SparcInstrInfo.td revision f661277a9b26590648aca585c0572f200470290d
1//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions.  Note that the machine may be running in 32-bit mode.
26def HasV9   : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions.  Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate.  In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
47
48def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
49
50def LO10 : SDNodeXForm<imm, [{
51  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
52                                   MVT::i32);
53}]>;
54
55def HI22 : SDNodeXForm<imm, [{
56  // Transformation function: shift the immediate value down into the low bits.
57  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
58}]>;
59
60def SETHIimm : PatLeaf<(imm), [{
61  return (((unsigned)N->getZExtValue() >> 10) << 10) ==
62         (unsigned)N->getZExtValue();
63}], HI22>;
64
65// Addressing modes.
66def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
67def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
68
69// Address operands
70def MEMrr : Operand<i32> {
71  let PrintMethod = "printMemOperand";
72  let MIOperandInfo = (ops IntRegs, IntRegs);
73}
74def MEMri : Operand<i32> {
75  let PrintMethod = "printMemOperand";
76  let MIOperandInfo = (ops IntRegs, i32imm);
77}
78
79// Branch targets have OtherVT type.
80def brtarget : Operand<OtherVT>;
81def calltarget : Operand<i32>;
82
83// Operand for printing out a condition code.
84let PrintMethod = "printCCOperand" in
85  def CCOp : Operand<i32>;
86
87def SDTSPcmpfcc : 
88SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
89def SDTSPbrcc : 
90SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
91def SDTSPselectcc :
92SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
93def SDTSPFTOI :
94SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
95def SDTSPITOF :
96SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
97
98def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutGlue]>;
99def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
100def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
101def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
102
103def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
104def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
105
106def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
107def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
108
109def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
110def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
111
112//  These are target-independent nodes, but have target-specific formats.
113def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
114def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
115                                        SDTCisVT<1, i32> ]>;
116
117def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
118                           [SDNPHasChain, SDNPOutGlue]>;
119def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
120                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
121
122def SDT_SPCall    : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
123def call          : SDNode<"SPISD::CALL", SDT_SPCall,
124                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
125
126def retflag       : SDNode<"SPISD::RET_FLAG", SDTNone,
127                           [SDNPHasChain, SDNPOptInGlue]>;
128
129def getPCX        : Operand<i32> {
130  let PrintMethod = "printGetPCX";
131}  
132
133//===----------------------------------------------------------------------===//
134// SPARC Flag Conditions
135//===----------------------------------------------------------------------===//
136
137// Note that these values must be kept in sync with the CCOp::CondCode enum
138// values.
139class ICC_VAL<int N> : PatLeaf<(i32 N)>;
140def ICC_NE  : ICC_VAL< 9>;  // Not Equal
141def ICC_E   : ICC_VAL< 1>;  // Equal
142def ICC_G   : ICC_VAL<10>;  // Greater
143def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
144def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
145def ICC_L   : ICC_VAL< 3>;  // Less
146def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
147def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
148def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
149def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
150def ICC_POS : ICC_VAL<14>;  // Positive
151def ICC_NEG : ICC_VAL< 6>;  // Negative
152def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
153def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
154
155class FCC_VAL<int N> : PatLeaf<(i32 N)>;
156def FCC_U   : FCC_VAL<23>;  // Unordered
157def FCC_G   : FCC_VAL<22>;  // Greater
158def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
159def FCC_L   : FCC_VAL<20>;  // Less
160def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
161def FCC_LG  : FCC_VAL<18>;  // Less or Greater
162def FCC_NE  : FCC_VAL<17>;  // Not Equal
163def FCC_E   : FCC_VAL<25>;  // Equal
164def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
165def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
166def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
167def FCC_LE  : FCC_VAL<27>;  // Less or Equal
168def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
169def FCC_O   : FCC_VAL<29>;  // Ordered
170
171//===----------------------------------------------------------------------===//
172// Instruction Class Templates
173//===----------------------------------------------------------------------===//
174
175/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
176multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
177  def rr  : F3_1<2, Op3Val, 
178                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
179                 !strconcat(OpcStr, " $b, $c, $dst"),
180                 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
181  def ri  : F3_2<2, Op3Val,
182                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
183                 !strconcat(OpcStr, " $b, $c, $dst"),
184                 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
185}
186
187/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
188/// pattern.
189multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
190  def rr  : F3_1<2, Op3Val, 
191                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
192                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
193  def ri  : F3_2<2, Op3Val,
194                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
195                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
196}
197
198//===----------------------------------------------------------------------===//
199// Instructions
200//===----------------------------------------------------------------------===//
201
202// Pseudo instructions.
203class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
204   : InstSP<outs, ins, asmstr, pattern>;
205
206// GETPCX for PIC
207let Defs = [O7], Uses = [O7] in {
208  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
209}
210
211let Defs = [O6], Uses = [O6] in {
212def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
213                               "!ADJCALLSTACKDOWN $amt",
214                               [(callseq_start timm:$amt)]>;
215def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
216                            "!ADJCALLSTACKUP $amt1",
217                            [(callseq_end timm:$amt1, timm:$amt2)]>;
218}
219
220// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
221// fpmover pass.
222let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
223  def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
224                      "!FpMOVD $src, $dst", []>;
225  def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
226                      "!FpNEGD $src, $dst",
227                      [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
228  def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
229                      "!FpABSD $src, $dst",
230                      [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
231}
232
233// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
234// instruction selection into a branch sequence.  This has to handle all
235// permutations of selection between i32/f32/f64 on ICC and FCC.
236let Uses = [ICC],
237    usesCustomInserter = 1 in {   // Expanded after instruction selection.
238  def SELECT_CC_Int_ICC
239   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
240            "; SELECT_CC_Int_ICC PSEUDO!",
241            [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
242                                             imm:$Cond))]>;
243  def SELECT_CC_Int_FCC
244   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
245            "; SELECT_CC_Int_FCC PSEUDO!",
246            [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
247                                             imm:$Cond))]>;
248}
249
250let usesCustomInserter = 1, Uses = [FCC] in {
251  def SELECT_CC_FP_ICC
252   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
253            "; SELECT_CC_FP_ICC PSEUDO!",
254            [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
255                                            imm:$Cond))]>;
256  def SELECT_CC_FP_FCC
257   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
258            "; SELECT_CC_FP_FCC PSEUDO!",
259            [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
260                                            imm:$Cond))]>;
261  def SELECT_CC_DFP_ICC
262   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
263            "; SELECT_CC_DFP_ICC PSEUDO!",
264            [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
265                                             imm:$Cond))]>;
266  def SELECT_CC_DFP_FCC
267   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
268            "; SELECT_CC_DFP_FCC PSEUDO!",
269            [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
270                                             imm:$Cond))]>;
271}
272
273
274// Section A.3 - Synthetic Instructions, p. 85
275// special cases of JMPL:
276let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
277  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
278    def RETL: F3_2<2, 0b111000, (outs), (ins), "retl", [(retflag)]>;
279}
280
281// Section B.1 - Load Integer Instructions, p. 90
282def LDSBrr : F3_1<3, 0b001001,
283                  (outs IntRegs:$dst), (ins MEMrr:$addr),
284                  "ldsb [$addr], $dst",
285                  [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
286def LDSBri : F3_2<3, 0b001001,
287                  (outs IntRegs:$dst), (ins MEMri:$addr),
288                  "ldsb [$addr], $dst",
289                  [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
