SystemZISelLowering.cpp revision 299fdd814f4c2850d44387d24c440980c5377d3e
1//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SystemZTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "systemz-lower"
15
16#include "SystemZISelLowering.h"
17#include "SystemZCallingConv.h"
18#include "SystemZConstantPoolValue.h"
19#include "SystemZMachineFunctionInfo.h"
20#include "SystemZTargetMachine.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25
26using namespace llvm;
27
28// Classify VT as either 32 or 64 bit.
29static bool is32Bit(EVT VT) {
30  switch (VT.getSimpleVT().SimpleTy) {
31  case MVT::i32:
32    return true;
33  case MVT::i64:
34    return false;
35  default:
36    llvm_unreachable("Unsupported type");
37  }
38}
39
40// Return a version of MachineOperand that can be safely used before the
41// final use.
42static MachineOperand earlyUseOperand(MachineOperand Op) {
43  if (Op.isReg())
44    Op.setIsKill(false);
45  return Op;
46}
47
48SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
49  : TargetLowering(tm, new TargetLoweringObjectFileELF()),
50    Subtarget(*tm.getSubtargetImpl()), TM(tm) {
51  MVT PtrVT = getPointerTy();
52
53  // Set up the register classes.
54  addRegisterClass(MVT::i32,  &SystemZ::GR32BitRegClass);
55  addRegisterClass(MVT::i64,  &SystemZ::GR64BitRegClass);
56  addRegisterClass(MVT::f32,  &SystemZ::FP32BitRegClass);
57  addRegisterClass(MVT::f64,  &SystemZ::FP64BitRegClass);
58  addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
59
60  // Compute derived properties from the register classes
61  computeRegisterProperties();
62
63  // Set up special registers.
64  setExceptionPointerRegister(SystemZ::R6D);
65  setExceptionSelectorRegister(SystemZ::R7D);
66  setStackPointerRegisterToSaveRestore(SystemZ::R15D);
67
68  // TODO: It may be better to default to latency-oriented scheduling, however
69  // LLVM's current latency-oriented scheduler can't handle physreg definitions
70  // such as SystemZ has with CC, so set this to the register-pressure
71  // scheduler, because it can.
72  setSchedulingPreference(Sched::RegPressure);
73
74  setBooleanContents(ZeroOrOneBooleanContent);
75  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
76
77  // Instructions are strings of 2-byte aligned 2-byte values.
78  setMinFunctionAlignment(2);
79
80  // Handle operations that are handled in a similar way for all types.
81  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
82       I <= MVT::LAST_FP_VALUETYPE;
83       ++I) {
84    MVT VT = MVT::SimpleValueType(I);
85    if (isTypeLegal(VT)) {
86      // Expand SETCC(X, Y, COND) into SELECT_CC(X, Y, 1, 0, COND).
87      setOperationAction(ISD::SETCC, VT, Expand);
88
89      // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
90      setOperationAction(ISD::SELECT, VT, Expand);
91
92      // Lower SELECT_CC and BR_CC into separate comparisons and branches.
93      setOperationAction(ISD::SELECT_CC, VT, Custom);
94      setOperationAction(ISD::BR_CC,     VT, Custom);
95    }
96  }
97
98  // Expand jump table branches as address arithmetic followed by an
99  // indirect jump.
100  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
101
102  // Expand BRCOND into a BR_CC (see above).
103  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
104
105  // Handle integer types.
106  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
107       I <= MVT::LAST_INTEGER_VALUETYPE;
108       ++I) {
109    MVT VT = MVT::SimpleValueType(I);
110    if (isTypeLegal(VT)) {
111      // Expand individual DIV and REMs into DIVREMs.
112      setOperationAction(ISD::SDIV, VT, Expand);
113      setOperationAction(ISD::UDIV, VT, Expand);
114      setOperationAction(ISD::SREM, VT, Expand);
115      setOperationAction(ISD::UREM, VT, Expand);
116      setOperationAction(ISD::SDIVREM, VT, Custom);
117      setOperationAction(ISD::UDIVREM, VT, Custom);
118
119      // Expand ATOMIC_LOAD and ATOMIC_STORE using ATOMIC_CMP_SWAP.
120      // FIXME: probably much too conservative.
121      setOperationAction(ISD::ATOMIC_LOAD,  VT, Expand);
122      setOperationAction(ISD::ATOMIC_STORE, VT, Expand);
123
124      // No special instructions for these.
