SparcInstrInfo.td revision c178308b23f796b6f5c15c8b3f742cc7b3336d6b
1//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions.  Note that the machine may be running in 32-bit mode.
26def HasV9   : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions.  Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate.  In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
47
48def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
49
50def LO10 : SDNodeXForm<imm, [{
51  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
52                                   MVT::i32);
53}]>;
54
55def HI22 : SDNodeXForm<imm, [{
56  // Transformation function: shift the immediate value down into the low bits.
57  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
58}]>;
59
60def SETHIimm : PatLeaf<(imm), [{
61  return (((unsigned)N->getZExtValue() >> 10) << 10) ==
62         (unsigned)N->getZExtValue();
63}], HI22>;
64
65// Addressing modes.
66def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
67def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
68
69// Address operands
70def MEMrr : Operand<i32> {
71  let PrintMethod = "printMemOperand";
72  let MIOperandInfo = (ops IntRegs, IntRegs);
73}
74def MEMri : Operand<i32> {
75  let PrintMethod = "printMemOperand";
76  let MIOperandInfo = (ops IntRegs, i32imm);
77}
78
79// Branch targets have OtherVT type.
80def brtarget : Operand<OtherVT>;
81def calltarget : Operand<i32>;
82
83// Operand for printing out a condition code.
84let PrintMethod = "printCCOperand" in
85  def CCOp : Operand<i32>;
86
87def SDTSPcmpfcc : 
88SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
89def SDTSPbrcc : 
90SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
91def SDTSPselectcc :
92SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
93def SDTSPFTOI :
94SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
95def SDTSPITOF :
96SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
97
98def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutGlue]>;
99def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
100def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
101def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
102
103def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
104def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
105
106def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
107def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
108
109def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
110def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
111
112//  These are target-independent nodes, but have target-specific formats.
113def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
114def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
115                                        SDTCisVT<1, i32> ]>;
116
117def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
118                           [SDNPHasChain, SDNPOutGlue]>;
119def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
120                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
121
122def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
123def call          : SDNode<"SPISD::CALL", SDT_SPCall,
124                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
125                            SDNPVariadic]>;
126
127def retflag       : SDNode<"SPISD::RET_FLAG", SDTNone,
128                           [SDNPHasChain, SDNPOptInGlue]>;
129
130def getPCX        : Operand<i32> {
131  let PrintMethod = "printGetPCX";
132}  
133
134//===----------------------------------------------------------------------===//
135// SPARC Flag Conditions
136//===----------------------------------------------------------------------===//
137
138// Note that these values must be kept in sync with the CCOp::CondCode enum
139// values.
140class ICC_VAL<int N> : PatLeaf<(i32 N)>;
141def ICC_NE  : ICC_VAL< 9>;  // Not Equal
142def ICC_E   : ICC_VAL< 1>;  // Equal
143def ICC_G   : ICC_VAL<10>;  // Greater
144def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
145def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
146def ICC_L   : ICC_VAL< 3>;  // Less
147def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
148def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
149def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
150def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
151def ICC_POS : ICC_VAL<14>;  // Positive
152def ICC_NEG : ICC_VAL< 6>;  // Negative
153def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
154def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
155
156class FCC_VAL<int N> : PatLeaf<(i32 N)>;
157def FCC_U   : FCC_VAL<23>;  // Unordered
158def FCC_G   : FCC_VAL<22>;  // Greater
159def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
160def FCC_L   : FCC_VAL<20>;  // Less
161def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
162def FCC_LG  : FCC_VAL<18>;  // Less or Greater
163def FCC_NE  : FCC_VAL<17>;  // Not Equal
164def FCC_E   : FCC_VAL<25>;  // Equal
165def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
166def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
167def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
168def FCC_LE  : FCC_VAL<27>;  // Less or Equal
169def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
170def FCC_O   : FCC_VAL<29>;  // Ordered
171
172//===----------------------------------------------------------------------===//
173// Instruction Class Templates
174//===----------------------------------------------------------------------===//
175
176/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
177multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
178  def rr  : F3_1<2, Op3Val, 
179                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
180                 !strconcat(OpcStr, " $b, $c, $dst"),
181                 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
182  def ri  : F3_2<2, Op3Val,
183                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
184                 !strconcat(OpcStr, " $b, $c, $dst"),
185                 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
186}
187
188/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
189/// pattern.
190multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
191  def rr  : F3_1<2, Op3Val, 
192                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
193                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
194  def ri  : F3_2<2, Op3Val,
195                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
196                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
197}
198
199//===----------------------------------------------------------------------===//
200// Instructions
201//===----------------------------------------------------------------------===//
202
203// Pseudo instructions.
204class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
205   : InstSP<outs, ins, asmstr, pattern>;
206
207// GETPCX for PIC
208let Defs = [O7] in {
209  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
210}
211
212let Defs = [O6], Uses = [O6] in {
213def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
214                               "!ADJCALLSTACKDOWN $amt",
215                               [(callseq_start timm:$amt)]>;
216def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
217                            "!ADJCALLSTACKUP $amt1",
218                            [(callseq_end timm:$amt1, timm:$amt2)]>;
219}
220
221// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
222// fpmover pass.
223let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
224  def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
225                      "!FpMOVD $src, $dst", []>;
226  def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
227                      "!FpNEGD $src, $dst",
228                      [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
229  def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
230                      "!FpABSD $src, $dst",
231                      [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
232}
233
234// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
235// instruction selection into a branch sequence.  This has to handle all
236// permutations of selection between i32/f32/f64 on ICC and FCC.
237  // Expanded after instruction selection.
238let Uses = [ICC], usesCustomInserter = 1 in { 
239  def SELECT_CC_Int_ICC
240   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
241            "; SELECT_CC_Int_ICC PSEUDO!",
242            [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
243                                             imm:$Cond))]>;
244  def SELECT_CC_FP_ICC
245   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
246            "; SELECT_CC_FP_ICC PSEUDO!",
247            [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
248                                            imm:$Cond))]>;
249
250  def SELECT_CC_DFP_ICC
251   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
252            "; SELECT_CC_DFP_ICC PSEUDO!",
253            [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
254                                             imm:$Cond))]>;
255}
256
257let usesCustomInserter = 1, Uses = [FCC] in {
258
259  def SELECT_CC_Int_FCC
260   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
261            "; SELECT_CC_Int_FCC PSEUDO!",
262            [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
263                                             imm:$Cond))]>;
264
265  def SELECT_CC_FP_FCC
266   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
267            "; SELECT_CC_FP_FCC PSEUDO!",
268            [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
269                                            imm:$Cond))]>;
270  def SELECT_CC_DFP_FCC
271   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
272            "; SELECT_CC_DFP_FCC PSEUDO!",
273            [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
274                                             imm:$Cond))]>;
275}
276
277
278// Section A.3 - Synthetic Instructions, p. 85
279// special cases of JMPL:
280let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
281  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
282    def RETL: F3_2<2, 0b111000, (outs), (ins), "retl", [(retflag)]>;
283}
284
285// Section B.1 - Load Integer Instructions, p. 90
286def LDSBrr : F3_1<3, 0b001001,
287                  (outs IntRegs:$dst), (ins MEMrr:$addr),
288                  "ldsb [$addr], $dst",
289                  [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
290def LDSBri : F3_2<3, 0b001001,
291                  (outs IntRegs:$dst), (ins MEMri:$addr),
292                  "ldsb [$addr], $dst",
293                  [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
