SparcInstrInfo.td revision 8534e9998c53efae49e4555ba394f39808fb83e0
1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// True when generating 32-bit code.
25def Is32Bit : Predicate<"!Subtarget.is64Bit()">;
26
27// True when generating 64-bit code. This also implies HasV9.
28def Is64Bit : Predicate<"Subtarget.is64Bit()">;
29
30// HasV9 - This predicate is true when the target processor supports V9
31// instructions.  Note that the machine may be running in 32-bit mode.
32def HasV9   : Predicate<"Subtarget.isV9()">;
33
34// HasNoV9 - This predicate is true when the target doesn't have V9
35// instructions.  Use of this is just a hack for the isel not having proper
36// costs for V8 instructions that are more expensive than their V9 ones.
37def HasNoV9 : Predicate<"!Subtarget.isV9()">;
38
39// HasVIS - This is true when the target processor has VIS extensions.
40def HasVIS : Predicate<"Subtarget.isVIS()">;
41
42// UseDeprecatedInsts - This predicate is true when the target processor is a
43// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
44// to use when appropriate.  In either of these cases, the instruction selector
45// will pick deprecated instructions.
46def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
47
48//===----------------------------------------------------------------------===//
49// Instruction Pattern Stuff
50//===----------------------------------------------------------------------===//
51
52def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
53
54def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
55
56def LO10 : SDNodeXForm<imm, [{
57  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
58                                   MVT::i32);
59}]>;
60
61def HI22 : SDNodeXForm<imm, [{
62  // Transformation function: shift the immediate value down into the low bits.
63  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
64}]>;
65
66def SETHIimm : PatLeaf<(imm), [{
67  return (((unsigned)N->getZExtValue() >> 10) << 10) ==
68         (unsigned)N->getZExtValue();
69}], HI22>;
70
71// Addressing modes.
72def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
73def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
74
75// Address operands
76def MEMrr : Operand<iPTR> {
77  let PrintMethod = "printMemOperand";
78  let MIOperandInfo = (ops ptr_rc, ptr_rc);
79}
80def MEMri : Operand<iPTR> {
81  let PrintMethod = "printMemOperand";
82  let MIOperandInfo = (ops ptr_rc, i32imm);
83}
84
85// Branch targets have OtherVT type.
86def brtarget : Operand<OtherVT>;
87def calltarget : Operand<i32>;
88
89// Operand for printing out a condition code.
90let PrintMethod = "printCCOperand" in
91  def CCOp : Operand<i32>;
92
93def SDTSPcmpfcc : 
94SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
95def SDTSPbrcc : 
96SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
97def SDTSPselectcc :
98SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
99def SDTSPFTOI :
100SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
101def SDTSPITOF :
102SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
103
104def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutGlue]>;
105def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
106def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
107def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
108def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
109
110def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
111def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
112
113def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
114def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
115
116def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
117def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
118
119//  These are target-independent nodes, but have target-specific formats.
120def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
121def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
122                                        SDTCisVT<1, i32> ]>;
123
124def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
125                           [SDNPHasChain, SDNPOutGlue]>;
126def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
127                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
128
129def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
130def call          : SDNode<"SPISD::CALL", SDT_SPCall,
131                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
132                            SDNPVariadic]>;
133
134def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
135def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
136                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
137
138def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
139                           [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
140
141def getPCX        : Operand<i32> {
142  let PrintMethod = "printGetPCX";
143}
144
145//===----------------------------------------------------------------------===//
146// SPARC Flag Conditions
147//===----------------------------------------------------------------------===//
148
149// Note that these values must be kept in sync with the CCOp::CondCode enum
150// values.
