SparcInstrInfo.td revision 860b64cb1efba110bf81bcc243a6fbaae4c655a4
1//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions.  Note that the machine may be running in 32-bit mode.
26def HasV9   : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions.  Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate.  In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
47
48def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
49
50def LO10 : SDNodeXForm<imm, [{
51  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
52                                   MVT::i32);
53}]>;
54
55def HI22 : SDNodeXForm<imm, [{
56  // Transformation function: shift the immediate value down into the low bits.
57  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
58}]>;
59
60def SETHIimm : PatLeaf<(imm), [{
61  return (((unsigned)N->getZExtValue() >> 10) << 10) ==
62         (unsigned)N->getZExtValue();
63}], HI22>;
64
65// Addressing modes.
66def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
67def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
68
69// Address operands
70def MEMrr : Operand<i32> {
71  let PrintMethod = "printMemOperand";
72  let MIOperandInfo = (ops IntRegs, IntRegs);
73}
74def MEMri : Operand<i32> {
75  let PrintMethod = "printMemOperand";
76  let MIOperandInfo = (ops IntRegs, i32imm);
77}
78
79// Branch targets have OtherVT type.
80def brtarget : Operand<OtherVT>;
81def calltarget : Operand<i32>;
82
83// Operand for printing out a condition code.
84let PrintMethod = "printCCOperand" in
85  def CCOp : Operand<i32>;
86
87def SDTSPcmpfcc : 
88SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
89def SDTSPbrcc : 
90SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
91def SDTSPselectcc :
92SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
93def SDTSPFTOI :
94SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
95def SDTSPITOF :
96SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
97
98def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutGlue]>;
99def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
100def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
101def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
102
103def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
104def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
105
106def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
107def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
108
109def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
110def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
111
112//  These are target-independent nodes, but have target-specific formats.
113def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
114def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
115                                        SDTCisVT<1, i32> ]>;
116
117def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
118                           [SDNPHasChain, SDNPOutGlue]>;
119def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
120                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
121
122def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
123def call          : SDNode<"SPISD::CALL", SDT_SPCall,
124                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
125                            SDNPVariadic]>;
126
127def retflag       : SDNode<"SPISD::RET_FLAG", SDTNone,
128                           [SDNPHasChain, SDNPOptInGlue]>;
129
130def flush         : SDNode<"SPISD::FLUSH", SDTNone,
131                           [SDNPHasChain]>;
132
133def getPCX        : Operand<i32> {
134  let PrintMethod = "printGetPCX";
135}  
136
137//===----------------------------------------------------------------------===//
138// SPARC Flag Conditions
139//===----------------------------------------------------------------------===//
140
141// Note that these values must be kept in sync with the CCOp::CondCode enum
142// values.
143class ICC_VAL<int N> : PatLeaf<(i32 N)>;
144def ICC_NE  : ICC_VAL< 9>;  // Not Equal
145def ICC_E   : ICC_VAL< 1>;  // Equal
146def ICC_G   : ICC_VAL<10>;  // Greater
147def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
148def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
149def ICC_L   : ICC_VAL< 3>;  // Less
150def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
151def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
152def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
153def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
154def ICC_POS : ICC_VAL<14>;  // Positive
155def ICC_NEG : ICC_VAL< 6>;  // Negative
156def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
157def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
158
159class FCC_VAL<int N> : PatLeaf<(i32 N)>;
160def FCC_U   : FCC_VAL<23>;  // Unordered
161def FCC_G   : FCC_VAL<22>;  // Greater
162def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
163def FCC_L   : FCC_VAL<20>;  // Less
164def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
165def FCC_LG  : FCC_VAL<18>;  // Less or Greater
166def FCC_NE  : FCC_VAL<17>;  // Not Equal
167def FCC_E   : FCC_VAL<25>;  // Equal
168def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
169def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
170def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
171def FCC_LE  : FCC_VAL<27>;  // Less or Equal
172def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
173def FCC_O   : FCC_VAL<29>;  // Ordered
174
175//===----------------------------------------------------------------------===//
176// Instruction Class Templates
177//===----------------------------------------------------------------------===//
178
179/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
180multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
181  def rr  : F3_1<2, Op3Val, 
182                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
183                 !strconcat(OpcStr, " $b, $c, $dst"),
184                 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
185  def ri  : F3_2<2, Op3Val,
186                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
187                 !strconcat(OpcStr, " $b, $c, $dst"),
188                 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
189}
190
191/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
192/// pattern.
193multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
194  def rr  : F3_1<2, Op3Val, 
195                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
196                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
197  def ri  : F3_2<2, Op3Val,
198                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
199                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
200}
201
202//===----------------------------------------------------------------------===//
203// Instructions
204//===----------------------------------------------------------------------===//
205
206// Pseudo instructions.
207class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
208   : InstSP<outs, ins, asmstr, pattern>;
209
210// GETPCX for PIC
211let Defs = [O7] in {
212  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
213}
214
215let Defs = [O6], Uses = [O6] in {
216def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
217                               "!ADJCALLSTACKDOWN $amt",
218                               [(callseq_start timm:$amt)]>;
219def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
220                            "!ADJCALLSTACKUP $amt1",
221                            [(callseq_end timm:$amt1, timm:$amt2)]>;
222}
223
224let hasSideEffects = 1, mayStore = 1 in
225  let rs2 = 0 in
226    def FLUSH : F3_1<0b10, 0b101011, (outs), (ins),
227                     "flushw",
228                     [(flush)]>;
229
230// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
231// fpmover pass.
232let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
233  def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
234                      "!FpMOVD $src, $dst", []>;
235  def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
236                      "!FpNEGD $src, $dst",
237                      [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
238  def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
239                      "!FpABSD $src, $dst",
240                      [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
241}
242
243// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
244// instruction selection into a branch sequence.  This has to handle all
245// permutations of selection between i32/f32/f64 on ICC and FCC.
246  // Expanded after instruction selection.
247let Uses = [ICC], usesCustomInserter = 1 in { 
248  def SELECT_CC_Int_ICC
249   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
250            "; SELECT_CC_Int_ICC PSEUDO!",
251            [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
252                                             imm:$Cond))]>;
253  def SELECT_CC_FP_ICC
254   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
255            "; SELECT_CC_FP_ICC PSEUDO!",
256            [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
257                                            imm:$Cond))]>;
258
259  def SELECT_CC_DFP_ICC
260   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
261            "; SELECT_CC_DFP_ICC PSEUDO!",
262            [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
263                                             imm:$Cond))]>;
264}
265
266let usesCustomInserter = 1, Uses = [FCC] in {
267
268  def SELECT_CC_Int_FCC
269   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
270            "; SELECT_CC_Int_FCC PSEUDO!",
271            [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
272                                             imm:$Cond))]>;
273
274  def SELECT_CC_FP_FCC
275   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
276            "; SELECT_CC_FP_FCC PSEUDO!",
277            [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
278                                            imm:$Cond))]>;
279  def SELECT_CC_DFP_FCC
280   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
281            "; SELECT_CC_DFP_FCC PSEUDO!",
282            [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
283                                             imm:$Cond))]>;
284}
285
286
287// Section A.3 - Synthetic Instructions, p. 85
288// special cases of JMPL:
289let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
290  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
291    def RETL: F3_2<2, 0b111000, (outs), (ins), "retl", [(retflag)]>;
292}
293
294// Section B.1 - Load Integer Instructions, p. 90
295def LDSBrr : F3_1<3, 0b001001,
296                  (outs IntRegs:$dst), (ins MEMrr:$addr),
297                  "ldsb [$addr], $dst",
298                  [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
299def LDSBri : F3_2<3, 0b001001,
300                  (outs IntRegs:$dst), (ins MEMri:$addr),
