SystemZISelDAGToDAG.cpp revision 86a735396ab4804a06e76d1b4ce49dbd44c35827
1//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an instruction selector for the SystemZ target.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SystemZTargetMachine.h"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/Support/Debug.h"
18#include "llvm/Support/raw_ostream.h"
19
20using namespace llvm;
21
22namespace {
23// Used to build addressing modes.
24struct SystemZAddressingMode {
25  // The shape of the address.
26  enum AddrForm {
27    // base+displacement
28    FormBD,
29
30    // base+displacement+index for load and store operands
31    FormBDXNormal,
32
33    // base+displacement+index for load address operands
34    FormBDXLA,
35
36    // base+displacement+index+ADJDYNALLOC
37    FormBDXDynAlloc
38  };
39  AddrForm Form;
40
41  // The type of displacement.  The enum names here correspond directly
42  // to the definitions in SystemZOperand.td.  We could split them into
43  // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
44  enum DispRange {
45    Disp12Only,
46    Disp12Pair,
47    Disp20Only,
48    Disp20Only128,
49    Disp20Pair
50  };
51  DispRange DR;
52
53  // The parts of the address.  The address is equivalent to:
54  //
55  //     Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
56  SDValue Base;
57  int64_t Disp;
58  SDValue Index;
59  bool IncludesDynAlloc;
60
61  SystemZAddressingMode(AddrForm form, DispRange dr)
62    : Form(form), DR(dr), Base(), Disp(0), Index(),
63      IncludesDynAlloc(false) {}
64
65  // True if the address can have an index register.
66  bool hasIndexField() { return Form != FormBD; }
67
68  // True if the address can (and must) include ADJDYNALLOC.
69  bool isDynAlloc() { return Form == FormBDXDynAlloc; }
70
71  void dump() {
72    errs() << "SystemZAddressingMode " << this << '\n';
73
74    errs() << " Base ";
75    if (Base.getNode() != 0)
76      Base.getNode()->dump();
77    else
78      errs() << "null\n";
79
80    if (hasIndexField()) {
81      errs() << " Index ";
82      if (Index.getNode() != 0)
83        Index.getNode()->dump();
84      else
85        errs() << "null\n";
86    }
87
88    errs() << " Disp " << Disp;
89    if (IncludesDynAlloc)
90      errs() << " + ADJDYNALLOC";
91    errs() << '\n';
92  }
93};
94
95// Return a mask with Count low bits set.
96static uint64_t allOnes(unsigned int Count) {
97  return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
98}
99
100// Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
101// given by Opcode.  The operands are: Input (R2), Start (I3), End (I4) and
102// Rotate (I5).  The combined operand value is effectively:
103//
104//   (or (rotl Input, Rotate), ~Mask)
105//
106// for RNSBG and:
107//
108//   (and (rotl Input, Rotate), Mask)
109//
110// otherwise.  The output value has BitSize bits, although Input may be
111// narrower (in which case the upper bits are don't care).
112struct RxSBGOperands {
113  RxSBGOperands(unsigned Op, SDValue N)
114    : Opcode(Op), BitSize(N.getValueType().getSizeInBits()),
115      Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
116      Rotate(0) {}
117
118  unsigned Opcode;
119  unsigned BitSize;
120  uint64_t Mask;
121  SDValue Input;
122  unsigned Start;
123  unsigned End;
124  unsigned Rotate;
125};
126
127class SystemZDAGToDAGISel : public SelectionDAGISel {
128  const SystemZTargetLowering &Lowering;
129  const SystemZSubtarget &Subtarget;
130
131  // Used by SystemZOperands.td to create integer constants.
132  inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
133    return CurDAG->getTargetConstant(Imm, Node->getValueType(0));
134  }
135
136  const SystemZTargetMachine &getTargetMachine() const {
137    return static_cast<const SystemZTargetMachine &>(TM);
138  }
139
140  const SystemZInstrInfo *getInstrInfo() const {
141    return getTargetMachine().getInstrInfo();
142  }
143
144  // Try to fold more of the base or index of AM into AM, where IsBase
145  // selects between the base and index.
146  bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
147
148  // Try to describe N in AM, returning true on success.
149  bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
150
151  // Extract individual target operands from matched address AM.
152  void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
153                          SDValue &Base, SDValue &Disp) const;
154  void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
155                          SDValue &Base, SDValue &Disp, SDValue &Index) const;
156
157  // Try to match Addr as a FormBD address with displacement type DR.
158  // Return true on success, storing the base and displacement in
159  // Base and Disp respectively.
160  bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
161                    SDValue &Base, SDValue &Disp) const;
162
163  // Try to match Addr as a FormBDX address with displacement type DR.
164  // Return true on success and if the result had no index.  Store the
165  // base and displacement in Base and Disp respectively.