151class ICC_VAL<int N> : PatLeaf<(i32 N)>;
152def ICC_NE  : ICC_VAL< 9>;  // Not Equal
153def ICC_E   : ICC_VAL< 1>;  // Equal
154def ICC_G   : ICC_VAL<10>;  // Greater
155def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
156def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
157def ICC_L   : ICC_VAL< 3>;  // Less
158def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
159def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
160def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
161def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
162def ICC_POS : ICC_VAL<14>;  // Positive
163def ICC_NEG : ICC_VAL< 6>;  // Negative
164def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
165def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
166
167class FCC_VAL<int N> : PatLeaf<(i32 N)>;
168def FCC_U   : FCC_VAL<23>;  // Unordered
169def FCC_G   : FCC_VAL<22>;  // Greater
170def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
171def FCC_L   : FCC_VAL<20>;  // Less
172def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
173def FCC_LG  : FCC_VAL<18>;  // Less or Greater
174def FCC_NE  : FCC_VAL<17>;  // Not Equal
175def FCC_E   : FCC_VAL<25>;  // Equal
176def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
177def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
178def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
179def FCC_LE  : FCC_VAL<27>;  // Less or Equal
180def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
181def FCC_O   : FCC_VAL<29>;  // Ordered
182
183//===----------------------------------------------------------------------===//
184// Instruction Class Templates
185//===----------------------------------------------------------------------===//
186
187/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
188multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
189  def rr  : F3_1<2, Op3Val, 
190                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
191                 !strconcat(OpcStr, " $b, $c, $dst"),
192                 [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
193  def ri  : F3_2<2, Op3Val,
194                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
195                 !strconcat(OpcStr, " $b, $c, $dst"),
196                 [(set i32:$dst, (OpNode i32:$b, (i32 simm13:$c)))]>;
197}
198
199/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
200/// pattern.
201multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
202  def rr  : F3_1<2, Op3Val, 
203                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
204                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
205  def ri  : F3_2<2, Op3Val,
206                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
207                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
208}
209
210//===----------------------------------------------------------------------===//
211// Instructions
212//===----------------------------------------------------------------------===//
213
214// Pseudo instructions.
215class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
216   : InstSP<outs, ins, asmstr, pattern>;
217
218// GETPCX for PIC
219let Defs = [O7] in {
220  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
221}
222
223let Defs = [O6], Uses = [O6] in {
224def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
225                               "!ADJCALLSTACKDOWN $amt",
226                               [(callseq_start timm:$amt)]>;
227def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
228                            "!ADJCALLSTACKUP $amt1",
229                            [(callseq_end timm:$amt1, timm:$amt2)]>;
230}
231
232let hasSideEffects = 1, mayStore = 1 in {
233  let rd = 0, rs1 = 0, rs2 = 0 in
234    def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
235                      "flushw",
236                      [(flushw)]>, Requires<[HasV9]>;
237  let rd = 0, rs1 = 1, simm13 = 3 in
238    def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
239                   "ta 3",
240                   [(flushw)]>;
241}
242
243def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val),
244                "unimp $val", []>;
245
246// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
247// fpmover pass.
248let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
249  def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
250                      "!FpMOVD $src, $dst", []>;
251  def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
252                      "!FpNEGD $src, $dst",
253                      [(set f64:$dst, (fneg f64:$src))]>;
254  def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
255                      "!FpABSD $src, $dst",
256                      [(set f64:$dst, (fabs f64:$src))]>;
257}
258
259// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
260// instruction selection into a branch sequence.  This has to handle all
261// permutations of selection between i32/f32/f64 on ICC and FCC.
262  // Expanded after instruction selection.
