SparcInstrInfo.td revision 9034b883a463b37dbc4766ff7243dac3a27d0b11
1//===- SparcV8Instrs.td - Target Description for SparcV8 Target -----------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the SparcV8 instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18class InstV8 : Instruction {          // SparcV8 instruction baseline
19  field bits<32> Inst;
20
21  let Namespace = "V8";
22
23  bits<2> op;
24  let Inst{31-30} = op;               // Top two bits are the 'op' field
25
26  // Bit attributes specific to SparcV8 instructions
27  bit isPasi       = 0; // Does this instruction affect an alternate addr space?
28  bit isPrivileged = 0; // Is this a privileged instruction?
29}
30
31include "SparcV8InstrFormats.td"
32
33//===----------------------------------------------------------------------===//
34// Instruction Pattern Stuff
35//===----------------------------------------------------------------------===//
36
37def simm13  : PatLeaf<(imm), [{
38  // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
39  return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
40}]>;
41
42def LO10 : SDNodeXForm<imm, [{
43  return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
44}]>;
45
46def HI22 : SDNodeXForm<imm, [{
47  // Transformation function: shift the immediate value down into the low bits.
48  return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
49}]>;
50
51def SETHIimm : PatLeaf<(imm), [{
52  return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
53}], HI22>;
54
55// Addressing modes.
56def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", []>;
57def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", []>;
58
59// Address operands
60def MEMrr : Operand<i32> {
61  let PrintMethod = "printMemOperand";
62  let NumMIOperands = 2;
63  let MIOperandInfo = (ops IntRegs, IntRegs);
64}
65def MEMri : Operand<i32> {
66  let PrintMethod = "printMemOperand";
67  let NumMIOperands = 2;
68  let MIOperandInfo = (ops IntRegs, i32imm);
69}
70
71//===----------------------------------------------------------------------===//
72// Instructions
73//===----------------------------------------------------------------------===//
74
75// Pseudo instructions.
76class PseudoInstV8<string asmstr, dag ops> : InstV8  {
77  let AsmString = asmstr;
78  dag OperandList = ops;
79}
80def PHI : PseudoInstV8<"PHI", (ops variable_ops)>;
81def ADJCALLSTACKDOWN : PseudoInstV8<"!ADJCALLSTACKDOWN $amt",
82                                    (ops i32imm:$amt)>;
83def ADJCALLSTACKUP : PseudoInstV8<"!ADJCALLSTACKUP $amt",
84                                  (ops i32imm:$amt)>;
85//def IMPLICIT_USE : PseudoInstV8<"!IMPLICIT_USE",(ops variable_ops)>;
86def IMPLICIT_DEF : PseudoInstV8<"!IMPLICIT_DEF $dst", 
87                                (ops IntRegs:$dst)>;
88def FpMOVD : PseudoInstV8<"!FpMOVD", (ops)>; // pseudo 64-bit double move
89
90// Section A.3 - Synthetic Instructions, p. 85
91// special cases of JMPL:
92let isReturn = 1, isTerminator = 1, hasDelaySlot = 1 in {
93  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
94    def RETL: F3_2<2, 0b111000, (ops),
95                   "retl", [(ret)]>;
96}
97// CMP is a special case of SUBCC where destination is ignored, by setting it to
98// %g0 (hardwired zero).