125      setOperationAction(ISD::CTPOP,           VT, Expand);
126      setOperationAction(ISD::CTTZ,            VT, Expand);
127      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
128      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
129      setOperationAction(ISD::ROTR,            VT, Expand);
130
131      // Use *MUL_LOHI where possible instead of MULH*.
132      setOperationAction(ISD::MULHS, VT, Expand);
133      setOperationAction(ISD::MULHU, VT, Expand);
134      setOperationAction(ISD::SMUL_LOHI, VT, Custom);
135      setOperationAction(ISD::UMUL_LOHI, VT, Custom);
136
137      // We have instructions for signed but not unsigned FP conversion.
138      setOperationAction(ISD::FP_TO_UINT, VT, Expand);
139    }
140  }
141
142  // Type legalization will convert 8- and 16-bit atomic operations into
143  // forms that operate on i32s (but still keeping the original memory VT).
144  // Lower them into full i32 operations.
145  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
146  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
147  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
148  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
149  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
150  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
151  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
152  setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
153  setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
154  setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
155  setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
156  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
157
158  // We have instructions for signed but not unsigned FP conversion.
159  // Handle unsigned 32-bit types as signed 64-bit types.
160  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
161  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
162
163  // We have native support for a 64-bit CTLZ, via FLOGR.
164  setOperationAction(ISD::CTLZ, MVT::i32, Promote);
165  setOperationAction(ISD::CTLZ, MVT::i64, Legal);
166
167  // Give LowerOperation the chance to replace 64-bit ORs with subregs.
168  setOperationAction(ISD::OR, MVT::i64, Custom);
169
170  // FIXME: Can we support these natively?
171  setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
172  setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
173  setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
174
175  // We have native instructions for i8, i16 and i32 extensions, but not i1.
176  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
177  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
178  setLoadExtAction(ISD::EXTLOAD,  MVT::i1, Promote);
179  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
180
181  // Handle the various types of symbolic address.
182  setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
183  setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
184  setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
185  setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
186  setOperationAction(ISD::JumpTable,        PtrVT, Custom);
187
188  // We need to handle dynamic allocations specially because of the
189  // 160-byte area at the bottom of the stack.
190  setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
191
192  // Use custom expanders so that we can force the function to use
193  // a frame pointer.
194  setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
195  setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
196
197  // Handle prefetches with PFD or PFDRL.
198  setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
199
200  // Handle floating-point types.
201  for (unsigned I = MVT::FIRST_FP_VALUETYPE;
202       I <= MVT::LAST_FP_VALUETYPE;
203       ++I) {
204    MVT VT = MVT::SimpleValueType(I);
205    if (isTypeLegal(VT)) {
206      // We can use FI for FRINT.
207      setOperationAction(ISD::FRINT, VT, Legal);
208
209      // We can use the extended form of FI for other rounding operations.
210      if (Subtarget.hasFPExtension()) {
211        setOperationAction(ISD::FNEARBYINT, VT, Legal);
212        setOperationAction(ISD::FFLOOR, VT, Legal);
213        setOperationAction(ISD::FCEIL, VT, Legal);
214        setOperationAction(ISD::FTRUNC, VT, Legal);
215        setOperationAction(ISD::FROUND, VT, Legal);
216      }
217
218      // No special instructions for these.
219      setOperationAction(ISD::FSIN, VT, Expand);
220      setOperationAction(ISD::FCOS, VT, Expand);
221      setOperationAction(ISD::FREM, VT, Expand);
222    }
223  }
224
225  // We have fused multiply-addition for f32 and f64 but not f128.
226  setOperationAction(ISD::FMA, MVT::f32,  Legal);
227  setOperationAction(ISD::FMA, MVT::f64,  Legal);
228  setOperationAction(ISD::FMA, MVT::f128, Expand);
229
230  // Needed so that we don't try to implement f128 constant loads using
231  // a load-and-extend of a f80 constant (in cases where the constant
232  // would fit in an f80).
233  setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
234
235  // Floating-point truncation and stores need to be done separately.
236  setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
237  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
238  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
239
240  // We have 64-bit FPR<->GPR moves, but need special handling for
241  // 32-bit forms.
242  setOperationAction(ISD::BITCAST, MVT::i32, Custom);
243  setOperationAction(ISD::BITCAST, MVT::f32, Custom);
244
245  // VASTART and VACOPY need to deal with the SystemZ-specific varargs
246  // structure, but VAEND is a no-op.
