SystemZISelLowering.cpp revision 1c831f7f1f7e869516f5a70c1e6dd8896bef76f5
1//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SystemZTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "systemz-lower"
15
16#include "SystemZISelLowering.h"
17#include "SystemZCallingConv.h"
18#include "SystemZConstantPoolValue.h"
19#include "SystemZMachineFunctionInfo.h"
20#include "SystemZTargetMachine.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25
26using namespace llvm;
27
28// Classify VT as either 32 or 64 bit.
29static bool is32Bit(EVT VT) {
30  switch (VT.getSimpleVT().SimpleTy) {
31  case MVT::i32:
32    return true;
33  case MVT::i64:
34    return false;
35  default:
36    llvm_unreachable("Unsupported type");
37  }
38}
39
40// Return a version of MachineOperand that can be safely used before the
41// final use.
42static MachineOperand earlyUseOperand(MachineOperand Op) {
43  if (Op.isReg())
44    Op.setIsKill(false);
45  return Op;
46}
47
48SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
49  : TargetLowering(tm, new TargetLoweringObjectFileELF()),
50    Subtarget(*tm.getSubtargetImpl()), TM(tm) {
51  MVT PtrVT = getPointerTy();
52
53  // Set up the register classes.
54  if (Subtarget.hasHighWord())
55    addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
56  else
57    addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
58  addRegisterClass(MVT::i64,  &SystemZ::GR64BitRegClass);
59  addRegisterClass(MVT::f32,  &SystemZ::FP32BitRegClass);
60  addRegisterClass(MVT::f64,  &SystemZ::FP64BitRegClass);
61  addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
62
63  // Compute derived properties from the register classes
64  computeRegisterProperties();
65
66  // Set up special registers.
67  setExceptionPointerRegister(SystemZ::R6D);
68  setExceptionSelectorRegister(SystemZ::R7D);
69  setStackPointerRegisterToSaveRestore(SystemZ::R15D);
70
71  // TODO: It may be better to default to latency-oriented scheduling, however
72  // LLVM's current latency-oriented scheduler can't handle physreg definitions
73  // such as SystemZ has with CC, so set this to the register-pressure
74  // scheduler, because it can.
75  setSchedulingPreference(Sched::RegPressure);
76
77  setBooleanContents(ZeroOrOneBooleanContent);
78  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
79
80  // Instructions are strings of 2-byte aligned 2-byte values.
81  setMinFunctionAlignment(2);
82
83  // Handle operations that are handled in a similar way for all types.
84  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
85       I <= MVT::LAST_FP_VALUETYPE;
86       ++I) {
87    MVT VT = MVT::SimpleValueType(I);
88    if (isTypeLegal(VT)) {
89      // Expand SETCC(X, Y, COND) into SELECT_CC(X, Y, 1, 0, COND).
90      setOperationAction(ISD::SETCC, VT, Expand);
91
92      // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
93      setOperationAction(ISD::SELECT, VT, Expand);
94
95      // Lower SELECT_CC and BR_CC into separate comparisons and branches.
96      setOperationAction(ISD::SELECT_CC, VT, Custom);
97      setOperationAction(ISD::BR_CC,     VT, Custom);
98    }
99  }
100
101  // Expand jump table branches as address arithmetic followed by an
102  // indirect jump.
103  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
104
105  // Expand BRCOND into a BR_CC (see above).
106  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
107
108  // Handle integer types.
109  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
110       I <= MVT::LAST_INTEGER_VALUETYPE;
111       ++I) {
112    MVT VT = MVT::SimpleValueType(I);
113    if (isTypeLegal(VT)) {
114      // Expand individual DIV and REMs into DIVREMs.
115      setOperationAction(ISD::SDIV, VT, Expand);
116      setOperationAction(ISD::UDIV, VT, Expand);
117      setOperationAction(ISD::SREM, VT, Expand);
118      setOperationAction(ISD::UREM, VT, Expand);
119      setOperationAction(ISD::SDIVREM, VT, Custom);
120      setOperationAction(ISD::UDIVREM, VT, Custom);
121
122      // Expand ATOMIC_LOAD and ATOMIC_STORE using ATOMIC_CMP_SWAP.
123      // FIXME: probably much too conservative.
124      setOperationAction(ISD::ATOMIC_LOAD,  VT, Expand);
125      setOperationAction(ISD::ATOMIC_STORE, VT, Expand);
126
127      // No special instructions for these.
128      setOperationAction(ISD::CTPOP,           VT, Expand);
129      setOperationAction(ISD::CTTZ,            VT, Expand);
130      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
131      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
132      setOperationAction(ISD::ROTR,            VT, Expand);
133
134      // Use *MUL_LOHI where possible instead of MULH*.
135      setOperationAction(ISD::MULHS, VT, Expand);
136      setOperationAction(ISD::MULHU, VT, Expand);
137      setOperationAction(ISD::SMUL_LOHI, VT, Custom);
138      setOperationAction(ISD::UMUL_LOHI, VT, Custom);
139
140      // We have instructions for signed but not unsigned FP conversion.
141      setOperationAction(ISD::FP_TO_UINT, VT, Expand);
142    }
143  }
144
145  // Type legalization will convert 8- and 16-bit atomic operations into
146  // forms that operate on i32s (but still keeping the original memory VT).
147  // Lower them into full i32 operations.
148  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
149  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
150  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
151  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
152  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
153  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
154  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
155  setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
156  setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
157  setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
158  setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
159  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
160
161  // We have instructions for signed but not unsigned FP conversion.
162  // Handle unsigned 32-bit types as signed 64-bit types.
163  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
164  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
165
166  // We have native support for a 64-bit CTLZ, via FLOGR.
167  setOperationAction(ISD::CTLZ, MVT::i32, Promote);
168  setOperationAction(ISD::CTLZ, MVT::i64, Legal);
169
170  // Give LowerOperation the chance to replace 64-bit ORs with subregs.
171  setOperationAction(ISD::OR, MVT::i64, Custom);
172
173  // FIXME: Can we support these natively?
174  setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
175  setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
176  setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
177
178  // We have native instructions for i8, i16 and i32 extensions, but not i1.
179  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
180  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
181  setLoadExtAction(ISD::EXTLOAD,  MVT::i1, Promote);
182  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
183
184  // Handle the various types of symbolic address.
185  setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
186  setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
187  setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
188  setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
189  setOperationAction(ISD::JumpTable,        PtrVT, Custom);
190
191  // We need to handle dynamic allocations specially because of the
192  // 160-byte area at the bottom of the stack.
193  setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
194
195  // Use custom expanders so that we can force the function to use
196  // a frame pointer.
197  setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
198  setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
199
200  // Handle prefetches with PFD or PFDRL.
201  setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
202
203  // Handle floating-point types.
204  for (unsigned I = MVT::FIRST_FP_VALUETYPE;
205       I <= MVT::LAST_FP_VALUETYPE;
206       ++I) {
207    MVT VT = MVT::SimpleValueType(I);
208    if (isTypeLegal(VT)) {
209      // We can use FI for FRINT.
210      setOperationAction(ISD::FRINT, VT, Legal);
211
212      // We can use the extended form of FI for other rounding operations.
213      if (Subtarget.hasFPExtension()) {
214        setOperationAction(ISD::FNEARBYINT, VT, Legal);
215        setOperationAction(ISD::FFLOOR, VT, Legal);
216        setOperationAction(ISD::FCEIL, VT, Legal);
217        setOperationAction(ISD::FTRUNC, VT, Legal);
218        setOperationAction(ISD::FROUND, VT, Legal);
219      }
220
221      // No special instructions for these.
222      setOperationAction(ISD::FSIN, VT, Expand);
223      setOperationAction(ISD::FCOS, VT, Expand);
224      setOperationAction(ISD::FREM, VT, Expand);
225    }
226  }
227
228  // We have fused multiply-addition for f32 and f64 but not f128.
229  setOperationAction(ISD::FMA, MVT::f32,  Legal);
230  setOperationAction(ISD::FMA, MVT::f64,  Legal);
231  setOperationAction(ISD::FMA, MVT::f128, Expand);
232
233  // Needed so that we don't try to implement f128 constant loads using
234  // a load-and-extend of a f80 constant (in cases where the constant
235  // would fit in an f80).
236  setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
237
238  // Floating-point truncation and stores need to be done separately.
239  setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
240  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
241  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
242
243  // We have 64-bit FPR<->GPR moves, but need special handling for
244  // 32-bit forms.
245  setOperationAction(ISD::BITCAST, MVT::i32, Custom);
246  setOperationAction(ISD::BITCAST, MVT::f32, Custom);
247
248  // VASTART and VACOPY need to deal with the SystemZ-specific varargs
249  // structure, but VAEND is a no-op.
250  setOperationAction(ISD::VASTART, MVT::Other, Custom);
251  setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
252  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
253
254  // We want to use MVC in preference to even a single load/store pair.
255  MaxStoresPerMemcpy = 0;
256  MaxStoresPerMemcpyOptSize = 0;
257
258  // The main memset sequence is a byte store followed by an MVC.
259  // Two STC or MV..I stores win over that, but the kind of fused stores
260  // generated by target-independent code don't when the byte value is
261  // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
262  // than "STC;MVC".  Handle the choice in target-specific code instead.
263  MaxStoresPerMemset = 0;
264  MaxStoresPerMemsetOptSize = 0;
265}
266
267bool
268SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
269  VT = VT.getScalarType();
270
271  if (!VT.isSimple())
272    return false;
273
274  switch (VT.getSimpleVT().SimpleTy) {
275  case MVT::f32:
276  case MVT::f64:
277    return true;
278  case MVT::f128:
279    return false;
280  default:
281    break;
282  }
283
284  return false;
285}
286
287bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
288  // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
289  return Imm.isZero() || Imm.isNegZero();
290}
291
292bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
293                                                          bool *Fast) const {
294  // Unaligned accesses should never be slower than the expanded version.
295  // We check specifically for aligned accesses in the few cases where
296  // they are required.
297  if (Fast)
298    *Fast = true;
299  return true;
300}
301
302bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
303                                                  Type *Ty) const {
304  // Punt on globals for now, although they can be used in limited
305  // RELATIVE LONG cases.
306  if (AM.BaseGV)
307    return false;
308
309  // Require a 20-bit signed offset.
310  if (!isInt<20>(AM.BaseOffs))
311    return false;
312
313  // Indexing is OK but no scale factor can be applied.
314  return AM.Scale == 0 || AM.Scale == 1;
315}
316
317bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
318  if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
319    return false;
320  unsigned FromBits = FromType->getPrimitiveSizeInBits();
321  unsigned ToBits = ToType->getPrimitiveSizeInBits();
322  return FromBits > ToBits;
323}
324
325bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
326  if (!FromVT.isInteger() || !ToVT.isInteger())
327    return false;
328  unsigned FromBits = FromVT.getSizeInBits();
329  unsigned ToBits = ToVT.getSizeInBits();
330  return FromBits > ToBits;
331}
332
333//===----------------------------------------------------------------------===//
334// Inline asm support
335//===----------------------------------------------------------------------===//
336
337TargetLowering::ConstraintType
338SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
339  if (Constraint.size() == 1) {
340    switch (Constraint[0]) {
341    case 'a': // Address register
342    case 'd': // Data register (equivalent to 'r')
343    case 'f': // Floating-point register
344    case 'h': // High-part register
345    case 'r': // General-purpose register
346      return C_RegisterClass;
347
348    case 'Q': // Memory with base and unsigned 12-bit displacement
349    case 'R': // Likewise, plus an index
350    case 'S': // Memory with base and signed 20-bit displacement
351    case 'T': // Likewise, plus an index
352    case 'm': // Equivalent to 'T'.
353      return C_Memory;
354
355    case 'I': // Unsigned 8-bit constant
356    case 'J': // Unsigned 12-bit constant
357    case 'K': // Signed 16-bit constant
358    case 'L': // Signed 20-bit displacement (on all targets we support)
359    case 'M': // 0x7fffffff
360      return C_Other;
361
362    default:
363      break;
364    }
365  }
366  return TargetLowering::getConstraintType(Constraint);
367}
368
369TargetLowering::ConstraintWeight SystemZTargetLowering::
370getSingleConstraintMatchWeight(AsmOperandInfo &info,
371                               const char *constraint) const {
372  ConstraintWeight weight = CW_Invalid;
373  Value *CallOperandVal = info.CallOperandVal;
374  // If we don't have a value, we can't do a match,
375  // but allow it at the lowest weight.
376  if (CallOperandVal == NULL)
377    return CW_Default;
378  Type *type = CallOperandVal->getType();
379  // Look at the constraint type.
380  switch (*constraint) {
381  default:
382    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
383    break;
384
385  case 'a': // Address register
386  case 'd': // Data register (equivalent to 'r')
387  case 'h': // High-part register
388  case 'r': // General-purpose register
389    if (CallOperandVal->getType()->isIntegerTy())
390      weight = CW_Register;
391    break;
392
393  case 'f': // Floating-point register
394    if (type->isFloatingPointTy())
395      weight = CW_Register;
396    break;
397
398  case 'I': // Unsigned 8-bit constant
399    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
400      if (isUInt<8>(C->getZExtValue()))
401        weight = CW_Constant;
402    break;
403
404  case 'J': // Unsigned 12-bit constant
405    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
406      if (isUInt<12>(C->getZExtValue()))
407        weight = CW_Constant;
408    break;
409
410  case 'K': // Signed 16-bit constant
411    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
412      if (isInt<16>(C->getSExtValue()))
413        weight = CW_Constant;
414    break;
415
416  case 'L': // Signed 20-bit displacement (on all targets we support)
417    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
418      if (isInt<20>(C->getSExtValue()))
419        weight = CW_Constant;
420    break;
421
422  case 'M': // 0x7fffffff
423    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
424      if (C->getZExtValue() == 0x7fffffff)
425        weight = CW_Constant;
426    break;
427  }
428  return weight;
429}
430
431// Parse a "{tNNN}" register constraint for which the register type "t"
432// has already been verified.  MC is the class associated with "t" and
433// Map maps 0-based register numbers to LLVM register numbers.
