SystemZISelDAGToDAG.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an instruction selector for the SystemZ target.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SystemZTargetMachine.h"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/Support/Debug.h"
18#include "llvm/Support/raw_ostream.h"
19
20using namespace llvm;
21
22namespace {
23// Used to build addressing modes.
24struct SystemZAddressingMode {
25  // The shape of the address.
26  enum AddrForm {
27    // base+displacement
28    FormBD,
29
30    // base+displacement+index for load and store operands
31    FormBDXNormal,
32
33    // base+displacement+index for load address operands
34    FormBDXLA,
35
36    // base+displacement+index+ADJDYNALLOC
37    FormBDXDynAlloc
38  };
39  AddrForm Form;
40
41  // The type of displacement.  The enum names here correspond directly
42  // to the definitions in SystemZOperand.td.  We could split them into
43  // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
44  enum DispRange {
45    Disp12Only,
46    Disp12Pair,
47    Disp20Only,
48    Disp20Only128,
49    Disp20Pair
50  };
51  DispRange DR;
52
53  // The parts of the address.  The address is equivalent to:
54  //
55  //     Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
56  SDValue Base;
57  int64_t Disp;
58  SDValue Index;
59  bool IncludesDynAlloc;
60
61  SystemZAddressingMode(AddrForm form, DispRange dr)
62    : Form(form), DR(dr), Base(), Disp(0), Index(),
63      IncludesDynAlloc(false) {}
64
65  // True if the address can have an index register.
66  bool hasIndexField() { return Form != FormBD; }
67
68  // True if the address can (and must) include ADJDYNALLOC.
69  bool isDynAlloc() { return Form == FormBDXDynAlloc; }
70
71  void dump() {
72    errs() << "SystemZAddressingMode " << this << '\n';
73
74    errs() << " Base ";
75    if (Base.getNode() != 0)
76      Base.getNode()->dump();
77    else
78      errs() << "null\n";
79
80    if (hasIndexField()) {
81      errs() << " Index ";
82      if (Index.getNode() != 0)
83        Index.getNode()->dump();
84      else
85        errs() << "null\n";
86    }
87
88    errs() << " Disp " << Disp;
89    if (IncludesDynAlloc)
90      errs() << " + ADJDYNALLOC";
91    errs() << '\n';
92  }
93};
94
95// Return a mask with Count low bits set.
96static uint64_t allOnes(unsigned int Count) {
97  return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
98}
99
100// Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
101// given by Opcode.  The operands are: Input (R2), Start (I3), End (I4) and
102// Rotate (I5).  The combined operand value is effectively:
103//
104//   (or (rotl Input, Rotate), ~Mask)
105//
106// for RNSBG and:
107//
108//   (and (rotl Input, Rotate), Mask)
109//
110// otherwise.  The output value has BitSize bits, although Input may be
111// narrower (in which case the upper bits are don't care).
112struct RxSBGOperands {
113  RxSBGOperands(unsigned Op, SDValue N)
114    : Opcode(Op), BitSize(N.getValueType().getSizeInBits()),
115      Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
116      Rotate(0) {}
117
118  unsigned Opcode;
119  unsigned BitSize;
120  uint64_t Mask;
121  SDValue Input;
122  unsigned Start;
123  unsigned End;
124  unsigned Rotate;
125};
126
127class SystemZDAGToDAGISel : public SelectionDAGISel {
128  const SystemZTargetLowering &Lowering;
129  const SystemZSubtarget &Subtarget;
130
131  // Used by SystemZOperands.td to create integer constants.
132  inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
133    return CurDAG->getTargetConstant(Imm, Node->getValueType(0));
134  }
135
136  const SystemZTargetMachine &getTargetMachine() const {
137    return static_cast<const SystemZTargetMachine &>(TM);
138  }
139
140  const SystemZInstrInfo *getInstrInfo() const {
141    return getTargetMachine().getInstrInfo();
142  }
143
144  // Try to fold more of the base or index of AM into AM, where IsBase
145  // selects between the base and index.
146  bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
147
148  // Try to describe N in AM, returning true on success.
149  bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
150
151  // Extract individual target operands from matched address AM.
152  void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
153                          SDValue &Base, SDValue &Disp) const;
154  void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
155                          SDValue &Base, SDValue &Disp, SDValue &Index) const;
156
157  // Try to match Addr as a FormBD address with displacement type DR.
158  // Return true on success, storing the base and displacement in
159  // Base and Disp respectively.
160  bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
161                    SDValue &Base, SDValue &Disp) const;
162
163  // Try to match Addr as a FormBDX address with displacement type DR.
164  // Return true on success and if the result had no index.  Store the
165  // base and displacement in Base and Disp respectively.