263let Uses = [ICC], usesCustomInserter = 1 in { 
264  def SELECT_CC_Int_ICC
265   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
266            "; SELECT_CC_Int_ICC PSEUDO!",
267            [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
268  def SELECT_CC_FP_ICC
269   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
270            "; SELECT_CC_FP_ICC PSEUDO!",
271            [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
272
273  def SELECT_CC_DFP_ICC
274   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
275            "; SELECT_CC_DFP_ICC PSEUDO!",
276            [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
277}
278
279let usesCustomInserter = 1, Uses = [FCC] in {
280
281  def SELECT_CC_Int_FCC
282   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
283            "; SELECT_CC_Int_FCC PSEUDO!",
284            [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
285
286  def SELECT_CC_FP_FCC
287   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
288            "; SELECT_CC_FP_FCC PSEUDO!",
289            [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
290  def SELECT_CC_DFP_FCC
291   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
292            "; SELECT_CC_DFP_FCC PSEUDO!",
293            [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
294}
295
296
297// Section A.3 - Synthetic Instructions, p. 85
298// special cases of JMPL:
299let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
300  let rd = O7.Num, rs1 = G0.Num in
301    def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
302                   "jmp %o7+$val", [(retflag simm13:$val)]>;
303
304  let rd = I7.Num, rs1 = G0.Num in
305    def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
306                  "jmp %i7+$val", []>;
307}
308
309// Section B.1 - Load Integer Instructions, p. 90
310def LDSBrr : F3_1<3, 0b001001,
311                  (outs IntRegs:$dst), (ins MEMrr:$addr),
312                  "ldsb [$addr], $dst",
313                  [(set i32:$dst, (sextloadi8 ADDRrr:$addr))]>;
314def LDSBri : F3_2<3, 0b001001,
315                  (outs IntRegs:$dst), (ins MEMri:$addr),
316                  "ldsb [$addr], $dst",
317                  [(set i32:$dst, (sextloadi8 ADDRri:$addr))]>;
318def LDSHrr : F3_1<3, 0b001010,
319                  (outs IntRegs:$dst), (ins MEMrr:$addr),
320                  "ldsh [$addr], $dst",
321                  [(set i32:$dst, (sextloadi16 ADDRrr:$addr))]>;
322def LDSHri : F3_2<3, 0b001010,
323                  (outs IntRegs:$dst), (ins MEMri:$addr),
324                  "ldsh [$addr], $dst",
325                  [(set i32:$dst, (sextloadi16 ADDRri:$addr))]>;
326def LDUBrr : F3_1<3, 0b000001,
327                  (outs IntRegs:$dst), (ins MEMrr:$addr),
328                  "ldub [$addr], $dst",
329                  [(set i32:$dst, (zextloadi8 ADDRrr:$addr))]>;
330def LDUBri : F3_2<3, 0b000001,
331                  (outs IntRegs:$dst), (ins MEMri:$addr),
332                  "ldub [$addr], $dst",
333                  [(set i32:$dst, (zextloadi8 ADDRri:$addr))]>;
334def LDUHrr : F3_1<3, 0b000010,
335                  (outs IntRegs:$dst), (ins MEMrr:$addr),
336                  "lduh [$addr], $dst",
337                  [(set i32:$dst, (zextloadi16 ADDRrr:$addr))]>;
338def LDUHri : F3_2<3, 0b000010,
339                  (outs IntRegs:$dst), (ins MEMri:$addr),
340                  "lduh [$addr], $dst",
341                  [(set i32:$dst, (zextloadi16 ADDRri:$addr))]>;
342def LDrr   : F3_1<3, 0b000000,
343                  (outs IntRegs:$dst), (ins MEMrr:$addr),
344                  "ld [$addr], $dst",
345                  [(set i32:$dst, (load ADDRrr:$addr))]>;
346def LDri   : F3_2<3, 0b000000,
347                  (outs IntRegs:$dst), (ins MEMri:$addr),