166  bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
167                     SDValue &Base, SDValue &Disp) const;
168
169  // Try to match Addr as a FormBDX* address of form Form with
170  // displacement type DR.  Return true on success, storing the base,
171  // displacement and index in Base, Disp and Index respectively.
172  bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
173                     SystemZAddressingMode::DispRange DR, SDValue Addr,
174                     SDValue &Base, SDValue &Disp, SDValue &Index) const;
175
176  // PC-relative address matching routines used by SystemZOperands.td.
177  bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
178    if (SystemZISD::isPCREL(Addr.getOpcode())) {
179      Target = Addr.getOperand(0);
180      return true;
181    }
182    return false;
183  }
184
185  // BD matching routines used by SystemZOperands.td.
186  bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
187    return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
188  }
189  bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
190    return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
191  }
192  bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
193    return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
194  }
195  bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
196    return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
197  }
198
199  // MVI matching routines used by SystemZOperands.td.
200  bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
201    return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
202  }
203  bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
204    return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
205  }
206
207  // BDX matching routines used by SystemZOperands.td.
208  bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
209                           SDValue &Index) const {
210    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
211                         SystemZAddressingMode::Disp12Only,
212                         Addr, Base, Disp, Index);
213  }
214  bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
215                           SDValue &Index) const {
216    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
217                         SystemZAddressingMode::Disp12Pair,
218                         Addr, Base, Disp, Index);
219  }
220  bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
221                            SDValue &Index) const {
222    return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
223                         SystemZAddressingMode::Disp12Only,
224                         Addr, Base, Disp, Index);
225  }
226  bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
227                           SDValue &Index) const {
228    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
229                         SystemZAddressingMode::Disp20Only,
230                         Addr, Base, Disp, Index);
231  }
232  bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
233                              SDValue &Index) const {
234    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
235                         SystemZAddressingMode::Disp20Only128,
236                         Addr, Base, Disp, Index);
237  }
238  bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
239                           SDValue &Index) const {
240    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
241                         SystemZAddressingMode::Disp20Pair,
242                         Addr, Base, Disp, Index);
243  }
244  bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
245                          SDValue &Index) const {
246    return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
247                         SystemZAddressingMode::Disp12Pair,
248                         Addr, Base, Disp, Index);
249  }
250  bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
251                          SDValue &Index) const {
252    return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
253                         SystemZAddressingMode::Disp20Pair,
254                         Addr, Base, Disp, Index);
255  }
256
257  // Check whether (or Op (and X InsertMask)) is effectively an insertion
258  // of X into bits InsertMask of some Y != Op.  Return true if so and
259  // set Op to that Y.
260  bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
261
262  // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
263  // Return true on success.
264  bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
265
266  // Try to fold some of RxSBG.Input into other fields of RxSBG.
267  // Return true on success.
268  bool expandRxSBG(RxSBGOperands &RxSBG) const;
269
270  // Return an undefined value of type VT.
271  SDValue getUNDEF(SDLoc DL, EVT VT) const;
272
273  // Convert N to VT, if it isn't already.
274  SDValue convertTo(SDLoc DL, EVT VT, SDValue N) const;
275
276  // Try to implement AND or shift node N using RISBG with the zero flag set.
277  // Return the selected node on success, otherwise return null.
278  SDNode *tryRISBGZero(SDNode *N);
279
280  // Try to use RISBG or Opcode to implement OR or XOR node N.
281  // Return the selected node on success, otherwise return null.
282  SDNode *tryRxSBG(SDNode *N, unsigned Opcode);
283
284  // If Op0 is null, then Node is a constant that can be loaded using:
285  //
286  //   (Opcode UpperVal LowerVal)
287  //
288  // If Op0 is nonnull, then Node can be implemented using:
289  //
290  //   (Opcode (Opcode Op0 UpperVal) LowerVal)
291  SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
292                              uint64_t UpperVal, uint64_t LowerVal);
293
294  // Return true if Load and Store are loads and stores of the same size
295  // and are guaranteed not to overlap.  Such operations can be implemented
296  // using block (SS-format) instructions.
297  //
298  // Partial overlap would lead to incorrect code, since the block operations
299  // are logically bytewise, even though they have a fast path for the
300  // non-overlapping case.  We also need to avoid full overlap (i.e. two
301  // addresses that might be equal at run time) because although that case
302  // would be handled correctly, it might be implemented by millicode.
303  bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
304
305  // N is a (store (load Y), X) pattern.  Return true if it can use an MVC
306  // from Y to X.
307  bool storeLoadCanUseMVC(SDNode *N) const;
308
309  // N is a (store (op (load A[0]), (load A[1])), X) pattern.  Return true
310  // if A[1 - I] == X and if N can use a block operation like NC from A[I]
311  // to X.