290def LDSHrr : F3_1<3, 0b001010,
291                  (outs IntRegs:$dst), (ins MEMrr:$addr),
292                  "ldsh [$addr], $dst",
293                  [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
294def LDSHri : F3_2<3, 0b001010,
295                  (outs IntRegs:$dst), (ins MEMri:$addr),
296                  "ldsh [$addr], $dst",
297                  [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
298def LDUBrr : F3_1<3, 0b000001,
299                  (outs IntRegs:$dst), (ins MEMrr:$addr),
300                  "ldub [$addr], $dst",
301                  [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
302def LDUBri : F3_2<3, 0b000001,
303                  (outs IntRegs:$dst), (ins MEMri:$addr),
304                  "ldub [$addr], $dst",
305                  [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
306def LDUHrr : F3_1<3, 0b000010,
307                  (outs IntRegs:$dst), (ins MEMrr:$addr),
308                  "lduh [$addr], $dst",
309                  [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
310def LDUHri : F3_2<3, 0b000010,
311                  (outs IntRegs:$dst), (ins MEMri:$addr),
312                  "lduh [$addr], $dst",
313                  [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
314def LDrr   : F3_1<3, 0b000000,
315                  (outs IntRegs:$dst), (ins MEMrr:$addr),
316                  "ld [$addr], $dst",
317                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
318def LDri   : F3_2<3, 0b000000,
319                  (outs IntRegs:$dst), (ins MEMri:$addr),
320                  "ld [$addr], $dst",
321                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
322
323// Section B.2 - Load Floating-point Instructions, p. 92
324def LDFrr  : F3_1<3, 0b100000,
325                  (outs FPRegs:$dst), (ins MEMrr:$addr),
326                  "ld [$addr], $dst",
327                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
328def LDFri  : F3_2<3, 0b100000,
329                  (outs FPRegs:$dst), (ins MEMri:$addr),
330                  "ld [$addr], $dst",
331                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
332def LDDFrr : F3_1<3, 0b100011,
333                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
334                  "ldd [$addr], $dst",
335                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
336def LDDFri : F3_2<3, 0b100011,
337                  (outs DFPRegs:$dst), (ins MEMri:$addr),
338                  "ldd [$addr], $dst",
339                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
340
341// Section B.4 - Store Integer Instructions, p. 95
342def STBrr : F3_1<3, 0b000101,
343                 (outs), (ins MEMrr:$addr, IntRegs:$src),
344                 "stb $src, [$addr]",
345                 [(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>;
346def STBri : F3_2<3, 0b000101,
347                 (outs), (ins MEMri:$addr, IntRegs:$src),
348                 "stb $src, [$addr]",
349                 [(truncstorei8 IntRegs:$src, ADDRri:$addr)]>;
350def STHrr : F3_1<3, 0b000110,
351                 (outs), (ins MEMrr:$addr, IntRegs:$src),
352                 "sth $src, [$addr]",
353                 [(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>;
354def STHri : F3_2<3, 0b000110,
355                 (outs), (ins MEMri:$addr, IntRegs:$src),
356                 "sth $src, [$addr]",
357                 [(truncstorei16 IntRegs:$src, ADDRri:$addr)]>;
358def STrr  : F3_1<3, 0b000100,
359                 (outs), (ins MEMrr:$addr, IntRegs:$src),
360                 "st $src, [$addr]",
361                 [(store IntRegs:$src, ADDRrr:$addr)]>;
362def STri  : F3_2<3, 0b000100,
363                 (outs), (ins MEMri:$addr, IntRegs:$src),
364                 "st $src, [$addr]",
365                 [(store IntRegs:$src, ADDRri:$addr)]>;
366
367// Section B.5 - Store Floating-point Instructions, p. 97
368def STFrr   : F3_1<3, 0b100100,
369                   (outs), (ins MEMrr:$addr, FPRegs:$src),
370                   "st $src, [$addr]",
371                   [(store FPRegs:$src, ADDRrr:$addr)]>;
372def STFri   : F3_2<3, 0b100100,
373                   (outs), (ins MEMri:$addr, FPRegs:$src),
374                   "st $src, [$addr]",
375                   [(store FPRegs:$src, ADDRri:$addr)]>;
376def STDFrr  : F3_1<3, 0b100111,
377                   (outs), (ins MEMrr:$addr, DFPRegs:$src),
378                   "std  $src, [$addr]",
379                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
380def STDFri  : F3_2<3, 0b100111,
381                   (outs), (ins MEMri:$addr, DFPRegs:$src),