301                  "ldsb [$addr], $dst",
302                  [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
303def LDSHrr : F3_1<3, 0b001010,
304                  (outs IntRegs:$dst), (ins MEMrr:$addr),
305                  "ldsh [$addr], $dst",
306                  [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
307def LDSHri : F3_2<3, 0b001010,
308                  (outs IntRegs:$dst), (ins MEMri:$addr),
309                  "ldsh [$addr], $dst",
310                  [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
311def LDUBrr : F3_1<3, 0b000001,
312                  (outs IntRegs:$dst), (ins MEMrr:$addr),
313                  "ldub [$addr], $dst",
314                  [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
315def LDUBri : F3_2<3, 0b000001,
316                  (outs IntRegs:$dst), (ins MEMri:$addr),
317                  "ldub [$addr], $dst",
318                  [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
319def LDUHrr : F3_1<3, 0b000010,
320                  (outs IntRegs:$dst), (ins MEMrr:$addr),
321                  "lduh [$addr], $dst",
322                  [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
323def LDUHri : F3_2<3, 0b000010,
324                  (outs IntRegs:$dst), (ins MEMri:$addr),
325                  "lduh [$addr], $dst",
326                  [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
327def LDrr   : F3_1<3, 0b000000,
328                  (outs IntRegs:$dst), (ins MEMrr:$addr),
329                  "ld [$addr], $dst",
330                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
331def LDri   : F3_2<3, 0b000000,
332                  (outs IntRegs:$dst), (ins MEMri:$addr),
333                  "ld [$addr], $dst",
334                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
335
336// Section B.2 - Load Floating-point Instructions, p. 92
337def LDFrr  : F3_1<3, 0b100000,
338                  (outs FPRegs:$dst), (ins MEMrr:$addr),
339                  "ld [$addr], $dst",
340                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
341def LDFri  : F3_2<3, 0b100000,
342                  (outs FPRegs:$dst), (ins MEMri:$addr),
343                  "ld [$addr], $dst",
344                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
345def LDDFrr : F3_1<3, 0b100011,
346                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
347                  "ldd [$addr], $dst",
348                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
349def LDDFri : F3_2<3, 0b100011,
350                  (outs DFPRegs:$dst), (ins MEMri:$addr),
351                  "ldd [$addr], $dst",
352                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
353
354// Section B.4 - Store Integer Instructions, p. 95
355def STBrr : F3_1<3, 0b000101,
356                 (outs), (ins MEMrr:$addr, IntRegs:$src),
357                 "stb $src, [$addr]",
358                 [(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>;
359def STBri : F3_2<3, 0b000101,
360                 (outs), (ins MEMri:$addr, IntRegs:$src),
361                 "stb $src, [$addr]",
362                 [(truncstorei8 IntRegs:$src, ADDRri:$addr)]>;
363def STHrr : F3_1<3, 0b000110,
364                 (outs), (ins MEMrr:$addr, IntRegs:$src),
365                 "sth $src, [$addr]",
366                 [(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>;
367def STHri : F3_2<3, 0b000110,
368                 (outs), (ins MEMri:$addr, IntRegs:$src),
369                 "sth $src, [$addr]",
370                 [(truncstorei16 IntRegs:$src, ADDRri:$addr)]>;
371def STrr  : F3_1<3, 0b000100,
372                 (outs), (ins MEMrr:$addr, IntRegs:$src),
373                 "st $src, [$addr]",
374                 [(store IntRegs:$src, ADDRrr:$addr)]>;
375def STri  : F3_2<3, 0b000100,
376                 (outs), (ins MEMri:$addr, IntRegs:$src),
377                 "st $src, [$addr]",
378                 [(store IntRegs:$src, ADDRri:$addr)]>;
379
380// Section B.5 - Store Floating-point Instructions, p. 97
381def STFrr   : F3_1<3, 0b100100,
382                   (outs), (ins MEMrr:$addr, FPRegs:$src),
383                   "st $src, [$addr]",
384                   [(store FPRegs:$src, ADDRrr:$addr)]>;
385def STFri   : F3_2<3, 0b100100,
386                   (outs), (ins MEMri:$addr, FPRegs:$src),
387                   "st $src, [$addr]",
388                   [(store FPRegs:$src, ADDRri:$addr)]>;
389def STDFrr  : F3_1<3, 0b100111,
390                   (outs), (ins MEMrr:$addr, DFPRegs:$src),
391                   "std  $src, [$addr]",
392                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
393def STDFri  : F3_2<3, 0b100111,