312  bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
313
314public:
315  SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
316    : SelectionDAGISel(TM, OptLevel),
317      Lowering(*TM.getTargetLowering()),
318      Subtarget(*TM.getSubtargetImpl()) { }
319
320  // Override MachineFunctionPass.
321  virtual const char *getPassName() const LLVM_OVERRIDE {
322    return "SystemZ DAG->DAG Pattern Instruction Selection";
323  }
324
325  // Override SelectionDAGISel.
326  virtual SDNode *Select(SDNode *Node) LLVM_OVERRIDE;
327  virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
328                                            char ConstraintCode,
329                                            std::vector<SDValue> &OutOps)
330    LLVM_OVERRIDE;
331
332  // Include the pieces autogenerated from the target description.
333  #include "SystemZGenDAGISel.inc"
334};
335} // end anonymous namespace
336
337FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
338                                         CodeGenOpt::Level OptLevel) {
339  return new SystemZDAGToDAGISel(TM, OptLevel);
340}
341
342// Return true if Val should be selected as a displacement for an address
343// with range DR.  Here we're interested in the range of both the instruction
344// described by DR and of any pairing instruction.
345static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
346  switch (DR) {
347  case SystemZAddressingMode::Disp12Only:
348    return isUInt<12>(Val);
349
350  case SystemZAddressingMode::Disp12Pair:
351  case SystemZAddressingMode::Disp20Only:
352  case SystemZAddressingMode::Disp20Pair:
353    return isInt<20>(Val);
354
355  case SystemZAddressingMode::Disp20Only128:
356    return isInt<20>(Val) && isInt<20>(Val + 8);
357  }
358  llvm_unreachable("Unhandled displacement range");
359}
360
361// Change the base or index in AM to Value, where IsBase selects
362// between the base and index.
363static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
364                            SDValue Value) {
365  if (IsBase)
366    AM.Base = Value;
367  else
368    AM.Index = Value;
369}
370
371// The base or index of AM is equivalent to Value + ADJDYNALLOC,
372// where IsBase selects between the base and index.  Try to fold the
373// ADJDYNALLOC into AM.
374static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
375                              SDValue Value) {
376  if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
377    changeComponent(AM, IsBase, Value);
378    AM.IncludesDynAlloc = true;
379    return true;
380  }
381  return false;
382}
383
384// The base of AM is equivalent to Base + Index.  Try to use Index as
385// the index register.
386static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
387                        SDValue Index) {
388  if (AM.hasIndexField() && !AM.Index.getNode()) {
389    AM.Base = Base;
390    AM.Index = Index;
391    return true;
392  }
393  return false;
394}
395
396// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
397// between the base and index.  Try to fold Op1 into AM's displacement.
398static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
399                       SDValue Op0, uint64_t Op1) {
400  // First try adjusting the displacement.
401  int64_t TestDisp = AM.Disp + Op1;
402  if (selectDisp(AM.DR, TestDisp)) {
403    changeComponent(AM, IsBase, Op0);
404    AM.Disp = TestDisp;
405    return true;
406  }
407
408  // We could consider forcing the displacement into a register and
409  // using it as an index, but it would need to be carefully tuned.
410  return false;
411}
412
413bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
414                                        bool IsBase) const {
415  SDValue N = IsBase ? AM.Base : AM.Index;
416  unsigned Opcode = N.getOpcode();
417  if (Opcode == ISD::TRUNCATE) {
418    N = N.getOperand(0);
419    Opcode = N.getOpcode();
420  }
421  if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
422    SDValue Op0 = N.getOperand(0);
423    SDValue Op1 = N.getOperand(1);
424
425    unsigned Op0Code = Op0->getOpcode();
426    unsigned Op1Code = Op1->getOpcode();
427
428    if (Op0Code == SystemZISD::ADJDYNALLOC)
429      return expandAdjDynAlloc(AM, IsBase, Op1);
430    if (Op1Code == SystemZISD::ADJDYNALLOC)
431      return expandAdjDynAlloc(AM, IsBase, Op0);
432
433    if (Op0Code == ISD::Constant)
434      return expandDisp(AM, IsBase, Op1,
435                        cast<ConstantSDNode>(Op0)->getSExtValue());
436    if (Op1Code == ISD::Constant)
437      return expandDisp(AM, IsBase, Op0,
438                        cast<ConstantSDNode>(Op1)->getSExtValue());
439
440    if (IsBase && expandIndex(AM, Op0, Op1))
441      return true;
442  }
443  if (Opcode == SystemZISD::PCREL_OFFSET) {
444    SDValue Full = N.getOperand(0);
445    SDValue Base = N.getOperand(1);
446    SDValue Anchor = Base.getOperand(0);
447    uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
448                       cast<GlobalAddressSDNode>(Anchor)->getOffset());
449    return expandDisp(AM, IsBase, Base, Offset);
450  }
451  return false;
452}
453
454// Return true if an instruction with displacement range DR should be
455// used for displacement value Val.  selectDisp(DR, Val) must already hold.