166  bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
167                     SDValue &Base, SDValue &Disp) const;
168
169  // Try to match Addr as a FormBDX* address of form Form with
170  // displacement type DR.  Return true on success, storing the base,
171  // displacement and index in Base, Disp and Index respectively.
172  bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
173                     SystemZAddressingMode::DispRange DR, SDValue Addr,
174                     SDValue &Base, SDValue &Disp, SDValue &Index) const;
175
176  // PC-relative address matching routines used by SystemZOperands.td.
177  bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
178    if (SystemZISD::isPCREL(Addr.getOpcode())) {
179      Target = Addr.getOperand(0);
180      return true;
181    }
182    return false;
183  }
184
185  // BD matching routines used by SystemZOperands.td.
186  bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
187    return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
188  }
189  bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
190    return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
191  }
192  bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
193    return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
194  }
195  bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
196    return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
197  }
198
199  // MVI matching routines used by SystemZOperands.td.
200  bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
201    return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
202  }
203  bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
204    return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
205  }
206
207  // BDX matching routines used by SystemZOperands.td.
208  bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
209                           SDValue &Index) const {
210    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
211                         SystemZAddressingMode::Disp12Only,
212                         Addr, Base, Disp, Index);
213  }
214  bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
215                           SDValue &Index) const {
216    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
217                         SystemZAddressingMode::Disp12Pair,
218                         Addr, Base, Disp, Index);
219  }
220  bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
221                            SDValue &Index) const {
222    return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
223                         SystemZAddressingMode::Disp12Only,
224                         Addr, Base, Disp, Index);
225  }
226  bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
227                           SDValue &Index) const {
228    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
229                         SystemZAddressingMode::Disp20Only,
230                         Addr, Base, Disp, Index);
231  }
232  bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
233                              SDValue &Index) const {
234    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
235                         SystemZAddressingMode::Disp20Only128,
236                         Addr, Base, Disp, Index);
237  }
238  bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
239                           SDValue &Index) const {
240    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
241                         SystemZAddressingMode::Disp20Pair,
242                         Addr, Base, Disp, Index);
243  }
244  bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
245                          SDValue &Index) const {
246    return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
247                         SystemZAddressingMode::Disp12Pair,
248                         Addr, Base, Disp, Index);
249  }
250  bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
251                          SDValue &Index) const {
252    return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
253                         SystemZAddressingMode::Disp20Pair,
254                         Addr, Base, Disp, Index);
255  }
256
257  // Check whether (or Op (and X InsertMask)) is effectively an insertion
258  // of X into bits InsertMask of some Y != Op.  Return true if so and
259  // set Op to that Y.
260  bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
261
262  // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
263  // Return true on success.
264  bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
265
266  // Try to fold some of RxSBG.Input into other fields of RxSBG.
267  // Return true on success.
268  bool expandRxSBG(RxSBGOperands &RxSBG) const;
269
270  // Return an undefined value of type VT.
271  SDValue getUNDEF(SDLoc DL, EVT VT) const;
272
273  // Convert N to VT, if it isn't already.
274  SDValue convertTo(SDLoc DL, EVT VT, SDValue N) const;
275
276  // Try to implement AND or shift node N using RISBG with the zero flag set.
277  // Return the selected node on success, otherwise return null.
278  SDNode *tryRISBGZero(SDNode *N);
279
280  // Try to use RISBG or Opcode to implement OR or XOR node N.
281  // Return the selected node on success, otherwise return null.
282  SDNode *tryRxSBG(SDNode *N, unsigned Opcode);
283
284  // If Op0 is null, then Node is a constant that can be loaded using:
285  //
286  //   (Opcode UpperVal LowerVal)
287  //
288  // If Op0 is nonnull, then Node can be implemented using:
289  //
290  //   (Opcode (Opcode Op0 UpperVal) LowerVal)
291  SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
292                              uint64_t UpperVal, uint64_t LowerVal);
293
294  // Return true if Load and Store are loads and stores of the same size
295  // and are guaranteed not to overlap.  Such operations can be implemented
296  // using block (SS-format) instructions.
297  //
298  // Partial overlap would lead to incorrect code, since the block operations
299  // are logically bytewise, even though they have a fast path for the
300  // non-overlapping case.  We also need to avoid full overlap (i.e. two
301  // addresses that might be equal at run time) because although that case
302  // would be handled correctly, it might be implemented by millicode.
303  bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
304
305  // N is a (store (load Y), X) pattern.  Return true if it can use an MVC
306  // from Y to X.
307  bool storeLoadCanUseMVC(SDNode *N) const;
308
309  // N is a (store (op (load A[0]), (load A[1])), X) pattern.  Return true
310  // if A[1 - I] == X and if N can use a block operation like NC from A[I]
311  // to X.