247  setOperationAction(ISD::VASTART, MVT::Other, Custom);
248  setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
249  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
250
251  // We want to use MVC in preference to even a single load/store pair.
252  MaxStoresPerMemcpy = 0;
253  MaxStoresPerMemcpyOptSize = 0;
254
255  // The main memset sequence is a byte store followed by an MVC.
256  // Two STC or MV..I stores win over that, but the kind of fused stores
257  // generated by target-independent code don't when the byte value is
258  // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
259  // than "STC;MVC".  Handle the choice in target-specific code instead.
260  MaxStoresPerMemset = 0;
261  MaxStoresPerMemsetOptSize = 0;
262}
263
264bool
265SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
266  VT = VT.getScalarType();
267
268  if (!VT.isSimple())
269    return false;
270
271  switch (VT.getSimpleVT().SimpleTy) {
272  case MVT::f32:
273  case MVT::f64:
274    return true;
275  case MVT::f128:
276    return false;
277  default:
278    break;
279  }
280
281  return false;
282}
283
284bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
285  // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
286  return Imm.isZero() || Imm.isNegZero();
287}
288
289bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
290                                                          bool *Fast) const {
291  // Unaligned accesses should never be slower than the expanded version.
292  // We check specifically for aligned accesses in the few cases where
293  // they are required.
294  if (Fast)
295    *Fast = true;
296  return true;
297}
298
299bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
300                                                  Type *Ty) const {
301  // Punt on globals for now, although they can be used in limited
302  // RELATIVE LONG cases.
303  if (AM.BaseGV)
304    return false;
305
306  // Require a 20-bit signed offset.
307  if (!isInt<20>(AM.BaseOffs))
308    return false;
309
310  // Indexing is OK but no scale factor can be applied.
311  return AM.Scale == 0 || AM.Scale == 1;
312}
313
314bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
315  if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
316    return false;
317  unsigned FromBits = FromType->getPrimitiveSizeInBits();
318  unsigned ToBits = ToType->getPrimitiveSizeInBits();
319  return FromBits > ToBits;
320}
321
322bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
323  if (!FromVT.isInteger() || !ToVT.isInteger())
324    return false;
325  unsigned FromBits = FromVT.getSizeInBits();
326  unsigned ToBits = ToVT.getSizeInBits();
327  return FromBits > ToBits;
328}
329
330//===----------------------------------------------------------------------===//
331// Inline asm support
332//===----------------------------------------------------------------------===//
333
334TargetLowering::ConstraintType
335SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
336  if (Constraint.size() == 1) {
337    switch (Constraint[0]) {
338    case 'a': // Address register
339    case 'd': // Data register (equivalent to 'r')
340    case 'f': // Floating-point register
341    case 'r': // General-purpose register
342      return C_RegisterClass;
343
344    case 'Q': // Memory with base and unsigned 12-bit displacement
345    case 'R': // Likewise, plus an index
346    case 'S': // Memory with base and signed 20-bit displacement
347    case 'T': // Likewise, plus an index
348    case 'm': // Equivalent to 'T'.
349      return C_Memory;
350
351    case 'I': // Unsigned 8-bit constant
352    case 'J': // Unsigned 12-bit constant
353    case 'K': // Signed 16-bit constant
354    case 'L': // Signed 20-bit displacement (on all targets we support)
355    case 'M': // 0x7fffffff
356      return C_Other;
357
358    default:
359      break;
360    }
361  }
362  return TargetLowering::getConstraintType(Constraint);
363}
364
365TargetLowering::ConstraintWeight SystemZTargetLowering::
366getSingleConstraintMatchWeight(AsmOperandInfo &info,
367                               const char *constraint) const {
368  ConstraintWeight weight = CW_Invalid;
369  Value *CallOperandVal = info.CallOperandVal;
370  // If we don't have a value, we can't do a match,
371  // but allow it at the lowest weight.
372  if (CallOperandVal == NULL)
373    return CW_Default;
374  Type *type = CallOperandVal->getType();
375  // Look at the constraint type.