456static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
457  assert(selectDisp(DR, Val) && "Invalid displacement");
458  switch (DR) {
459  case SystemZAddressingMode::Disp12Only:
460  case SystemZAddressingMode::Disp20Only:
461  case SystemZAddressingMode::Disp20Only128:
462    return true;
463
464  case SystemZAddressingMode::Disp12Pair:
465    // Use the other instruction if the displacement is too large.
466    return isUInt<12>(Val);
467
468  case SystemZAddressingMode::Disp20Pair:
469    // Use the other instruction if the displacement is small enough.
470    return !isUInt<12>(Val);
471  }
472  llvm_unreachable("Unhandled displacement range");
473}
474
475// Return true if Base + Disp + Index should be performed by LA(Y).
476static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
477  // Don't use LA(Y) for constants.
478  if (!Base)
479    return false;
480
481  // Always use LA(Y) for frame addresses, since we know that the destination
482  // register is almost always (perhaps always) going to be different from
483  // the frame register.
484  if (Base->getOpcode() == ISD::FrameIndex)
485    return true;
486
487  if (Disp) {
488    // Always use LA(Y) if there is a base, displacement and index.
489    if (Index)
490      return true;
491
492    // Always use LA if the displacement is small enough.  It should always
493    // be no worse than AGHI (and better if it avoids a move).
494    if (isUInt<12>(Disp))
495      return true;
496
497    // For similar reasons, always use LAY if the constant is too big for AGHI.
498    // LAY should be no worse than AGFI.
499    if (!isInt<16>(Disp))
500      return true;
501  } else {
502    // Don't use LA for plain registers.
503    if (!Index)
504      return false;
505
506    // Don't use LA for plain addition if the index operand is only used
507    // once.  It should be a natural two-operand addition in that case.
508    if (Index->hasOneUse())
509      return false;
510
511    // Prefer addition if the second operation is sign-extended, in the
512    // hope of using AGF.
513    unsigned IndexOpcode = Index->getOpcode();
514    if (IndexOpcode == ISD::SIGN_EXTEND ||
515        IndexOpcode == ISD::SIGN_EXTEND_INREG)
516      return false;
517  }
518
519  // Don't use LA for two-operand addition if either operand is only
520  // used once.  The addition instructions are better in that case.
521  if (Base->hasOneUse())
522    return false;
523
524  return true;
525}
526
527// Return true if Addr is suitable for AM, updating AM if so.
528bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
529                                        SystemZAddressingMode &AM) const {
530  // Start out assuming that the address will need to be loaded separately,
531  // then try to extend it as much as we can.
532  AM.Base = Addr;
533
534  // First try treating the address as a constant.
535  if (Addr.getOpcode() == ISD::Constant &&
536      expandDisp(AM, true, SDValue(),
537                 cast<ConstantSDNode>(Addr)->getSExtValue()))
538    ;
539  else
540    // Otherwise try expanding each component.
541    while (expandAddress(AM, true) ||
542           (AM.Index.getNode() && expandAddress(AM, false)))
543      continue;
544
545  // Reject cases where it isn't profitable to use LA(Y).
546  if (AM.Form == SystemZAddressingMode::FormBDXLA &&
547      !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
548    return false;
549
550  // Reject cases where the other instruction in a pair should be used.
551  if (!isValidDisp(AM.DR, AM.Disp))
552    return false;
553
554  // Make sure that ADJDYNALLOC is included where necessary.
555  if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
556    return false;
557
558  DEBUG(AM.dump());
559  return true;
560}
561
562// Insert a node into the DAG at least before Pos.  This will reposition
563// the node as needed, and will assign it a node ID that is <= Pos's ID.
564// Note that this does *not* preserve the uniqueness of node IDs!
565// The selection DAG must no longer depend on their uniqueness when this
566// function is used.
567static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
568  if (N.getNode()->getNodeId() == -1 ||
569      N.getNode()->getNodeId() > Pos->getNodeId()) {
570    DAG->RepositionNode(Pos, N.getNode());
571    N.getNode()->setNodeId(Pos->getNodeId());
572  }
573}
574
575void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
576                                             EVT VT, SDValue &Base,
577                                             SDValue &Disp) const {
578  Base = AM.Base;
579  if (!Base.getNode())
580    // Register 0 means "no base".  This is mostly useful for shifts.
581    Base = CurDAG->getRegister(0, VT);
582  else if (Base.getOpcode() == ISD::FrameIndex) {
583    // Lower a FrameIndex to a TargetFrameIndex.
584    int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
585    Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
586  } else if (Base.getValueType() != VT) {
587    // Truncate values from i64 to i32, for shifts.