294def LDSHrr : F3_1<3, 0b001010,
295                  (outs IntRegs:$dst), (ins MEMrr:$addr),
296                  "ldsh [$addr], $dst",
297                  [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
298def LDSHri : F3_2<3, 0b001010,
299                  (outs IntRegs:$dst), (ins MEMri:$addr),
300                  "ldsh [$addr], $dst",
301                  [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
302def LDUBrr : F3_1<3, 0b000001,
303                  (outs IntRegs:$dst), (ins MEMrr:$addr),
304                  "ldub [$addr], $dst",
305                  [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
306def LDUBri : F3_2<3, 0b000001,
307                  (outs IntRegs:$dst), (ins MEMri:$addr),
308                  "ldub [$addr], $dst",
309                  [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
310def LDUHrr : F3_1<3, 0b000010,
311                  (outs IntRegs:$dst), (ins MEMrr:$addr),
312                  "lduh [$addr], $dst",
313                  [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
314def LDUHri : F3_2<3, 0b000010,
315                  (outs IntRegs:$dst), (ins MEMri:$addr),
316                  "lduh [$addr], $dst",
317                  [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
318def LDrr   : F3_1<3, 0b000000,
319                  (outs IntRegs:$dst), (ins MEMrr:$addr),
320                  "ld [$addr], $dst",
321                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
322def LDri   : F3_2<3, 0b000000,
323                  (outs IntRegs:$dst), (ins MEMri:$addr),
324                  "ld [$addr], $dst",
325                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
326
327// Section B.2 - Load Floating-point Instructions, p. 92
328def LDFrr  : F3_1<3, 0b100000,
329                  (outs FPRegs:$dst), (ins MEMrr:$addr),
330                  "ld [$addr], $dst",
331                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
332def LDFri  : F3_2<3, 0b100000,
333                  (outs FPRegs:$dst), (ins MEMri:$addr),
334                  "ld [$addr], $dst",
335                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
336def LDDFrr : F3_1<3, 0b100011,
337                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
338                  "ldd [$addr], $dst",
339                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
340def LDDFri : F3_2<3, 0b100011,
341                  (outs DFPRegs:$dst), (ins MEMri:$addr),
342                  "ldd [$addr], $dst",
343                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
344
345// Section B.4 - Store Integer Instructions, p. 95
346def STBrr : F3_1<3, 0b000101,
347                 (outs), (ins MEMrr:$addr, IntRegs:$src),
348                 "stb $src, [$addr]",
349                 [(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>;
350def STBri : F3_2<3, 0b000101,
351                 (outs), (ins MEMri:$addr, IntRegs:$src),
352                 "stb $src, [$addr]",
353                 [(truncstorei8 IntRegs:$src, ADDRri:$addr)]>;
354def STHrr : F3_1<3, 0b000110,
355                 (outs), (ins MEMrr:$addr, IntRegs:$src),
356                 "sth $src, [$addr]",
357                 [(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>;
358def STHri : F3_2<3, 0b000110,
359                 (outs), (ins MEMri:$addr, IntRegs:$src),
360                 "sth $src, [$addr]",
361                 [(truncstorei16 IntRegs:$src, ADDRri:$addr)]>;
362def STrr  : F3_1<3, 0b000100,
363                 (outs), (ins MEMrr:$addr, IntRegs:$src),
364                 "st $src, [$addr]",
365                 [(store IntRegs:$src, ADDRrr:$addr)]>;
366def STri  : F3_2<3, 0b000100,
367                 (outs), (ins MEMri:$addr, IntRegs:$src),
368                 "st $src, [$addr]",
369                 [(store IntRegs:$src, ADDRri:$addr)]>;
370
371// Section B.5 - Store Floating-point Instructions, p. 97
372def STFrr   : F3_1<3, 0b100100,
373                   (outs), (ins MEMrr:$addr, FPRegs:$src),
374                   "st $src, [$addr]",
375                   [(store FPRegs:$src, ADDRrr:$addr)]>;
376def STFri   : F3_2<3, 0b100100,
377                   (outs), (ins MEMri:$addr, FPRegs:$src),
378                   "st $src, [$addr]",
379                   [(store FPRegs:$src, ADDRri:$addr)]>;
380def STDFrr  : F3_1<3, 0b100111,
381                   (outs), (ins MEMrr:$addr, DFPRegs:$src),
382                   "std  $src, [$addr]",
383                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
384def STDFri  : F3_2<3, 0b100111,
385                   (outs), (ins MEMri:$addr, DFPRegs:$src),