434static std::pair<unsigned, const TargetRegisterClass *>
435parseRegisterNumber(const std::string &Constraint,
436                    const TargetRegisterClass *RC, const unsigned *Map) {
437  assert(*(Constraint.end()-1) == '}' && "Missing '}'");
438  if (isdigit(Constraint[2])) {
439    std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
440    unsigned Index = atoi(Suffix.c_str());
441    if (Index < 16 && Map[Index])
442      return std::make_pair(Map[Index], RC);
443  }
444  return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
445}
446
447std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
448getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
449  if (Constraint.size() == 1) {
450    // GCC Constraint Letters
451    switch (Constraint[0]) {
452    default: break;
453    case 'd': // Data register (equivalent to 'r')
454    case 'r': // General-purpose register
455      if (VT == MVT::i64)
456        return std::make_pair(0U, &SystemZ::GR64BitRegClass);
457      else if (VT == MVT::i128)
458        return std::make_pair(0U, &SystemZ::GR128BitRegClass);
459      return std::make_pair(0U, &SystemZ::GR32BitRegClass);
460
461    case 'a': // Address register
462      if (VT == MVT::i64)
463        return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
464      else if (VT == MVT::i128)
465        return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
466      return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
467
468    case 'h': // High-part register (an LLVM extension)
469      return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
470
471    case 'f': // Floating-point register
472      if (VT == MVT::f64)
473        return std::make_pair(0U, &SystemZ::FP64BitRegClass);
474      else if (VT == MVT::f128)
475        return std::make_pair(0U, &SystemZ::FP128BitRegClass);
476      return std::make_pair(0U, &SystemZ::FP32BitRegClass);
477    }
478  }
479  if (Constraint[0] == '{') {
480    // We need to override the default register parsing for GPRs and FPRs
481    // because the interpretation depends on VT.  The internal names of
482    // the registers are also different from the external names
483    // (F0D and F0S instead of F0, etc.).
484    if (Constraint[1] == 'r') {
485      if (VT == MVT::i32)
486        return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
487                                   SystemZMC::GR32Regs);
488      if (VT == MVT::i128)
489        return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
490                                   SystemZMC::GR128Regs);
491      return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
492                                 SystemZMC::GR64Regs);
493    }
494    if (Constraint[1] == 'f') {
495      if (VT == MVT::f32)
496        return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
497                                   SystemZMC::FP32Regs);
498      if (VT == MVT::f128)
499        return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
500                                   SystemZMC::FP128Regs);
501      return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
502                                 SystemZMC::FP64Regs);
503    }
504  }
505  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
506}
507
508void SystemZTargetLowering::
509LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
510                             std::vector<SDValue> &Ops,
511                             SelectionDAG &DAG) const {
512  // Only support length 1 constraints for now.
513  if (Constraint.length() == 1) {
514    switch (Constraint[0]) {
515    case 'I': // Unsigned 8-bit constant
516      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
517        if (isUInt<8>(C->getZExtValue()))
518          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
519                                              Op.getValueType()));
520      return;
521
522    case 'J': // Unsigned 12-bit constant
523      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
524        if (isUInt<12>(C->getZExtValue()))
525          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
526                                              Op.getValueType()));
527      return;
528
529    case 'K': // Signed 16-bit constant
530      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
531        if (isInt<16>(C->getSExtValue()))
532          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
533                                              Op.getValueType()));
534      return;
535
536    case 'L': // Signed 20-bit displacement (on all targets we support)
537      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
538        if (isInt<20>(C->getSExtValue()))
539          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
540                                              Op.getValueType()));
541      return;
542
543    case 'M': // 0x7fffffff
544      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
545        if (C->getZExtValue() == 0x7fffffff)
546          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
547                                              Op.getValueType()));
548      return;
549    }
550  }
551  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
552}
553
554//===----------------------------------------------------------------------===//
555// Calling conventions
556//===----------------------------------------------------------------------===//
557
558#include "SystemZGenCallingConv.inc"
559
560bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
561                                                     Type *ToType) const {
562  return isTruncateFree(FromType, ToType);
563}
564
565bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
566  if (!CI->isTailCall())
567    return false;
568  return true;
569}
570
571// Value is a value that has been passed to us in the location described by VA
572// (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
573// any loads onto Chain.
574static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
575                                   CCValAssign &VA, SDValue Chain,
576                                   SDValue Value) {
577  // If the argument has been promoted from a smaller type, insert an
578  // assertion to capture this.
579  if (VA.getLocInfo() == CCValAssign::SExt)
580    Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
581                        DAG.getValueType(VA.getValVT()));
582  else if (VA.getLocInfo() == CCValAssign::ZExt)
583    Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
584                        DAG.getValueType(VA.getValVT()));
585
586  if (VA.isExtInLoc())
587    Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
588  else if (VA.getLocInfo() == CCValAssign::Indirect)
589    Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
590                        MachinePointerInfo(), false, false, false, 0);
591  else
592    assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
593  return Value;
594}
595
596// Value is a value of type VA.getValVT() that we need to copy into
597// the location described by VA.  Return a copy of Value converted to
598// VA.getValVT().  The caller is responsible for handling indirect values.
599static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
600                                   CCValAssign &VA, SDValue Value) {
601  switch (VA.getLocInfo()) {
602  case CCValAssign::SExt:
603    return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
604  case CCValAssign::ZExt:
605    return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
606  case CCValAssign::AExt:
607    return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
608  case CCValAssign::Full:
609    return Value;
610  default:
611    llvm_unreachable("Unhandled getLocInfo()");
612  }
613}
614
615SDValue SystemZTargetLowering::
616LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
617                     const SmallVectorImpl<ISD::InputArg> &Ins,
618                     SDLoc DL, SelectionDAG &DAG,
619                     SmallVectorImpl<SDValue> &InVals) const {
620  MachineFunction &MF = DAG.getMachineFunction();
621  MachineFrameInfo *MFI = MF.getFrameInfo();
622  MachineRegisterInfo &MRI = MF.getRegInfo();
623  SystemZMachineFunctionInfo *FuncInfo =
624    MF.getInfo<SystemZMachineFunctionInfo>();
625  const SystemZFrameLowering *TFL =
626    static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
627
628  // Assign locations to all of the incoming arguments.
629  SmallVector<CCValAssign, 16> ArgLocs;
630  CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
631  CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
632
633  unsigned NumFixedGPRs = 0;
634  unsigned NumFixedFPRs = 0;
635  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
636    SDValue ArgValue;
637    CCValAssign &VA = ArgLocs[I];
638    EVT LocVT = VA.getLocVT();
639    if (VA.isRegLoc()) {
640      // Arguments passed in registers
641      const TargetRegisterClass *RC;
642      switch (LocVT.getSimpleVT().SimpleTy) {
643      default:
644        // Integers smaller than i64 should be promoted to i64.
645        llvm_unreachable("Unexpected argument type");
646      case MVT::i32:
647        NumFixedGPRs += 1;
648        RC = &SystemZ::GR32BitRegClass;
649        break;
650      case MVT::i64:
651        NumFixedGPRs += 1;
652        RC = &SystemZ::GR64BitRegClass;
653        break;
654      case MVT::f32:
655        NumFixedFPRs += 1;
656        RC = &SystemZ::FP32BitRegClass;
657        break;
658      case MVT::f64:
659        NumFixedFPRs += 1;
660        RC = &SystemZ::FP64BitRegClass;
661        break;
662      }
663
664      unsigned VReg = MRI.createVirtualRegister(RC);
665      MRI.addLiveIn(VA.getLocReg(), VReg);
666      ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
667    } else {
668      assert(VA.isMemLoc() && "Argument not register or memory");
669
670      // Create the frame index object for this incoming parameter.
671      int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
672                                      VA.getLocMemOffset(), true);
673
674      // Create the SelectionDAG nodes corresponding to a load
675      // from this parameter.  Unpromoted ints and floats are
676      // passed as right-justified 8-byte values.
677      EVT PtrVT = getPointerTy();
678      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
679      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
680        FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
681      ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
682                             MachinePointerInfo::getFixedStack(FI),
683                             false, false, false, 0);
684    }
685
686    // Convert the value of the argument register into the value that's
687    // being passed.
688    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
689  }
690
691  if (IsVarArg) {
692    // Save the number of non-varargs registers for later use by va_start, etc.
693    FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
694    FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
695
696    // Likewise the address (in the form of a frame index) of where the
697    // first stack vararg would be.  The 1-byte size here is arbitrary.
698    int64_t StackSize = CCInfo.getNextStackOffset();
699    FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
700
701    // ...and a similar frame index for the caller-allocated save area
702    // that will be used to store the incoming registers.
703    int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
704    unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
705    FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
706
707    // Store the FPR varargs in the reserved frame slots.  (We store the
708    // GPRs as part of the prologue.)
709    if (NumFixedFPRs < SystemZ::NumArgFPRs) {
710      SDValue MemOps[SystemZ::NumArgFPRs];
711      for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
712        unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
713        int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
714        SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
715        unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
716                                     &SystemZ::FP64BitRegClass);
717        SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
718        MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
719                                 MachinePointerInfo::getFixedStack(FI),
720                                 false, false, 0);
721
722      }
723      // Join the stores, which are independent of one another.
724      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
725                          &MemOps[NumFixedFPRs],
726                          SystemZ::NumArgFPRs - NumFixedFPRs);
727    }
728  }
729
730  return Chain;
731}
732
733static bool canUseSiblingCall(CCState ArgCCInfo,
734                              SmallVectorImpl<CCValAssign> &ArgLocs) {
735  // Punt if there are any indirect or stack arguments, or if the call
736  // needs the call-saved argument register R6.
737  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
738    CCValAssign &VA = ArgLocs[I];
739    if (VA.getLocInfo() == CCValAssign::Indirect)
740      return false;
741    if (!VA.isRegLoc())
742      return false;
743    unsigned Reg = VA.getLocReg();
744    if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
745      return false;
746  }
747  return true;
748}
749
750SDValue
751SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
752                                 SmallVectorImpl<SDValue> &InVals) const {
753  SelectionDAG &DAG = CLI.DAG;
754  SDLoc &DL = CLI.DL;
755  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
756  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
757  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
758  SDValue Chain = CLI.Chain;
759  SDValue Callee = CLI.Callee;
760  bool &IsTailCall = CLI.IsTailCall;
761  CallingConv::ID CallConv = CLI.CallConv;
762  bool IsVarArg = CLI.IsVarArg;
763  MachineFunction &MF = DAG.getMachineFunction();
764  EVT PtrVT = getPointerTy();
765
766  // Analyze the operands of the call, assigning locations to each operand.
767  SmallVector<CCValAssign, 16> ArgLocs;
768  CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
769  ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
770
771  // We don't support GuaranteedTailCallOpt, only automatically-detected
772  // sibling calls.
773  if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
774    IsTailCall = false;
775
776  // Get a count of how many bytes are to be pushed on the stack.
777  unsigned NumBytes = ArgCCInfo.getNextStackOffset();
778
779  // Mark the start of the call.
780  if (!IsTailCall)
781    Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
782                                 DL);
783
784  // Copy argument values to their designated locations.
785  SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
786  SmallVector<SDValue, 8> MemOpChains;
787  SDValue StackPtr;
788  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
789    CCValAssign &VA = ArgLocs[I];
790    SDValue ArgValue = OutVals[I];
791
792    if (VA.getLocInfo() == CCValAssign::Indirect) {
793      // Store the argument in a stack slot and pass its address.
794      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
795      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
796      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
797                                         MachinePointerInfo::getFixedStack(FI),
798                                         false, false, 0));
799      ArgValue = SpillSlot;
800    } else
801      ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
802
803    if (VA.isRegLoc())
804      // Queue up the argument copies and emit them at the end.
805      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
806    else {
807      assert(VA.isMemLoc() && "Argument not register or memory");
808
809      // Work out the address of the stack slot.  Unpromoted ints and
810      // floats are passed as right-justified 8-byte values.
811      if (!StackPtr.getNode())
812        StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
813      unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
814      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
815        Offset += 4;
816      SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
817                                    DAG.getIntPtrConstant(Offset));
818
819      // Emit the store.
820      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
821                                         MachinePointerInfo(),
822                                         false, false, 0));
823    }
824  }
825
826  // Join the stores, which are independent of one another.
827  if (!MemOpChains.empty())
828    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
829                        &MemOpChains[0], MemOpChains.size());
830
831  // Accept direct calls by converting symbolic call addresses to the
832  // associated Target* opcodes.  Force %r1 to be used for indirect
833  // tail calls.
834  SDValue Glue;
835  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
836    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
837    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
838  } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
839    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
840    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
841  } else if (IsTailCall) {
842    Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
843    Glue = Chain.getValue(1);
844    Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
845  }
846
847  // Build a sequence of copy-to-reg nodes, chained and glued together.
848  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
849    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
850                             RegsToPass[I].second, Glue);
851    Glue = Chain.getValue(1);
852  }
853
854  // The first call operand is the chain and the second is the target address.
855  SmallVector<SDValue, 8> Ops;
856  Ops.push_back(Chain);
857  Ops.push_back(Callee);
858
859  // Add argument registers to the end of the list so that they are
860  // known live into the call.
861  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
862    Ops.push_back(DAG.getRegister(RegsToPass[I].first,
863                                  RegsToPass[I].second.getValueType()));
864
865  // Glue the call to the argument copies, if any.
866  if (Glue.getNode())
867    Ops.push_back(Glue);
868
869  // Emit the call.