312  bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
313
314public:
315  SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
316    : SelectionDAGISel(TM, OptLevel),
317      Lowering(*TM.getTargetLowering()),
318      Subtarget(*TM.getSubtargetImpl()) { }
319
320  // Override MachineFunctionPass.
321  const char *getPassName() const override {
322    return "SystemZ DAG->DAG Pattern Instruction Selection";
323  }
324
325  // Override SelectionDAGISel.
326  SDNode *Select(SDNode *Node) override;
327  bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
328                                    std::vector<SDValue> &OutOps) override;
329
330  // Include the pieces autogenerated from the target description.
331  #include "SystemZGenDAGISel.inc"
332};
333} // end anonymous namespace
334
335FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
336                                         CodeGenOpt::Level OptLevel) {
337  return new SystemZDAGToDAGISel(TM, OptLevel);
338}
339
340// Return true if Val should be selected as a displacement for an address
341// with range DR.  Here we're interested in the range of both the instruction
342// described by DR and of any pairing instruction.
343static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
344  switch (DR) {
345  case SystemZAddressingMode::Disp12Only:
346    return isUInt<12>(Val);
347
348  case SystemZAddressingMode::Disp12Pair:
349  case SystemZAddressingMode::Disp20Only:
350  case SystemZAddressingMode::Disp20Pair:
351    return isInt<20>(Val);
352
353  case SystemZAddressingMode::Disp20Only128:
354    return isInt<20>(Val) && isInt<20>(Val + 8);
355  }
356  llvm_unreachable("Unhandled displacement range");
357}
358
359// Change the base or index in AM to Value, where IsBase selects
360// between the base and index.
361static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
362                            SDValue Value) {
363  if (IsBase)
364    AM.Base = Value;
365  else
366    AM.Index = Value;
367}
368
369// The base or index of AM is equivalent to Value + ADJDYNALLOC,
370// where IsBase selects between the base and index.  Try to fold the
371// ADJDYNALLOC into AM.
372static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
373                              SDValue Value) {
374  if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
375    changeComponent(AM, IsBase, Value);
376    AM.IncludesDynAlloc = true;
377    return true;
378  }
379  return false;
380}
381
382// The base of AM is equivalent to Base + Index.  Try to use Index as
383// the index register.
384static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
385                        SDValue Index) {
386  if (AM.hasIndexField() && !AM.Index.getNode()) {
387    AM.Base = Base;
388    AM.Index = Index;
389    return true;
390  }
391  return false;
392}
393
394// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
395// between the base and index.  Try to fold Op1 into AM's displacement.
396static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
397                       SDValue Op0, uint64_t Op1) {
398  // First try adjusting the displacement.
399  int64_t TestDisp = AM.Disp + Op1;
400  if (selectDisp(AM.DR, TestDisp)) {
401    changeComponent(AM, IsBase, Op0);
402    AM.Disp = TestDisp;
403    return true;
404  }
405
406  // We could consider forcing the displacement into a register and
407  // using it as an index, but it would need to be carefully tuned.
408  return false;
409}
410
411bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
412                                        bool IsBase) const {
413  SDValue N = IsBase ? AM.Base : AM.Index;
414  unsigned Opcode = N.getOpcode();
415  if (Opcode == ISD::TRUNCATE) {
416    N = N.getOperand(0);
417    Opcode = N.getOpcode();
418  }
419  if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
420    SDValue Op0 = N.getOperand(0);
421    SDValue Op1 = N.getOperand(1);
422
423    unsigned Op0Code = Op0->getOpcode();
424    unsigned Op1Code = Op1->getOpcode();
425
426    if (Op0Code == SystemZISD::ADJDYNALLOC)
427      return expandAdjDynAlloc(AM, IsBase, Op1);
428    if (Op1Code == SystemZISD::ADJDYNALLOC)
429      return expandAdjDynAlloc(AM, IsBase, Op0);
430
431    if (Op0Code == ISD::Constant)
432      return expandDisp(AM, IsBase, Op1,
433                        cast<ConstantSDNode>(Op0)->getSExtValue());
434    if (Op1Code == ISD::Constant)
435      return expandDisp(AM, IsBase, Op0,
436                        cast<ConstantSDNode>(Op1)->getSExtValue());
437
438    if (IsBase && expandIndex(AM, Op0, Op1))
439      return true;
440  }
441  if (Opcode == SystemZISD::PCREL_OFFSET) {
442    SDValue Full = N.getOperand(0);
443    SDValue Base = N.getOperand(1);
444    SDValue Anchor = Base.getOperand(0);
445    uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
446                       cast<GlobalAddressSDNode>(Anchor)->getOffset());
447    return expandDisp(AM, IsBase, Base, Offset);
448  }
449  return false;
450}
451
452// Return true if an instruction with displacement range DR should be
453// used for displacement value Val.  selectDisp(DR, Val) must already hold.
