SparcInstrInfo.td revision 96b84beb77d5209d2d5db4db9a6dc07461de2f7e
1//===- SparcV8Instrs.td - Target Description for SparcV8 Target -----------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the SparcV8 instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18class InstV8 : Instruction {          // SparcV8 instruction baseline
19  field bits<32> Inst;
20
21  let Namespace = "V8";
22
23  bits<2> op;
24  let Inst{31-30} = op;               // Top two bits are the 'op' field
25
26  // Bit attributes specific to SparcV8 instructions
27  bit isPasi       = 0; // Does this instruction affect an alternate addr space?
28  bit isPrivileged = 0; // Is this a privileged instruction?
29}
30
31include "SparcV8InstrFormats.td"
32
33//===----------------------------------------------------------------------===//
34// Instructions
35//===----------------------------------------------------------------------===//
36
37// Pseudo instructions.
38class PseudoInstV8<string nm, dag ops> : InstV8  {
39  let Name = nm;
40  dag OperandList = ops;
41}
42def PHI : PseudoInstV8<"PHI", (ops variable_ops)>;
43def ADJCALLSTACKDOWN : PseudoInstV8<"ADJCALLSTACKDOWN", (ops variable_ops)>;
44def ADJCALLSTACKUP : PseudoInstV8<"ADJCALLSTACKUP", (ops variable_ops)>;
45def IMPLICIT_USE : PseudoInstV8<"IMPLICIT_USE", (ops variable_ops)>;
46def IMPLICIT_DEF : PseudoInstV8<"IMPLICIT_DEF", (ops variable_ops)>;
47def FpMOVD : PseudoInstV8<"FpMOVD", (ops)>; // pseudo 64-bit double move
48
49// Section A.3 - Synthetic Instructions, p. 85
50// special cases of JMPL:
51let isReturn = 1, isTerminator = 1, hasDelaySlot = 1 in {
52  let rd = I7.Num, rs1 = G0.Num, simm13 = 8 in
53    def RET : F3_2<2, 0b111000,
54                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "ret">;
55  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
56    def RETL: F3_2<2, 0b111000,
57                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "retl">;
58}
59// CMP is a special case of SUBCC where destination is ignored, by setting it to
60// %g0 (hardwired zero).
61// FIXME: should keep track of the fact that it defs the integer condition codes
62let rd = 0 in
63  def CMPri: F3_2<2, 0b010100,
64                  (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "cmp">;
65
66// Section B.1 - Load Integer Instructions, p. 90
67def LDSB: F3_2<3, 0b001001,
68               (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "ldsb">;
69def LDSH: F3_2<3, 0b001010,
70               (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "ldsh">;
71def LDUB: F3_2<3, 0b000001,
72               (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "ldub">;
73def LDUH: F3_2<3, 0b000010,
74               (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "lduh">;
75def LD  : F3_2<3, 0b000000,
76               (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "ld">;
77def LDD : F3_2<3, 0b000011,
78               (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "ldd">;
79
80// Section B.2 - Load Floating-point Instructions, p. 92
81def LDFrr  : F3_1<3, 0b100000,
82                  (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "ld">;
83def LDFri  : F3_2<3, 0b100000,
84                  (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "ld">;
85def LDDFrr : F3_1<3, 0b100011,
86                  (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "ldd">;
87def LDDFri : F3_2<3, 0b100011,
88                  (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "ldd">;
89def LDFSRrr: F3_1<3, 0b100001,
90                  (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "ld">;
91def LDFSRri: F3_2<3, 0b100001,
92                  (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "ld">;
93
94// Section B.4 - Store Integer Instructions, p. 95
95def STB : F3_2<3, 0b000101,
96               (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "stb">;
97def STH : F3_2<3, 0b000110,
98               (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "sth">;
99def ST  : F3_2<3, 0b000100,
100               (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "st">;
101def STD : F3_2<3, 0b000111,
102               (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "std">;
103
104// Section B.5 - Store Floating-point Instructions, p. 97
105def STFrr   : F3_1<3, 0b100100,
106                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "st">;
107def STFri   : F3_2<3, 0b100100,
108                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "st">;
109def STDFrr  : F3_1<3, 0b100111,
110                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "std">;