382                   "std $src, [$addr]",
383                   [(store DFPRegs:$src, ADDRri:$addr)]>;
384
385// Section B.9 - SETHI Instruction, p. 104
386def SETHIi: F2_1<0b100,
387                 (outs IntRegs:$dst), (ins i32imm:$src),
388                 "sethi $src, $dst",
389                 [(set IntRegs:$dst, SETHIimm:$src)]>;
390
391// Section B.10 - NOP Instruction, p. 105
392// (It's a special case of SETHI)
393let rd = 0, imm22 = 0 in
394  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
395
396// Section B.11 - Logical Instructions, p. 106
397defm AND    : F3_12<"and", 0b000001, and>;
398
399def ANDNrr  : F3_1<2, 0b000101,
400                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
401                   "andn $b, $c, $dst",
402                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
403def ANDNri  : F3_2<2, 0b000101,
404                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
405                   "andn $b, $c, $dst", []>;
406
407defm OR     : F3_12<"or", 0b000010, or>;
408
409def ORNrr   : F3_1<2, 0b000110,
410                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
411                   "orn $b, $c, $dst",
412                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
413def ORNri   : F3_2<2, 0b000110,
414                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
415                   "orn $b, $c, $dst", []>;
416defm XOR    : F3_12<"xor", 0b000011, xor>;
417
418def XNORrr  : F3_1<2, 0b000111,
419                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
420                   "xnor $b, $c, $dst",
421                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
422def XNORri  : F3_2<2, 0b000111,
423                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
424                   "xnor $b, $c, $dst", []>;
425
426// Section B.12 - Shift Instructions, p. 107
427defm SLL : F3_12<"sll", 0b100101, shl>;
428defm SRL : F3_12<"srl", 0b100110, srl>;
429defm SRA : F3_12<"sra", 0b100111, sra>;
430
431// Section B.13 - Add Instructions, p. 108
432defm ADD   : F3_12<"add", 0b000000, add>;
433
434// "LEA" forms of add (patterns to make tblgen happy)
435def LEA_ADDri   : F3_2<2, 0b000000,
436                   (outs IntRegs:$dst), (ins MEMri:$addr),
437                   "add ${addr:arith}, $dst",
438                   [(set IntRegs:$dst, ADDRri:$addr)]>;
439
440let Defs = [ICC] in                   
441  defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
442
443defm ADDX  : F3_12<"addx", 0b001000, adde>;
444
445// Section B.15 - Subtract Instructions, p. 110
446defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
447let Uses = [ICC] in 
448  defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
449
450let Defs = [ICC] in 
451  defm SUBCC  : F3_12  <"subcc", 0b010100, SPcmpicc>;
452
453let Uses = [ICC], Defs = [ICC] in
454  def SUBXCCrr: F3_1<2, 0b011100, 
455                (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
456                "subxcc $b, $c, $dst", []>;
457
458
459// Section B.18 - Multiply Instructions, p. 113
460let Defs = [Y] in {
461  defm UMUL : F3_12np<"umul", 0b001010>;
462  defm SMUL : F3_12  <"smul", 0b001011, mul>;
463}
464
465// Section B.19 - Divide Instructions, p. 115
466let Defs = [Y] in {
467  defm UDIV : F3_12np<"udiv", 0b001110>;
468  defm SDIV : F3_12np<"sdiv", 0b001111>;
469}
470
471// Section B.20 - SAVE and RESTORE, p. 117
472defm SAVE    : F3_12np<"save"   , 0b111100>;
473defm RESTORE : F3_12np<"restore", 0b111101>;
474
475// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
476
477// conditional branch class:
478class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
479 : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
480  let isBranch = 1;
481  let isTerminator = 1;
482  let hasDelaySlot = 1;
483}
484
485let isBarrier = 1 in
486  def BA   : BranchSP<0b1000, (ins brtarget:$dst),
487                      "ba $dst",
488                      [(br bb:$dst)]>;
489
490// FIXME: the encoding for the JIT should look at the condition field.
491let Uses = [ICC] in
492  def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
493                         "b$cc $dst",
494                        [(SPbricc bb:$dst, imm:$cc)]>;
495
496
497// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
498
499// floating-point conditional branch class:
500class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
501 : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
502  let isBranch = 1;
503  let isTerminator = 1;
504  let hasDelaySlot = 1;
505}
506
507// FIXME: the encoding for the JIT should look at the condition field.