454static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
455  assert(selectDisp(DR, Val) && "Invalid displacement");
456  switch (DR) {
457  case SystemZAddressingMode::Disp12Only:
458  case SystemZAddressingMode::Disp20Only:
459  case SystemZAddressingMode::Disp20Only128:
460    return true;
461
462  case SystemZAddressingMode::Disp12Pair:
463    // Use the other instruction if the displacement is too large.
464    return isUInt<12>(Val);
465
466  case SystemZAddressingMode::Disp20Pair:
467    // Use the other instruction if the displacement is small enough.
468    return !isUInt<12>(Val);
469  }
470  llvm_unreachable("Unhandled displacement range");
471}
472
473// Return true if Base + Disp + Index should be performed by LA(Y).
474static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
475  // Don't use LA(Y) for constants.
476  if (!Base)
477    return false;
478
479  // Always use LA(Y) for frame addresses, since we know that the destination
480  // register is almost always (perhaps always) going to be different from
481  // the frame register.
482  if (Base->getOpcode() == ISD::FrameIndex)
483    return true;
484
485  if (Disp) {
486    // Always use LA(Y) if there is a base, displacement and index.
487    if (Index)
488      return true;
489
490    // Always use LA if the displacement is small enough.  It should always
491    // be no worse than AGHI (and better if it avoids a move).
492    if (isUInt<12>(Disp))
493      return true;
494
495    // For similar reasons, always use LAY if the constant is too big for AGHI.
496    // LAY should be no worse than AGFI.
497    if (!isInt<16>(Disp))
498      return true;
499  } else {
500    // Don't use LA for plain registers.
501    if (!Index)
502      return false;
503
504    // Don't use LA for plain addition if the index operand is only used
505    // once.  It should be a natural two-operand addition in that case.
506    if (Index->hasOneUse())
507      return false;
508
509    // Prefer addition if the second operation is sign-extended, in the
510    // hope of using AGF.
511    unsigned IndexOpcode = Index->getOpcode();
512    if (IndexOpcode == ISD::SIGN_EXTEND ||
513        IndexOpcode == ISD::SIGN_EXTEND_INREG)
514      return false;
515  }
516
517  // Don't use LA for two-operand addition if either operand is only
518  // used once.  The addition instructions are better in that case.
519  if (Base->hasOneUse())
520    return false;
521
522  return true;
523}
524
525// Return true if Addr is suitable for AM, updating AM if so.
526bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
527                                        SystemZAddressingMode &AM) const {
528  // Start out assuming that the address will need to be loaded separately,
529  // then try to extend it as much as we can.
530  AM.Base = Addr;
531
532  // First try treating the address as a constant.
533  if (Addr.getOpcode() == ISD::Constant &&
534      expandDisp(AM, true, SDValue(),
535                 cast<ConstantSDNode>(Addr)->getSExtValue()))
536    ;
537  else
538    // Otherwise try expanding each component.
539    while (expandAddress(AM, true) ||
540           (AM.Index.getNode() && expandAddress(AM, false)))
541      continue;
542
543  // Reject cases where it isn't profitable to use LA(Y).
544  if (AM.Form == SystemZAddressingMode::FormBDXLA &&
545      !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
546    return false;
547
548  // Reject cases where the other instruction in a pair should be used.
549  if (!isValidDisp(AM.DR, AM.Disp))
550    return false;
551
552  // Make sure that ADJDYNALLOC is included where necessary.
553  if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
554    return false;
555
556  DEBUG(AM.dump());
557  return true;
558}
559
560// Insert a node into the DAG at least before Pos.  This will reposition
561// the node as needed, and will assign it a node ID that is <= Pos's ID.
562// Note that this does *not* preserve the uniqueness of node IDs!
563// The selection DAG must no longer depend on their uniqueness when this
564// function is used.
565static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
566  if (N.getNode()->getNodeId() == -1 ||
567      N.getNode()->getNodeId() > Pos->getNodeId()) {
568    DAG->RepositionNode(Pos, N.getNode());
569    N.getNode()->setNodeId(Pos->getNodeId());
570  }
571}
572
573void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
574                                             EVT VT, SDValue &Base,
575                                             SDValue &Disp) const {
576  Base = AM.Base;
577  if (!Base.getNode())
578    // Register 0 means "no base".  This is mostly useful for shifts.