111def STDFri  : F3_2<3, 0b100111,
112                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "std">;
113def STFSRrr : F3_1<3, 0b100101,
114                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "st">;
115def STFSRri : F3_2<3, 0b100101,
116                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "st">;
117def STDFQrr : F3_1<3, 0b100110,
118                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "std">;
119def STDFQri : F3_2<3, 0b100110,
120                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "std">;
121
122// Section B.9 - SETHI Instruction, p. 104
123def SETHIi: F2_1<0b100, "sethi">;
124
125// Section B.10 - NOP Instruction, p. 105
126// (It's a special case of SETHI)
127let rd = 0, imm22 = 0 in
128  def NOP : F2_1<0b100, "nop">;
129
130// Section B.11 - Logical Instructions, p. 106
131def ANDrr   : F3_1<2, 0b000001,
132                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "and">;
133def ANDri   : F3_2<2, 0b000001,
134                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "and">;
135def ANDCCrr : F3_1<2, 0b010001,
136                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "andcc">;
137def ANDCCri : F3_2<2, 0b010001,
138                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "andcc">;
139def ANDNrr  : F3_1<2, 0b000101,
140                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "andn">;
141def ANDNri  : F3_2<2, 0b000101,
142                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "andn">;
143def ANDNCCrr: F3_1<2, 0b010101,
144                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "andncc">;
145def ANDNCCri: F3_2<2, 0b010101,
146                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "andncc">;
147def ORrr    : F3_1<2, 0b000010,
148                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "or">;
149def ORri    : F3_2<2, 0b000010,
150                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "or">;
151def ORCCrr  : F3_1<2, 0b010010,
152                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "orcc">;
153def ORCCri  : F3_2<2, 0b010010,
154                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "orcc">;
155def ORNrr   : F3_1<2, 0b000110,
156                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "orn">;
157def ORNri   : F3_2<2, 0b000110,
158                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "orn">;
159def ORNCCrr : F3_1<2, 0b010110,
160                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "orncc">;
161def ORNCCri : F3_2<2, 0b010110,
162                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "orncc">;
163def XORrr   : F3_1<2, 0b000011,
164                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "xor">;
165def XORri   : F3_2<2, 0b000011,
166                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "xor">;
167def XORCCrr : F3_1<2, 0b010011,
168                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "xorcc">;
169def XORCCri : F3_2<2, 0b010011,
170                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "xorcc">;
171def XNORrr  : F3_1<2, 0b000111,
172                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "xnor">;
173def XNORri  : F3_2<2, 0b000111,
174                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "xnor">;
175def XNORCCrr: F3_1<2, 0b010111,
176                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "xnorcc">;
177def XNORCCri: F3_2<2, 0b010111,
178                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "xnorcc">;
179
180// Section B.12 - Shift Instructions, p. 107
181def SLLrr : F3_1<2, 0b100101,
182                 (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "sll">;
183def SLLri : F3_2<2, 0b100101,
184                 (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "sll">;
185def SRLrr : F3_1<2, 0b100110, 
186                 (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "srl">;
187def SRLri : F3_2<2, 0b100110,
188                 (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "srl">;
189def SRArr : F3_1<2, 0b100111, 
190                 (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "sra">;
191def SRAri : F3_2<2, 0b100111,
192                 (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "sra">;
193
194// Section B.13 - Add Instructions, p. 108
195def ADDrr   : F3_1<2, 0b000000, 
196                 (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "add">;