508let Uses = [FCC] in
509  def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
510                              "fb$cc $dst",
511                              [(SPbrfcc bb:$dst, imm:$cc)]>;
512
513
514// Section B.24 - Call and Link Instruction, p. 125
515// This is the only Format 1 instruction
516let Uses = [O0, O1, O2, O3, O4, O5],
517    hasDelaySlot = 1, isCall = 1,
518    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
519    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
520  def CALL : InstSP<(outs), (ins calltarget:$dst),
521                    "call $dst", []> {
522    bits<30> disp;
523    let op = 1;
524    let Inst{29-0} = disp;
525  }
526  
527  // indirect calls
528  def JMPLrr : F3_1<2, 0b111000,
529                    (outs), (ins MEMrr:$ptr),
530                    "call $ptr",
531                    [(call ADDRrr:$ptr)]>;
532  def JMPLri : F3_2<2, 0b111000,
533                    (outs), (ins MEMri:$ptr),
534                    "call $ptr",
535                    [(call ADDRri:$ptr)]>;
536}
537
538// Section B.28 - Read State Register Instructions
539let Uses = [Y] in 
540  def RDY : F3_1<2, 0b101000,
541                 (outs IntRegs:$dst), (ins),
542                 "rd %y, $dst", []>;
543
544// Section B.29 - Write State Register Instructions
545let Defs = [Y] in {
546  def WRYrr : F3_1<2, 0b110000,
547                   (outs), (ins IntRegs:$b, IntRegs:$c),
548                   "wr $b, $c, %y", []>;
549  def WRYri : F3_2<2, 0b110000,
550                   (outs), (ins IntRegs:$b, i32imm:$c),
551                   "wr $b, $c, %y", []>;
552}
553// Convert Integer to Floating-point Instructions, p. 141
554def FITOS : F3_3<2, 0b110100, 0b011000100,
555                 (outs FPRegs:$dst), (ins FPRegs:$src),
556                 "fitos $src, $dst",
557                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
558def FITOD : F3_3<2, 0b110100, 0b011001000, 
559                 (outs DFPRegs:$dst), (ins FPRegs:$src),
560                 "fitod $src, $dst",
561                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
562
563// Convert Floating-point to Integer Instructions, p. 142
564def FSTOI : F3_3<2, 0b110100, 0b011010001,
565                 (outs FPRegs:$dst), (ins FPRegs:$src),
566                 "fstoi $src, $dst",
567                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
568def FDTOI : F3_3<2, 0b110100, 0b011010010,
569                 (outs FPRegs:$dst), (ins DFPRegs:$src),
570                 "fdtoi $src, $dst",
571                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
572
573// Convert between Floating-point Formats Instructions, p. 143
574def FSTOD : F3_3<2, 0b110100, 0b011001001, 
575                 (outs DFPRegs:$dst), (ins FPRegs:$src),
576                 "fstod $src, $dst",
577                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
578def FDTOS : F3_3<2, 0b110100, 0b011000110,
579                 (outs FPRegs:$dst), (ins DFPRegs:$src),
580                 "fdtos $src, $dst",
581                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
582
583// Floating-point Move Instructions, p. 144
584def FMOVS : F3_3<2, 0b110100, 0b000000001,
585                 (outs FPRegs:$dst), (ins FPRegs:$src),
586                 "fmovs $src, $dst", []>;
587def FNEGS : F3_3<2, 0b110100, 0b000000101, 
588                 (outs FPRegs:$dst), (ins FPRegs:$src),
589                 "fnegs $src, $dst",
590                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
591def FABSS : F3_3<2, 0b110100, 0b000001001, 
592                 (outs FPRegs:$dst), (ins FPRegs:$src),
593                 "fabss $src, $dst",
594                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
595
596
597// Floating-point Square Root Instructions, p.145
598def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
599                  (outs FPRegs:$dst), (ins FPRegs:$src),
600                  "fsqrts $src, $dst",
601                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
602def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
603                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
604                  "fsqrtd $src, $dst",
605                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
606
607
608
609// Floating-point Add and Subtract Instructions, p. 146
610def FADDS  : F3_3<2, 0b110100, 0b001000001,
611                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
612                  "fadds $src1, $src2, $dst",
613                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
614def FADDD  : F3_3<2, 0b110100, 0b001000010,
615                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
616                  "faddd $src1, $src2, $dst",
617                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
618def FSUBS  : F3_3<2, 0b110100, 0b001000101,
619                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
620                  "fsubs $src1, $src2, $dst",
621                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
622def FSUBD  : F3_3<2, 0b110100, 0b001000110,
623                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
624                  "fsubd $src1, $src2, $dst",
625                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
626
627// Floating-point Multiply and Divide Instructions, p. 147
628def FMULS  : F3_3<2, 0b110100, 0b001001001,
629                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
630                  "fmuls $src1, $src2, $dst",
631                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
632def FMULD  : F3_3<2, 0b110100, 0b001001010,
633                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
634                  "fmuld $src1, $src2, $dst",
635                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
636def FSMULD : F3_3<2, 0b110100, 0b001101001,
637                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
638                  "fsmuld $src1, $src2, $dst",
639                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
640                                            (fextend FPRegs:$src2)))]>;
641def FDIVS  : F3_3<2, 0b110100, 0b001001101,
642                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
643                 "fdivs $src1, $src2, $dst",
644                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
645def FDIVD  : F3_3<2, 0b110100, 0b001001110,
646                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
647                 "fdivd $src1, $src2, $dst",
648                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
649
650// Floating-point Compare Instructions, p. 148
651// Note: the 2nd template arg is different for these guys.