348                  "ld [$addr], $dst",
349                  [(set i32:$dst, (load ADDRri:$addr))]>;
350
351// Section B.2 - Load Floating-point Instructions, p. 92
352def LDFrr  : F3_1<3, 0b100000,
353                  (outs FPRegs:$dst), (ins MEMrr:$addr),
354                  "ld [$addr], $dst",
355                  [(set f32:$dst, (load ADDRrr:$addr))]>;
356def LDFri  : F3_2<3, 0b100000,
357                  (outs FPRegs:$dst), (ins MEMri:$addr),
358                  "ld [$addr], $dst",
359                  [(set f32:$dst, (load ADDRri:$addr))]>;
360def LDDFrr : F3_1<3, 0b100011,
361                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
362                  "ldd [$addr], $dst",
363                  [(set f64:$dst, (load ADDRrr:$addr))]>;
364def LDDFri : F3_2<3, 0b100011,
365                  (outs DFPRegs:$dst), (ins MEMri:$addr),
366                  "ldd [$addr], $dst",
367                  [(set f64:$dst, (load ADDRri:$addr))]>;
368
369// Section B.4 - Store Integer Instructions, p. 95
370def STBrr : F3_1<3, 0b000101,
371                 (outs), (ins MEMrr:$addr, IntRegs:$src),
372                 "stb $src, [$addr]",
373                 [(truncstorei8 i32:$src, ADDRrr:$addr)]>;
374def STBri : F3_2<3, 0b000101,
375                 (outs), (ins MEMri:$addr, IntRegs:$src),
376                 "stb $src, [$addr]",
377                 [(truncstorei8 i32:$src, ADDRri:$addr)]>;
378def STHrr : F3_1<3, 0b000110,
379                 (outs), (ins MEMrr:$addr, IntRegs:$src),
380                 "sth $src, [$addr]",
381                 [(truncstorei16 i32:$src, ADDRrr:$addr)]>;
382def STHri : F3_2<3, 0b000110,
383                 (outs), (ins MEMri:$addr, IntRegs:$src),
384                 "sth $src, [$addr]",
385                 [(truncstorei16 i32:$src, ADDRri:$addr)]>;
386def STrr  : F3_1<3, 0b000100,
387                 (outs), (ins MEMrr:$addr, IntRegs:$src),
388                 "st $src, [$addr]",
389                 [(store i32:$src, ADDRrr:$addr)]>;
390def STri  : F3_2<3, 0b000100,
391                 (outs), (ins MEMri:$addr, IntRegs:$src),
392                 "st $src, [$addr]",
393                 [(store i32:$src, ADDRri:$addr)]>;
394
395// Section B.5 - Store Floating-point Instructions, p. 97
396def STFrr   : F3_1<3, 0b100100,
397                   (outs), (ins MEMrr:$addr, FPRegs:$src),
398                   "st $src, [$addr]",
399                   [(store f32:$src, ADDRrr:$addr)]>;
400def STFri   : F3_2<3, 0b100100,
401                   (outs), (ins MEMri:$addr, FPRegs:$src),
402                   "st $src, [$addr]",
403                   [(store f32:$src, ADDRri:$addr)]>;
404def STDFrr  : F3_1<3, 0b100111,
405                   (outs), (ins MEMrr:$addr, DFPRegs:$src),
406                   "std  $src, [$addr]",
407                   [(store f64:$src, ADDRrr:$addr)]>;
408def STDFri  : F3_2<3, 0b100111,
409                   (outs), (ins MEMri:$addr, DFPRegs:$src),
410                   "std $src, [$addr]",
411                   [(store f64:$src, ADDRri:$addr)]>;
412
413// Section B.9 - SETHI Instruction, p. 104
414def SETHIi: F2_1<0b100,
415                 (outs IntRegs:$dst), (ins i32imm:$src),
416                 "sethi $src, $dst",
417                 [(set i32:$dst, SETHIimm:$src)]>;
418
419// Section B.10 - NOP Instruction, p. 105
420// (It's a special case of SETHI)
421let rd = 0, imm22 = 0 in
422  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
423
424// Section B.11 - Logical Instructions, p. 106
425defm AND    : F3_12<"and", 0b000001, and>;
426
427def ANDNrr  : F3_1<2, 0b000101,
428                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
429                   "andn $b, $c, $dst",
430                   [(set i32:$dst, (and i32:$b, (not i32:$c)))]>;
431def ANDNri  : F3_2<2, 0b000101,