99// FIXME: should keep track of the fact that it defs the integer condition codes
100let rd = 0 in
101  def CMPri: F3_2<2, 0b010100,
102                  (ops IntRegs:$b, i32imm:$c),
103                  "cmp $b, $c", []>;
104
105// Section B.1 - Load Integer Instructions, p. 90
106def LDSBrr : F3_1<3, 0b001001,
107                  (ops IntRegs:$dst, MEMrr:$addr),
108                  "ldsb [$addr], $dst",
109                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i8))]>;
110def LDSBri : F3_2<3, 0b001001,
111                  (ops IntRegs:$dst, MEMri:$addr),
112                  "ldsb [$addr], $dst",
113                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i8))]>;
114def LDSHrr : F3_1<3, 0b001010,
115                  (ops IntRegs:$dst, MEMrr:$addr),
116                  "ldsh [$addr], $dst",
117                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i16))]>;
118def LDSHri : F3_2<3, 0b001010,
119                  (ops IntRegs:$dst, MEMri:$addr),
120                  "ldsh [$addr], $dst",
121                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i16))]>;
122def LDUBrr : F3_1<3, 0b000001,
123                  (ops IntRegs:$dst, MEMrr:$addr),
124                  "ldub [$addr], $dst",
125                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i8))]>;
126def LDUBri : F3_2<3, 0b000001,
127                  (ops IntRegs:$dst, MEMri:$addr),
128                  "ldub [$addr], $dst",
129                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i8))]>;
130def LDUHrr : F3_1<3, 0b000010,
131                  (ops IntRegs:$dst, MEMrr:$addr),
132                  "lduh [$addr], $dst",
133                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i16))]>;
134def LDUHri : F3_2<3, 0b000010,
135                  (ops IntRegs:$dst, MEMri:$addr),
136                  "lduh [$addr], $dst",
137                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i16))]>;
138def LDrr   : F3_1<3, 0b000000,
139                  (ops IntRegs:$dst, MEMrr:$addr),
140                  "ld [$addr], $dst",
141                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
142def LDri   : F3_2<3, 0b000000,
143                  (ops IntRegs:$dst, MEMri:$addr),
144                  "ld [$addr], $dst",
145                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
146def LDDrr  : F3_1<3, 0b000011,
147                  (ops IntRegs:$dst, MEMrr:$addr),
148                  "ldd [$addr], $dst", []>;
149def LDDri  : F3_2<3, 0b000011,
150                  (ops IntRegs:$dst, MEMri:$addr),
151                  "ldd [$addr], $dst", []>;
152
153// Section B.2 - Load Floating-point Instructions, p. 92
154def LDFrr  : F3_1<3, 0b100000,
155                  (ops FPRegs:$dst, MEMrr:$addr),
156                  "ld [$addr], $dst",
157                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
158def LDFri  : F3_2<3, 0b100000,
159                  (ops FPRegs:$dst, MEMri:$addr),
160                  "ld [$addr], $dst",
161                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
162def LDDFrr : F3_1<3, 0b100011,
163                  (ops DFPRegs:$dst, MEMrr:$addr),
164                  "ldd [$addr], $dst",
165                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
166def LDDFri : F3_2<3, 0b100011,
167                  (ops DFPRegs:$dst, MEMri:$addr),
168                  "ldd [$addr], $dst",
169                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
170
171// Section B.4 - Store Integer Instructions, p. 95
172def STBrr : F3_1<3, 0b000101,
173                 (ops MEMrr:$addr, IntRegs:$src),
174                 "stb $src, [$addr]",
175                 [(truncstore IntRegs:$src, ADDRrr:$addr, i8)]>;
176def STBri : F3_2<3, 0b000101,
177                 (ops MEMri:$addr, IntRegs:$src),
178                 "stb $src, [$addr]",
179                 [(truncstore IntRegs:$src, ADDRri:$addr, i8)]>;
180def STHrr : F3_1<3, 0b000110,
181                 (ops MEMrr:$addr, IntRegs:$src),
182                 "sth $src, [$addr]",
183                 [(truncstore IntRegs:$src, ADDRrr:$addr, i16)]>;
184def STHri : F3_2<3, 0b000110,
185                 (ops MEMri:$addr, IntRegs:$src),
186                 "sth $src, [$addr]",
187                 [(truncstore IntRegs:$src, ADDRri:$addr, i16)]>;
188def STrr  : F3_1<3, 0b000100,
189                 (ops MEMrr:$addr, IntRegs:$src),
190                 "st $src, [$addr]",
