRrr:$ptr)]>;
559  def BINDri  : F3_2<2, 0b111000,
560                   (outs), (ins MEMri:$ptr),
561                   "jmp $ptr",
562                   [(brind ADDRri:$ptr)]>;
563}
564
565// FIXME: the encoding for the JIT should look at the condition field.
566let Uses = [ICC] in
567  def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
568                         "b$cc $dst",
569                        [(SPbricc bb:$dst, imm:$cc)]>;
570
571
572// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
573
574// floating-point conditional branch class:
575class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
576 : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
577  let isBranch = 1;
578  let isTerminator = 1;
579  let hasDelaySlot = 1;
580}
581
582// FIXME: the encoding for the JIT should look at the condition field.
583let Uses = [FCC] in
584  def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
585                              "fb$cc $dst",
586                              [(SPbrfcc bb:$dst, imm:$cc)]>;
587
588
589// Section B.24 - Call and Link Instruction, p. 125
590// This is the only Format 1 instruction
591let Uses = [O6],
592    hasDelaySlot = 1, isCall = 1 in {
593  def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
594                    "call $dst", []> {
595    bits<30> disp;
596    let op = 1;
597    let Inst{29-0} = disp;
598  }
599
600  // indirect calls
601  def JMPLrr : F3_1<2, 0b111000,
602                    (outs), (ins MEMrr:$ptr, variable_ops),
603                    "call $ptr",
604                    [(call ADDRrr:$ptr)]>;
605  def JMPLri : F3_2<2, 0b111000,
606                    (outs), (ins MEMri:$ptr, variable_ops),
607                    "call $ptr",
608                    [(call ADDRri:$ptr)]>;
609}
610
611// Section B.28 - Read State Register Instructions
612let Uses = [Y] in
613  def RDY : F3_1<2, 0b101000,
614                 (outs IntRegs:$dst), (ins),
615                 "rd %y, $dst", []>;
616
617// Section B.29 - Write State Register Instructions
618let Defs = [Y] in {
619  def WRYrr : F3_1<2, 0b110000,
620                   (outs), (ins IntRegs:$b, IntRegs:$c),
621                   "wr $b, $c, %y", []>;
622  def WRYri : F3_2<2, 0b110000,
623                   (outs), (ins IntRegs:$b, i32imm:$c),
624                   "wr $b, $c, %y", []>;
625}
626// Convert Integer to Floating-point Instructions, p. 141
627def FITOS : F3_3<2, 0b110100, 0b011000100,
628                 (outs FPRegs:$dst), (ins FPRegs:$src),
629                 "fitos $src, $dst",
630                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
631def FITOD : F3_3<2, 0b110100, 0b011001000,
632                 (outs DFPRegs:$dst), (ins FPRegs:$src),
633                 "fitod $src, $dst",
634                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
635def FITOQ : F3_3<2, 0b110100, 0b011001100,
636                 (outs QFPRegs:$dst), (ins FPRegs:$src),
637                 "fitoq $src, $dst",
638                 [(set QFPRegs:$dst, (SPitof FPRegs:$src))]>,
639                 Requires<[HasHardQuad]>;
640
641// Convert Floating-point to Integer Instructions, p. 142
642def FSTOI : F3_3<2, 0b110100, 0b011010001,
643                 (outs FPRegs:$dst), (ins FPRegs:$src),
644                 "fstoi $src, $dst",
645                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
646def FDTOI : F3_3<2, 0b110100, 0b011010010,
647                 (outs FPRegs:$dst), (ins DFPRegs:$src),
648                 "fdtoi $src, $dst",
649                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
650def FQTOI : F3_3<2, 0b110100, 0b011010011,
651                 (outs FPRegs:$dst), (ins QFPRegs:$src),
652                 "fqtoi $src, $dst",
653                 [(set FPRegs:$dst, (SPftoi QFPRegs:$src))]>,
654                 Requires<[HasHardQuad]>;
655
656// Convert between Floating-point Formats Instructions, p. 143
657def FSTOD : F3_3<2, 0b110100, 0b011001001,
658                 (outs DFPRegs:$dst), (ins FPRegs:$src),