432                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
433                   "andn $b, $c, $dst", []>;
434
435defm OR     : F3_12<"or", 0b000010, or>;
436
437def ORNrr   : F3_1<2, 0b000110,
438                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
439                   "orn $b, $c, $dst",
440                   [(set i32:$dst, (or i32:$b, (not i32:$c)))]>;
441def ORNri   : F3_2<2, 0b000110,
442                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
443                   "orn $b, $c, $dst", []>;
444defm XOR    : F3_12<"xor", 0b000011, xor>;
445
446def XNORrr  : F3_1<2, 0b000111,
447                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
448                   "xnor $b, $c, $dst",
449                   [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
450def XNORri  : F3_2<2, 0b000111,
451                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
452                   "xnor $b, $c, $dst", []>;
453
454// Section B.12 - Shift Instructions, p. 107
455defm SLL : F3_12<"sll", 0b100101, shl>;
456defm SRL : F3_12<"srl", 0b100110, srl>;
457defm SRA : F3_12<"sra", 0b100111, sra>;
458
459// Section B.13 - Add Instructions, p. 108
460defm ADD   : F3_12<"add", 0b000000, add>;
461
462// "LEA" forms of add (patterns to make tblgen happy)
463def LEA_ADDri   : F3_2<2, 0b000000,
464                   (outs IntRegs:$dst), (ins MEMri:$addr),
465                   "add ${addr:arith}, $dst",
466                   [(set i32:$dst, ADDRri:$addr)]>;
467
468let Defs = [ICC] in                   
469  defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
470
471let Uses = [ICC] in
472  defm ADDX  : F3_12<"addx", 0b001000, adde>;
473
474// Section B.15 - Subtract Instructions, p. 110
475defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
476let Uses = [ICC] in 
477  defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
478
479let Defs = [ICC] in 
480  defm SUBCC  : F3_12  <"subcc", 0b010100, SPcmpicc>;
481
482let Uses = [ICC], Defs = [ICC] in
483  def SUBXCCrr: F3_1<2, 0b011100, 
484                (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
485                "subxcc $b, $c, $dst", []>;
486
487
488// Section B.18 - Multiply Instructions, p. 113
489let Defs = [Y] in {
490  defm UMUL : F3_12np<"umul", 0b001010>;
491  defm SMUL : F3_12  <"smul", 0b001011, mul>;
492}
493
494// Section B.19 - Divide Instructions, p. 115
495let Defs = [Y] in {
496  defm UDIV : F3_12np<"udiv", 0b001110>;
497  defm SDIV : F3_12np<"sdiv", 0b001111>;
498}
499
500// Section B.20 - SAVE and RESTORE, p. 117
501defm SAVE    : F3_12np<"save"   , 0b111100>;
502defm RESTORE : F3_12np<"restore", 0b111101>;
503
504// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
505
506// conditional branch class:
507class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
508 : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
509  let isBranch = 1;
510  let isTerminator = 1;
511  let hasDelaySlot = 1;
512}
513
514let isBarrier = 1 in
515  def BA   : BranchSP<0b1000, (ins brtarget:$dst),
516                      "ba $dst",
517                      [(br bb:$dst)]>;
518
519// FIXME: the encoding for the JIT should look at the condition field.
520let Uses = [ICC] in
521  def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
522                         "b$cc $dst",
523                        [(SPbricc bb:$dst, imm:$cc)]>;
524
525
526// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
527
528// floating-point conditional branch class:
529class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
530 : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
531  let isBranch = 1;
532  let isTerminator = 1;
533  let hasDelaySlot = 1;
534}
535
536// FIXME: the encoding for the JIT should look at the condition field.