197def ADDri   : F3_2<2, 0b000000,
198                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "add">;
199def ADDCCrr : F3_1<2, 0b010000, 
200                 (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "addcc">;
201def ADDCCri : F3_2<2, 0b010000,
202                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "addcc">;
203def ADDXrr  : F3_1<2, 0b001000, 
204                 (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "addx">;
205def ADDXri  : F3_2<2, 0b001000,
206                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "addx">;
207def ADDXCCrr: F3_1<2, 0b011000, 
208                 (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "addxcc">;
209def ADDXCCri: F3_2<2, 0b011000,
210                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "addxcc">;
211
212// Section B.15 - Subtract Instructions, p. 110
213def SUBrr   : F3_1<2, 0b000100, 
214                 (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "sub">;
215def SUBri   : F3_2<2, 0b000100,
216                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "sub">;
217def SUBCCrr : F3_1<2, 0b010100, 
218                 (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "subcc">;
219def SUBCCri : F3_2<2, 0b010100,
220                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "subcc">;
221def SUBXrr  : F3_1<2, 0b001100, 
222                 (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "subx">;
223def SUBXri  : F3_2<2, 0b001100,
224                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "subx">;
225def SUBXCCrr: F3_1<2, 0b011100, 
226                 (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "subxcc">;
227def SUBXCCri: F3_2<2, 0b011100,
228                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "subxcc">;
229
230// Section B.18 - Multiply Instructions, p. 113
231def UMULrr  : F3_1<2, 0b001010, 
232                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "umul">;
233def UMULri  : F3_2<2, 0b001010,
234                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "umul">;
235def SMULrr  : F3_1<2, 0b001011, 
236                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "smul">;
237def SMULri  : F3_2<2, 0b001011,
238                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "smul">;
239def UMULCCrr: F3_1<2, 0b011010, 
240                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "umulcc">;
241def UMULCCri: F3_2<2, 0b011010,
242                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "umulcc">;
243def SMULCCrr: F3_1<2, 0b011011, 
244                   (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "smulcc">;
245def SMULCCri: F3_2<2, 0b011011,
246                   (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "smulcc">;
247
248// Section B.19 - Divide Instructions, p. 115
249def UDIVrr   : F3_1<2, 0b001110, 
250                    (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "udiv">;
251def UDIVri   : F3_2<2, 0b001110,
252                    (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "udiv">;
253def SDIVrr   : F3_1<2, 0b001111,
254                    (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "sdiv">;
255def SDIVri   : F3_2<2, 0b001111,
256                    (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "sdiv">;
257def UDIVCCrr : F3_1<2, 0b011110,
258                    (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "udivcc">;
259def UDIVCCri : F3_2<2, 0b011110,
260                    (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "udivcc">;
261def SDIVCCrr : F3_1<2, 0b011111,
262                    (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "sdivcc">;
263def SDIVCCri : F3_2<2, 0b011111,
264                    (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "sdivcc">;
265
266// Section B.20 - SAVE and RESTORE, p. 117
267def SAVErr    : F3_1<2, 0b111100,
268                     (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "save">;
269def SAVEri    : F3_2<2, 0b111100,
270                     (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "save">;
271def RESTORErr : F3_1<2, 0b111101,
272                     (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "restore">;
273def RESTOREri : F3_2<2, 0b111101,
274                     (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "restore">;
275
276// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
277
278// conditional branch class:
279class BranchV8<bits<4> cc, string nm> : F2_2<cc, 0b010, nm> {
280  let isBranch = 1;