191                 [(store IntRegs:$src, ADDRrr:$addr)]>;
192def STri  : F3_2<3, 0b000100,
193                 (ops MEMri:$addr, IntRegs:$src),
194                 "st $src, [$addr]",
195                 [(store IntRegs:$src, ADDRri:$addr)]>;
196def STDrr : F3_1<3, 0b000111,
197                 (ops MEMrr:$addr, IntRegs:$src),
198                 "std $src, [$addr]", []>;
199def STDri : F3_2<3, 0b000111,
200                 (ops MEMri:$addr, IntRegs:$src),
201                 "std $src, [$addr]", []>;
202
203// Section B.5 - Store Floating-point Instructions, p. 97
204def STFrr   : F3_1<3, 0b100100,
205                   (ops MEMrr:$addr, FPRegs:$src),
206                   "st $src, [$addr]",
207                   [(store FPRegs:$src, ADDRrr:$addr)]>;
208def STFri   : F3_2<3, 0b100100,
209                   (ops MEMri:$addr, FPRegs:$src),
210                   "st $src, [$addr]",
211                   [(store FPRegs:$src, ADDRri:$addr)]>;
212def STDFrr  : F3_1<3, 0b100111,
213                   (ops MEMrr:$addr, DFPRegs:$src),
214                   "std  $src, [$addr]",
215                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
216def STDFri  : F3_2<3, 0b100111,
217                   (ops MEMri:$addr, DFPRegs:$src),
218                   "std $src, [$addr]",
219                   [(store DFPRegs:$src, ADDRri:$addr)]>;
220
221// Section B.9 - SETHI Instruction, p. 104
222def SETHIi: F2_1<0b100,
223                 (ops IntRegs:$dst, i32imm:$src),
224                 "sethi $src, $dst",
225                 [(set IntRegs:$dst, SETHIimm:$src)]>;
226
227// Section B.10 - NOP Instruction, p. 105
228// (It's a special case of SETHI)
229let rd = 0, imm22 = 0 in
230  def NOP : F2_1<0b100, (ops), "nop", []>;
231
232// Section B.11 - Logical Instructions, p. 106
233def ANDrr   : F3_1<2, 0b000001,
234                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
235                   "and $b, $c, $dst",
236                   [(set IntRegs:$dst, (and IntRegs:$b, IntRegs:$c))]>;
237def ANDri   : F3_2<2, 0b000001,
238                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
239                   "and $b, $c, $dst",
240                   [(set IntRegs:$dst, (and IntRegs:$b, simm13:$c))]>;
241def ANDNrr  : F3_1<2, 0b000101,
242                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
243                   "andn $b, $c, $dst",
244                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
245def ANDNri  : F3_2<2, 0b000101,
246                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
247                   "andn $b, $c, $dst", []>;
248def ORrr    : F3_1<2, 0b000010,
249                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
250                   "or $b, $c, $dst",
251                   [(set IntRegs:$dst, (or IntRegs:$b, IntRegs:$c))]>;
252def ORri    : F3_2<2, 0b000010,
253                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
254                   "or $b, $c, $dst",
255                   [(set IntRegs:$dst, (or IntRegs:$b, simm13:$c))]>;
256def ORNrr   : F3_1<2, 0b000110,
257                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
258                   "orn $b, $c, $dst",
259                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
260def ORNri   : F3_2<2, 0b000110,
261                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
262                   "orn $b, $c, $dst", []>;
263def XORrr   : F3_1<2, 0b000011,
264                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
265                   "xor $b, $c, $dst",
266                   [(set IntRegs:$dst, (xor IntRegs:$b, IntRegs:$c))]>;
267def XORri   : F3_2<2, 0b000011,
268                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
269                   "xor $b, $c, $dst",
270                   [(set IntRegs:$dst, (xor IntRegs:$b, simm13:$c))]>;
271def XNORrr  : F3_1<2, 0b000111,
272                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
273                   "xnor $b, $c, $dst",
274                   [(set IntRegs:$dst, (xor IntRegs:$b, (not IntRegs:$c)))]>;
275def XNORri  : F3_2<2, 0b000111,
276                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
277                   "xnor $b, $c, $dst", []>;
278
279// Section B.12 - Shift Instructions, p. 107
280def SLLrr : F3_1<2, 0b100101,
281                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
282                 "sll $b, $c, $dst",
283                 [(set IntRegs:$dst, (shl IntRegs:$b, IntRegs:$c))]>;