579    Base = CurDAG->getRegister(0, VT);
580  else if (Base.getOpcode() == ISD::FrameIndex) {
581    // Lower a FrameIndex to a TargetFrameIndex.
582    int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
583    Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
584  } else if (Base.getValueType() != VT) {
585    // Truncate values from i64 to i32, for shifts.
586    assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
587           "Unexpected truncation");
588    SDLoc DL(Base);
589    SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
590    insertDAGNode(CurDAG, Base.getNode(), Trunc);
591    Base = Trunc;
592  }
593
594  // Lower the displacement to a TargetConstant.
595  Disp = CurDAG->getTargetConstant(AM.Disp, VT);
596}
597
598void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
599                                             EVT VT, SDValue &Base,
600                                             SDValue &Disp,
601                                             SDValue &Index) const {
602  getAddressOperands(AM, VT, Base, Disp);
603
604  Index = AM.Index;
605  if (!Index.getNode())
606    // Register 0 means "no index".
607    Index = CurDAG->getRegister(0, VT);
608}
609
610bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
611                                       SDValue Addr, SDValue &Base,
612                                       SDValue &Disp) const {
613  SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
614  if (!selectAddress(Addr, AM))
615    return false;
616
617  getAddressOperands(AM, Addr.getValueType(), Base, Disp);
618  return true;
619}
620
621bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
622                                        SDValue Addr, SDValue &Base,
623                                        SDValue &Disp) const {
624  SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
625  if (!selectAddress(Addr, AM) || AM.Index.getNode())
626    return false;
627
628  getAddressOperands(AM, Addr.getValueType(), Base, Disp);
629  return true;
630}
631
632bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
633                                        SystemZAddressingMode::DispRange DR,
634                                        SDValue Addr, SDValue &Base,
635                                        SDValue &Disp, SDValue &Index) const {
636  SystemZAddressingMode AM(Form, DR);
637  if (!selectAddress(Addr, AM))
638    return false;
639
640  getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
641  return true;
642}
643
644bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
645                                               uint64_t InsertMask) const {
646  // We're only interested in cases where the insertion is into some operand
647  // of Op, rather than into Op itself.  The only useful case is an AND.
648  if (Op.getOpcode() != ISD::AND)
649    return false;
650
651  // We need a constant mask.
652  auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
653  if (!MaskNode)
654    return false;
655
656  // It's not an insertion of Op.getOperand(0) if the two masks overlap.
657  uint64_t AndMask = MaskNode->getZExtValue();
658  if (InsertMask & AndMask)
659    return false;
660
661  // It's only an insertion if all bits are covered or are known to be zero.
662  // The inner check covers all cases but is more expensive.
663  uint64_t Used = allOnes(Op.getValueType().getSizeInBits());
664  if (Used != (AndMask | InsertMask)) {
665    APInt KnownZero, KnownOne;
666    CurDAG->ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne);
667    if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
668      return false;
669  }
670
671  Op = Op.getOperand(0);
672  return true;
673}
674
675bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
676                                          uint64_t Mask) const {
677  const SystemZInstrInfo *TII = getInstrInfo();
678  if (RxSBG.Rotate != 0)
679    Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
680  Mask &= RxSBG.Mask;
681  if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
682    RxSBG.Mask = Mask;
683    return true;
684  }
685  return false;
686}
687
688// Return true if any bits of (RxSBG.Input & Mask) are significant.
689static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
690  // Rotate the mask in the same way as RxSBG.Input is rotated.
691  if (RxSBG.Rotate != 0)
692    Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
693  return (Mask & RxSBG.Mask) != 0;
694}
695
696bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
697  SDValue N = RxSBG.Input;
698  unsigned Opcode = N.getOpcode();
699  switch (Opcode) {
700  case ISD::AND: {
701    if (RxSBG.Opcode == SystemZ::RNSBG)
702      return false;
703
704    auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
705    if (!MaskNode)
706      return false;
707
708    SDValue Input = N.getOperand(0);
709    uint64_t Mask = MaskNode->getZExtValue();
710    if (!refineRxSBGMask(RxSBG, Mask)) {
711      // If some bits of Input are already known zeros, those bits will have
712      // been removed from the mask.  See if adding them back in makes the
713      // mask suitable.
714      APInt KnownZero, KnownOne;
715      CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne);
716      Mask |= KnownZero.getZExtValue();
717      if (!refineRxSBGMask(RxSBG, Mask))
718        return false;
719    }
720    RxSBG.Input = Input;
721    return true;
722  }
723
724  case ISD::OR: {
725    if (RxSBG.Opcode != SystemZ::RNSBG)
726      return false;
727
728    auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
729    if (!MaskNode)
730      return false;
731
732    SDValue Input = N.getOperand(0);
733    uint64_t Mask = ~MaskNode->getZExtValue();
734    if (!refineRxSBGMask(RxSBG, Mask)) {
735      // If some bits of Input are already known ones, those bits will have
736      // been removed from the mask.  See if adding them back in makes the
737      // mask suitable.