537let Uses = [FCC] in
538  def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
539                              "fb$cc $dst",
540                              [(SPbrfcc bb:$dst, imm:$cc)]>;
541
542
543// Section B.24 - Call and Link Instruction, p. 125
544// This is the only Format 1 instruction
545let Uses = [O6],
546    hasDelaySlot = 1, isCall = 1,
547    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
548    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15,
549        ICC, FCC, Y] in {
550  def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
551                    "call $dst", []> {
552    bits<30> disp;
553    let op = 1;
554    let Inst{29-0} = disp;
555  }
556  
557  // indirect calls
558  def JMPLrr : F3_1<2, 0b111000,
559                    (outs), (ins MEMrr:$ptr, variable_ops),
560                    "call $ptr",
561                    [(call ADDRrr:$ptr)]>;
562  def JMPLri : F3_2<2, 0b111000,
563                    (outs), (ins MEMri:$ptr, variable_ops),
564                    "call $ptr",
565                    [(call ADDRri:$ptr)]>;
566}
567
568// Section B.28 - Read State Register Instructions
569let Uses = [Y] in 
570  def RDY : F3_1<2, 0b101000,
571                 (outs IntRegs:$dst), (ins),
572                 "rd %y, $dst", []>;
573
574// Section B.29 - Write State Register Instructions
575let Defs = [Y] in {
576  def WRYrr : F3_1<2, 0b110000,
577                   (outs), (ins IntRegs:$b, IntRegs:$c),
578                   "wr $b, $c, %y", []>;
579  def WRYri : F3_2<2, 0b110000,
580                   (outs), (ins IntRegs:$b, i32imm:$c),
581                   "wr $b, $c, %y", []>;
582}
583// Convert Integer to Floating-point Instructions, p. 141
584def FITOS : F3_3<2, 0b110100, 0b011000100,
585                 (outs FPRegs:$dst), (ins FPRegs:$src),
586                 "fitos $src, $dst",
587                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
588def FITOD : F3_3<2, 0b110100, 0b011001000, 
589                 (outs DFPRegs:$dst), (ins FPRegs:$src),
590                 "fitod $src, $dst",
591                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
592
593// Convert Floating-point to Integer Instructions, p. 142
594def FSTOI : F3_3<2, 0b110100, 0b011010001,
595                 (outs FPRegs:$dst), (ins FPRegs:$src),
596                 "fstoi $src, $dst",
597                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
598def FDTOI : F3_3<2, 0b110100, 0b011010010,
599                 (outs FPRegs:$dst), (ins DFPRegs:$src),
600                 "fdtoi $src, $dst",
601                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
602
603// Convert between Floating-point Formats Instructions, p. 143
604def FSTOD : F3_3<2, 0b110100, 0b011001001, 
605                 (outs DFPRegs:$dst), (ins FPRegs:$src),
606                 "fstod $src, $dst",
607                 [(set f64:$dst, (fextend f32:$src))]>;
608def FDTOS : F3_3<2, 0b110100, 0b011000110,
609                 (outs FPRegs:$dst), (ins DFPRegs:$src),
610                 "fdtos $src, $dst",
611                 [(set f32:$dst, (fround f64:$src))]>;
612
613// Floating-point Move Instructions, p. 144
614def FMOVS : F3_3<2, 0b110100, 0b000000001,
615                 (outs FPRegs:$dst), (ins FPRegs:$src),
616                 "fmovs $src, $dst", []>;
617def FNEGS : F3_3<2, 0b110100, 0b000000101, 
618                 (outs FPRegs:$dst), (ins FPRegs:$src),
619                 "fnegs $src, $dst",
620                 [(set f32:$dst, (fneg f32:$src))]>;
621def FABSS : F3_3<2, 0b110100, 0b000001001, 
622                 (outs FPRegs:$dst), (ins FPRegs:$src),
623                 "fabss $src, $dst",
624                 [(set f32:$dst, (fabs f32:$src))]>;
625
626
627// Floating-point Square Root Instructions, p.145
628def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
629                  (outs FPRegs:$dst), (ins FPRegs:$src),