588    assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
589           "Unexpected truncation");
590    SDLoc DL(Base);
591    SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
592    insertDAGNode(CurDAG, Base.getNode(), Trunc);
593    Base = Trunc;
594  }
595
596  // Lower the displacement to a TargetConstant.
597  Disp = CurDAG->getTargetConstant(AM.Disp, VT);
598}
599
600void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
601                                             EVT VT, SDValue &Base,
602                                             SDValue &Disp,
603                                             SDValue &Index) const {
604  getAddressOperands(AM, VT, Base, Disp);
605
606  Index = AM.Index;
607  if (!Index.getNode())
608    // Register 0 means "no index".
609    Index = CurDAG->getRegister(0, VT);
610}
611
612bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
613                                       SDValue Addr, SDValue &Base,
614                                       SDValue &Disp) const {
615  SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
616  if (!selectAddress(Addr, AM))
617    return false;
618
619  getAddressOperands(AM, Addr.getValueType(), Base, Disp);
620  return true;
621}
622
623bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
624                                        SDValue Addr, SDValue &Base,
625                                        SDValue &Disp) const {
626  SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
627  if (!selectAddress(Addr, AM) || AM.Index.getNode())
628    return false;
629
630  getAddressOperands(AM, Addr.getValueType(), Base, Disp);
631  return true;
632}
633
634bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
635                                        SystemZAddressingMode::DispRange DR,
636                                        SDValue Addr, SDValue &Base,
637                                        SDValue &Disp, SDValue &Index) const {
638  SystemZAddressingMode AM(Form, DR);
639  if (!selectAddress(Addr, AM))
640    return false;
641
642  getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
643  return true;
644}
645
646bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
647                                               uint64_t InsertMask) const {
648  // We're only interested in cases where the insertion is into some operand
649  // of Op, rather than into Op itself.  The only useful case is an AND.
650  if (Op.getOpcode() != ISD::AND)
651    return false;
652
653  // We need a constant mask.
654  ConstantSDNode *MaskNode =
655    dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
656  if (!MaskNode)
657    return false;
658
659  // It's not an insertion of Op.getOperand(0) if the two masks overlap.
660  uint64_t AndMask = MaskNode->getZExtValue();
661  if (InsertMask & AndMask)
662    return false;
663
664  // It's only an insertion if all bits are covered or are known to be zero.
665  // The inner check covers all cases but is more expensive.
666  uint64_t Used = allOnes(Op.getValueType().getSizeInBits());
667  if (Used != (AndMask | InsertMask)) {
668    APInt KnownZero, KnownOne;
669    CurDAG->ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne);
670    if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
671      return false;
672  }
673
674  Op = Op.getOperand(0);
675  return true;
676}
677
678bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
679                                          uint64_t Mask) const {
680  const SystemZInstrInfo *TII = getInstrInfo();
681  if (RxSBG.Rotate != 0)
682    Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
683  Mask &= RxSBG.Mask;
684  if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
685    RxSBG.Mask = Mask;
686    return true;
687  }
688  return false;
689}
690
691// Return true if any bits of (RxSBG.Input & Mask) are significant.
692static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
693  // Rotate the mask in the same way as RxSBG.Input is rotated.
694  if (RxSBG.Rotate != 0)
695    Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
696  return (Mask & RxSBG.Mask) != 0;
697}
698
699bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
700  SDValue N = RxSBG.Input;
701  unsigned Opcode = N.getOpcode();
702  switch (Opcode) {
703  case ISD::AND: {
704    if (RxSBG.Opcode == SystemZ::RNSBG)
705      return false;
706
707    ConstantSDNode *MaskNode =
708      dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
709    if (!MaskNode)
710      return false;
711
712    SDValue Input = N.getOperand(0);
713    uint64_t Mask = MaskNode->getZExtValue();
714    if (!refineRxSBGMask(RxSBG, Mask)) {
715      // If some bits of Input are already known zeros, those bits will have
716      // been removed from the mask.  See if adding them back in makes the
717      // mask suitable.
718      APInt KnownZero, KnownOne;
719      CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne);
720      Mask |= KnownZero.getZExtValue();
721      if (!refineRxSBGMask(RxSBG, Mask))
722        return false;
723    }
724    RxSBG.Input = Input;
725    return true;
726  }
727
728  case ISD::OR: {
729    if (RxSBG.Opcode != SystemZ::RNSBG)
730      return false;
731
732    ConstantSDNode *MaskNode =
733      dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
734    if (!MaskNode)
735      return false;
736
737    SDValue Input = N.getOperand(0);
738    uint64_t Mask = ~MaskNode->getZExtValue();
739    if (!refineRxSBGMask(RxSBG, Mask)) {
740      // If some bits of Input are already known ones, those bits will have
741      // been removed from the mask.  See if adding them back in makes the
742      // mask suitable.