738      APInt KnownZero, KnownOne;
739      CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne);
740      Mask &= ~KnownOne.getZExtValue();
741      if (!refineRxSBGMask(RxSBG, Mask))
742        return false;
743    }
744    RxSBG.Input = Input;
745    return true;
746  }
747
748  case ISD::ROTL: {
749    // Any 64-bit rotate left can be merged into the RxSBG.
750    if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
751      return false;
752    auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
753    if (!CountNode)
754      return false;
755
756    RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
757    RxSBG.Input = N.getOperand(0);
758    return true;
759  }
760
761  case ISD::ANY_EXTEND:
762    // Bits above the extended operand are don't-care.
763    RxSBG.Input = N.getOperand(0);
764    return true;
765
766  case ISD::ZERO_EXTEND:
767    if (RxSBG.Opcode != SystemZ::RNSBG) {
768      // Restrict the mask to the extended operand.
769      unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
770      if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
771        return false;
772
773      RxSBG.Input = N.getOperand(0);
774      return true;
775    }
776    // Fall through.
777
778  case ISD::SIGN_EXTEND: {
779    // Check that the extension bits are don't-care (i.e. are masked out
780    // by the final mask).
781    unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
782    if (maskMatters(RxSBG, allOnes(RxSBG.BitSize) - allOnes(InnerBitSize)))
783      return false;
784
785    RxSBG.Input = N.getOperand(0);
786    return true;
787  }
788
789  case ISD::SHL: {
790    auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
791    if (!CountNode)
792      return false;
793
794    uint64_t Count = CountNode->getZExtValue();
795    unsigned BitSize = N.getValueType().getSizeInBits();
796    if (Count < 1 || Count >= BitSize)
797      return false;
798
799    if (RxSBG.Opcode == SystemZ::RNSBG) {
800      // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
801      // count bits from RxSBG.Input are ignored.
802      if (maskMatters(RxSBG, allOnes(Count)))
803        return false;
804    } else {
805      // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
806      if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
807        return false;
808    }
809
810    RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
811    RxSBG.Input = N.getOperand(0);
812    return true;
813  }
814
815  case ISD::SRL:
816  case ISD::SRA: {
817    auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
818    if (!CountNode)
819      return false;
820
821    uint64_t Count = CountNode->getZExtValue();
822    unsigned BitSize = N.getValueType().getSizeInBits();
823    if (Count < 1 || Count >= BitSize)
824      return false;
825
826    if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
827      // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
828      // count bits from RxSBG.Input are ignored.
829      if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
830        return false;
831    } else {
832      // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
833      // which is similar to SLL above.
834      if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
835        return false;
836    }
837
838    RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
839    RxSBG.Input = N.getOperand(0);
840    return true;
841  }
842  default:
843    return false;
844  }
845}
846
847SDValue SystemZDAGToDAGISel::getUNDEF(SDLoc DL, EVT VT) const {
848  SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
849  return SDValue(N, 0);
850}
851
852SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) const {
853  if (N.getValueType() == MVT::i32 && VT == MVT::i64)
854    return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
855                                         DL, VT, getUNDEF(DL, MVT::i64), N);
856  if (N.getValueType() == MVT::i64 && VT == MVT::i32)
857    return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
858  assert(N.getValueType() == VT && "Unexpected value types");
859  return N;
860}
861
862SDNode *SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
863  EVT VT = N->getValueType(0);
864  RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
865  unsigned Count = 0;
866  while (expandRxSBG(RISBG))
867    if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND)
868      Count += 1;
869  if (Count == 0)
870    return 0;
871  if (Count == 1) {
872    // Prefer to use normal shift instructions over RISBG, since they can handle
873    // all cases and are sometimes shorter.
874    if (N->getOpcode() != ISD::AND)
875      return 0;
876
877    // Prefer register extensions like LLC over RISBG.  Also prefer to start
878    // out with normal ANDs if one instruction would be enough.  We can convert
879    // these ANDs into an RISBG later if a three-address instruction is useful.
880    if (VT == MVT::i32 ||
881        RISBG.Mask == 0xff ||
882        RISBG.Mask == 0xffff ||
883        SystemZ::isImmLF(~RISBG.Mask) ||
884        SystemZ::isImmHF(~RISBG.Mask)) {
885      // Force the new mask into the DAG, since it may include known-one bits.