284def SLLri : F3_2<2, 0b100101,
285                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
286                 "sll $b, $c, $dst",
287                 [(set IntRegs:$dst, (shl IntRegs:$b, simm13:$c))]>;
288def SRLrr : F3_1<2, 0b100110, 
289                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
290                  "srl $b, $c, $dst",
291                  [(set IntRegs:$dst, (srl IntRegs:$b, IntRegs:$c))]>;
292def SRLri : F3_2<2, 0b100110,
293                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
294                 "srl $b, $c, $dst", 
295                 [(set IntRegs:$dst, (srl IntRegs:$b, simm13:$c))]>;
296def SRArr : F3_1<2, 0b100111, 
297                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
298                  "sra $b, $c, $dst",
299                  [(set IntRegs:$dst, (sra IntRegs:$b, IntRegs:$c))]>;
300def SRAri : F3_2<2, 0b100111,
301                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
302                 "sra $b, $c, $dst",
303                 [(set IntRegs:$dst, (sra IntRegs:$b, simm13:$c))]>;
304
305// Section B.13 - Add Instructions, p. 108
306def ADDrr   : F3_1<2, 0b000000, 
307                  (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
308                  "add $b, $c, $dst",
309                   [(set IntRegs:$dst, (add IntRegs:$b, IntRegs:$c))]>;
310def ADDri   : F3_2<2, 0b000000,
311                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
312                   "add $b, $c, $dst",
313                   [(set IntRegs:$dst, (add IntRegs:$b, simm13:$c))]>;
314def ADDCCrr : F3_1<2, 0b010000, 
315                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
316                   "addcc $b, $c, $dst", []>;
317def ADDCCri : F3_2<2, 0b010000,
318                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
319                   "addcc $b, $c, $dst", []>;
320def ADDXrr  : F3_1<2, 0b001000, 
321                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
322                   "addx $b, $c, $dst", []>;
323def ADDXri  : F3_2<2, 0b001000,
324                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
325                   "addx $b, $c, $dst", []>;
326
327// Section B.15 - Subtract Instructions, p. 110
328def SUBrr   : F3_1<2, 0b000100, 
329                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
330                   "sub $b, $c, $dst",
331                   [(set IntRegs:$dst, (sub IntRegs:$b, IntRegs:$c))]>;
332def SUBri   : F3_2<2, 0b000100,
333                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
334                   "sub $b, $c, $dst",
335                   [(set IntRegs:$dst, (sub IntRegs:$b, simm13:$c))]>;
336def SUBXrr  : F3_1<2, 0b001100, 
337                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
338                   "subx $b, $c, $dst", []>;
339def SUBXri  : F3_2<2, 0b001100,
340                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
341                   "subx $b, $c, $dst", []>;
342def SUBCCrr : F3_1<2, 0b010100, 
343                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
344                   "subcc $b, $c, $dst", []>;
345def SUBCCri : F3_2<2, 0b010100,
346                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
347                   "subcc $b, $c, $dst", []>;
348def SUBXCCrr: F3_1<2, 0b011100, 
349                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
350                   "subxcc $b, $c, $dst", []>;
351
352// Section B.18 - Multiply Instructions, p. 113
353def UMULrr  : F3_1<2, 0b001010, 
354                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
355                   "umul $b, $c, $dst", []>;
356def UMULri  : F3_2<2, 0b001010,
357                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
358                   "umul $b, $c, $dst", []>;
359def SMULrr  : F3_1<2, 0b001011, 
360                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
361                   "smul $b, $c, $dst", []>;
362def SMULri  : F3_2<2, 0b001011,
363                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
364                   "smul $b, $c, $dst", []>;
365
366// Section B.19 - Divide Instructions, p. 115
367def UDIVrr   : F3_1<2, 0b001110, 
368                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
369                    "udiv $b, $c, $dst", []>;
370def UDIVri   : F3_2<2, 0b001110,
371                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