870  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
871  if (IsTailCall)
872    return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, &Ops[0], Ops.size());
873  Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
874  Glue = Chain.getValue(1);
875
876  // Mark the end of the call, which is glued to the call itself.
877  Chain = DAG.getCALLSEQ_END(Chain,
878                             DAG.getConstant(NumBytes, PtrVT, true),
879                             DAG.getConstant(0, PtrVT, true),
880                             Glue, DL);
881  Glue = Chain.getValue(1);
882
883  // Assign locations to each value returned by this call.
884  SmallVector<CCValAssign, 16> RetLocs;
885  CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
886  RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
887
888  // Copy all of the result registers out of their specified physreg.
889  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
890    CCValAssign &VA = RetLocs[I];
891
892    // Copy the value out, gluing the copy to the end of the call sequence.
893    SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
894                                          VA.getLocVT(), Glue);
895    Chain = RetValue.getValue(1);
896    Glue = RetValue.getValue(2);
897
898    // Convert the value of the return register into the value that's
899    // being returned.
900    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
901  }
902
903  return Chain;
904}
905
906SDValue
907SystemZTargetLowering::LowerReturn(SDValue Chain,
908                                   CallingConv::ID CallConv, bool IsVarArg,
909                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
910                                   const SmallVectorImpl<SDValue> &OutVals,
911                                   SDLoc DL, SelectionDAG &DAG) const {
912  MachineFunction &MF = DAG.getMachineFunction();
913
914  // Assign locations to each returned value.
915  SmallVector<CCValAssign, 16> RetLocs;
916  CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
917  RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
918
919  // Quick exit for void returns
920  if (RetLocs.empty())
921    return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
922
923  // Copy the result values into the output registers.
924  SDValue Glue;
925  SmallVector<SDValue, 4> RetOps;
926  RetOps.push_back(Chain);
927  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
928    CCValAssign &VA = RetLocs[I];
929    SDValue RetValue = OutVals[I];
930
931    // Make the return register live on exit.
932    assert(VA.isRegLoc() && "Can only return in registers!");
933
934    // Promote the value as required.
935    RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
936
937    // Chain and glue the copies together.
938    unsigned Reg = VA.getLocReg();
939    Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
940    Glue = Chain.getValue(1);
941    RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
942  }
943
944  // Update chain and glue.
945  RetOps[0] = Chain;
946  if (Glue.getNode())
947    RetOps.push_back(Glue);
948
949  return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other,
950                     RetOps.data(), RetOps.size());
951}
952
953// CC is a comparison that will be implemented using an integer or
954// floating-point comparison.  Return the condition code mask for
955// a branch on true.  In the integer case, CCMASK_CMP_UO is set for
956// unsigned comparisons and clear for signed ones.  In the floating-point
957// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
958static unsigned CCMaskForCondCode(ISD::CondCode CC) {
959#define CONV(X) \
960  case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
961  case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
962  case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
963
964  switch (CC) {
965  default:
966    llvm_unreachable("Invalid integer condition!");
967
968  CONV(EQ);
969  CONV(NE);
970  CONV(GT);
971  CONV(GE);
972  CONV(LT);
973  CONV(LE);
974
975  case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
976  case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
977  }
978#undef CONV
979}
980
981// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
982// can be converted to a comparison against zero, adjust the operands
983// as necessary.
984static void adjustZeroCmp(SelectionDAG &DAG, bool &IsUnsigned,
985                          SDValue &CmpOp0, SDValue &CmpOp1,
986                          unsigned &CCMask) {
987  if (IsUnsigned)
988    return;
989
990  ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(CmpOp1.getNode());
991  if (!ConstOp1)
992    return;
993
994  int64_t Value = ConstOp1->getSExtValue();
995  if ((Value == -1 && CCMask == SystemZ::CCMASK_CMP_GT) ||
996      (Value == -1 && CCMask == SystemZ::CCMASK_CMP_LE) ||
997      (Value == 1 && CCMask == SystemZ::CCMASK_CMP_LT) ||
998      (Value == 1 && CCMask == SystemZ::CCMASK_CMP_GE)) {
999    CCMask ^= SystemZ::CCMASK_CMP_EQ;
1000    CmpOp1 = DAG.getConstant(0, CmpOp1.getValueType());
1001  }
1002}
1003
1004// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
1005// is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary.
1006static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned,
1007                             SDValue &CmpOp0, SDValue &CmpOp1,
1008                             unsigned &CCMask) {
1009  // For us to make any changes, it must a comparison between a single-use
1010  // load and a constant.
1011  if (!CmpOp0.hasOneUse() ||
1012      CmpOp0.getOpcode() != ISD::LOAD ||
1013      CmpOp1.getOpcode() != ISD::Constant)
1014    return;
1015
1016  // We must have an 8- or 16-bit load.
1017  LoadSDNode *Load = cast<LoadSDNode>(CmpOp0);
1018  unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1019  if (NumBits != 8 && NumBits != 16)
1020    return;
1021
1022  // The load must be an extending one and the constant must be within the
1023  // range of the unextended value.
1024  ConstantSDNode *Constant = cast<ConstantSDNode>(CmpOp1);
1025  uint64_t Value = Constant->getZExtValue();
1026  uint64_t Mask = (1 << NumBits) - 1;
1027  if (Load->getExtensionType() == ISD::SEXTLOAD) {
1028    int64_t SignedValue = Constant->getSExtValue();
1029    if (uint64_t(SignedValue) + (1ULL << (NumBits - 1)) > Mask)
1030      return;
1031    // Unsigned comparison between two sign-extended values is equivalent
1032    // to unsigned comparison between two zero-extended values.
1033    if (IsUnsigned)
1034      Value &= Mask;
1035    else if (CCMask == SystemZ::CCMASK_CMP_EQ ||
1036             CCMask == SystemZ::CCMASK_CMP_NE)
1037      // Any choice of IsUnsigned is OK for equality comparisons.
1038      // We could use either CHHSI or CLHHSI for 16-bit comparisons,
1039      // but since we use CLHHSI for zero extensions, it seems better
1040      // to be consistent and do the same here.
1041      Value &= Mask, IsUnsigned = true;
1042    else if (NumBits == 8) {
1043      // Try to treat the comparison as unsigned, so that we can use CLI.
1044      // Adjust CCMask and Value as necessary.
1045      if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT)
1046        // Test whether the high bit of the byte is set.
1047        Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true;
1048      else if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_GE)
1049        // Test whether the high bit of the byte is clear.
1050        Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true;
1051      else
1052        // No instruction exists for this combination.
1053        return;
1054    }
1055  } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1056    if (Value > Mask)
1057      return;
1058    // Signed comparison between two zero-extended values is equivalent
1059    // to unsigned comparison.
1060    IsUnsigned = true;
1061  } else
1062    return;
1063
1064  // Make sure that the first operand is an i32 of the right extension type.
1065  ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD;
1066  if (CmpOp0.getValueType() != MVT::i32 ||
1067      Load->getExtensionType() != ExtType)
1068    CmpOp0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1069                            Load->getChain(), Load->getBasePtr(),
1070                            Load->getPointerInfo(), Load->getMemoryVT(),
1071                            Load->isVolatile(), Load->isNonTemporal(),
1072                            Load->getAlignment());
1073
1074  // Make sure that the second operand is an i32 with the right value.
1075  if (CmpOp1.getValueType() != MVT::i32 ||
1076      Value != Constant->getZExtValue())
1077    CmpOp1 = DAG.getConstant(Value, MVT::i32);
1078}
1079
1080// Return true if Op is either an unextended load, or a load suitable
1081// for integer register-memory comparisons of type ICmpType.
1082static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1083  LoadSDNode *Load = dyn_cast<LoadSDNode>(Op.getNode());
1084  if (Load) {
1085    // There are no instructions to compare a register with a memory byte.
1086    if (Load->getMemoryVT() == MVT::i8)
1087      return false;
1088    // Otherwise decide on extension type.
1089    switch (Load->getExtensionType()) {
1090    case ISD::NON_EXTLOAD:
1091      return true;
1092    case ISD::SEXTLOAD:
1093      return ICmpType != SystemZICMP::UnsignedOnly;
1094    case ISD::ZEXTLOAD:
1095      return ICmpType != SystemZICMP::SignedOnly;
1096    default:
1097      break;
1098    }
1099  }
1100  return false;
1101}
1102
1103// Return true if it is better to swap comparison operands Op0 and Op1.
1104// ICmpType is the type of an integer comparison.
1105static bool shouldSwapCmpOperands(SDValue Op0, SDValue Op1,
1106                                  unsigned ICmpType) {
1107  // Leave f128 comparisons alone, since they have no memory forms.
1108  if (Op0.getValueType() == MVT::f128)
1109    return false;
1110
1111  // Always keep a floating-point constant second, since comparisons with
1112  // zero can use LOAD TEST and comparisons with other constants make a
1113  // natural memory operand.
1114  if (isa<ConstantFPSDNode>(Op1))
1115    return false;
1116
1117  // Never swap comparisons with zero since there are many ways to optimize
1118  // those later.
1119  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
1120  if (COp1 && COp1->getZExtValue() == 0)
1121    return false;
1122
1123  // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1124  // In that case we generally prefer the memory to be second.
1125  if ((isNaturalMemoryOperand(Op0, ICmpType) && Op0.hasOneUse()) &&
1126      !(isNaturalMemoryOperand(Op1, ICmpType) && Op1.hasOneUse())) {
1127    // The only exceptions are when the second operand is a constant and
1128    // we can use things like CHHSI.
1129    if (!COp1)
1130      return true;
1131    // The unsigned memory-immediate instructions can handle 16-bit
1132    // unsigned integers.
1133    if (ICmpType != SystemZICMP::SignedOnly &&
1134        isUInt<16>(COp1->getZExtValue()))
1135      return false;
1136    // The signed memory-immediate instructions can handle 16-bit
1137    // signed integers.
1138    if (ICmpType != SystemZICMP::UnsignedOnly &&
1139        isInt<16>(COp1->getSExtValue()))
1140      return false;
1141    return true;
1142  }
1143  return false;
1144}
1145
1146// Return true if shift operation N has an in-range constant shift value.
1147// Store it in ShiftVal if so.
1148static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1149  ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1150  if (!Shift)
1151    return false;
1152
1153  uint64_t Amount = Shift->getZExtValue();
1154  if (Amount >= N.getValueType().getSizeInBits())
1155    return false;
1156
1157  ShiftVal = Amount;
1158  return true;
1159}
1160
1161// Check whether an AND with Mask is suitable for a TEST UNDER MASK
1162// instruction and whether the CC value is descriptive enough to handle
1163// a comparison of type Opcode between the AND result and CmpVal.
1164// CCMask says which comparison result is being tested and BitSize is
1165// the number of bits in the operands.  If TEST UNDER MASK can be used,
1166// return the corresponding CC mask, otherwise return 0.
1167static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1168                                     uint64_t Mask, uint64_t CmpVal,
1169                                     unsigned ICmpType) {
1170  assert(Mask != 0 && "ANDs with zero should have been removed by now");
1171
1172  // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1173  if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1174      !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1175    return 0;
1176
1177  // Work out the masks for the lowest and highest bits.
1178  unsigned HighShift = 63 - countLeadingZeros(Mask);
1179  uint64_t High = uint64_t(1) << HighShift;
1180  uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1181
1182  // Signed ordered comparisons are effectively unsigned if the sign
1183  // bit is dropped.
1184  bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
1185
1186  // Check for equality comparisons with 0, or the equivalent.
1187  if (CmpVal == 0) {
1188    if (CCMask == SystemZ::CCMASK_CMP_EQ)
1189      return SystemZ::CCMASK_TM_ALL_0;
1190    if (CCMask == SystemZ::CCMASK_CMP_NE)
1191      return SystemZ::CCMASK_TM_SOME_1;
1192  }
1193  if (EffectivelyUnsigned && CmpVal <= Low) {
1194    if (CCMask == SystemZ::CCMASK_CMP_LT)
1195      return SystemZ::CCMASK_TM_ALL_0;
1196    if (CCMask == SystemZ::CCMASK_CMP_GE)
1197      return SystemZ::CCMASK_TM_SOME_1;
1198  }
1199  if (EffectivelyUnsigned && CmpVal < Low) {
1200    if (CCMask == SystemZ::CCMASK_CMP_LE)
1201      return SystemZ::CCMASK_TM_ALL_0;
1202    if (CCMask == SystemZ::CCMASK_CMP_GT)
1203      return SystemZ::CCMASK_TM_SOME_1;
1204  }
1205
1206  // Check for equality comparisons with the mask, or the equivalent.
1207  if (CmpVal == Mask) {
1208    if (CCMask == SystemZ::CCMASK_CMP_EQ)
1209      return SystemZ::CCMASK_TM_ALL_1;
1210    if (CCMask == SystemZ::CCMASK_CMP_NE)
1211      return SystemZ::CCMASK_TM_SOME_0;
1212  }
1213  if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1214    if (CCMask == SystemZ::CCMASK_CMP_GT)
1215      return SystemZ::CCMASK_TM_ALL_1;
1216    if (CCMask == SystemZ::CCMASK_CMP_LE)
1217      return SystemZ::CCMASK_TM_SOME_0;
1218  }
1219  if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1220    if (CCMask == SystemZ::CCMASK_CMP_GE)
1221      return SystemZ::CCMASK_TM_ALL_1;
1222    if (CCMask == SystemZ::CCMASK_CMP_LT)
1223      return SystemZ::CCMASK_TM_SOME_0;
1224  }
1225
1226  // Check for ordered comparisons with the top bit.