659                 "fstod $src, $dst",
660                 [(set f64:$dst, (fextend f32:$src))]>;
661def FSTOQ : F3_3<2, 0b110100, 0b011001101,
662                 (outs QFPRegs:$dst), (ins FPRegs:$src),
663                 "fstoq $src, $dst",
664                 [(set f128:$dst, (fextend f32:$src))]>,
665                 Requires<[HasHardQuad]>;
666def FDTOS : F3_3<2, 0b110100, 0b011000110,
667                 (outs FPRegs:$dst), (ins DFPRegs:$src),
668                 "fdtos $src, $dst",
669                 [(set f32:$dst, (fround f64:$src))]>;
670def FDTOQ : F3_3<2, 0b110100, 0b01101110,
671                 (outs QFPRegs:$dst), (ins DFPRegs:$src),
672                 "fdtoq $src, $dst",
673                 [(set f128:$dst, (fextend f64:$src))]>,
674                 Requires<[HasHardQuad]>;
675def FQTOS : F3_3<2, 0b110100, 0b011000111,
676                 (outs FPRegs:$dst), (ins QFPRegs:$src),
677                 "fqtos $src, $dst",
678                 [(set f32:$dst, (fround f128:$src))]>,
679                 Requires<[HasHardQuad]>;
680def FQTOD : F3_3<2, 0b110100, 0b011001011,
681                 (outs DFPRegs:$dst), (ins QFPRegs:$src),
682                 "fqtod $src, $dst",
683                 [(set f64:$dst, (fround f128:$src))]>,
684                 Requires<[HasHardQuad]>;
685
686// Floating-point Move Instructions, p. 144
687def FMOVS : F3_3<2, 0b110100, 0b000000001,
688                 (outs FPRegs:$dst), (ins FPRegs:$src),
689                 "fmovs $src, $dst", []>;
690def FNEGS : F3_3<2, 0b110100, 0b000000101,
691                 (outs FPRegs:$dst), (ins FPRegs:$src),
692                 "fnegs $src, $dst",
693                 [(set f32:$dst, (fneg f32:$src))]>;
694def FABSS : F3_3<2, 0b110100, 0b000001001,
695                 (outs FPRegs:$dst), (ins FPRegs:$src),
696                 "fabss $src, $dst",
697                 [(set f32:$dst, (fabs f32:$src))]>;
698
699
700// Floating-point Square Root Instructions, p.145
701def FSQRTS : F3_3<2, 0b110100, 0b000101001,
702                  (outs FPRegs:$dst), (ins FPRegs:$src),
703                  "fsqrts $src, $dst",
704                  [(set f32:$dst, (fsqrt f32:$src))]>;
705def FSQRTD : F3_3<2, 0b110100, 0b000101010,
706                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
707                  "fsqrtd $src, $dst",
708                  [(set f64:$dst, (fsqrt f64:$src))]>;
709def FSQRTQ : F3_3<2, 0b110100, 0b000101011,
710                  (outs QFPRegs:$dst), (ins QFPRegs:$src),
711                  "fsqrtq $src, $dst",
712                  [(set f128:$dst, (fsqrt f128:$src))]>,
713                  Requires<[HasHardQuad]>;
714
715
716
717// Floating-point Add and Subtract Instructions, p. 146
718def FADDS  : F3_3<2, 0b110100, 0b001000001,
719                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
720                  "fadds $src1, $src2, $dst",
721                  [(set f32:$dst, (fadd f32:$src1, f32:$src2))]>;
722def FADDD  : F3_3<2, 0b110100, 0b001000010,
723                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
724                  "faddd $src1, $src2, $dst",
725                  [(set f64:$dst, (fadd f64:$src1, f64:$src2))]>;
726def FADDQ  : F3_3<2, 0b110100, 0b001000011,
727                  (outs QFPRegs:$dst), (ins QFPRegs:$src1, QFPRegs:$src2),
728                  "faddq $src1, $src2, $dst",
729                  [(set f128:$dst, (fadd f128:$src1, f128:$src2))]>,
730                  Requires<[HasHardQuad]>;
731
732def FSUBS  : F3_3<2, 0b110100, 0b001000101,
733                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
734                  "fsubs $src1, $src2, $dst",
735                  [(set f32:$dst, (fsub f32:$src1, f32:$src2))]>;
736def FSUBD  : F3_3<2, 0b110100, 0b001000110,
737                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
738                  "fsubd $src1, $src2, $dst",
739                  [(set f64:$dst, (fsub f64:$src1, f64:$src2))]>;
740def FSUBQ  : F3_3<2, 0b110100, 0b001000111,