886      auto *MaskN = cast<ConstantSDNode>(N->getOperand(1).getNode());
887      if (MaskN->getZExtValue() != RISBG.Mask) {
888        SDValue NewMask = CurDAG->getConstant(RISBG.Mask, VT);
889        N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), NewMask);
890        return SelectCode(N);
891      }
892      return 0;
893    }
894  }
895
896  unsigned Opcode = SystemZ::RISBG;
897  EVT OpcodeVT = MVT::i64;
898  if (VT == MVT::i32 && Subtarget.hasHighWord()) {
899    Opcode = SystemZ::RISBMux;
900    OpcodeVT = MVT::i32;
901    RISBG.Start &= 31;
902    RISBG.End &= 31;
903  }
904  SDValue Ops[5] = {
905    getUNDEF(SDLoc(N), OpcodeVT),
906    convertTo(SDLoc(N), OpcodeVT, RISBG.Input),
907    CurDAG->getTargetConstant(RISBG.Start, MVT::i32),
908    CurDAG->getTargetConstant(RISBG.End | 128, MVT::i32),
909    CurDAG->getTargetConstant(RISBG.Rotate, MVT::i32)
910  };
911  N = CurDAG->getMachineNode(Opcode, SDLoc(N), OpcodeVT, Ops);
912  return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
913}
914
915SDNode *SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
916  // Try treating each operand of N as the second operand of the RxSBG
917  // and see which goes deepest.
918  RxSBGOperands RxSBG[] = {
919    RxSBGOperands(Opcode, N->getOperand(0)),
920    RxSBGOperands(Opcode, N->getOperand(1))
921  };
922  unsigned Count[] = { 0, 0 };
923  for (unsigned I = 0; I < 2; ++I)
924    while (expandRxSBG(RxSBG[I]))
925      if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND)
926        Count[I] += 1;
927
928  // Do nothing if neither operand is suitable.
929  if (Count[0] == 0 && Count[1] == 0)
930    return 0;
931
932  // Pick the deepest second operand.
933  unsigned I = Count[0] > Count[1] ? 0 : 1;
934  SDValue Op0 = N->getOperand(I ^ 1);
935
936  // Prefer IC for character insertions from memory.
937  if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
938    if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
939      if (Load->getMemoryVT() == MVT::i8)
940        return 0;
941
942  // See whether we can avoid an AND in the first operand by converting
943  // ROSBG to RISBG.
944  if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask))
945    Opcode = SystemZ::RISBG;
946
947  EVT VT = N->getValueType(0);
948  SDValue Ops[5] = {
949    convertTo(SDLoc(N), MVT::i64, Op0),
950    convertTo(SDLoc(N), MVT::i64, RxSBG[I].Input),
951    CurDAG->getTargetConstant(RxSBG[I].Start, MVT::i32),
952    CurDAG->getTargetConstant(RxSBG[I].End, MVT::i32),
953    CurDAG->getTargetConstant(RxSBG[I].Rotate, MVT::i32)
954  };
955  N = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, Ops);
956  return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
957}
958
959SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
960                                                 SDValue Op0, uint64_t UpperVal,
961                                                 uint64_t LowerVal) {
962  EVT VT = Node->getValueType(0);
963  SDLoc DL(Node);
964  SDValue Upper = CurDAG->getConstant(UpperVal, VT);
965  if (Op0.getNode())
966    Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
967  Upper = SDValue(Select(Upper.getNode()), 0);
968
969  SDValue Lower = CurDAG->getConstant(LowerVal, VT);
970  SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
971  return Or.getNode();
972}
973
974bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
975                                               LoadSDNode *Load) const {
976  // Check that the two memory operands have the same size.
977  if (Load->getMemoryVT() != Store->getMemoryVT())
978    return false;
979
980  // Volatility stops an access from being decomposed.
981  if (Load->isVolatile() || Store->isVolatile())
982    return false;
983
984  // There's no chance of overlap if the load is invariant.
985  if (Load->isInvariant())
986    return true;
987
988  // Otherwise we need to check whether there's an alias.
989  const Value *V1 = Load->getSrcValue();
990  const Value *V2 = Store->getSrcValue();
991  if (!V1 || !V2)
992    return false;
993
994  // Reject equality.
995  uint64_t Size = Load->getMemoryVT().getStoreSize();
996  int64_t End1 = Load->getSrcValueOffset() + Size;
997  int64_t End2 = Store->getSrcValueOffset() + Size;
998  if (V1 == V2 && End1 == End2)
999    return false;
1000
1001  return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getTBAAInfo()),
1002                    AliasAnalysis::Location(V2, End2, Store->getTBAAInfo()));
1003}
1004
1005bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1006  auto *Store = cast<StoreSDNode>(N);
1007  auto *Load = cast<LoadSDNode>(Store->getValue());
1008
1009  // Prefer not to use MVC if either address can use ... RELATIVE LONG
1010  // instructions.