394                   (outs), (ins MEMri:$addr, DFPRegs:$src),
395                   "std $src, [$addr]",
396                   [(store DFPRegs:$src, ADDRri:$addr)]>;
397
398// Section B.9 - SETHI Instruction, p. 104
399def SETHIi: F2_1<0b100,
400                 (outs IntRegs:$dst), (ins i32imm:$src),
401                 "sethi $src, $dst",
402                 [(set IntRegs:$dst, SETHIimm:$src)]>;
403
404// Section B.10 - NOP Instruction, p. 105
405// (It's a special case of SETHI)
406let rd = 0, imm22 = 0 in
407  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
408
409// Section B.11 - Logical Instructions, p. 106
410defm AND    : F3_12<"and", 0b000001, and>;
411
412def ANDNrr  : F3_1<2, 0b000101,
413                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
414                   "andn $b, $c, $dst",
415                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
416def ANDNri  : F3_2<2, 0b000101,
417                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
418                   "andn $b, $c, $dst", []>;
419
420defm OR     : F3_12<"or", 0b000010, or>;
421
422def ORNrr   : F3_1<2, 0b000110,
423                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
424                   "orn $b, $c, $dst",
425                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
426def ORNri   : F3_2<2, 0b000110,
427                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
428                   "orn $b, $c, $dst", []>;
429defm XOR    : F3_12<"xor", 0b000011, xor>;
430
431def XNORrr  : F3_1<2, 0b000111,
432                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
433                   "xnor $b, $c, $dst",
434                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
435def XNORri  : F3_2<2, 0b000111,
436                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
437                   "xnor $b, $c, $dst", []>;
438
439// Section B.12 - Shift Instructions, p. 107
440defm SLL : F3_12<"sll", 0b100101, shl>;
441defm SRL : F3_12<"srl", 0b100110, srl>;
442defm SRA : F3_12<"sra", 0b100111, sra>;
443
444// Section B.13 - Add Instructions, p. 108
445defm ADD   : F3_12<"add", 0b000000, add>;
446
447// "LEA" forms of add (patterns to make tblgen happy)
448def LEA_ADDri   : F3_2<2, 0b000000,
449                   (outs IntRegs:$dst), (ins MEMri:$addr),
450                   "add ${addr:arith}, $dst",
451                   [(set IntRegs:$dst, ADDRri:$addr)]>;
452
453let Defs = [ICC] in                   
454  defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
455
456let Uses = [ICC] in
457  defm ADDX  : F3_12<"addx", 0b001000, adde>;
458
459// Section B.15 - Subtract Instructions, p. 110
460defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
461let Uses = [ICC] in 
462  defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
463
464let Defs = [ICC] in 
465  defm SUBCC  : F3_12  <"subcc", 0b010100, SPcmpicc>;
466
467let Uses = [ICC], Defs = [ICC] in
468  def SUBXCCrr: F3_1<2, 0b011100, 
469                (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
470                "subxcc $b, $c, $dst", []>;
471
472
473// Section B.18 - Multiply Instructions, p. 113
474let Defs = [Y] in {
475  defm UMUL : F3_12np<"umul", 0b001010>;
476  defm SMUL : F3_12  <"smul", 0b001011, mul>;
477}
478
479// Section B.19 - Divide Instructions, p. 115
480let Defs = [Y] in {
481  defm UDIV : F3_12np<"udiv", 0b001110>;
482  defm SDIV : F3_12np<"sdiv", 0b001111>;
483}
484
485// Section B.20 - SAVE and RESTORE, p. 117
486defm SAVE    : F3_12np<"save"   , 0b111100>;
487defm RESTORE : F3_12np<"restore", 0b111101>;
488
489// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
490
491// conditional branch class:
492class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
493 : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
494  let isBranch = 1;
495  let isTerminator = 1;
496  let hasDelaySlot = 1;
497}
498
499let isBarrier = 1 in
500  def BA   : BranchSP<0b1000, (ins brtarget:$dst),
501                      "ba $dst",
502                      [(br bb:$dst)]>;
503
504// FIXME: the encoding for the JIT should look at the condition field.
505let Uses = [ICC] in
506  def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
507                         "b$cc $dst",
508                        [(SPbricc bb:$dst, imm:$cc)]>;
509
510
511// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
512
513// floating-point conditional branch class:
514class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
515 : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
516  let isBranch = 1;
517  let isTerminator = 1;
518  let hasDelaySlot = 1;
519}
520
521// FIXME: the encoding for the JIT should look at the condition field.