372                    "udiv $b, $c, $dst", []>;
373def SDIVrr   : F3_1<2, 0b001111,
374                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
375                    "sdiv $b, $c, $dst", []>;
376def SDIVri   : F3_2<2, 0b001111,
377                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
378                    "sdiv $b, $c, $dst", []>;
379
380// Section B.20 - SAVE and RESTORE, p. 117
381def SAVErr    : F3_1<2, 0b111100,
382                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
383                     "save $b, $c, $dst", []>;
384def SAVEri    : F3_2<2, 0b111100,
385                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
386                     "save $b, $c, $dst", []>;
387def RESTORErr : F3_1<2, 0b111101,
388                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
389                     "restore $b, $c, $dst", []>;
390def RESTOREri : F3_2<2, 0b111101,
391                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
392                     "restore $b, $c, $dst", []>;
393
394// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
395
396// conditional branch class:
397class BranchV8<bits<4> cc, dag ops, string asmstr>
398 : F2_2<cc, 0b010, ops, asmstr> {
399  let isBranch = 1;
400  let isTerminator = 1;
401  let hasDelaySlot = 1;
402}
403
404let isBarrier = 1 in
405  def BA   : BranchV8<0b1000, (ops IntRegs:$dst), "ba $dst">;
406def BN   : BranchV8<0b0000, (ops IntRegs:$dst), "bn $dst">;
407def BNE  : BranchV8<0b1001, (ops IntRegs:$dst), "bne $dst">;
408def BE   : BranchV8<0b0001, (ops IntRegs:$dst), "be $dst">;
409def BG   : BranchV8<0b1010, (ops IntRegs:$dst), "bg $dst">;
410def BLE  : BranchV8<0b0010, (ops IntRegs:$dst), "ble $dst">;
411def BGE  : BranchV8<0b1011, (ops IntRegs:$dst), "bge $dst">;
412def BL   : BranchV8<0b0011, (ops IntRegs:$dst), "bl $dst">;
413def BGU  : BranchV8<0b1100, (ops IntRegs:$dst), "bgu $dst">;
414def BLEU : BranchV8<0b0100, (ops IntRegs:$dst), "bleu $dst">;
415def BCC  : BranchV8<0b1101, (ops IntRegs:$dst), "bcc $dst">;
416def BCS  : BranchV8<0b0101, (ops IntRegs:$dst), "bcs $dst">;
417
418// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
419
420// floating-point conditional branch class:
421class FPBranchV8<bits<4> cc, dag ops, string asmstr>
422 : F2_2<cc, 0b110, ops, asmstr> {
423  let isBranch = 1;
424  let isTerminator = 1;
425  let hasDelaySlot = 1;
426}
427
428def FBA  : FPBranchV8<0b1000, (ops IntRegs:$dst), "fba $dst">;
429def FBN  : FPBranchV8<0b0000, (ops IntRegs:$dst), "fbn $dst">;
430def FBU  : FPBranchV8<0b0111, (ops IntRegs:$dst), "fbu $dst">;
431def FBG  : FPBranchV8<0b0110, (ops IntRegs:$dst), "fbg $dst">;
432def FBUG : FPBranchV8<0b0101, (ops IntRegs:$dst), "fbug $dst">;
433def FBL  : FPBranchV8<0b0100, (ops IntRegs:$dst), "fbl $dst">;
434def FBUL : FPBranchV8<0b0011, (ops IntRegs:$dst), "fbul $dst">;
435def FBLG : FPBranchV8<0b0010, (ops IntRegs:$dst), "fblg $dst">;
436def FBNE : FPBranchV8<0b0001, (ops IntRegs:$dst), "fbne $dst">;
437def FBE  : FPBranchV8<0b1001, (ops IntRegs:$dst), "fbe $dst">;
438def FBUE : FPBranchV8<0b1010, (ops IntRegs:$dst), "fbue $dst">;
439def FBGE : FPBranchV8<0b1011, (ops IntRegs:$dst), "fbge $dst">;
440def FBUGE: FPBranchV8<0b1100, (ops IntRegs:$dst), "fbuge $dst">;
441def FBLE : FPBranchV8<0b1101, (ops IntRegs:$dst), "fble $dst">;
442def FBULE: FPBranchV8<0b1110, (ops IntRegs:$dst), "fbule $dst">;
443def FBO  : FPBranchV8<0b1111, (ops IntRegs:$dst), "fbo $dst">;
444
445
446
447// Section B.24 - Call and Link Instruction, p. 125
448// This is the only Format 1 instruction
449let Uses = [O0, O1, O2, O3, O4, O5], hasDelaySlot = 1, isCall = 1 in { 
450  // pc-relative call:
451  let Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
452    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in
453  def CALL : InstV8 {
454    let OperandList = (ops IntRegs:$dst);
455    bits<30> disp;
456    let op = 1;
457    let Inst{29-0} = disp;
458    let AsmString = "call $dst";
459  }
460
461  // indirect call (O7 is an EXPLICIT def in indirect calls, so it cannot also
462  // be an implicit def):
463  let Defs = [O0, O1, O2, O3, O4, O5, G1, G2, G3, G4, G5, G6, G7,
464    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in
465  def JMPLrr : F3_1<2, 0b111000,
466                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
467                    "jmpl $b+$c, $dst", []>;
468}
469
470// Section B.29 - Write State Register Instructions