1227  if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1228    if (CCMask == SystemZ::CCMASK_CMP_LE)
1229      return SystemZ::CCMASK_TM_MSB_0;
1230    if (CCMask == SystemZ::CCMASK_CMP_GT)
1231      return SystemZ::CCMASK_TM_MSB_1;
1232  }
1233  if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1234    if (CCMask == SystemZ::CCMASK_CMP_LT)
1235      return SystemZ::CCMASK_TM_MSB_0;
1236    if (CCMask == SystemZ::CCMASK_CMP_GE)
1237      return SystemZ::CCMASK_TM_MSB_1;
1238  }
1239
1240  // If there are just two bits, we can do equality checks for Low and High
1241  // as well.
1242  if (Mask == Low + High) {
1243    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1244      return SystemZ::CCMASK_TM_MIXED_MSB_0;
1245    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1246      return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1247    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1248      return SystemZ::CCMASK_TM_MIXED_MSB_1;
1249    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1250      return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1251  }
1252
1253  // Looks like we've exhausted our options.
1254  return 0;
1255}
1256
1257// See whether the comparison (Opcode CmpOp0, CmpOp1, ICmpType) can be
1258// implemented as a TEST UNDER MASK instruction when the condition being
1259// tested is as described by CCValid and CCMask.  Update the arguments
1260// with the TM version if so.
1261static void adjustForTestUnderMask(SelectionDAG &DAG, unsigned &Opcode,
1262                                   SDValue &CmpOp0, SDValue &CmpOp1,
1263                                   unsigned &CCValid, unsigned &CCMask,
1264                                   unsigned &ICmpType) {
1265  // Check that we have a comparison with a constant.
1266  ConstantSDNode *ConstCmpOp1 = dyn_cast<ConstantSDNode>(CmpOp1);
1267  if (!ConstCmpOp1)
1268    return;
1269  uint64_t CmpVal = ConstCmpOp1->getZExtValue();
1270
1271  // Check whether the nonconstant input is an AND with a constant mask.
1272  if (CmpOp0.getOpcode() != ISD::AND)
1273    return;
1274  SDValue AndOp0 = CmpOp0.getOperand(0);
1275  SDValue AndOp1 = CmpOp0.getOperand(1);
1276  ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(AndOp1.getNode());
1277  if (!Mask)
1278    return;
1279  uint64_t MaskVal = Mask->getZExtValue();
1280
1281  // Check whether the combination of mask, comparison value and comparison
1282  // type are suitable.
1283  unsigned BitSize = CmpOp0.getValueType().getSizeInBits();
1284  unsigned NewCCMask, ShiftVal;
1285  if (ICmpType != SystemZICMP::SignedOnly &&
1286      AndOp0.getOpcode() == ISD::SHL &&
1287      isSimpleShift(AndOp0, ShiftVal) &&
1288      (NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal >> ShiftVal,
1289                                        CmpVal >> ShiftVal,
1290                                        SystemZICMP::Any))) {
1291    AndOp0 = AndOp0.getOperand(0);
1292    AndOp1 = DAG.getConstant(MaskVal >> ShiftVal, AndOp0.getValueType());
1293  } else if (ICmpType != SystemZICMP::SignedOnly &&
1294             AndOp0.getOpcode() == ISD::SRL &&
1295             isSimpleShift(AndOp0, ShiftVal) &&
1296             (NewCCMask = getTestUnderMaskCond(BitSize, CCMask,
1297                                               MaskVal << ShiftVal,
1298                                               CmpVal << ShiftVal,
1299                                               SystemZICMP::UnsignedOnly))) {
1300    AndOp0 = AndOp0.getOperand(0);
1301    AndOp1 = DAG.getConstant(MaskVal << ShiftVal, AndOp0.getValueType());
1302  } else {
1303    NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal, CmpVal,
1304                                     ICmpType);
1305    if (!NewCCMask)
1306      return;
1307  }
1308
1309  // Go ahead and make the change.
1310  Opcode = SystemZISD::TM;
1311  CmpOp0 = AndOp0;
1312  CmpOp1 = AndOp1;
1313  ICmpType = (bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
1314              bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
1315  CCValid = SystemZ::CCMASK_TM;
1316  CCMask = NewCCMask;
1317}
1318
1319// Return a target node that compares CmpOp0 with CmpOp1 and stores a
1320// 2-bit result in CC.  Set CCValid to the CCMASK_* of all possible
1321// 2-bit results and CCMask to the subset of those results that are
1322// associated with Cond.
1323static SDValue emitCmp(const SystemZTargetMachine &TM, SelectionDAG &DAG,
1324                       SDLoc DL, SDValue CmpOp0, SDValue CmpOp1,
1325                       ISD::CondCode Cond, unsigned &CCValid,
1326                       unsigned &CCMask) {
1327  bool IsUnsigned = false;
1328  CCMask = CCMaskForCondCode(Cond);
1329  unsigned Opcode, ICmpType = 0;
1330  if (CmpOp0.getValueType().isFloatingPoint()) {
1331    CCValid = SystemZ::CCMASK_FCMP;
1332    Opcode = SystemZISD::FCMP;
1333  } else {
1334    IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO;
1335    CCValid = SystemZ::CCMASK_ICMP;
1336    CCMask &= CCValid;
1337    adjustZeroCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
1338    adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
1339    Opcode = SystemZISD::ICMP;
1340    // Choose the type of comparison.  Equality and inequality tests can
1341    // use either signed or unsigned comparisons.  The choice also doesn't
1342    // matter if both sign bits are known to be clear.  In those cases we
1343    // want to give the main isel code the freedom to choose whichever
1344    // form fits best.
1345    if (CCMask == SystemZ::CCMASK_CMP_EQ ||
1346        CCMask == SystemZ::CCMASK_CMP_NE ||
1347        (DAG.SignBitIsZero(CmpOp0) && DAG.SignBitIsZero(CmpOp1)))
1348      ICmpType = SystemZICMP::Any;
1349    else if (IsUnsigned)
1350      ICmpType = SystemZICMP::UnsignedOnly;
1351    else
1352      ICmpType = SystemZICMP::SignedOnly;
1353  }
1354
1355  if (shouldSwapCmpOperands(CmpOp0, CmpOp1, ICmpType)) {
1356    std::swap(CmpOp0, CmpOp1);
1357    CCMask = ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1358              (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1359              (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1360              (CCMask & SystemZ::CCMASK_CMP_UO));
1361  }
1362
1363  adjustForTestUnderMask(DAG, Opcode, CmpOp0, CmpOp1, CCValid, CCMask,
1364                         ICmpType);
1365  if (Opcode == SystemZISD::ICMP || Opcode == SystemZISD::TM)
1366    return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1,
1367                       DAG.getConstant(ICmpType, MVT::i32));
1368  return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1);
1369}
1370
1371// Implement a 32-bit *MUL_LOHI operation by extending both operands to
1372// 64 bits.  Extend is the extension type to use.  Store the high part
1373// in Hi and the low part in Lo.
1374static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
1375                            unsigned Extend, SDValue Op0, SDValue Op1,
1376                            SDValue &Hi, SDValue &Lo) {
1377  Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
1378  Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
1379  SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
1380  Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
1381  Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
1382  Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
1383}
1384
1385// Lower a binary operation that produces two VT results, one in each
1386// half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
1387// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
1388// on the extended Op0 and (unextended) Op1.  Store the even register result
1389// in Even and the odd register result in Odd.
1390static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
1391                             unsigned Extend, unsigned Opcode,
1392                             SDValue Op0, SDValue Op1,
1393                             SDValue &Even, SDValue &Odd) {
1394  SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
1395  SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
1396                               SDValue(In128, 0), Op1);
1397  bool Is32Bit = is32Bit(VT);
1398  Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
1399  Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
1400}
1401
1402SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1403  SDValue Chain    = Op.getOperand(0);
1404  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1405  SDValue CmpOp0   = Op.getOperand(2);
1406  SDValue CmpOp1   = Op.getOperand(3);
1407  SDValue Dest     = Op.getOperand(4);
1408  SDLoc DL(Op);
1409
1410  unsigned CCValid, CCMask;
1411  SDValue Flags = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1412  return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
1413                     Chain, DAG.getConstant(CCValid, MVT::i32),
1414                     DAG.getConstant(CCMask, MVT::i32), Dest, Flags);
1415}
1416
1417SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
1418                                              SelectionDAG &DAG) const {
1419  SDValue CmpOp0   = Op.getOperand(0);
1420  SDValue CmpOp1   = Op.getOperand(1);
1421  SDValue TrueOp   = Op.getOperand(2);
1422  SDValue FalseOp  = Op.getOperand(3);
1423  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1424  SDLoc DL(Op);
1425
1426  unsigned CCValid, CCMask;
1427  SDValue Flags = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1428
1429  SmallVector<SDValue, 5> Ops;
1430  Ops.push_back(TrueOp);
1431  Ops.push_back(FalseOp);
1432  Ops.push_back(DAG.getConstant(CCValid, MVT::i32));
1433  Ops.push_back(DAG.getConstant(CCMask, MVT::i32));
1434  Ops.push_back(Flags);
1435
1436  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1437  return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size());
1438}
1439
1440SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
1441                                                  SelectionDAG &DAG) const {
1442  SDLoc DL(Node);
1443  const GlobalValue *GV = Node->getGlobal();
1444  int64_t Offset = Node->getOffset();
1445  EVT PtrVT = getPointerTy();
1446  Reloc::Model RM = TM.getRelocationModel();
1447  CodeModel::Model CM = TM.getCodeModel();
1448
1449  SDValue Result;
1450  if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
1451    // Assign anchors at 1<<12 byte boundaries.
1452    uint64_t Anchor = Offset & ~uint64_t(0xfff);
1453    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
1454    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1455
1456    // The offset can be folded into the address if it is aligned to a halfword.
1457    Offset -= Anchor;
1458    if (Offset != 0 && (Offset & 1) == 0) {
1459      SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
1460      Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
1461      Offset = 0;
1462    }
1463  } else {
1464    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
1465    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1466    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
1467                         MachinePointerInfo::getGOT(), false, false, false, 0);
1468  }
1469
1470  // If there was a non-zero offset that we didn't fold, create an explicit
1471  // addition for it.
1472  if (Offset != 0)
1473    Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
1474                         DAG.getConstant(Offset, PtrVT));
1475
1476  return Result;
1477}
1478
1479SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
1480						     SelectionDAG &DAG) const {
1481  SDLoc DL(Node);
1482  const GlobalValue *GV = Node->getGlobal();
1483  EVT PtrVT = getPointerTy();
1484  TLSModel::Model model = TM.getTLSModel(GV);
1485
1486  if (model != TLSModel::LocalExec)
1487    llvm_unreachable("only local-exec TLS mode supported");
1488
1489  // The high part of the thread pointer is in access register 0.
1490  SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1491                             DAG.getConstant(0, MVT::i32));
1492  TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
1493
1494  // The low part of the thread pointer is in access register 1.
1495  SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1496                             DAG.getConstant(1, MVT::i32));
1497  TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
1498
1499  // Merge them into a single 64-bit address.
1500  SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
1501				    DAG.getConstant(32, PtrVT));
1502  SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
1503
1504  // Get the offset of GA from the thread pointer.
1505  SystemZConstantPoolValue *CPV =
1506    SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
1507
1508  // Force the offset into the constant pool and load it from there.
1509  SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
1510  SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
1511			       CPAddr, MachinePointerInfo::getConstantPool(),
1512			       false, false, false, 0);
1513
1514  // Add the base and offset together.
1515  return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
1516}
1517
1518SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
1519                                                 SelectionDAG &DAG) const {
1520  SDLoc DL(Node);
1521  const BlockAddress *BA = Node->getBlockAddress();
1522  int64_t Offset = Node->getOffset();
1523  EVT PtrVT = getPointerTy();
1524
1525  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
1526  Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1527  return Result;
1528}
1529
1530SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
1531                                              SelectionDAG &DAG) const {
1532  SDLoc DL(JT);
1533  EVT PtrVT = getPointerTy();
1534  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1535
1536  // Use LARL to load the address of the table.
1537  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1538}
1539
1540SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
1541                                                 SelectionDAG &DAG) const {
1542  SDLoc DL(CP);
1543  EVT PtrVT = getPointerTy();
1544
1545  SDValue Result;
1546  if (CP->isMachineConstantPoolEntry())
1547    Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1548				       CP->getAlignment());
1549  else
1550    Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1551				       CP->getAlignment(), CP->getOffset());
1552
1553  // Use LARL to load the address of the constant pool entry.
1554  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1555}
1556
1557SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
1558                                            SelectionDAG &DAG) const {
1559  SDLoc DL(Op);
1560  SDValue In = Op.getOperand(0);
1561  EVT InVT = In.getValueType();
1562  EVT ResVT = Op.getValueType();
1563
1564  SDValue Shift32 = DAG.getConstant(32, MVT::i64);
1565  if (InVT == MVT::i32 && ResVT == MVT::f32) {
1566    SDValue In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
1567    SDValue Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, Shift32);
1568    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Shift);
1569    return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
1570                                      DL, MVT::f32, Out64);
1571  }
1572  if (InVT == MVT::f32 && ResVT == MVT::i32) {
1573    SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
1574    SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1575                                             MVT::f64, SDValue(U64, 0), In);
1576    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
1577    SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, Shift32);
1578    SDValue Out = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
1579    return Out;
1580  }
1581  llvm_unreachable("Unexpected bitcast combination");
1582}
1583
1584SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
1585                                            SelectionDAG &DAG) const {
1586  MachineFunction &MF = DAG.getMachineFunction();
1587  SystemZMachineFunctionInfo *FuncInfo =
1588    MF.getInfo<SystemZMachineFunctionInfo>();
1589  EVT PtrVT = getPointerTy();
1590
1591  SDValue Chain   = Op.getOperand(0);
1592  SDValue Addr    = Op.getOperand(1);
1593  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1594  SDLoc DL(Op);
1595
1596  // The initial values of each field.
1597  const unsigned NumFields = 4;
1598  SDValue Fields[NumFields] = {
1599    DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
1600    DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
1601    DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
1602    DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
1603  };
1604
1605  // Store each field into its respective slot.