522let Uses = [FCC] in
523  def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
524                              "fb$cc $dst",
525                              [(SPbrfcc bb:$dst, imm:$cc)]>;
526
527
528// Section B.24 - Call and Link Instruction, p. 125
529// This is the only Format 1 instruction
530let Uses = [O6],
531    hasDelaySlot = 1, isCall = 1,
532    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
533    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
534  def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
535                    "call $dst", []> {
536    bits<30> disp;
537    let op = 1;
538    let Inst{29-0} = disp;
539  }
540  
541  // indirect calls
542  def JMPLrr : F3_1<2, 0b111000,
543                    (outs), (ins MEMrr:$ptr, variable_ops),
544                    "call $ptr",
545                    [(call ADDRrr:$ptr)]>;
546  def JMPLri : F3_2<2, 0b111000,
547                    (outs), (ins MEMri:$ptr, variable_ops),
548                    "call $ptr",
549                    [(call ADDRri:$ptr)]>;
550}
551
552// Section B.28 - Read State Register Instructions
553let Uses = [Y] in 
554  def RDY : F3_1<2, 0b101000,
555                 (outs IntRegs:$dst), (ins),
556                 "rd %y, $dst", []>;
557
558// Section B.29 - Write State Register Instructions
559let Defs = [Y] in {
560  def WRYrr : F3_1<2, 0b110000,
561                   (outs), (ins IntRegs:$b, IntRegs:$c),
562                   "wr $b, $c, %y", []>;
563  def WRYri : F3_2<2, 0b110000,
564                   (outs), (ins IntRegs:$b, i32imm:$c),
565                   "wr $b, $c, %y", []>;
566}
567// Convert Integer to Floating-point Instructions, p. 141
568def FITOS : F3_3<2, 0b110100, 0b011000100,
569                 (outs FPRegs:$dst), (ins FPRegs:$src),
570                 "fitos $src, $dst",
571                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
572def FITOD : F3_3<2, 0b110100, 0b011001000, 
573                 (outs DFPRegs:$dst), (ins FPRegs:$src),
574                 "fitod $src, $dst",
575                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
576
577// Convert Floating-point to Integer Instructions, p. 142
578def FSTOI : F3_3<2, 0b110100, 0b011010001,
579                 (outs FPRegs:$dst), (ins FPRegs:$src),
580                 "fstoi $src, $dst",
581                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
582def FDTOI : F3_3<2, 0b110100, 0b011010010,
583                 (outs FPRegs:$dst), (ins DFPRegs:$src),
584                 "fdtoi $src, $dst",
585                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
586
587// Convert between Floating-point Formats Instructions, p. 143
588def FSTOD : F3_3<2, 0b110100, 0b011001001, 
589                 (outs DFPRegs:$dst), (ins FPRegs:$src),
590                 "fstod $src, $dst",
591                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
592def FDTOS : F3_3<2, 0b110100, 0b011000110,
593                 (outs FPRegs:$dst), (ins DFPRegs:$src),
594                 "fdtos $src, $dst",
595                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
596
597// Floating-point Move Instructions, p. 144
598def FMOVS : F3_3<2, 0b110100, 0b000000001,
599                 (outs FPRegs:$dst), (ins FPRegs:$src),
600                 "fmovs $src, $dst", []>;
601def FNEGS : F3_3<2, 0b110100, 0b000000101, 
602                 (outs FPRegs:$dst), (ins FPRegs:$src),
603                 "fnegs $src, $dst",
604                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
605def FABSS : F3_3<2, 0b110100, 0b000001001, 
606                 (outs FPRegs:$dst), (ins FPRegs:$src),
607                 "fabss $src, $dst",
608                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
609
610
611// Floating-point Square Root Instructions, p.145
612def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
613                  (outs FPRegs:$dst), (ins FPRegs:$src),
614                  "fsqrts $src, $dst",
615                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
616def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
617                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
618                  "fsqrtd $src, $dst",
619                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
620
621
622
623// Floating-point Add and Subtract Instructions, p. 146
624def FADDS  : F3_3<2, 0b110100, 0b001000001,
625                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
626                  "fadds $src1, $src2, $dst",
627                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
628def FADDD  : F3_3<2, 0b110100, 0b001000010,
629                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
630                  "faddd $src1, $src2, $dst",
631                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
632def FSUBS  : F3_3<2, 0b110100, 0b001000101,
633                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
634                  "fsubs $src1, $src2, $dst",
635                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
636def FSUBD  : F3_3<2, 0b110100, 0b001000110,
637                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
638                  "fsubd $src1, $src2, $dst",
639                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
640
641// Floating-point Multiply and Divide Instructions, p. 147
642def FMULS  : F3_3<2, 0b110100, 0b001001001,
643                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
644                  "fmuls $src1, $src2, $dst",
645                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
646def FMULD  : F3_3<2, 0b110100, 0b001001010,
647                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
648                  "fmuld $src1, $src2, $dst",
649                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
650def FSMULD : F3_3<2, 0b110100, 0b001101001,
651                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
652                  "fsmuld $src1, $src2, $dst",
653                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
654                                            (fextend FPRegs:$src2)))]>;
655def FDIVS  : F3_3<2, 0b110100, 0b001001101,
656                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
657                 "fdivs $src1, $src2, $dst",
658                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
659def FDIVD  : F3_3<2, 0b110100, 0b001001110,
660                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
661                 "fdivd $src1, $src2, $dst",
662                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
663
664// Floating-point Compare Instructions, p. 148
665// Note: the 2nd template arg is different for these guys.