471def WRrr : F3_1<2, 0b110000,
472                (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
473                "wr $b, $c, $dst", []>;
474def WRri : F3_2<2, 0b110000,
475                (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
476                "wr $b, $c, $dst", []>;
477
478// Convert Integer to Floating-point Instructions, p. 141
479def FITOS : F3_3<2, 0b110100, 0b011000100,
480                 (ops FPRegs:$dst, FPRegs:$src),
481                 "fitos $src, $dst">;
482def FITOD : F3_3<2, 0b110100, 0b011001000, 
483                 (ops DFPRegs:$dst, DFPRegs:$src),
484                 "fitod $src, $dst">;
485
486// Convert Floating-point to Integer Instructions, p. 142
487def FSTOI : F3_3<2, 0b110100, 0b011010001,
488                 (ops FPRegs:$dst, FPRegs:$src),
489                 "fstoi $src, $dst">;
490def FDTOI : F3_3<2, 0b110100, 0b011010010,
491                 (ops DFPRegs:$dst, DFPRegs:$src),
492                 "fdtoi $src, $dst">;
493
494// Convert between Floating-point Formats Instructions, p. 143
495def FSTOD : F3_3<2, 0b110100, 0b011001001, 
496                 (ops DFPRegs:$dst, FPRegs:$src),
497                 "fstod $src, $dst">;
498def FDTOS : F3_3<2, 0b110100, 0b011000110,
499                 (ops FPRegs:$dst, DFPRegs:$src),
500                 "fdtos $src, $dst">;
501
502// Floating-point Move Instructions, p. 144
503def FMOVS : F3_3<2, 0b110100, 0b000000001,
504                 (ops FPRegs:$dst, FPRegs:$src),
505                 "fmovs $src, $dst">;
506def FNEGS : F3_3<2, 0b110100, 0b000000101, 
507                 (ops FPRegs:$dst, FPRegs:$src),
508                 "fnegs $src, $dst">;
509def FABSS : F3_3<2, 0b110100, 0b000001001, 
510                 (ops FPRegs:$dst, FPRegs:$src),
511                 "fabss $src, $dst">;
512
513// Floating-point Add and Subtract Instructions, p. 146
514def FADDS  : F3_3<2, 0b110100, 0b001000001,
515                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
516                  "fadds $src1, $src2, $dst">;
517def FADDD  : F3_3<2, 0b110100, 0b001000010,
518                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
519                  "faddd $src1, $src2, $dst">;
520def FSUBS  : F3_3<2, 0b110100, 0b001000101,
521                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
522                  "fsubs $src1, $src2, $dst">;
523def FSUBD  : F3_3<2, 0b110100, 0b001000110,
524                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
525                  "fsubd $src1, $src2, $dst">;
526
527// Floating-point Multiply and Divide Instructions, p. 147
528def FMULS  : F3_3<2, 0b110100, 0b001001001,
529                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
530                  "fmuls $src1, $src2, $dst">;
531def FMULD  : F3_3<2, 0b110100, 0b001001010,
532                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
533                  "fmuld $src1, $src2, $dst">;
534def FSMULD : F3_3<2, 0b110100, 0b001101001,
535                  (ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
536                  "fsmuld $src1, $src2, $dst">;
537def FDIVS  : F3_3<2, 0b110100, 0b001001101,
538                 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
539                 "fdivs $src1, $src2, $dst">;
540def FDIVD  : F3_3<2, 0b110100, 0b001001110,
541                 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
542                 "fdivd $src1, $src2, $dst">;
543
544// Floating-point Compare Instructions, p. 148
545// Note: the 2nd template arg is different for these guys.
546// Note 2: the result of a FCMP is not available until the 2nd cycle
547// after the instr is retired, but there is no interlock. This behavior
548// is modelled with a forced noop after the instruction.
549def FCMPS  : F3_3<2, 0b110101, 0b001010001,
550                  (ops FPRegs:$src1, FPRegs:$src2),
551                  "fcmps $src1, $src2\n\tnop">;
552def FCMPD  : F3_3<2, 0b110101, 0b001010010,
553                  (ops DFPRegs:$src1, DFPRegs:$src2),
554                  "fcmpd $src1, $src2\n\tnop">;
555
556//===----------------------------------------------------------------------===//
557// Non-Instruction Patterns
558//===----------------------------------------------------------------------===//
559
560// Small immediates.
561def : Pat<(i32 simm13:$val),
562          (ORri G0, imm:$val)>;
563// Arbitrary immediates.
564def : Pat<(i32 imm:$val),
565          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
566