652// Note 2: the result of a FCMP is not available until the 2nd cycle
653// after the instr is retired, but there is no interlock. This behavior
654// is modelled with a forced noop after the instruction.
655let Defs = [FCC] in {
656  def FCMPS  : F3_3<2, 0b110101, 0b001010001,
657                   (outs), (ins FPRegs:$src1, FPRegs:$src2),
658                   "fcmps $src1, $src2\n\tnop",
659                   [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
660  def FCMPD  : F3_3<2, 0b110101, 0b001010010,
661                   (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
662                   "fcmpd $src1, $src2\n\tnop",
663                   [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
664}
665
666//===----------------------------------------------------------------------===//
667// V9 Instructions
668//===----------------------------------------------------------------------===//
669
670// V9 Conditional Moves.
671let Predicates = [HasV9], Constraints = "$T = $dst" in {
672  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
673  // FIXME: Add instruction encodings for the JIT some day.
674  def MOVICCrr
675    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
676             "mov$cc %icc, $F, $dst",
677             [(set IntRegs:$dst,
678                         (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
679  def MOVICCri
680    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
681             "mov$cc %icc, $F, $dst",
682             [(set IntRegs:$dst,
683                          (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
684
685  def MOVFCCrr
686    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
687             "mov$cc %fcc0, $F, $dst",
688             [(set IntRegs:$dst,
689                         (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
690  def MOVFCCri
691    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
692             "mov$cc %fcc0, $F, $dst",
693             [(set IntRegs:$dst,
694                          (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
695
696  def FMOVS_ICC
697    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
698             "fmovs$cc %icc, $F, $dst",
699             [(set FPRegs:$dst,
700                         (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
701  def FMOVD_ICC
702    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
703             "fmovd$cc %icc, $F, $dst",
704             [(set DFPRegs:$dst,
705                         (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
706  def FMOVS_FCC
707    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
708             "fmovs$cc %fcc0, $F, $dst",
709             [(set FPRegs:$dst,
710                         (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
711  def FMOVD_FCC
712    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
713             "fmovd$cc %fcc0, $F, $dst",
714             [(set DFPRegs:$dst,
715                         (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
716
717}
718
719// Floating-Point Move Instructions, p. 164 of the V9 manual.
720let Predicates = [HasV9] in {
721  def FMOVD : F3_3<2, 0b110100, 0b000000010,
722                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
723                   "fmovd $src, $dst", []>;
724  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
725                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
726                   "fnegd $src, $dst",
727                   [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
728  def FABSD : F3_3<2, 0b110100, 0b000001010, 
729                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
730                   "fabsd $src, $dst",
731                   [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
732}
733
734// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
735// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
736def POPCrr : F3_1<2, 0b101110, 
737                  (outs IntRegs:$dst), (ins IntRegs:$src),
738                  "popc $src, $dst", []>, Requires<[HasV9]>;
739def : Pat<(ctpop IntRegs:$src),
740          (POPCrr (SLLri IntRegs:$src, 0))>;
741
742//===----------------------------------------------------------------------===//
743// Non-Instruction Patterns
744//===----------------------------------------------------------------------===//
745
746// Small immediates.
747def : Pat<(i32 simm13:$val),
748          (ORri G0, imm:$val)>;
749// Arbitrary immediates.
750def : Pat<(i32 imm:$val),
751          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
752
753// subc
754def : Pat<(subc IntRegs:$b, IntRegs:$c),
755          (SUBCCrr IntRegs:$b, IntRegs:$c)>;
756def : Pat<(subc IntRegs:$b, simm13:$val),
757          (SUBCCri IntRegs:$b, imm:$val)>;
758
759// Global addresses, constant pool entries
760def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
761def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
762def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
763def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
764
765// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
766def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
767          (ADDri IntRegs:$r, tglobaladdr:$in)>;
768def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
769          (ADDri IntRegs:$r, tconstpool:$in)>;
770
771// Calls: 
772def : Pat<(call tglobaladdr:$dst),
773          (CALL tglobaladdr:$dst)>;
774def : Pat<(call texternalsym:$dst),
775          (CALL texternalsym:$dst)>;
776
777// Map integer extload's to zextloads.
778def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
779def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
780def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
781def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
782def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
783def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
784
785// zextload bool -> zextload byte
786def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
787def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
788