666// Note 2: the result of a FCMP is not available until the 2nd cycle
667// after the instr is retired, but there is no interlock. This behavior
668// is modelled with a forced noop after the instruction.
669let Defs = [FCC] in {
670  def FCMPS  : F3_3<2, 0b110101, 0b001010001,
671                   (outs), (ins FPRegs:$src1, FPRegs:$src2),
672                   "fcmps $src1, $src2\n\tnop",
673                   [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
674  def FCMPD  : F3_3<2, 0b110101, 0b001010010,
675                   (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
676                   "fcmpd $src1, $src2\n\tnop",
677                   [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
678}
679
680//===----------------------------------------------------------------------===//
681// V9 Instructions
682//===----------------------------------------------------------------------===//
683
684// V9 Conditional Moves.
685let Predicates = [HasV9], Constraints = "$T = $dst" in {
686  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
687  // FIXME: Add instruction encodings for the JIT some day.
688  def MOVICCrr
689    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
690             "mov$cc %icc, $F, $dst",
691             [(set IntRegs:$dst,
692                         (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
693  def MOVICCri
694    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
695             "mov$cc %icc, $F, $dst",
696             [(set IntRegs:$dst,
697                          (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
698
699  def MOVFCCrr
700    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
701             "mov$cc %fcc0, $F, $dst",
702             [(set IntRegs:$dst,
703                         (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
704  def MOVFCCri
705    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
706             "mov$cc %fcc0, $F, $dst",
707             [(set IntRegs:$dst,
708                          (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
709
710  def FMOVS_ICC
711    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
712             "fmovs$cc %icc, $F, $dst",
713             [(set FPRegs:$dst,
714                         (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
715  def FMOVD_ICC
716    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
717             "fmovd$cc %icc, $F, $dst",
718             [(set DFPRegs:$dst,
719                         (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
720  def FMOVS_FCC
721    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
722             "fmovs$cc %fcc0, $F, $dst",
723             [(set FPRegs:$dst,
724                         (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
725  def FMOVD_FCC
726    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
727             "fmovd$cc %fcc0, $F, $dst",
728             [(set DFPRegs:$dst,
729                         (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
730
731}
732
733// Floating-Point Move Instructions, p. 164 of the V9 manual.
734let Predicates = [HasV9] in {
735  def FMOVD : F3_3<2, 0b110100, 0b000000010,
736                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
737                   "fmovd $src, $dst", []>;
738  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
739                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
740                   "fnegd $src, $dst",
741                   [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
742  def FABSD : F3_3<2, 0b110100, 0b000001010, 
743                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
744                   "fabsd $src, $dst",
745                   [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
746}
747
748// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
749// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
750def POPCrr : F3_1<2, 0b101110, 
751                  (outs IntRegs:$dst), (ins IntRegs:$src),
752                  "popc $src, $dst", []>, Requires<[HasV9]>;
753def : Pat<(ctpop IntRegs:$src),
754          (POPCrr (SLLri IntRegs:$src, 0))>;
755
756//===----------------------------------------------------------------------===//
757// Non-Instruction Patterns
758//===----------------------------------------------------------------------===//
759
760// Small immediates.
761def : Pat<(i32 simm13:$val),
762          (ORri G0, imm:$val)>;
763// Arbitrary immediates.
764def : Pat<(i32 imm:$val),
765          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
766
767// subc
768def : Pat<(subc IntRegs:$b, IntRegs:$c),
769          (SUBCCrr IntRegs:$b, IntRegs:$c)>;
770def : Pat<(subc IntRegs:$b, simm13:$val),
771          (SUBCCri IntRegs:$b, imm:$val)>;
772
773// Global addresses, constant pool entries
774def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
775def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
776def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
777def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
778
779// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
780def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
781          (ADDri IntRegs:$r, tglobaladdr:$in)>;
782def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
783          (ADDri IntRegs:$r, tconstpool:$in)>;
784
785// Calls: 
786def : Pat<(call tglobaladdr:$dst),
787          (CALL tglobaladdr:$dst)>;
788def : Pat<(call texternalsym:$dst),
789          (CALL texternalsym:$dst)>;
790
791// Map integer extload's to zextloads.
792def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
793def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
794def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
795def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
796def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
797def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
798
799// zextload bool -> zextload byte
800def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
801def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
802