743      APInt KnownZero, KnownOne;
744      CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne);
745      Mask &= ~KnownOne.getZExtValue();
746      if (!refineRxSBGMask(RxSBG, Mask))
747        return false;
748    }
749    RxSBG.Input = Input;
750    return true;
751  }
752
753  case ISD::ROTL: {
754    // Any 64-bit rotate left can be merged into the RxSBG.
755    if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
756      return false;
757    ConstantSDNode *CountNode
758      = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
759    if (!CountNode)
760      return false;
761
762    RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
763    RxSBG.Input = N.getOperand(0);
764    return true;
765  }
766
767  case ISD::SIGN_EXTEND:
768  case ISD::ZERO_EXTEND:
769  case ISD::ANY_EXTEND: {
770    // Check that the extension bits are don't-care (i.e. are masked out
771    // by the final mask).
772    unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
773    if (maskMatters(RxSBG, allOnes(RxSBG.BitSize) - allOnes(InnerBitSize)))
774      return false;
775
776    RxSBG.Input = N.getOperand(0);
777    return true;
778  }
779
780  case ISD::SHL: {
781    ConstantSDNode *CountNode =
782      dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
783    if (!CountNode)
784      return false;
785
786    uint64_t Count = CountNode->getZExtValue();
787    unsigned BitSize = N.getValueType().getSizeInBits();
788    if (Count < 1 || Count >= BitSize)
789      return false;
790
791    if (RxSBG.Opcode == SystemZ::RNSBG) {
792      // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
793      // count bits from RxSBG.Input are ignored.
794      if (maskMatters(RxSBG, allOnes(Count)))
795        return false;
796    } else {
797      // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
798      if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
799        return false;
800    }
801
802    RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
803    RxSBG.Input = N.getOperand(0);
804    return true;
805  }
806
807  case ISD::SRL:
808  case ISD::SRA: {
809    ConstantSDNode *CountNode =
810      dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
811    if (!CountNode)
812      return false;
813
814    uint64_t Count = CountNode->getZExtValue();
815    unsigned BitSize = N.getValueType().getSizeInBits();
816    if (Count < 1 || Count >= BitSize)
817      return false;
818
819    if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
820      // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
821      // count bits from RxSBG.Input are ignored.
822      if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
823        return false;
824    } else {
825      // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
826      // which is similar to SLL above.
827      if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
828        return false;
829    }
830
831    RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
832    RxSBG.Input = N.getOperand(0);
833    return true;
834  }
835  default:
836    return false;
837  }
838}
839
840SDValue SystemZDAGToDAGISel::getUNDEF(SDLoc DL, EVT VT) const {
841  SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
842  return SDValue(N, 0);
843}
844
845SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) const {
846  if (N.getValueType() == MVT::i32 && VT == MVT::i64)
847    return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
848                                         DL, VT, getUNDEF(DL, MVT::i64), N);
849  if (N.getValueType() == MVT::i64 && VT == MVT::i32)
850    return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
851  assert(N.getValueType() == VT && "Unexpected value types");
852  return N;
853}
854
855SDNode *SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
856  EVT VT = N->getValueType(0);
857  RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
858  unsigned Count = 0;
859  while (expandRxSBG(RISBG))
860    if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND)
861      Count += 1;
862  if (Count == 0)
863    return 0;
864  if (Count == 1) {
865    // Prefer to use normal shift instructions over RISBG, since they can handle
866    // all cases and are sometimes shorter.
867    if (N->getOpcode() != ISD::AND)
868      return 0;
869
870    // Prefer register extensions like LLC over RISBG.  Also prefer to start
871    // out with normal ANDs if one instruction would be enough.  We can convert
872    // these ANDs into an RISBG later if a three-address instruction is useful.
873    if (VT == MVT::i32 ||
874        RISBG.Mask == 0xff ||
875        RISBG.Mask == 0xffff ||
876        SystemZ::isImmLF(~RISBG.Mask) ||
877        SystemZ::isImmHF(~RISBG.Mask)) {
878      // Force the new mask into the DAG, since it may include known-one bits.
879      ConstantSDNode *MaskN = cast<ConstantSDNode>(N->getOperand(1).getNode());
880      if (MaskN->getZExtValue() != RISBG.Mask) {
881        SDValue NewMask = CurDAG->getConstant(RISBG.Mask, VT);
882        N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), NewMask);
883        return SelectCode(N);
884      }
885      return 0;
886    }
887  }
888
889  unsigned Opcode = SystemZ::RISBG;
890  EVT OpcodeVT = MVT::i64;
891  if (VT == MVT::i32 && Subtarget.hasHighWord()) {
892    Opcode = SystemZ::RISBMux;
893    OpcodeVT = MVT::i32;
894    RISBG.Start &= 31;
895    RISBG.End &= 31;
896  }
897  SDValue Ops[5] = {
898    getUNDEF(SDLoc(N), OpcodeVT),
899    convertTo(SDLoc(N), OpcodeVT, RISBG.Input),
900    CurDAG->getTargetConstant(RISBG.Start, MVT::i32),
901    CurDAG->getTargetConstant(RISBG.End | 128, MVT::i32),
902    CurDAG->getTargetConstant(RISBG.Rotate, MVT::i32)
903  };
904  N = CurDAG->getMachineNode(Opcode, SDLoc(N), OpcodeVT, Ops);
905  return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
906}
907
908SDNode *SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
909  // Try treating each operand of N as the second operand of the RxSBG
910  // and see which goes deepest.