1011  uint64_t Size = Load->getMemoryVT().getStoreSize();
1012  if (Size > 1 && Size <= 8) {
1013    // Prefer LHRL, LRL and LGRL.
1014    if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1015      return false;
1016    // Prefer STHRL, STRL and STGRL.
1017    if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1018      return false;
1019  }
1020
1021  return canUseBlockOperation(Store, Load);
1022}
1023
1024bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1025                                                     unsigned I) const {
1026  auto *StoreA = cast<StoreSDNode>(N);
1027  auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1028  auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1029  return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
1030}
1031
1032SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
1033  // Dump information about the Node being selected
1034  DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
1035
1036  // If we have a custom node, we already have selected!
1037  if (Node->isMachineOpcode()) {
1038    DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1039    Node->setNodeId(-1);
1040    return 0;
1041  }
1042
1043  unsigned Opcode = Node->getOpcode();
1044  SDNode *ResNode = 0;
1045  switch (Opcode) {
1046  case ISD::OR:
1047    if (Node->getOperand(1).getOpcode() != ISD::Constant)
1048      ResNode = tryRxSBG(Node, SystemZ::ROSBG);
1049    goto or_xor;
1050
1051  case ISD::XOR:
1052    if (Node->getOperand(1).getOpcode() != ISD::Constant)
1053      ResNode = tryRxSBG(Node, SystemZ::RXSBG);
1054    // Fall through.
1055  or_xor:
1056    // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1057    // split the operation into two.
1058    if (!ResNode && Node->getValueType(0) == MVT::i64)
1059      if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1060        uint64_t Val = Op1->getZExtValue();
1061        if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
1062          Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1063                                     Val - uint32_t(Val), uint32_t(Val));
1064      }
1065    break;
1066
1067  case ISD::AND:
1068    if (Node->getOperand(1).getOpcode() != ISD::Constant)
1069      ResNode = tryRxSBG(Node, SystemZ::RNSBG);
1070    // Fall through.
1071  case ISD::ROTL:
1072  case ISD::SHL:
1073  case ISD::SRL:
1074  case ISD::ZERO_EXTEND:
1075    if (!ResNode)
1076      ResNode = tryRISBGZero(Node);
1077    break;
1078
1079  case ISD::Constant:
1080    // If this is a 64-bit constant that is out of the range of LLILF,
1081    // LLIHF and LGFI, split it into two 32-bit pieces.
1082    if (Node->getValueType(0) == MVT::i64) {
1083      uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1084      if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
1085        Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
1086                                   Val - uint32_t(Val), uint32_t(Val));
1087    }
1088    break;
1089
1090  case SystemZISD::SELECT_CCMASK: {
1091    SDValue Op0 = Node->getOperand(0);
1092    SDValue Op1 = Node->getOperand(1);
1093    // Prefer to put any load first, so that it can be matched as a
1094    // conditional load.
1095    if (Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) {
1096      SDValue CCValid = Node->getOperand(2);
1097      SDValue CCMask = Node->getOperand(3);
1098      uint64_t ConstCCValid =
1099        cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1100      uint64_t ConstCCMask =
1101        cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1102      // Invert the condition.
1103      CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask,
1104                                   CCMask.getValueType());
1105      SDValue Op4 = Node->getOperand(4);
1106      Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1107    }
1108    break;
1109  }
1110  }
1111
1112  // Select the default instruction
1113  if (!ResNode)
1114    ResNode = SelectCode(Node);
1115
1116  DEBUG(errs() << "=> ";
1117        if (ResNode == NULL || ResNode == Node)
1118          Node->dump(CurDAG);
1119        else
1120          ResNode->dump(CurDAG);
1121        errs() << "\n";
1122        );
1123  return ResNode;
1124}
1125
1126bool SystemZDAGToDAGISel::
1127SelectInlineAsmMemoryOperand(const SDValue &Op,
1128                             char ConstraintCode,
1129                             std::vector<SDValue> &OutOps) {
1130  assert(ConstraintCode == 'm' && "Unexpected constraint code");
1131  // Accept addresses with short displacements, which are compatible
1132  // with Q, R, S and T.  But keep the index operand for future expansion.
1133  SDValue Base, Disp, Index;
1134  if (!selectBDXAddr(SystemZAddressingMode::FormBD,
1135                     SystemZAddressingMode::Disp12Only,
1136                     Op, Base, Disp, Index))
1137    return true;
1138  OutOps.push_back(Base);
1139  OutOps.push_back(Disp);
1140  OutOps.push_back(Index);
1141  return false;
1142}
1143