1606  SDValue MemOps[NumFields];
1607  unsigned Offset = 0;
1608  for (unsigned I = 0; I < NumFields; ++I) {
1609    SDValue FieldAddr = Addr;
1610    if (Offset != 0)
1611      FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
1612                              DAG.getIntPtrConstant(Offset));
1613    MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
1614                             MachinePointerInfo(SV, Offset),
1615                             false, false, 0);
1616    Offset += 8;
1617  }
1618  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields);
1619}
1620
1621SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
1622                                           SelectionDAG &DAG) const {
1623  SDValue Chain      = Op.getOperand(0);
1624  SDValue DstPtr     = Op.getOperand(1);
1625  SDValue SrcPtr     = Op.getOperand(2);
1626  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1627  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1628  SDLoc DL(Op);
1629
1630  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
1631                       /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
1632                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
1633}
1634
1635SDValue SystemZTargetLowering::
1636lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
1637  SDValue Chain = Op.getOperand(0);
1638  SDValue Size  = Op.getOperand(1);
1639  SDLoc DL(Op);
1640
1641  unsigned SPReg = getStackPointerRegisterToSaveRestore();
1642
1643  // Get a reference to the stack pointer.
1644  SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
1645
1646  // Get the new stack pointer value.
1647  SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
1648
1649  // Copy the new stack pointer back.
1650  Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
1651
1652  // The allocated data lives above the 160 bytes allocated for the standard
1653  // frame, plus any outgoing stack arguments.  We don't know how much that
1654  // amounts to yet, so emit a special ADJDYNALLOC placeholder.
1655  SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
1656  SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
1657
1658  SDValue Ops[2] = { Result, Chain };
1659  return DAG.getMergeValues(Ops, 2, DL);
1660}
1661
1662SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
1663                                              SelectionDAG &DAG) const {
1664  EVT VT = Op.getValueType();
1665  SDLoc DL(Op);
1666  SDValue Ops[2];
1667  if (is32Bit(VT))
1668    // Just do a normal 64-bit multiplication and extract the results.
1669    // We define this so that it can be used for constant division.
1670    lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
1671                    Op.getOperand(1), Ops[1], Ops[0]);
1672  else {
1673    // Do a full 128-bit multiplication based on UMUL_LOHI64:
1674    //
1675    //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
1676    //
1677    // but using the fact that the upper halves are either all zeros
1678    // or all ones:
1679    //
1680    //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
1681    //
1682    // and grouping the right terms together since they are quicker than the
1683    // multiplication:
1684    //
1685    //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
1686    SDValue C63 = DAG.getConstant(63, MVT::i64);
1687    SDValue LL = Op.getOperand(0);
1688    SDValue RL = Op.getOperand(1);
1689    SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
1690    SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
1691    // UMUL_LOHI64 returns the low result in the odd register and the high
1692    // result in the even register.  SMUL_LOHI is defined to return the
1693    // low half first, so the results are in reverse order.
1694    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
1695                     LL, RL, Ops[1], Ops[0]);
1696    SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
1697    SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
1698    SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
1699    Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
1700  }
1701  return DAG.getMergeValues(Ops, 2, DL);
1702}
1703
1704SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
1705                                              SelectionDAG &DAG) const {
1706  EVT VT = Op.getValueType();
1707  SDLoc DL(Op);
1708  SDValue Ops[2];
1709  if (is32Bit(VT))
1710    // Just do a normal 64-bit multiplication and extract the results.
1711    // We define this so that it can be used for constant division.
1712    lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
1713                    Op.getOperand(1), Ops[1], Ops[0]);
1714  else
1715    // UMUL_LOHI64 returns the low result in the odd register and the high
1716    // result in the even register.  UMUL_LOHI is defined to return the
1717    // low half first, so the results are in reverse order.
1718    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
1719                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1720  return DAG.getMergeValues(Ops, 2, DL);
1721}
1722
1723SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
1724                                            SelectionDAG &DAG) const {
1725  SDValue Op0 = Op.getOperand(0);
1726  SDValue Op1 = Op.getOperand(1);
1727  EVT VT = Op.getValueType();
1728  SDLoc DL(Op);
1729  unsigned Opcode;
1730
1731  // We use DSGF for 32-bit division.
1732  if (is32Bit(VT)) {
1733    Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
1734    Opcode = SystemZISD::SDIVREM32;
1735  } else if (DAG.ComputeNumSignBits(Op1) > 32) {
1736    Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
1737    Opcode = SystemZISD::SDIVREM32;
1738  } else
1739    Opcode = SystemZISD::SDIVREM64;
1740
1741  // DSG(F) takes a 64-bit dividend, so the even register in the GR128
1742  // input is "don't care".  The instruction returns the remainder in
1743  // the even register and the quotient in the odd register.
1744  SDValue Ops[2];
1745  lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
1746                   Op0, Op1, Ops[1], Ops[0]);
1747  return DAG.getMergeValues(Ops, 2, DL);
1748}
1749
1750SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
1751                                            SelectionDAG &DAG) const {
1752  EVT VT = Op.getValueType();
1753  SDLoc DL(Op);
1754
1755  // DL(G) uses a double-width dividend, so we need to clear the even
1756  // register in the GR128 input.  The instruction returns the remainder
1757  // in the even register and the quotient in the odd register.
1758  SDValue Ops[2];
1759  if (is32Bit(VT))
1760    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
1761                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1762  else
1763    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
1764                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1765  return DAG.getMergeValues(Ops, 2, DL);
1766}
1767
1768SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
1769  assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
1770
1771  // Get the known-zero masks for each operand.
1772  SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
1773  APInt KnownZero[2], KnownOne[2];
1774  DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]);
1775  DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]);
1776
1777  // See if the upper 32 bits of one operand and the lower 32 bits of the
1778  // other are known zero.  They are the low and high operands respectively.
1779  uint64_t Masks[] = { KnownZero[0].getZExtValue(),
1780                       KnownZero[1].getZExtValue() };
1781  unsigned High, Low;
1782  if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
1783    High = 1, Low = 0;
1784  else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
1785    High = 0, Low = 1;
1786  else
1787    return Op;
1788
1789  SDValue LowOp = Ops[Low];
1790  SDValue HighOp = Ops[High];
1791
1792  // If the high part is a constant, we're better off using IILH.
1793  if (HighOp.getOpcode() == ISD::Constant)
1794    return Op;
1795
1796  // If the low part is a constant that is outside the range of LHI,
1797  // then we're better off using IILF.
1798  if (LowOp.getOpcode() == ISD::Constant) {
1799    int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
1800    if (!isInt<16>(Value))
1801      return Op;
1802  }
1803
1804  // Check whether the high part is an AND that doesn't change the
1805  // high 32 bits and just masks out low bits.  We can skip it if so.
1806  if (HighOp.getOpcode() == ISD::AND &&
1807      HighOp.getOperand(1).getOpcode() == ISD::Constant) {
1808    ConstantSDNode *MaskNode = cast<ConstantSDNode>(HighOp.getOperand(1));
1809    uint64_t Mask = MaskNode->getZExtValue() | Masks[High];
1810    if ((Mask >> 32) == 0xffffffff)
1811      HighOp = HighOp.getOperand(0);
1812  }
1813
1814  // Take advantage of the fact that all GR32 operations only change the
1815  // low 32 bits by truncating Low to an i32 and inserting it directly
1816  // using a subreg.  The interesting cases are those where the truncation
1817  // can be folded.
1818  SDLoc DL(Op);
1819  SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
1820  return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
1821                                   MVT::i64, HighOp, Low32);
1822}
1823
1824// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
1825// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
1826SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
1827                                                SelectionDAG &DAG,
1828                                                unsigned Opcode) const {
1829  AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
1830
1831  // 32-bit operations need no code outside the main loop.
1832  EVT NarrowVT = Node->getMemoryVT();
1833  EVT WideVT = MVT::i32;
1834  if (NarrowVT == WideVT)
1835    return Op;
1836
1837  int64_t BitSize = NarrowVT.getSizeInBits();
1838  SDValue ChainIn = Node->getChain();
1839  SDValue Addr = Node->getBasePtr();
1840  SDValue Src2 = Node->getVal();
1841  MachineMemOperand *MMO = Node->getMemOperand();
1842  SDLoc DL(Node);
1843  EVT PtrVT = Addr.getValueType();
1844
1845  // Convert atomic subtracts of constants into additions.
1846  if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
1847    if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) {
1848      Opcode = SystemZISD::ATOMIC_LOADW_ADD;
1849      Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
1850    }
1851
1852  // Get the address of the containing word.
1853  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
1854                                    DAG.getConstant(-4, PtrVT));
1855
1856  // Get the number of bits that the word must be rotated left in order
1857  // to bring the field to the top bits of a GR32.
1858  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
1859                                 DAG.getConstant(3, PtrVT));
1860  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
1861
1862  // Get the complementing shift amount, for rotating a field in the top
1863  // bits back to its proper position.
1864  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
1865                                    DAG.getConstant(0, WideVT), BitShift);
1866
1867  // Extend the source operand to 32 bits and prepare it for the inner loop.
1868  // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
1869  // operations require the source to be shifted in advance.  (This shift
1870  // can be folded if the source is constant.)  For AND and NAND, the lower
1871  // bits must be set, while for other opcodes they should be left clear.
1872  if (Opcode != SystemZISD::ATOMIC_SWAPW)
1873    Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
1874                       DAG.getConstant(32 - BitSize, WideVT));
1875  if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
1876      Opcode == SystemZISD::ATOMIC_LOADW_NAND)
1877    Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
1878                       DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
1879
1880  // Construct the ATOMIC_LOADW_* node.
1881  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
1882  SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
1883                    DAG.getConstant(BitSize, WideVT) };
1884  SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
1885                                             array_lengthof(Ops),
1886                                             NarrowVT, MMO);
1887
1888  // Rotate the result of the final CS so that the field is in the lower
1889  // bits of a GR32, then truncate it.
1890  SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
1891                                    DAG.getConstant(BitSize, WideVT));
1892  SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
1893
1894  SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
1895  return DAG.getMergeValues(RetOps, 2, DL);
1896}
1897
1898// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
1899// into a fullword ATOMIC_CMP_SWAPW operation.
1900SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
1901                                                    SelectionDAG &DAG) const {
1902  AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
1903
1904  // We have native support for 32-bit compare and swap.
1905  EVT NarrowVT = Node->getMemoryVT();
1906  EVT WideVT = MVT::i32;
1907  if (NarrowVT == WideVT)
1908    return Op;
1909
1910  int64_t BitSize = NarrowVT.getSizeInBits();
1911  SDValue ChainIn = Node->getOperand(0);
1912  SDValue Addr = Node->getOperand(1);
1913  SDValue CmpVal = Node->getOperand(2);
1914  SDValue SwapVal = Node->getOperand(3);
1915  MachineMemOperand *MMO = Node->getMemOperand();
1916  SDLoc DL(Node);
1917  EVT PtrVT = Addr.getValueType();
1918
1919  // Get the address of the containing word.
1920  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
1921                                    DAG.getConstant(-4, PtrVT));
1922
1923  // Get the number of bits that the word must be rotated left in order
1924  // to bring the field to the top bits of a GR32.
1925  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
1926                                 DAG.getConstant(3, PtrVT));
1927  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
1928
1929  // Get the complementing shift amount, for rotating a field in the top
1930  // bits back to its proper position.
1931  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
1932                                    DAG.getConstant(0, WideVT), BitShift);
1933
1934  // Construct the ATOMIC_CMP_SWAPW node.
1935  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
1936  SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
1937                    NegBitShift, DAG.getConstant(BitSize, WideVT) };
1938  SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
1939                                             VTList, Ops, array_lengthof(Ops),
1940                                             NarrowVT, MMO);
1941  return AtomicOp;
1942}
1943
1944SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
1945                                              SelectionDAG &DAG) const {
1946  MachineFunction &MF = DAG.getMachineFunction();
1947  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
1948  return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
1949                            SystemZ::R15D, Op.getValueType());
1950}
1951
1952SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
1953                                                 SelectionDAG &DAG) const {
1954  MachineFunction &MF = DAG.getMachineFunction();
1955  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
1956  return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
1957                          SystemZ::R15D, Op.getOperand(1));
1958}
1959
1960SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
1961                                             SelectionDAG &DAG) const {
1962  bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
1963  if (!IsData)
1964    // Just preserve the chain.