911  RxSBGOperands RxSBG[] = {
912    RxSBGOperands(Opcode, N->getOperand(0)),
913    RxSBGOperands(Opcode, N->getOperand(1))
914  };
915  unsigned Count[] = { 0, 0 };
916  for (unsigned I = 0; I < 2; ++I)
917    while (expandRxSBG(RxSBG[I]))
918      if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND)
919        Count[I] += 1;
920
921  // Do nothing if neither operand is suitable.
922  if (Count[0] == 0 && Count[1] == 0)
923    return 0;
924
925  // Pick the deepest second operand.
926  unsigned I = Count[0] > Count[1] ? 0 : 1;
927  SDValue Op0 = N->getOperand(I ^ 1);
928
929  // Prefer IC for character insertions from memory.
930  if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
931    if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
932      if (Load->getMemoryVT() == MVT::i8)
933        return 0;
934
935  // See whether we can avoid an AND in the first operand by converting
936  // ROSBG to RISBG.
937  if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask))
938    Opcode = SystemZ::RISBG;
939
940  EVT VT = N->getValueType(0);
941  SDValue Ops[5] = {
942    convertTo(SDLoc(N), MVT::i64, Op0),
943    convertTo(SDLoc(N), MVT::i64, RxSBG[I].Input),
944    CurDAG->getTargetConstant(RxSBG[I].Start, MVT::i32),
945    CurDAG->getTargetConstant(RxSBG[I].End, MVT::i32),
946    CurDAG->getTargetConstant(RxSBG[I].Rotate, MVT::i32)
947  };
948  N = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, Ops);
949  return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
950}
951
952SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
953                                                 SDValue Op0, uint64_t UpperVal,
954                                                 uint64_t LowerVal) {
955  EVT VT = Node->getValueType(0);
956  SDLoc DL(Node);
957  SDValue Upper = CurDAG->getConstant(UpperVal, VT);
958  if (Op0.getNode())
959    Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
960  Upper = SDValue(Select(Upper.getNode()), 0);
961
962  SDValue Lower = CurDAG->getConstant(LowerVal, VT);
963  SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
964  return Or.getNode();
965}
966
967bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
968                                               LoadSDNode *Load) const {
969  // Check that the two memory operands have the same size.
970  if (Load->getMemoryVT() != Store->getMemoryVT())
971    return false;
972
973  // Volatility stops an access from being decomposed.
974  if (Load->isVolatile() || Store->isVolatile())
975    return false;
976
977  // There's no chance of overlap if the load is invariant.
978  if (Load->isInvariant())
979    return true;
980
981  // Otherwise we need to check whether there's an alias.
982  const Value *V1 = Load->getSrcValue();
983  const Value *V2 = Store->getSrcValue();
984  if (!V1 || !V2)
985    return false;
986
987  // Reject equality.
988  uint64_t Size = Load->getMemoryVT().getStoreSize();
989  int64_t End1 = Load->getSrcValueOffset() + Size;
990  int64_t End2 = Store->getSrcValueOffset() + Size;
991  if (V1 == V2 && End1 == End2)
992    return false;
993
994  return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getTBAAInfo()),
995                    AliasAnalysis::Location(V2, End2, Store->getTBAAInfo()));
996}
997
998bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
999  StoreSDNode *Store = cast<StoreSDNode>(N);
1000  LoadSDNode *Load = cast<LoadSDNode>(Store->getValue());
1001
1002  // Prefer not to use MVC if either address can use ... RELATIVE LONG
1003  // instructions.
1004  uint64_t Size = Load->getMemoryVT().getStoreSize();
1005  if (Size > 1 && Size <= 8) {
1006    // Prefer LHRL, LRL and LGRL.
1007    if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1008      return false;
1009    // Prefer STHRL, STRL and STGRL.
1010    if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1011      return false;
1012  }
1013
1014  return canUseBlockOperation(Store, Load);
1015}
1016
1017bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1018                                                     unsigned I) const {
1019  StoreSDNode *StoreA = cast<StoreSDNode>(N);
1020  LoadSDNode *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1021  LoadSDNode *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1022  return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
1023}
1024
1025SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
1026  // Dump information about the Node being selected
1027  DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
1028
1029  // If we have a custom node, we already have selected!