630                  "fsqrts $src, $dst",
631                  [(set f32:$dst, (fsqrt f32:$src))]>;
632def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
633                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
634                  "fsqrtd $src, $dst",
635                  [(set f64:$dst, (fsqrt f64:$src))]>;
636
637
638
639// Floating-point Add and Subtract Instructions, p. 146
640def FADDS  : F3_3<2, 0b110100, 0b001000001,
641                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
642                  "fadds $src1, $src2, $dst",
643                  [(set f32:$dst, (fadd f32:$src1, f32:$src2))]>;
644def FADDD  : F3_3<2, 0b110100, 0b001000010,
645                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
646                  "faddd $src1, $src2, $dst",
647                  [(set f64:$dst, (fadd f64:$src1, f64:$src2))]>;
648def FSUBS  : F3_3<2, 0b110100, 0b001000101,
649                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
650                  "fsubs $src1, $src2, $dst",
651                  [(set f32:$dst, (fsub f32:$src1, f32:$src2))]>;
652def FSUBD  : F3_3<2, 0b110100, 0b001000110,
653                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
654                  "fsubd $src1, $src2, $dst",
655                  [(set f64:$dst, (fsub f64:$src1, f64:$src2))]>;
656
657// Floating-point Multiply and Divide Instructions, p. 147
658def FMULS  : F3_3<2, 0b110100, 0b001001001,
659                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
660                  "fmuls $src1, $src2, $dst",
661                  [(set f32:$dst, (fmul f32:$src1, f32:$src2))]>;
662def FMULD  : F3_3<2, 0b110100, 0b001001010,
663                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
664                  "fmuld $src1, $src2, $dst",
665                  [(set f64:$dst, (fmul f64:$src1, f64:$src2))]>;
666def FSMULD : F3_3<2, 0b110100, 0b001101001,
667                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
668                  "fsmuld $src1, $src2, $dst",
669                  [(set f64:$dst, (fmul (fextend f32:$src1),
670                                        (fextend f32:$src2)))]>;
671def FDIVS  : F3_3<2, 0b110100, 0b001001101,
672                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
673                 "fdivs $src1, $src2, $dst",
674                 [(set f32:$dst, (fdiv f32:$src1, f32:$src2))]>;
675def FDIVD  : F3_3<2, 0b110100, 0b001001110,
676                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
677                 "fdivd $src1, $src2, $dst",
678                 [(set f64:$dst, (fdiv f64:$src1, f64:$src2))]>;
679
680// Floating-point Compare Instructions, p. 148
681// Note: the 2nd template arg is different for these guys.
682// Note 2: the result of a FCMP is not available until the 2nd cycle
683// after the instr is retired, but there is no interlock. This behavior
684// is modelled with a forced noop after the instruction.
685let Defs = [FCC] in {
686  def FCMPS  : F3_3<2, 0b110101, 0b001010001,
687                   (outs), (ins FPRegs:$src1, FPRegs:$src2),
688                   "fcmps $src1, $src2\n\tnop",
689                   [(SPcmpfcc f32:$src1, f32:$src2)]>;
690  def FCMPD  : F3_3<2, 0b110101, 0b001010010,
691                   (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
692                   "fcmpd $src1, $src2\n\tnop",
693                   [(SPcmpfcc f64:$src1, f64:$src2)]>;
694}
695
696//===----------------------------------------------------------------------===//
697// V9 Instructions
698//===----------------------------------------------------------------------===//
699
700// V9 Conditional Moves.
701let Predicates = [HasV9], Constraints = "$T = $dst" in {
702  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
703  // FIXME: Add instruction encodings for the JIT some day.