1965    return Op.getOperand(0);
1966
1967  bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1968  unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
1969  MemIntrinsicSDNode *Node = cast<MemIntrinsicSDNode>(Op.getNode());
1970  SDValue Ops[] = {
1971    Op.getOperand(0),
1972    DAG.getConstant(Code, MVT::i32),
1973    Op.getOperand(1)
1974  };
1975  return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
1976                                 Node->getVTList(), Ops, array_lengthof(Ops),
1977                                 Node->getMemoryVT(), Node->getMemOperand());
1978}
1979
1980SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
1981                                              SelectionDAG &DAG) const {
1982  switch (Op.getOpcode()) {
1983  case ISD::BR_CC:
1984    return lowerBR_CC(Op, DAG);
1985  case ISD::SELECT_CC:
1986    return lowerSELECT_CC(Op, DAG);
1987  case ISD::GlobalAddress:
1988    return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
1989  case ISD::GlobalTLSAddress:
1990    return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
1991  case ISD::BlockAddress:
1992    return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
1993  case ISD::JumpTable:
1994    return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
1995  case ISD::ConstantPool:
1996    return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
1997  case ISD::BITCAST:
1998    return lowerBITCAST(Op, DAG);
1999  case ISD::VASTART:
2000    return lowerVASTART(Op, DAG);
2001  case ISD::VACOPY:
2002    return lowerVACOPY(Op, DAG);
2003  case ISD::DYNAMIC_STACKALLOC:
2004    return lowerDYNAMIC_STACKALLOC(Op, DAG);
2005  case ISD::SMUL_LOHI:
2006    return lowerSMUL_LOHI(Op, DAG);
2007  case ISD::UMUL_LOHI:
2008    return lowerUMUL_LOHI(Op, DAG);
2009  case ISD::SDIVREM:
2010    return lowerSDIVREM(Op, DAG);
2011  case ISD::UDIVREM:
2012    return lowerUDIVREM(Op, DAG);
2013  case ISD::OR:
2014    return lowerOR(Op, DAG);
2015  case ISD::ATOMIC_SWAP:
2016    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_SWAPW);
2017  case ISD::ATOMIC_LOAD_ADD:
2018    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
2019  case ISD::ATOMIC_LOAD_SUB:
2020    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
2021  case ISD::ATOMIC_LOAD_AND:
2022    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
2023  case ISD::ATOMIC_LOAD_OR:
2024    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
2025  case ISD::ATOMIC_LOAD_XOR:
2026    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
2027  case ISD::ATOMIC_LOAD_NAND:
2028    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
2029  case ISD::ATOMIC_LOAD_MIN:
2030    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
2031  case ISD::ATOMIC_LOAD_MAX:
2032    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
2033  case ISD::ATOMIC_LOAD_UMIN:
2034    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
2035  case ISD::ATOMIC_LOAD_UMAX:
2036    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
2037  case ISD::ATOMIC_CMP_SWAP:
2038    return lowerATOMIC_CMP_SWAP(Op, DAG);
2039  case ISD::STACKSAVE:
2040    return lowerSTACKSAVE(Op, DAG);
2041  case ISD::STACKRESTORE:
2042    return lowerSTACKRESTORE(Op, DAG);
2043  case ISD::PREFETCH:
2044    return lowerPREFETCH(Op, DAG);
2045  default:
2046    llvm_unreachable("Unexpected node to lower");
2047  }
2048}
2049
2050const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
2051#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
2052  switch (Opcode) {
2053    OPCODE(RET_FLAG);
2054    OPCODE(CALL);
2055    OPCODE(SIBCALL);
2056    OPCODE(PCREL_WRAPPER);
2057    OPCODE(PCREL_OFFSET);
2058    OPCODE(ICMP);
2059    OPCODE(FCMP);
2060    OPCODE(TM);
2061    OPCODE(BR_CCMASK);
2062    OPCODE(SELECT_CCMASK);
2063    OPCODE(ADJDYNALLOC);
2064    OPCODE(EXTRACT_ACCESS);
2065    OPCODE(UMUL_LOHI64);
2066    OPCODE(SDIVREM64);
2067    OPCODE(UDIVREM32);
2068    OPCODE(UDIVREM64);
2069    OPCODE(MVC);
2070    OPCODE(MVC_LOOP);
2071    OPCODE(NC);
2072    OPCODE(NC_LOOP);
2073    OPCODE(OC);
2074    OPCODE(OC_LOOP);
2075    OPCODE(XC);
2076    OPCODE(XC_LOOP);
2077    OPCODE(CLC);
2078    OPCODE(CLC_LOOP);
2079    OPCODE(STRCMP);
2080    OPCODE(STPCPY);
2081    OPCODE(SEARCH_STRING);
2082    OPCODE(IPM);
2083    OPCODE(ATOMIC_SWAPW);
2084    OPCODE(ATOMIC_LOADW_ADD);
2085    OPCODE(ATOMIC_LOADW_SUB);
2086    OPCODE(ATOMIC_LOADW_AND);
2087    OPCODE(ATOMIC_LOADW_OR);
2088    OPCODE(ATOMIC_LOADW_XOR);
2089    OPCODE(ATOMIC_LOADW_NAND);
2090    OPCODE(ATOMIC_LOADW_MIN);
2091    OPCODE(ATOMIC_LOADW_MAX);
2092    OPCODE(ATOMIC_LOADW_UMIN);
2093    OPCODE(ATOMIC_LOADW_UMAX);
2094    OPCODE(ATOMIC_CMP_SWAPW);
2095    OPCODE(PREFETCH);
2096  }
2097  return NULL;
2098#undef OPCODE
2099}
2100
2101//===----------------------------------------------------------------------===//
2102// Custom insertion
2103//===----------------------------------------------------------------------===//
2104
2105// Create a new basic block after MBB.
2106static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
2107  MachineFunction &MF = *MBB->getParent();
2108  MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
2109  MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB);
2110  return NewMBB;
2111}
2112
2113// Split MBB after MI and return the new block (the one that contains
2114// instructions after MI).
2115static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
2116                                          MachineBasicBlock *MBB) {
2117  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2118  NewMBB->splice(NewMBB->begin(), MBB,
2119                 llvm::next(MachineBasicBlock::iterator(MI)),
2120                 MBB->end());
2121  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2122  return NewMBB;
2123}
2124
2125// Split MBB before MI and return the new block (the one that contains MI).
2126static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
2127                                           MachineBasicBlock *MBB) {
2128  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2129  NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
2130  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2131  return NewMBB;
2132}
2133
2134// Force base value Base into a register before MI.  Return the register.
2135static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
2136                         const SystemZInstrInfo *TII) {
2137  if (Base.isReg())
2138    return Base.getReg();
2139
2140  MachineBasicBlock *MBB = MI->getParent();
2141  MachineFunction &MF = *MBB->getParent();
2142  MachineRegisterInfo &MRI = MF.getRegInfo();
2143
2144  unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2145  BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
2146    .addOperand(Base).addImm(0).addReg(0);
2147  return Reg;
2148}
2149
2150// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
2151MachineBasicBlock *
2152SystemZTargetLowering::emitSelect(MachineInstr *MI,
2153                                  MachineBasicBlock *MBB) const {
2154  const SystemZInstrInfo *TII = TM.getInstrInfo();
2155
2156  unsigned DestReg  = MI->getOperand(0).getReg();
2157  unsigned TrueReg  = MI->getOperand(1).getReg();
2158  unsigned FalseReg = MI->getOperand(2).getReg();
2159  unsigned CCValid  = MI->getOperand(3).getImm();
2160  unsigned CCMask   = MI->getOperand(4).getImm();
2161  DebugLoc DL       = MI->getDebugLoc();
2162
2163  MachineBasicBlock *StartMBB = MBB;
2164  MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
2165  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2166
2167  //  StartMBB:
2168  //   BRC CCMask, JoinMBB
2169  //   # fallthrough to FalseMBB
2170  MBB = StartMBB;
2171  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2172    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2173  MBB->addSuccessor(JoinMBB);
2174  MBB->addSuccessor(FalseMBB);
2175
2176  //  FalseMBB:
2177  //   # fallthrough to JoinMBB
2178  MBB = FalseMBB;
2179  MBB->addSuccessor(JoinMBB);
2180
2181  //  JoinMBB:
2182  //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
2183  //  ...
2184  MBB = JoinMBB;
2185  BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
2186    .addReg(TrueReg).addMBB(StartMBB)
2187    .addReg(FalseReg).addMBB(FalseMBB);
2188
2189  MI->eraseFromParent();
2190  return JoinMBB;
2191}
2192
2193// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
2194// StoreOpcode is the store to use and Invert says whether the store should
2195// happen when the condition is false rather than true.  If a STORE ON
2196// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
2197MachineBasicBlock *
2198SystemZTargetLowering::emitCondStore(MachineInstr *MI,
2199                                     MachineBasicBlock *MBB,
2200                                     unsigned StoreOpcode, unsigned STOCOpcode,
2201                                     bool Invert) const {
2202  const SystemZInstrInfo *TII = TM.getInstrInfo();
2203
2204  unsigned SrcReg     = MI->getOperand(0).getReg();
2205  MachineOperand Base = MI->getOperand(1);
2206  int64_t Disp        = MI->getOperand(2).getImm();
2207  unsigned IndexReg   = MI->getOperand(3).getReg();
2208  unsigned CCValid    = MI->getOperand(4).getImm();
2209  unsigned CCMask     = MI->getOperand(5).getImm();
2210  DebugLoc DL         = MI->getDebugLoc();
2211
2212  StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
2213
2214  // Use STOCOpcode if possible.  We could use different store patterns in
2215  // order to avoid matching the index register, but the performance trade-offs
2216  // might be more complicated in that case.
2217  if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
2218    if (Invert)
2219      CCMask ^= CCValid;
2220    BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
2221      .addReg(SrcReg).addOperand(Base).addImm(Disp)
2222      .addImm(CCValid).addImm(CCMask);
2223    MI->eraseFromParent();
2224    return MBB;
2225  }
2226
2227  // Get the condition needed to branch around the store.
2228  if (!Invert)
2229    CCMask ^= CCValid;
2230
2231  MachineBasicBlock *StartMBB = MBB;
2232  MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
2233  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2234
2235  //  StartMBB:
2236  //   BRC CCMask, JoinMBB
2237  //   # fallthrough to FalseMBB
2238  MBB = StartMBB;
2239  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2240    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2241  MBB->addSuccessor(JoinMBB);
2242  MBB->addSuccessor(FalseMBB);
2243
2244  //  FalseMBB:
2245  //   store %SrcReg, %Disp(%Index,%Base)
2246  //   # fallthrough to JoinMBB
2247  MBB = FalseMBB;
2248  BuildMI(MBB, DL, TII->get(StoreOpcode))
2249    .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
2250  MBB->addSuccessor(JoinMBB);
2251
2252  MI->eraseFromParent();
2253  return JoinMBB;
2254}
2255
2256// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
2257// or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
2258// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
2259// BitSize is the width of the field in bits, or 0 if this is a partword
2260// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
2261// is one of the operands.  Invert says whether the field should be
2262// inverted after performing BinOpcode (e.g. for NAND).
2263MachineBasicBlock *
2264SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
2265                                            MachineBasicBlock *MBB,
2266                                            unsigned BinOpcode,
2267                                            unsigned BitSize,
2268                                            bool Invert) const {
2269  const SystemZInstrInfo *TII = TM.getInstrInfo();
2270  MachineFunction &MF = *MBB->getParent();
2271  MachineRegisterInfo &MRI = MF.getRegInfo();
2272  bool IsSubWord = (BitSize < 32);
2273
2274  // Extract the operands.  Base can be a register or a frame index.
2275  // Src2 can be a register or immediate.
2276  unsigned Dest        = MI->getOperand(0).getReg();
2277  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2278  int64_t Disp         = MI->getOperand(2).getImm();
2279  MachineOperand Src2  = earlyUseOperand(MI->getOperand(3));
2280  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2281  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2282  DebugLoc DL          = MI->getDebugLoc();
2283  if (IsSubWord)
2284    BitSize = MI->getOperand(6).getImm();
2285
2286  // Subword operations use 32-bit registers.
2287  const TargetRegisterClass *RC = (BitSize <= 32 ?
2288                                   &SystemZ::GR32BitRegClass :
2289                                   &SystemZ::GR64BitRegClass);
2290  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2291  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2292
2293  // Get the right opcodes for the displacement.
2294  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2295  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2296  assert(LOpcode && CSOpcode && "Displacement out of range");
2297
2298  // Create virtual registers for temporary results.
2299  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2300  unsigned OldVal        = MRI.createVirtualRegister(RC);
2301  unsigned NewVal        = (BinOpcode || IsSubWord ?
2302                            MRI.createVirtualRegister(RC) : Src2.getReg());
2303  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2304  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2305
2306  // Insert a basic block for the main loop.
2307  MachineBasicBlock *StartMBB = MBB;
2308  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
2309  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2310
2311  //  StartMBB:
2312  //   ...
2313  //   %OrigVal = L Disp(%Base)
2314  //   # fall through to LoopMMB
2315  MBB = StartMBB;
2316  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2317    .addOperand(Base).addImm(Disp).addReg(0);
2318  MBB->addSuccessor(LoopMBB);
2319
2320  //  LoopMBB:
2321  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
2322  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2323  //   %RotatedNewVal = OP %RotatedOldVal, %Src2
2324  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2325  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2326  //   JNE LoopMBB
2327  //   # fall through to DoneMMB
2328  MBB = LoopMBB;
2329  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2330    .addReg(OrigVal).addMBB(StartMBB)
2331    .addReg(Dest).addMBB(LoopMBB);
2332  if (IsSubWord)
2333    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2334      .addReg(OldVal).addReg(BitShift).addImm(0);
2335  if (Invert) {
2336    // Perform the operation normally and then invert every bit of the field.
2337    unsigned Tmp = MRI.createVirtualRegister(RC);
2338    BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
2339      .addReg(RotatedOldVal).addOperand(Src2);
2340    if (BitSize < 32)
2341      // XILF with the upper BitSize bits set.
2342      BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
2343        .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
2344    else if (BitSize == 32)
2345      // XILF with every bit set.
2346      BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
2347        .addReg(Tmp).addImm(~uint32_t(0));
2348    else {
2349      // Use LCGR and add -1 to the result, which is more compact than
2350      // an XILF, XILH pair.
2351      unsigned Tmp2 = MRI.createVirtualRegister(RC);
2352      BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
2353      BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
2354        .addReg(Tmp2).addImm(-1);
2355    }
2356  } else if (BinOpcode)
2357    // A simply binary operation.
2358    BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
2359      .addReg(RotatedOldVal).addOperand(Src2);
2360  else if (IsSubWord)
2361    // Use RISBG to rotate Src2 into position and use it to replace the
2362    // field in RotatedOldVal.