1030  if (Node->isMachineOpcode()) {
1031    DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1032    Node->setNodeId(-1);
1033    return 0;
1034  }
1035
1036  unsigned Opcode = Node->getOpcode();
1037  SDNode *ResNode = 0;
1038  switch (Opcode) {
1039  case ISD::OR:
1040    if (Node->getOperand(1).getOpcode() != ISD::Constant)
1041      ResNode = tryRxSBG(Node, SystemZ::ROSBG);
1042    goto or_xor;
1043
1044  case ISD::XOR:
1045    if (Node->getOperand(1).getOpcode() != ISD::Constant)
1046      ResNode = tryRxSBG(Node, SystemZ::RXSBG);
1047    // Fall through.
1048  or_xor:
1049    // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1050    // split the operation into two.
1051    if (!ResNode && Node->getValueType(0) == MVT::i64)
1052      if (ConstantSDNode *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1053        uint64_t Val = Op1->getZExtValue();
1054        if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
1055          Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1056                                     Val - uint32_t(Val), uint32_t(Val));
1057      }
1058    break;
1059
1060  case ISD::AND:
1061    if (Node->getOperand(1).getOpcode() != ISD::Constant)
1062      ResNode = tryRxSBG(Node, SystemZ::RNSBG);
1063    // Fall through.
1064  case ISD::ROTL:
1065  case ISD::SHL:
1066  case ISD::SRL:
1067    if (!ResNode)
1068      ResNode = tryRISBGZero(Node);
1069    break;
1070
1071  case ISD::Constant:
1072    // If this is a 64-bit constant that is out of the range of LLILF,
1073    // LLIHF and LGFI, split it into two 32-bit pieces.
1074    if (Node->getValueType(0) == MVT::i64) {
1075      uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1076      if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
1077        Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
1078                                   Val - uint32_t(Val), uint32_t(Val));
1079    }
1080    break;
1081
1082  case ISD::ATOMIC_LOAD_SUB:
1083    // Try to convert subtractions of constants to additions.
1084    if (ConstantSDNode *Op2 = dyn_cast<ConstantSDNode>(Node->getOperand(2))) {
1085      uint64_t Value = -Op2->getZExtValue();
1086      EVT VT = Node->getValueType(0);
1087      if (VT == MVT::i32 || isInt<32>(Value)) {
1088        SDValue Ops[] = { Node->getOperand(0), Node->getOperand(1),
1089                          CurDAG->getConstant(int32_t(Value), VT) };
1090        Node = CurDAG->MorphNodeTo(Node, ISD::ATOMIC_LOAD_ADD,
1091                                   Node->getVTList(), Ops, array_lengthof(Ops));
1092      }
1093    }
1094    break;
1095
1096  case SystemZISD::SELECT_CCMASK: {
1097    SDValue Op0 = Node->getOperand(0);
1098    SDValue Op1 = Node->getOperand(1);
1099    // Prefer to put any load first, so that it can be matched as a
1100    // conditional load.
1101    if (Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) {
1102      SDValue CCValid = Node->getOperand(2);
1103      SDValue CCMask = Node->getOperand(3);
1104      uint64_t ConstCCValid =
1105        cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1106      uint64_t ConstCCMask =
1107        cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1108      // Invert the condition.
1109      CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask,
1110                                   CCMask.getValueType());
1111      SDValue Op4 = Node->getOperand(4);
1112      Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1113    }
1114    break;
1115  }
1116  }
1117
1118  // Select the default instruction
1119  if (!ResNode)
1120    ResNode = SelectCode(Node);
1121
1122  DEBUG(errs() << "=> ";
1123        if (ResNode == NULL || ResNode == Node)
1124          Node->dump(CurDAG);
1125        else
1126          ResNode->dump(CurDAG);
1127        errs() << "\n";
1128        );
1129  return ResNode;
1130}
1131
1132bool SystemZDAGToDAGISel::
1133SelectInlineAsmMemoryOperand(const SDValue &Op,
1134                             char ConstraintCode,
1135                             std::vector<SDValue> &OutOps) {
1136  assert(ConstraintCode == 'm' && "Unexpected constraint code");
1137  // Accept addresses with short displacements, which are compatible
1138  // with Q, R, S and T.  But keep the index operand for future expansion.
1139  SDValue Base, Disp, Index;
1140  if (!selectBDXAddr(SystemZAddressingMode::FormBD,
1141                     SystemZAddressingMode::Disp12Only,
1142                     Op, Base, Disp, Index))
1143    return true;
1144  OutOps.push_back(Base);
1145  OutOps.push_back(Disp);
1146  OutOps.push_back(Index);
1147  return false;
1148}
1149