386                   "std $src, [$addr]",
387                   [(store DFPRegs:$src, ADDRri:$addr)]>;
388
389// Section B.9 - SETHI Instruction, p. 104
390def SETHIi: F2_1<0b100,
391                 (outs IntRegs:$dst), (ins i32imm:$src),
392                 "sethi $src, $dst",
393                 [(set IntRegs:$dst, SETHIimm:$src)]>;
394
395// Section B.10 - NOP Instruction, p. 105
396// (It's a special case of SETHI)
397let rd = 0, imm22 = 0 in
398  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
399
400// Section B.11 - Logical Instructions, p. 106
401defm AND    : F3_12<"and", 0b000001, and>;
402
403def ANDNrr  : F3_1<2, 0b000101,
404                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
405                   "andn $b, $c, $dst",
406                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
407def ANDNri  : F3_2<2, 0b000101,
408                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
409                   "andn $b, $c, $dst", []>;
410
411defm OR     : F3_12<"or", 0b000010, or>;
412
413def ORNrr   : F3_1<2, 0b000110,
414                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
415                   "orn $b, $c, $dst",
416                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
417def ORNri   : F3_2<2, 0b000110,
418                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
419                   "orn $b, $c, $dst", []>;
420defm XOR    : F3_12<"xor", 0b000011, xor>;
421
422def XNORrr  : F3_1<2, 0b000111,
423                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
424                   "xnor $b, $c, $dst",
425                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
426def XNORri  : F3_2<2, 0b000111,
427                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
428                   "xnor $b, $c, $dst", []>;
429
430// Section B.12 - Shift Instructions, p. 107
431defm SLL : F3_12<"sll", 0b100101, shl>;
432defm SRL : F3_12<"srl", 0b100110, srl>;
433defm SRA : F3_12<"sra", 0b100111, sra>;
434
435// Section B.13 - Add Instructions, p. 108
436defm ADD   : F3_12<"add", 0b000000, add>;
437
438// "LEA" forms of add (patterns to make tblgen happy)
439def LEA_ADDri   : F3_2<2, 0b000000,
440                   (outs IntRegs:$dst), (ins MEMri:$addr),
441                   "add ${addr:arith}, $dst",
442                   [(set IntRegs:$dst, ADDRri:$addr)]>;
443
444let Defs = [ICC] in                   
445  defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
446
447let Uses = [ICC] in
448  defm ADDX  : F3_12<"addx", 0b001000, adde>;
449
450// Section B.15 - Subtract Instructions, p. 110
451defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
452let Uses = [ICC] in 
453  defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
454
455let Defs = [ICC] in 
456  defm SUBCC  : F3_12  <"subcc", 0b010100, SPcmpicc>;
457
458let Uses = [ICC], Defs = [ICC] in
459  def SUBXCCrr: F3_1<2, 0b011100, 
460                (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
461                "subxcc $b, $c, $dst", []>;
462
463
464// Section B.18 - Multiply Instructions, p. 113
465let Defs = [Y] in {
466  defm UMUL : F3_12np<"umul", 0b001010>;
467  defm SMUL : F3_12  <"smul", 0b001011, mul>;
468}
469
470// Section B.19 - Divide Instructions, p. 115
471let Defs = [Y] in {
472  defm UDIV : F3_12np<"udiv", 0b001110>;
473  defm SDIV : F3_12np<"sdiv", 0b001111>;
474}
475
476// Section B.20 - SAVE and RESTORE, p. 117
477defm SAVE    : F3_12np<"save"   , 0b111100>;
478defm RESTORE : F3_12np<"restore", 0b111101>;
479
480// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
481
482// conditional branch class:
483class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
484 : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
485  let isBranch = 1;
486  let isTerminator = 1;
487  let hasDelaySlot = 1;
488}
489
490let isBarrier = 1 in
491  def BA   : BranchSP<0b1000, (ins brtarget:$dst),
492                      "ba $dst",
493                      [(br bb:$dst)]>;
494
495// FIXME: the encoding for the JIT should look at the condition field.
496let Uses = [ICC] in
497  def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
498                         "b$cc $dst",
499                        [(SPbricc bb:$dst, imm:$cc)]>;
500
501
502// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
503
504// floating-point conditional branch class:
505class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
506 : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
507  let isBranch = 1;
508  let isTerminator = 1;
509  let hasDelaySlot = 1;
510}
511
512// FIXME: the encoding for the JIT should look at the condition field.