281  let isTerminator = 1;
282  let hasDelaySlot = 1;
283}
284
285let isBarrier = 1 in
286  def BA   : BranchV8<0b1000, "ba">;
287def BN   : BranchV8<0b0000, "bn">;
288def BNE  : BranchV8<0b1001, "bne">;
289def BE   : BranchV8<0b0001, "be">;
290def BG   : BranchV8<0b1010, "bg">;
291def BLE  : BranchV8<0b0010, "ble">;
292def BGE  : BranchV8<0b1011, "bge">;
293def BL   : BranchV8<0b0011, "bl">;
294def BGU  : BranchV8<0b1100, "bgu">;
295def BLEU : BranchV8<0b0100, "bleu">;
296def BCC  : BranchV8<0b1101, "bcc">;
297def BCS  : BranchV8<0b0101, "bcs">;
298
299// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
300
301// floating-point conditional branch class:
302class FPBranchV8<bits<4> cc, string nm> : F2_2<cc, 0b110, nm> {
303  let isBranch = 1;
304  let isTerminator = 1;
305  let hasDelaySlot = 1;
306}
307
308def FBA  : FPBranchV8<0b1000, "fba">;
309def FBN  : FPBranchV8<0b0000, "fbn">;
310def FBU  : FPBranchV8<0b0111, "fbu">;
311def FBG  : FPBranchV8<0b0110, "fbg">;
312def FBUG : FPBranchV8<0b0101, "fbug">;
313def FBL  : FPBranchV8<0b0100, "fbl">;
314def FBUL : FPBranchV8<0b0011, "fbul">;
315def FBLG : FPBranchV8<0b0010, "fblg">;
316def FBNE : FPBranchV8<0b0001, "fbne">;
317def FBE  : FPBranchV8<0b1001, "fbe">;
318def FBUE : FPBranchV8<0b1010, "fbue">;
319def FBGE : FPBranchV8<0b1011, "fbge">;
320def FBUGE: FPBranchV8<0b1100, "fbuge">;
321def FBLE : FPBranchV8<0b1101, "fble">;
322def FBULE: FPBranchV8<0b1110, "fbule">;
323def FBO  : FPBranchV8<0b1111, "fbo">;
324
325
326
327// Section B.24 - Call and Link Instruction, p. 125
328// This is the only Format 1 instruction
329let Uses = [O0, O1, O2, O3, O4, O5], hasDelaySlot = 1, isCall = 1 in { 
330  // pc-relative call:
331  let Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
332    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in
333  def CALL : InstV8 {
334    bits<30> disp;
335    let op = 1;
336    let Inst{29-0} = disp;
337    let Name = "call";
338  }
339
340  // indirect call (O7 is an EXPLICIT def in indirect calls, so it cannot also
341  // be an implicit def):
342  let Defs = [O0, O1, O2, O3, O4, O5, G1, G2, G3, G4, G5, G6, G7,
343    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in
344  def JMPLrr : F3_1<2, 0b111000, (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "jmpl">;
345                // jmpl [rs1+rs2], rd
346}
347
348// Section B.29 - Write State Register Instructions
349def WRrr : F3_1<2, 0b110000,
350                (ops IntRegs:$a, IntRegs:$b, IntRegs:$c), "wr">;
351def WRri : F3_2<2, 0b110000,
352                (ops IntRegs:$a, IntRegs:$b, i32imm:$c), "wr">;                    // wr rs1, imm, rd
353
354// Convert Integer to Floating-point Instructions, p. 141
355def FITOS : F3_3<2, 0b110100, 0b011000100, "fitos">;
356def FITOD : F3_3<2, 0b110100, 0b011001000, "fitod">;
357
358// Convert Floating-point to Integer Instructions, p. 142
359def FSTOI : F3_3<2, 0b110100, 0b011010001, "fstoi">;
360def FDTOI : F3_3<2, 0b110100, 0b011010010, "fdtoi">;
361
362// Convert between Floating-point Formats Instructions, p. 143
363def FSTOD : F3_3<2, 0b110100, 0b011001001, "fstod">;
364def FDTOS : F3_3<2, 0b110100, 0b011000110, "fdtos">;
365
366// Floating-point Move Instructions, p. 144
367def FMOVS : F3_3<2, 0b110100, 0b000000001, "fmovs">;
368def FNEGS : F3_3<2, 0b110100, 0b000000101, "fnegs">;
369def FABSS : F3_3<2, 0b110100, 0b000001001, "fabss">;
370
371// Floating-point Add and Subtract Instructions, p. 146
372def FADDS  : F3_3<2, 0b110100, 0b001000001, "fadds">;
373def FADDD  : F3_3<2, 0b110100, 0b001000010, "faddd">;
374def FSUBS  : F3_3<2, 0b110100, 0b001000101, "fsubs">;
375def FSUBD  : F3_3<2, 0b110100, 0b001000110, "fsubd">;
376
377// Floating-point Multiply and Divide Instructions, p. 147
378def FMULS  : F3_3<2, 0b110100, 0b001001001, "fmuls">;
379def FMULD  : F3_3<2, 0b110100, 0b001001010, "fmuld">;
380def FSMULD : F3_3<2, 0b110100, 0b001101001, "fsmuld">;
381def FDIVS  : F3_3<2, 0b110100, 0b001001101, "fdivs">;
382def FDIVD  : F3_3<2, 0b110100, 0b001001110, "fdivd">;
383
384// Floating-point Compare Instructions, p. 148
385// Note: the 2nd template arg is different for these guys.
386// Note 2: the result of a FCMP is not available until the 2nd cycle
387// after the instr is retired, but there is no interlock. This behavior
388// is modelled as a delay slot.
389let hasDelaySlot = 1 in {
390  def FCMPS  : F3_3<2, 0b110101, 0b001010001, "fcmps">;
391  def FCMPD  : F3_3<2, 0b110101, 0b001010010, "fcmpd">;
392  def FCMPES : F3_3<2, 0b110101, 0b001010101, "fcmpes">;
393  def FCMPED : F3_3<2, 0b110101, 0b001010110, "fcmped">;
394}
395
396