2363    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
2364      .addReg(RotatedOldVal).addReg(Src2.getReg())
2365      .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
2366  if (IsSubWord)
2367    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2368      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2369  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2370    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2371  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2372    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2373  MBB->addSuccessor(LoopMBB);
2374  MBB->addSuccessor(DoneMBB);
2375
2376  MI->eraseFromParent();
2377  return DoneMBB;
2378}
2379
2380// Implement EmitInstrWithCustomInserter for pseudo
2381// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
2382// instruction that should be used to compare the current field with the
2383// minimum or maximum value.  KeepOldMask is the BRC condition-code mask
2384// for when the current field should be kept.  BitSize is the width of
2385// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
2386MachineBasicBlock *
2387SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
2388                                            MachineBasicBlock *MBB,
2389                                            unsigned CompareOpcode,
2390                                            unsigned KeepOldMask,
2391                                            unsigned BitSize) const {
2392  const SystemZInstrInfo *TII = TM.getInstrInfo();
2393  MachineFunction &MF = *MBB->getParent();
2394  MachineRegisterInfo &MRI = MF.getRegInfo();
2395  bool IsSubWord = (BitSize < 32);
2396
2397  // Extract the operands.  Base can be a register or a frame index.
2398  unsigned Dest        = MI->getOperand(0).getReg();
2399  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2400  int64_t  Disp        = MI->getOperand(2).getImm();
2401  unsigned Src2        = MI->getOperand(3).getReg();
2402  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2403  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2404  DebugLoc DL          = MI->getDebugLoc();
2405  if (IsSubWord)
2406    BitSize = MI->getOperand(6).getImm();
2407
2408  // Subword operations use 32-bit registers.
2409  const TargetRegisterClass *RC = (BitSize <= 32 ?
2410                                   &SystemZ::GR32BitRegClass :
2411                                   &SystemZ::GR64BitRegClass);
2412  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2413  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2414
2415  // Get the right opcodes for the displacement.
2416  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2417  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2418  assert(LOpcode && CSOpcode && "Displacement out of range");
2419
2420  // Create virtual registers for temporary results.
2421  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2422  unsigned OldVal        = MRI.createVirtualRegister(RC);
2423  unsigned NewVal        = MRI.createVirtualRegister(RC);
2424  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2425  unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
2426  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2427
2428  // Insert 3 basic blocks for the loop.
2429  MachineBasicBlock *StartMBB  = MBB;
2430  MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
2431  MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
2432  MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
2433  MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
2434
2435  //  StartMBB:
2436  //   ...
2437  //   %OrigVal     = L Disp(%Base)
2438  //   # fall through to LoopMMB
2439  MBB = StartMBB;
2440  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2441    .addOperand(Base).addImm(Disp).addReg(0);
2442  MBB->addSuccessor(LoopMBB);
2443
2444  //  LoopMBB:
2445  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
2446  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2447  //   CompareOpcode %RotatedOldVal, %Src2
2448  //   BRC KeepOldMask, UpdateMBB
2449  MBB = LoopMBB;
2450  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2451    .addReg(OrigVal).addMBB(StartMBB)
2452    .addReg(Dest).addMBB(UpdateMBB);
2453  if (IsSubWord)
2454    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2455      .addReg(OldVal).addReg(BitShift).addImm(0);
2456  BuildMI(MBB, DL, TII->get(CompareOpcode))
2457    .addReg(RotatedOldVal).addReg(Src2);
2458  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2459    .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
2460  MBB->addSuccessor(UpdateMBB);
2461  MBB->addSuccessor(UseAltMBB);
2462
2463  //  UseAltMBB:
2464  //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
2465  //   # fall through to UpdateMMB
2466  MBB = UseAltMBB;
2467  if (IsSubWord)
2468    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
2469      .addReg(RotatedOldVal).addReg(Src2)
2470      .addImm(32).addImm(31 + BitSize).addImm(0);
2471  MBB->addSuccessor(UpdateMBB);
2472
2473  //  UpdateMBB:
2474  //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
2475  //                        [ %RotatedAltVal, UseAltMBB ]
2476  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2477  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2478  //   JNE LoopMBB
2479  //   # fall through to DoneMMB
2480  MBB = UpdateMBB;
2481  BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
2482    .addReg(RotatedOldVal).addMBB(LoopMBB)
2483    .addReg(RotatedAltVal).addMBB(UseAltMBB);
2484  if (IsSubWord)
2485    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2486      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2487  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2488    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2489  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2490    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2491  MBB->addSuccessor(LoopMBB);
2492  MBB->addSuccessor(DoneMBB);
2493
2494  MI->eraseFromParent();
2495  return DoneMBB;
2496}
2497
2498// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
2499// instruction MI.
2500MachineBasicBlock *
2501SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
2502                                          MachineBasicBlock *MBB) const {
2503  const SystemZInstrInfo *TII = TM.getInstrInfo();
2504  MachineFunction &MF = *MBB->getParent();
2505  MachineRegisterInfo &MRI = MF.getRegInfo();
2506
2507  // Extract the operands.  Base can be a register or a frame index.
2508  unsigned Dest        = MI->getOperand(0).getReg();
2509  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2510  int64_t  Disp        = MI->getOperand(2).getImm();
2511  unsigned OrigCmpVal  = MI->getOperand(3).getReg();
2512  unsigned OrigSwapVal = MI->getOperand(4).getReg();
2513  unsigned BitShift    = MI->getOperand(5).getReg();
2514  unsigned NegBitShift = MI->getOperand(6).getReg();
2515  int64_t  BitSize     = MI->getOperand(7).getImm();
2516  DebugLoc DL          = MI->getDebugLoc();
2517
2518  const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
2519
2520  // Get the right opcodes for the displacement.
2521  unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
2522  unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
2523  assert(LOpcode && CSOpcode && "Displacement out of range");
2524
2525  // Create virtual registers for temporary results.
2526  unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
2527  unsigned OldVal       = MRI.createVirtualRegister(RC);
2528  unsigned CmpVal       = MRI.createVirtualRegister(RC);
2529  unsigned SwapVal      = MRI.createVirtualRegister(RC);
2530  unsigned StoreVal     = MRI.createVirtualRegister(RC);
2531  unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
2532  unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
2533  unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
2534
2535  // Insert 2 basic blocks for the loop.
2536  MachineBasicBlock *StartMBB = MBB;
2537  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
2538  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2539  MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
2540
2541  //  StartMBB:
2542  //   ...
2543  //   %OrigOldVal     = L Disp(%Base)
2544  //   # fall through to LoopMMB
2545  MBB = StartMBB;
2546  BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
2547    .addOperand(Base).addImm(Disp).addReg(0);
2548  MBB->addSuccessor(LoopMBB);
2549
2550  //  LoopMBB:
2551  //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
2552  //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
2553  //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
2554  //   %Dest          = RLL %OldVal, BitSize(%BitShift)
2555  //                      ^^ The low BitSize bits contain the field
2556  //                         of interest.
2557  //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
2558  //                      ^^ Replace the upper 32-BitSize bits of the
2559  //                         comparison value with those that we loaded,
2560  //                         so that we can use a full word comparison.
2561  //   CR %Dest, %RetryCmpVal
2562  //   JNE DoneMBB
2563  //   # Fall through to SetMBB
2564  MBB = LoopMBB;
2565  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2566    .addReg(OrigOldVal).addMBB(StartMBB)
2567    .addReg(RetryOldVal).addMBB(SetMBB);
2568  BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
2569    .addReg(OrigCmpVal).addMBB(StartMBB)
2570    .addReg(RetryCmpVal).addMBB(SetMBB);
2571  BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
2572    .addReg(OrigSwapVal).addMBB(StartMBB)
2573    .addReg(RetrySwapVal).addMBB(SetMBB);
2574  BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
2575    .addReg(OldVal).addReg(BitShift).addImm(BitSize);
2576  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
2577    .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
2578  BuildMI(MBB, DL, TII->get(SystemZ::CR))
2579    .addReg(Dest).addReg(RetryCmpVal);
2580  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2581    .addImm(SystemZ::CCMASK_ICMP)
2582    .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
2583  MBB->addSuccessor(DoneMBB);
2584  MBB->addSuccessor(SetMBB);
2585
2586  //  SetMBB:
2587  //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
2588  //                      ^^ Replace the upper 32-BitSize bits of the new
2589  //                         value with those that we loaded.
2590  //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
2591  //                      ^^ Rotate the new field to its proper position.
2592  //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
2593  //   JNE LoopMBB
2594  //   # fall through to ExitMMB
2595  MBB = SetMBB;
2596  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
2597    .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
2598  BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
2599    .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
2600  BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
2601    .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
2602  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2603    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2604  MBB->addSuccessor(LoopMBB);
2605  MBB->addSuccessor(DoneMBB);
2606
2607  MI->eraseFromParent();
2608  return DoneMBB;
2609}
2610
2611// Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
2612// if the high register of the GR128 value must be cleared or false if
2613// it's "don't care".  SubReg is subreg_l32 when extending a GR32
2614// and subreg_l64 when extending a GR64.
2615MachineBasicBlock *
2616SystemZTargetLowering::emitExt128(MachineInstr *MI,
2617                                  MachineBasicBlock *MBB,
2618                                  bool ClearEven, unsigned SubReg) const {
2619  const SystemZInstrInfo *TII = TM.getInstrInfo();
2620  MachineFunction &MF = *MBB->getParent();
2621  MachineRegisterInfo &MRI = MF.getRegInfo();
2622  DebugLoc DL = MI->getDebugLoc();
2623
2624  unsigned Dest  = MI->getOperand(0).getReg();
2625  unsigned Src   = MI->getOperand(1).getReg();
2626  unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2627
2628  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
2629  if (ClearEven) {
2630    unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2631    unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
2632
2633    BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
2634      .addImm(0);
2635    BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
2636      .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
2637    In128 = NewIn128;
2638  }
2639  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
2640    .addReg(In128).addReg(Src).addImm(SubReg);
2641
2642  MI->eraseFromParent();
2643  return MBB;
2644}
2645
2646MachineBasicBlock *
2647SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
2648                                         MachineBasicBlock *MBB,
2649                                         unsigned Opcode) const {
2650  const SystemZInstrInfo *TII = TM.getInstrInfo();
2651  MachineFunction &MF = *MBB->getParent();
2652  MachineRegisterInfo &MRI = MF.getRegInfo();
2653  DebugLoc DL = MI->getDebugLoc();
2654
2655  MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
2656  uint64_t       DestDisp = MI->getOperand(1).getImm();
2657  MachineOperand SrcBase  = earlyUseOperand(MI->getOperand(2));
2658  uint64_t       SrcDisp  = MI->getOperand(3).getImm();
2659  uint64_t       Length   = MI->getOperand(4).getImm();
2660
2661  // When generating more than one CLC, all but the last will need to
2662  // branch to the end when a difference is found.
2663  MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
2664                               splitBlockAfter(MI, MBB) : 0);
2665
2666  // Check for the loop form, in which operand 5 is the trip count.
2667  if (MI->getNumExplicitOperands() > 5) {
2668    bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
2669
2670    uint64_t StartCountReg = MI->getOperand(5).getReg();
2671    uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
2672    uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
2673                              forceReg(MI, DestBase, TII));
2674
2675    const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
2676    uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
2677    uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
2678                            MRI.createVirtualRegister(RC));
2679    uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
2680    uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
2681                            MRI.createVirtualRegister(RC));
2682
2683    RC = &SystemZ::GR64BitRegClass;
2684    uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
2685    uint64_t NextCountReg = MRI.createVirtualRegister(RC);
2686
2687    MachineBasicBlock *StartMBB = MBB;
2688    MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
2689    MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2690    MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
2691
2692    //  StartMBB:
2693    //   # fall through to LoopMMB
2694    MBB->addSuccessor(LoopMBB);
2695
2696    //  LoopMBB:
2697    //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
2698    //                      [ %NextDestReg, NextMBB ]
2699    //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
2700    //                     [ %NextSrcReg, NextMBB ]
2701    //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
2702    //                       [ %NextCountReg, NextMBB ]
2703    //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
2704    //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
2705    //   ( JLH EndMBB )
2706    //
2707    // The prefetch is used only for MVC.  The JLH is used only for CLC.
2708    MBB = LoopMBB;
2709
2710    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
2711      .addReg(StartDestReg).addMBB(StartMBB)
2712      .addReg(NextDestReg).addMBB(NextMBB);
2713    if (!HaveSingleBase)
2714      BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
2715        .addReg(StartSrcReg).addMBB(StartMBB)
2716        .addReg(NextSrcReg).addMBB(NextMBB);
2717    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
2718      .addReg(StartCountReg).addMBB(StartMBB)
2719      .addReg(NextCountReg).addMBB(NextMBB);
2720    if (Opcode == SystemZ::MVC)
2721      BuildMI(MBB, DL, TII->get(SystemZ::PFD))
2722        .addImm(SystemZ::PFD_WRITE)
2723        .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
2724    BuildMI(MBB, DL, TII->get(Opcode))
2725      .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
2726      .addReg(ThisSrcReg).addImm(SrcDisp);
2727    if (EndMBB) {
2728      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2729        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
2730        .addMBB(EndMBB);
2731      MBB->addSuccessor(EndMBB);
2732      MBB->addSuccessor(NextMBB);
2733    }
2734
2735    // NextMBB:
2736    //   %NextDestReg = LA 256(%ThisDestReg)
2737    //   %NextSrcReg = LA 256(%ThisSrcReg)
2738    //   %NextCountReg = AGHI %ThisCountReg, -1
2739    //   CGHI %NextCountReg, 0
2740    //   JLH LoopMBB
2741    //   # fall through to DoneMMB
2742    //
2743    // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
2744    MBB = NextMBB;
2745
2746    BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
2747      .addReg(ThisDestReg).addImm(256).addReg(0);
2748    if (!HaveSingleBase)
2749      BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
2750        .addReg(ThisSrcReg).addImm(256).addReg(0);
2751    BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
2752      .addReg(ThisCountReg).addImm(-1);
2753    BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
2754      .addReg(NextCountReg).addImm(0);
2755    BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2756      .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
2757      .addMBB(LoopMBB);
2758    MBB->addSuccessor(LoopMBB);
2759    MBB->addSuccessor(DoneMBB);
2760
2761    DestBase = MachineOperand::CreateReg(NextDestReg, false);
2762    SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
2763    Length &= 255;
2764    MBB = DoneMBB;
2765  }
2766  // Handle any remaining bytes with straight-line code.