513let Uses = [FCC] in
514  def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
515                              "fb$cc $dst",
516                              [(SPbrfcc bb:$dst, imm:$cc)]>;
517
518
519// Section B.24 - Call and Link Instruction, p. 125
520// This is the only Format 1 instruction
521let Uses = [O6],
522    hasDelaySlot = 1, isCall = 1,
523    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
524    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
525  def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
526                    "call $dst", []> {
527    bits<30> disp;
528    let op = 1;
529    let Inst{29-0} = disp;
530  }
531  
532  // indirect calls
533  def JMPLrr : F3_1<2, 0b111000,
534                    (outs), (ins MEMrr:$ptr, variable_ops),
535                    "call $ptr",
536                    [(call ADDRrr:$ptr)]>;
537  def JMPLri : F3_2<2, 0b111000,
538                    (outs), (ins MEMri:$ptr, variable_ops),
539                    "call $ptr",
540                    [(call ADDRri:$ptr)]>;
541}
542
543// Section B.28 - Read State Register Instructions
544let Uses = [Y] in 
545  def RDY : F3_1<2, 0b101000,
546                 (outs IntRegs:$dst), (ins),
547                 "rd %y, $dst", []>;
548
549// Section B.29 - Write State Register Instructions
550let Defs = [Y] in {
551  def WRYrr : F3_1<2, 0b110000,
552                   (outs), (ins IntRegs:$b, IntRegs:$c),
553                   "wr $b, $c, %y", []>;
554  def WRYri : F3_2<2, 0b110000,
555                   (outs), (ins IntRegs:$b, i32imm:$c),
556                   "wr $b, $c, %y", []>;
557}
558// Convert Integer to Floating-point Instructions, p. 141
559def FITOS : F3_3<2, 0b110100, 0b011000100,
560                 (outs FPRegs:$dst), (ins FPRegs:$src),
561                 "fitos $src, $dst",
562                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
563def FITOD : F3_3<2, 0b110100, 0b011001000, 
564                 (outs DFPRegs:$dst), (ins FPRegs:$src),
565                 "fitod $src, $dst",
566                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
567
568// Convert Floating-point to Integer Instructions, p. 142
569def FSTOI : F3_3<2, 0b110100, 0b011010001,
570                 (outs FPRegs:$dst), (ins FPRegs:$src),
571                 "fstoi $src, $dst",
572                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
573def FDTOI : F3_3<2, 0b110100, 0b011010010,
574                 (outs FPRegs:$dst), (ins DFPRegs:$src),
575                 "fdtoi $src, $dst",
576                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
577
578// Convert between Floating-point Formats Instructions, p. 143
579def FSTOD : F3_3<2, 0b110100, 0b011001001, 
580                 (outs DFPRegs:$dst), (ins FPRegs:$src),
581                 "fstod $src, $dst",
582                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
583def FDTOS : F3_3<2, 0b110100, 0b011000110,
584                 (outs FPRegs:$dst), (ins DFPRegs:$src),
585                 "fdtos $src, $dst",
586                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
587
588// Floating-point Move Instructions, p. 144
589def FMOVS : F3_3<2, 0b110100, 0b000000001,
590                 (outs FPRegs:$dst), (ins FPRegs:$src),
591                 "fmovs $src, $dst", []>;
592def FNEGS : F3_3<2, 0b110100, 0b000000101, 
593                 (outs FPRegs:$dst), (ins FPRegs:$src),
594                 "fnegs $src, $dst",
595                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
596def FABSS : F3_3<2, 0b110100, 0b000001001, 
597                 (outs FPRegs:$dst), (ins FPRegs:$src),
598                 "fabss $src, $dst",
599                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
600
601
602// Floating-point Square Root Instructions, p.145
603def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
604                  (outs FPRegs:$dst), (ins FPRegs:$src),
605                  "fsqrts $src, $dst",
606                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
607def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
608                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
609                  "fsqrtd $src, $dst",
610                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
611
612
613
614// Floating-point Add and Subtract Instructions, p. 146
615def FADDS  : F3_3<2, 0b110100, 0b001000001,
616                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
617                  "fadds $src1, $src2, $dst",
618                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
619def FADDD  : F3_3<2, 0b110100, 0b001000010,
620                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
621                  "faddd $src1, $src2, $dst",
622                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
623def FSUBS  : F3_3<2, 0b110100, 0b001000101,
624                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
625                  "fsubs $src1, $src2, $dst",
626                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
627def FSUBD  : F3_3<2, 0b110100, 0b001000110,
628                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
629                  "fsubd $src1, $src2, $dst",
630                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
631
632// Floating-point Multiply and Divide Instructions, p. 147
633def FMULS  : F3_3<2, 0b110100, 0b001001001,
634                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
635                  "fmuls $src1, $src2, $dst",
636                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
637def FMULD  : F3_3<2, 0b110100, 0b001001010,
638                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
639                  "fmuld $src1, $src2, $dst",
640                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
641def FSMULD : F3_3<2, 0b110100, 0b001101001,
642                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
643                  "fsmuld $src1, $src2, $dst",
644                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
645                                            (fextend FPRegs:$src2)))]>;
646def FDIVS  : F3_3<2, 0b110100, 0b001001101,
647                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
648                 "fdivs $src1, $src2, $dst",
649                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
650def FDIVD  : F3_3<2, 0b110100, 0b001001110,
651                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
652                 "fdivd $src1, $src2, $dst",
653                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
654
655// Floating-point Compare Instructions, p. 148
656// Note: the 2nd template arg is different for these guys.