704  let Uses = [ICC] in {
705    def MOVICCrr
706      : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
707               "mov$cc %icc, $F, $dst",
708               [(set i32:$dst, (SPselecticc i32:$F, i32:$T, imm:$cc))]>;
709    def MOVICCri
710      : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
711               "mov$cc %icc, $F, $dst",
712               [(set i32:$dst, (SPselecticc simm11:$F, i32:$T, imm:$cc))]>;
713  }
714
715  let Uses = [FCC] in {
716    def MOVFCCrr
717      : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
718               "mov$cc %fcc0, $F, $dst",
719               [(set i32:$dst, (SPselectfcc i32:$F, i32:$T, imm:$cc))]>;
720    def MOVFCCri
721      : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
722               "mov$cc %fcc0, $F, $dst",
723               [(set i32:$dst, (SPselectfcc simm11:$F, i32:$T, imm:$cc))]>;
724  }
725
726  let Uses = [ICC] in {
727    def FMOVS_ICC
728      : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
729               "fmovs$cc %icc, $F, $dst",
730               [(set f32:$dst,
731                           (SPselecticc f32:$F, f32:$T, imm:$cc))]>;
732    def FMOVD_ICC
733      : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
734               "fmovd$cc %icc, $F, $dst",
735               [(set f64:$dst, (SPselecticc f64:$F, f64:$T, imm:$cc))]>;
736  }
737
738  let Uses = [FCC] in {
739    def FMOVS_FCC
740      : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
741               "fmovs$cc %fcc0, $F, $dst",
742               [(set f32:$dst, (SPselectfcc f32:$F, f32:$T, imm:$cc))]>;
743    def FMOVD_FCC
744      : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
745               "fmovd$cc %fcc0, $F, $dst",
746               [(set f64:$dst, (SPselectfcc f64:$F, f64:$T, imm:$cc))]>;
747  }
748
749}
750
751// Floating-Point Move Instructions, p. 164 of the V9 manual.
752let Predicates = [HasV9] in {
753  def FMOVD : F3_3<2, 0b110100, 0b000000010,
754                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
755                   "fmovd $src, $dst", []>;
756  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
757                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
758                   "fnegd $src, $dst",
759                   [(set f64:$dst, (fneg f64:$src))]>;
760  def FABSD : F3_3<2, 0b110100, 0b000001010, 
761                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
762                   "fabsd $src, $dst",
763                   [(set f64:$dst, (fabs f64:$src))]>;
764}
765
766// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
767// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
768def POPCrr : F3_1<2, 0b101110, 
769                  (outs IntRegs:$dst), (ins IntRegs:$src),
770                  "popc $src, $dst", []>, Requires<[HasV9]>;
771def : Pat<(ctpop i32:$src),
772          (POPCrr (SLLri $src, 0))>;
773
774//===----------------------------------------------------------------------===//
775// Non-Instruction Patterns
776//===----------------------------------------------------------------------===//
777
778// Small immediates.
779def : Pat<(i32 simm13:$val),
780          (ORri (i32 G0), imm:$val)>;
781// Arbitrary immediates.
782def : Pat<(i32 imm:$val),
783          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
784
785// subc
786def : Pat<(subc i32:$b, i32:$c),
787          (SUBCCrr $b, $c)>;
788def : Pat<(subc i32:$b, simm13:$val),
789          (SUBCCri $b, imm:$val)>;
790
791// Global addresses, constant pool entries
792def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
793def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
794def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
795def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
796
797// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
798def : Pat<(add i32:$r, (SPlo tglobaladdr:$in)),
799          (ADDri $r, tglobaladdr:$in)>;
800def : Pat<(add i32:$r, (SPlo tconstpool:$in)),
801          (ADDri $r, tconstpool:$in)>;
802
803// Calls: 
804def : Pat<(call tglobaladdr:$dst),
805          (CALL tglobaladdr:$dst)>;
806def : Pat<(call texternalsym:$dst),
807          (CALL texternalsym:$dst)>;
808
809// Map integer extload's to zextloads.
810def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
811def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
812def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
813def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
814def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
815def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
816
817// zextload bool -> zextload byte
818def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
819def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
820
821include "SparcInstr64Bit.td"
822