2767  while (Length > 0) {
2768    uint64_t ThisLength = std::min(Length, uint64_t(256));
2769    // The previous iteration might have created out-of-range displacements.
2770    // Apply them using LAY if so.
2771    if (!isUInt<12>(DestDisp)) {
2772      unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2773      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
2774        .addOperand(DestBase).addImm(DestDisp).addReg(0);
2775      DestBase = MachineOperand::CreateReg(Reg, false);
2776      DestDisp = 0;
2777    }
2778    if (!isUInt<12>(SrcDisp)) {
2779      unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2780      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
2781        .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
2782      SrcBase = MachineOperand::CreateReg(Reg, false);
2783      SrcDisp = 0;
2784    }
2785    BuildMI(*MBB, MI, DL, TII->get(Opcode))
2786      .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
2787      .addOperand(SrcBase).addImm(SrcDisp);
2788    DestDisp += ThisLength;
2789    SrcDisp += ThisLength;
2790    Length -= ThisLength;
2791    // If there's another CLC to go, branch to the end if a difference
2792    // was found.
2793    if (EndMBB && Length > 0) {
2794      MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
2795      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2796        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
2797        .addMBB(EndMBB);
2798      MBB->addSuccessor(EndMBB);
2799      MBB->addSuccessor(NextMBB);
2800      MBB = NextMBB;
2801    }
2802  }
2803  if (EndMBB) {
2804    MBB->addSuccessor(EndMBB);
2805    MBB = EndMBB;
2806    MBB->addLiveIn(SystemZ::CC);
2807  }
2808
2809  MI->eraseFromParent();
2810  return MBB;
2811}
2812
2813// Decompose string pseudo-instruction MI into a loop that continually performs
2814// Opcode until CC != 3.
2815MachineBasicBlock *
2816SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
2817                                         MachineBasicBlock *MBB,
2818                                         unsigned Opcode) const {
2819  const SystemZInstrInfo *TII = TM.getInstrInfo();
2820  MachineFunction &MF = *MBB->getParent();
2821  MachineRegisterInfo &MRI = MF.getRegInfo();
2822  DebugLoc DL = MI->getDebugLoc();
2823
2824  uint64_t End1Reg   = MI->getOperand(0).getReg();
2825  uint64_t Start1Reg = MI->getOperand(1).getReg();
2826  uint64_t Start2Reg = MI->getOperand(2).getReg();
2827  uint64_t CharReg   = MI->getOperand(3).getReg();
2828
2829  const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
2830  uint64_t This1Reg = MRI.createVirtualRegister(RC);
2831  uint64_t This2Reg = MRI.createVirtualRegister(RC);
2832  uint64_t End2Reg  = MRI.createVirtualRegister(RC);
2833
2834  MachineBasicBlock *StartMBB = MBB;
2835  MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
2836  MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2837
2838  //  StartMBB:
2839  //   # fall through to LoopMMB
2840  MBB->addSuccessor(LoopMBB);
2841
2842  //  LoopMBB:
2843  //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
2844  //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
2845  //   R0L = %CharReg
2846  //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
2847  //   JO LoopMBB
2848  //   # fall through to DoneMMB
2849  //
2850  // The load of R0L can be hoisted by post-RA LICM.
2851  MBB = LoopMBB;
2852
2853  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
2854    .addReg(Start1Reg).addMBB(StartMBB)
2855    .addReg(End1Reg).addMBB(LoopMBB);
2856  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
2857    .addReg(Start2Reg).addMBB(StartMBB)
2858    .addReg(End2Reg).addMBB(LoopMBB);
2859  BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
2860  BuildMI(MBB, DL, TII->get(Opcode))
2861    .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
2862    .addReg(This1Reg).addReg(This2Reg);
2863  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2864    .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
2865  MBB->addSuccessor(LoopMBB);
2866  MBB->addSuccessor(DoneMBB);
2867
2868  DoneMBB->addLiveIn(SystemZ::CC);
2869
2870  MI->eraseFromParent();
2871  return DoneMBB;
2872}
2873
2874MachineBasicBlock *SystemZTargetLowering::
2875EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
2876  switch (MI->getOpcode()) {
2877  case SystemZ::Select32Mux:
2878  case SystemZ::Select32:
2879  case SystemZ::SelectF32:
2880  case SystemZ::Select64:
2881  case SystemZ::SelectF64:
2882  case SystemZ::SelectF128:
2883    return emitSelect(MI, MBB);
2884
2885  case SystemZ::CondStore8:
2886    return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
2887  case SystemZ::CondStore8Inv:
2888    return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
2889  case SystemZ::CondStore16:
2890    return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
2891  case SystemZ::CondStore16Inv:
2892    return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
2893  case SystemZ::CondStore32:
2894    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
2895  case SystemZ::CondStore32Inv:
2896    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
2897  case SystemZ::CondStore64:
2898    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
2899  case SystemZ::CondStore64Inv:
2900    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
2901  case SystemZ::CondStoreF32:
2902    return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
2903  case SystemZ::CondStoreF32Inv:
2904    return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
2905  case SystemZ::CondStoreF64:
2906    return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
2907  case SystemZ::CondStoreF64Inv:
2908    return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
2909
2910  case SystemZ::AEXT128_64:
2911    return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
2912  case SystemZ::ZEXT128_32:
2913    return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
2914  case SystemZ::ZEXT128_64:
2915    return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
2916
2917  case SystemZ::ATOMIC_SWAPW:
2918    return emitAtomicLoadBinary(MI, MBB, 0, 0);
2919  case SystemZ::ATOMIC_SWAP_32:
2920    return emitAtomicLoadBinary(MI, MBB, 0, 32);
2921  case SystemZ::ATOMIC_SWAP_64:
2922    return emitAtomicLoadBinary(MI, MBB, 0, 64);
2923
2924  case SystemZ::ATOMIC_LOADW_AR:
2925    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
2926  case SystemZ::ATOMIC_LOADW_AFI:
2927    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
2928  case SystemZ::ATOMIC_LOAD_AR:
2929    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
2930  case SystemZ::ATOMIC_LOAD_AHI:
2931    return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
2932  case SystemZ::ATOMIC_LOAD_AFI:
2933    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
2934  case SystemZ::ATOMIC_LOAD_AGR:
2935    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
2936  case SystemZ::ATOMIC_LOAD_AGHI:
2937    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
2938  case SystemZ::ATOMIC_LOAD_AGFI:
2939    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
2940
2941  case SystemZ::ATOMIC_LOADW_SR:
2942    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
2943  case SystemZ::ATOMIC_LOAD_SR:
2944    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
2945  case SystemZ::ATOMIC_LOAD_SGR:
2946    return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
2947
2948  case SystemZ::ATOMIC_LOADW_NR:
2949    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
2950  case SystemZ::ATOMIC_LOADW_NILH:
2951    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
2952  case SystemZ::ATOMIC_LOAD_NR:
2953    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
2954  case SystemZ::ATOMIC_LOAD_NILL:
2955    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
2956  case SystemZ::ATOMIC_LOAD_NILH:
2957    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
2958  case SystemZ::ATOMIC_LOAD_NILF:
2959    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
2960  case SystemZ::ATOMIC_LOAD_NGR:
2961    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
2962  case SystemZ::ATOMIC_LOAD_NILL64:
2963    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
2964  case SystemZ::ATOMIC_LOAD_NILH64:
2965    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
2966  case SystemZ::ATOMIC_LOAD_NIHL:
2967    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64);
2968  case SystemZ::ATOMIC_LOAD_NIHH:
2969    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64);
2970  case SystemZ::ATOMIC_LOAD_NILF64:
2971    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
2972  case SystemZ::ATOMIC_LOAD_NIHF:
2973    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64);
2974
2975  case SystemZ::ATOMIC_LOADW_OR:
2976    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
2977  case SystemZ::ATOMIC_LOADW_OILH:
2978    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
2979  case SystemZ::ATOMIC_LOAD_OR:
2980    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
2981  case SystemZ::ATOMIC_LOAD_OILL:
2982    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
2983  case SystemZ::ATOMIC_LOAD_OILH:
2984    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
2985  case SystemZ::ATOMIC_LOAD_OILF:
2986    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
2987  case SystemZ::ATOMIC_LOAD_OGR:
2988    return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
2989  case SystemZ::ATOMIC_LOAD_OILL64:
2990    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
2991  case SystemZ::ATOMIC_LOAD_OILH64:
2992    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
2993  case SystemZ::ATOMIC_LOAD_OIHL64:
2994    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
2995  case SystemZ::ATOMIC_LOAD_OIHH64:
2996    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
2997  case SystemZ::ATOMIC_LOAD_OILF64:
2998    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
2999  case SystemZ::ATOMIC_LOAD_OIHF64:
3000    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
3001
3002  case SystemZ::ATOMIC_LOADW_XR:
3003    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
3004  case SystemZ::ATOMIC_LOADW_XILF:
3005    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
3006  case SystemZ::ATOMIC_LOAD_XR:
3007    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
3008  case SystemZ::ATOMIC_LOAD_XILF:
3009    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
3010  case SystemZ::ATOMIC_LOAD_XGR:
3011    return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
3012  case SystemZ::ATOMIC_LOAD_XILF64:
3013    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
3014  case SystemZ::ATOMIC_LOAD_XIHF:
3015    return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF, 64);
3016
3017  case SystemZ::ATOMIC_LOADW_NRi:
3018    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
3019  case SystemZ::ATOMIC_LOADW_NILHi:
3020    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
3021  case SystemZ::ATOMIC_LOAD_NRi:
3022    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
3023  case SystemZ::ATOMIC_LOAD_NILLi:
3024    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
3025  case SystemZ::ATOMIC_LOAD_NILHi:
3026    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
3027  case SystemZ::ATOMIC_LOAD_NILFi:
3028    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
3029  case SystemZ::ATOMIC_LOAD_NGRi:
3030    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
3031  case SystemZ::ATOMIC_LOAD_NILL64i:
3032    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
3033  case SystemZ::ATOMIC_LOAD_NILH64i:
3034    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
3035  case SystemZ::ATOMIC_LOAD_NIHLi:
3036    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64, true);
3037  case SystemZ::ATOMIC_LOAD_NIHHi:
3038    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64, true);
3039  case SystemZ::ATOMIC_LOAD_NILF64i:
3040    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
3041  case SystemZ::ATOMIC_LOAD_NIHFi:
3042    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64, true);
3043
3044  case SystemZ::ATOMIC_LOADW_MIN:
3045    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3046                                SystemZ::CCMASK_CMP_LE, 0);
3047  case SystemZ::ATOMIC_LOAD_MIN_32:
3048    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3049                                SystemZ::CCMASK_CMP_LE, 32);
3050  case SystemZ::ATOMIC_LOAD_MIN_64:
3051    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3052                                SystemZ::CCMASK_CMP_LE, 64);
3053
3054  case SystemZ::ATOMIC_LOADW_MAX:
3055    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3056                                SystemZ::CCMASK_CMP_GE, 0);
3057  case SystemZ::ATOMIC_LOAD_MAX_32:
3058    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3059                                SystemZ::CCMASK_CMP_GE, 32);
3060  case SystemZ::ATOMIC_LOAD_MAX_64:
3061    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3062                                SystemZ::CCMASK_CMP_GE, 64);
3063
3064  case SystemZ::ATOMIC_LOADW_UMIN:
3065    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3066                                SystemZ::CCMASK_CMP_LE, 0);
3067  case SystemZ::ATOMIC_LOAD_UMIN_32:
3068    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3069                                SystemZ::CCMASK_CMP_LE, 32);
3070  case SystemZ::ATOMIC_LOAD_UMIN_64:
3071    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3072                                SystemZ::CCMASK_CMP_LE, 64);
3073
3074  case SystemZ::ATOMIC_LOADW_UMAX:
3075    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3076                                SystemZ::CCMASK_CMP_GE, 0);
3077  case SystemZ::ATOMIC_LOAD_UMAX_32:
3078    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3079                                SystemZ::CCMASK_CMP_GE, 32);
3080  case SystemZ::ATOMIC_LOAD_UMAX_64:
3081    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3082                                SystemZ::CCMASK_CMP_GE, 64);
3083
3084  case SystemZ::ATOMIC_CMP_SWAPW:
3085    return emitAtomicCmpSwapW(MI, MBB);
3086  case SystemZ::MVCSequence:
3087  case SystemZ::MVCLoop:
3088    return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
3089  case SystemZ::NCSequence:
3090  case SystemZ::NCLoop:
3091    return emitMemMemWrapper(MI, MBB, SystemZ::NC);
3092  case SystemZ::OCSequence:
3093  case SystemZ::OCLoop:
3094    return emitMemMemWrapper(MI, MBB, SystemZ::OC);
3095  case SystemZ::XCSequence:
3096  case SystemZ::XCLoop:
3097    return emitMemMemWrapper(MI, MBB, SystemZ::XC);
3098  case SystemZ::CLCSequence:
3099  case SystemZ::CLCLoop:
3100    return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
3101  case SystemZ::CLSTLoop:
3102    return emitStringWrapper(MI, MBB, SystemZ::CLST);
3103  case SystemZ::MVSTLoop:
3104    return emitStringWrapper(MI, MBB, SystemZ::MVST);
3105  case SystemZ::SRSTLoop:
3106    return emitStringWrapper(MI, MBB, SystemZ::SRST);
3107  default:
3108    llvm_unreachable("Unexpected instr type to insert");
3109  }
3110}
3111