657// Note 2: the result of a FCMP is not available until the 2nd cycle
658// after the instr is retired, but there is no interlock. This behavior
659// is modelled with a forced noop after the instruction.
660let Defs = [FCC] in {
661  def FCMPS  : F3_3<2, 0b110101, 0b001010001,
662                   (outs), (ins FPRegs:$src1, FPRegs:$src2),
663                   "fcmps $src1, $src2\n\tnop",
664                   [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
665  def FCMPD  : F3_3<2, 0b110101, 0b001010010,
666                   (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
667                   "fcmpd $src1, $src2\n\tnop",
668                   [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
669}
670
671//===----------------------------------------------------------------------===//
672// V9 Instructions
673//===----------------------------------------------------------------------===//
674
675// V9 Conditional Moves.
676let Predicates = [HasV9], Constraints = "$T = $dst" in {
677  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
678  // FIXME: Add instruction encodings for the JIT some day.
679  def MOVICCrr
680    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
681             "mov$cc %icc, $F, $dst",
682             [(set IntRegs:$dst,
683                         (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
684  def MOVICCri
685    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
686             "mov$cc %icc, $F, $dst",
687             [(set IntRegs:$dst,
688                          (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
689
690  def MOVFCCrr
691    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
692             "mov$cc %fcc0, $F, $dst",
693             [(set IntRegs:$dst,
694                         (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
695  def MOVFCCri
696    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
697             "mov$cc %fcc0, $F, $dst",
698             [(set IntRegs:$dst,
699                          (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
700
701  def FMOVS_ICC
702    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
703             "fmovs$cc %icc, $F, $dst",
704             [(set FPRegs:$dst,
705                         (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
706  def FMOVD_ICC
707    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
708             "fmovd$cc %icc, $F, $dst",
709             [(set DFPRegs:$dst,
710                         (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
711  def FMOVS_FCC
712    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
713             "fmovs$cc %fcc0, $F, $dst",
714             [(set FPRegs:$dst,
715                         (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
716  def FMOVD_FCC
717    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
718             "fmovd$cc %fcc0, $F, $dst",
719             [(set DFPRegs:$dst,
720                         (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
721
722}
723
724// Floating-Point Move Instructions, p. 164 of the V9 manual.
725let Predicates = [HasV9] in {
726  def FMOVD : F3_3<2, 0b110100, 0b000000010,
727                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
728                   "fmovd $src, $dst", []>;
729  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
730                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
731                   "fnegd $src, $dst",
732                   [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
733  def FABSD : F3_3<2, 0b110100, 0b000001010, 
734                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
735                   "fabsd $src, $dst",
736                   [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
737}
738
739// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
740// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
741def POPCrr : F3_1<2, 0b101110, 
742                  (outs IntRegs:$dst), (ins IntRegs:$src),
743                  "popc $src, $dst", []>, Requires<[HasV9]>;
744def : Pat<(ctpop IntRegs:$src),
745          (POPCrr (SLLri IntRegs:$src, 0))>;
746
747//===----------------------------------------------------------------------===//
748// Non-Instruction Patterns
749//===----------------------------------------------------------------------===//
750
751// Small immediates.
752def : Pat<(i32 simm13:$val),
753          (ORri G0, imm:$val)>;
754// Arbitrary immediates.
755def : Pat<(i32 imm:$val),
756          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
757
758// subc
759def : Pat<(subc IntRegs:$b, IntRegs:$c),
760          (SUBCCrr IntRegs:$b, IntRegs:$c)>;
761def : Pat<(subc IntRegs:$b, simm13:$val),
762          (SUBCCri IntRegs:$b, imm:$val)>;
763
764// Global addresses, constant pool entries
765def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
766def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
767def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
768def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
769
770// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
771def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
772          (ADDri IntRegs:$r, tglobaladdr:$in)>;
773def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
774          (ADDri IntRegs:$r, tconstpool:$in)>;
775
776// Calls: 
777def : Pat<(call tglobaladdr:$dst),
778          (CALL tglobaladdr:$dst)>;
779def : Pat<(call texternalsym:$dst),
780          (CALL texternalsym:$dst)>;
781
782// Map integer extload's to zextloads.
783def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
784def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
785def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
786def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
787def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
788def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
789
790// zextload bool -> zextload byte
791def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
792def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
793