741                  (outs QFPRegs:$dst), (ins QFPRegs:$src1, QFPRegs:$src2),
742                  "fsubq $src1, $src2, $dst",
743                  [(set f128:$dst, (fsub f128:$src1, f128:$src2))]>,
744                  Requires<[HasHardQuad]>;
745
746
747// Floating-point Multiply and Divide Instructions, p. 147
748def FMULS  : F3_3<2, 0b110100, 0b001001001,
749                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
750                  "fmuls $src1, $src2, $dst",
751                  [(set f32:$dst, (fmul f32:$src1, f32:$src2))]>;
752def FMULD  : F3_3<2, 0b110100, 0b001001010,
753                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
754                  "fmuld $src1, $src2, $dst",
755                  [(set f64:$dst, (fmul f64:$src1, f64:$src2))]>;
756def FMULQ  : F3_3<2, 0b110100, 0b001001011,
757                  (outs QFPRegs:$dst), (ins QFPRegs:$src1, QFPRegs:$src2),
758                  "fmulq $src1, $src2, $dst",
759                  [(set f128:$dst, (fmul f128:$src1, f128:$src2))]>,
760                  Requires<[HasHardQuad]>;
761
762def FSMULD : F3_3<2, 0b110100, 0b001101001,
763                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
764                  "fsmuld $src1, $src2, $dst",
765                  [(set f64:$dst, (fmul (fextend f32:$src1),
766                                        (fextend f32:$src2)))]>;
767def FDMULQ : F3_3<2, 0b110100, 0b001101110,
768                  (outs QFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
769                  "fdmulq $src1, $src2, $dst",
770                  [(set f128:$dst, (fmul (fextend f64:$src1),
771                                         (fextend f64:$src2)))]>,
772                  Requires<[HasHardQuad]>;
773
774def FDIVS  : F3_3<2, 0b110100, 0b001001101,
775                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
776                 "fdivs $src1, $src2, $dst",
777                 [(set f32:$dst, (fdiv f32:$src1, f32:$src2))]>;
778def FDIVD  : F3_3<2, 0b110100, 0b001001110,
779                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
780                 "fdivd $src1, $src2, $dst",
781                 [(set f64:$dst, (fdiv f64:$src1, f64:$src2))]>;
782def FDIVQ  : F3_3<2, 0b110100, 0b001001111,
783                 (outs QFPRegs:$dst), (ins QFPRegs:$src1, QFPRegs:$src2),
784                 "fdivq $src1, $src2, $dst",
785                 [(set f128:$dst, (fdiv f128:$src1, f128:$src2))]>,
786                 Requires<[HasHardQuad]>;
787
788// Floating-point Compare Instructions, p. 148
789// Note: the 2nd template arg is different for these guys.
790// Note 2: the result of a FCMP is not available until the 2nd cycle
791// after the instr is retired, but there is no interlock. This behavior
792// is modelled with a forced noop after the instruction.
793let Defs = [FCC] in {
794  def FCMPS  : F3_3<2, 0b110101, 0b001010001,
795                   (outs), (ins FPRegs:$src1, FPRegs:$src2),
796                   "fcmps $src1, $src2\n\tnop",
797                   [(SPcmpfcc f32:$src1, f32:$src2)]>;
798  def FCMPD  : F3_3<2, 0b110101, 0b001010010,
799                   (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
800                   "fcmpd $src1, $src2\n\tnop",
801                   [(SPcmpfcc f64:$src1, f64:$src2)]>;
802  def FCMPQ  : F3_3<2, 0b110101, 0b001010011,
803                   (outs), (ins QFPRegs:$src1, QFPRegs:$src2),
804                   "fcmpq $src1, $src2\n\tnop",
805                   [(SPcmpfcc f128:$src1, f128:$src2)]>,
806                   Requires<[HasHardQuad]>;
807}
808
809//===----------------------------------------------------------------------===//
810// V9 Instructions
811//===----------------------------------------------------------------------===//
812
813// V9 Conditional Moves.
814let Predicates = [HasV9], Constraints = "$f = $rd" in {
815  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
816  // FIXME: Add instruction encodings for the JIT some day.
817  let Uses = [ICC] in {
818    def MOVICCrr
819      : Pseudo<(outs IntRegs:$rd), (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cc),
820               "mov$cc %icc, $rs2, $rd",
821               [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cc))]>;
822    def MOVICCri
823      : Pseudo<(outs IntRegs:$rd), (ins i32imm:$i, IntRegs:$f, CCOp:$cc),
824               "mov$cc %icc, $i, $rd",
825               [(set i32:$rd, (SPselecticc simm11:$i, i32:$f, imm:$cc))]>;
826  }
827
828  let Uses = [FCC] in {
829    def MOVFCCrr
830      : Pseudo<(outs IntRegs:$rd), (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cc),
831               "mov$cc %fcc0, $rs2, $rd",
832               [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cc))]>;
833    def MOVFCCri
834      : Pseudo<(outs IntRegs:$rd), (ins i32imm:$i, IntRegs:$f, CCOp:$cc),
835               "mov$cc %fcc0, $i, $rd",
836               [(set i32:$rd, (SPselectfcc simm11:$i, i32:$f, imm:$cc))]>;
837  }
838
839  let Uses = [ICC] in {
840    def FMOVS_ICC
841      : Pseudo<(outs FPRegs:$rd), (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cc),
842               "fmovs$cc %icc, $rs2, $rd",
843               [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cc))]>;
844    def FMOVD_ICC
845      : Pseudo<(outs DFPRegs:$rd), (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cc),
846               "fmovd$cc %icc, $rs2, $rd",
847               [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cc))]>;
848  }
849
850  let Uses = [FCC] in {
851    def FMOVS_FCC
852      : Pseudo<(outs FPRegs:$rd), (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cc),
853               "fmovs$cc %fcc0, $rs2, $rd",
854               [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cc))]>;
855    def FMOVD_FCC
856      : Pseudo<(outs DFPRegs:$rd), (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cc),
857               "fmovd$cc %fcc0, $rs2, $rd",
858               [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cc))]>;
859  }
860
861}
862
863// Floating-Point Move Instructions, p. 164 of the V9 manual.
864let Predicates = [HasV9] in {
865  def FMOVD : F3_3<2, 0b110100, 0b000000010,
866                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
867                   "fmovd $src, $dst", []>;
868  def FMOVQ : F3_3<2, 0b110100, 0b000000011,
869                   (outs QFPRegs:$dst), (ins QFPRegs:$src),
870                   "fmovq $src, $dst", []>,
871                   Requires<[HasHardQuad]>;
872  def FNEGD : F3_3<2, 0b110100, 0b000000110,
873                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
874                   "fnegd $src, $dst",
875                   [(set f64:$dst, (fneg f64:$src))]>;
876  def FNEGQ : F3_3<2, 0b110100, 0b000000111,
877                   (outs QFPRegs:$dst), (ins QFPRegs:$src),
878                   "fnegq $src, $dst",
879                   [(set f128:$dst, (fneg f128:$src))]>,
880                   Requires<[HasHardQuad]>;
881  def FABSD : F3_3<2, 0b110100, 0b000001010,
882                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
883                   "fabsd $src, $dst",
884                   [(set f64:$dst, (fabs f64:$src))]>;
885  def FABSQ : F3_3<2, 0b110100, 0b000001011,
886                   (outs QFPRegs:$dst), (ins QFPRegs:$src),
887                   "fabsq $src, $dst",
888                   [(set f128:$dst, (fabs f128:$src))]>,
889                   Requires<[HasHardQuad]>;
890}
891
892// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
893// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
894def POPCrr : F3_1<2, 0b101110,
895                  (outs IntRegs:$dst), (ins IntRegs:$src),
896                  "popc $src, $dst", []>, Requires<[HasV9]>;
897def : Pat<(ctpop i32:$src),
898          (POPCrr (SLLri $src, 0))>;
899
900//===----------------------------------------------------------------------===//
901// Non-Instruction Patterns
902//===----------------------------------------------------------------------===//
903
904// Small immediates.
905def : Pat<(i32 simm13:$val),
906          (ORri (i32 G0), imm:$val)>;
907// Arbitrary immediates.
908def : Pat<(i32 imm:$val),
909          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
910
911
912// Global addresses, constant pool entries
913def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
914def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
915def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
916def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
917
918// Blockaddress
919def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
920def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
921
922// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
923def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
924def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
925def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
926                        (ADDri $r, tblockaddress:$in)>;
927
928// Calls:
929def : Pat<(call tglobaladdr:$dst),
930          (CALL tglobaladdr:$dst)>;
931def : Pat<(call texternalsym:$dst),
932          (CALL texternalsym:$dst)>;
933
934// Map integer extload's to zextloads.
935def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
936def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
937def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
938def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
939def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
940def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
941
942// zextload bool -> zextload byte
943def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
944def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
945
946// store 0, addr -> store %g0, addr
947def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
948def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
949
950include "SparcInstr64Bit.td"
951