376  switch (*constraint) {
377  default:
378    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
379    break;
380
381  case 'a': // Address register
382  case 'd': // Data register (equivalent to 'r')
383  case 'r': // General-purpose register
384    if (CallOperandVal->getType()->isIntegerTy())
385      weight = CW_Register;
386    break;
387
388  case 'f': // Floating-point register
389    if (type->isFloatingPointTy())
390      weight = CW_Register;
391    break;
392
393  case 'I': // Unsigned 8-bit constant
394    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
395      if (isUInt<8>(C->getZExtValue()))
396        weight = CW_Constant;
397    break;
398
399  case 'J': // Unsigned 12-bit constant
400    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
401      if (isUInt<12>(C->getZExtValue()))
402        weight = CW_Constant;
403    break;
404
405  case 'K': // Signed 16-bit constant
406    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
407      if (isInt<16>(C->getSExtValue()))
408        weight = CW_Constant;
409    break;
410
411  case 'L': // Signed 20-bit displacement (on all targets we support)
412    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
413      if (isInt<20>(C->getSExtValue()))
414        weight = CW_Constant;
415    break;
416
417  case 'M': // 0x7fffffff
418    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
419      if (C->getZExtValue() == 0x7fffffff)
420        weight = CW_Constant;
421    break;
422  }
423  return weight;
424}
425
426// Parse a "{tNNN}" register constraint for which the register type "t"
427// has already been verified.  MC is the class associated with "t" and
428// Map maps 0-based register numbers to LLVM register numbers.
429static std::pair<unsigned, const TargetRegisterClass *>
430parseRegisterNumber(const std::string &Constraint,
431                    const TargetRegisterClass *RC, const unsigned *Map) {
432  assert(*(Constraint.end()-1) == '}' && "Missing '}'");
433  if (isdigit(Constraint[2])) {
434    std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
435    unsigned Index = atoi(Suffix.c_str());
436    if (Index < 16 && Map[Index])
437      return std::make_pair(Map[Index], RC);
438  }
439  return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
440}
441
442std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
443getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
444  if (Constraint.size() == 1) {
445    // GCC Constraint Letters
446    switch (Constraint[0]) {
447    default: break;
448    case 'd': // Data register (equivalent to 'r')
449    case 'r': // General-purpose register
450      if (VT == MVT::i64)
451        return std::make_pair(0U, &SystemZ::GR64BitRegClass);
452      else if (VT == MVT::i128)
453        return std::make_pair(0U, &SystemZ::GR128BitRegClass);
454      return std::make_pair(0U, &SystemZ::GR32BitRegClass);
455
456    case 'a': // Address register
457      if (VT == MVT::i64)
458        return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
459      else if (VT == MVT::i128)
460        return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
461      return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
462
463    case 'f': // Floating-point register
464      if (VT == MVT::f64)
465        return std::make_pair(0U, &SystemZ::FP64BitRegClass);
466      else if (VT == MVT::f128)
467        return std::make_pair(0U, &SystemZ::FP128BitRegClass);
468      return std::make_pair(0U, &SystemZ::FP32BitRegClass);
469    }
470  }
471  if (Constraint[0] == '{') {
472    // We need to override the default register parsing for GPRs and FPRs
473    // because the interpretation depends on VT.  The internal names of
474    // the registers are also different from the external names
475    // (F0D and F0S instead of F0, etc.).
476    if (Constraint[1] == 'r') {
477      if (VT == MVT::i32)
478        return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
479                                   SystemZMC::GR32Regs);
480      if (VT == MVT::i128)
481        return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
482                                   SystemZMC::GR128Regs);
483      return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
484                                 SystemZMC::GR64Regs);
485    }
486    if (Constraint[1] == 'f') {
487      if (VT == MVT::f32)
488        return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
489                                   SystemZMC::FP32Regs);
490      if (VT == MVT::f128)
491        return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
492                                   SystemZMC::FP128Regs);
493      return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
494                                 SystemZMC::FP64Regs);
495    }
496  }
497  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
498}
499
500void SystemZTargetLowering::
501LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
502                             std::vector<SDValue> &Ops,
503                             SelectionDAG &DAG) const {
504  // Only support length 1 constraints for now.
505  if (Constraint.length() == 1) {
506    switch (Constraint[0]) {
507    case 'I': // Unsigned 8-bit constant
508      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
509        if (isUInt<8>(C->getZExtValue()))
510          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
511                                              Op.getValueType()));
512      return;
513
514    case 'J': // Unsigned 12-bit constant
515      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
516        if (isUInt<12>(C->getZExtValue()))
517          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
518                                              Op.getValueType()));
519      return;
520
521    case 'K': // Signed 16-bit constant
522      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
523        if (isInt<16>(C->getSExtValue()))
524          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
525                                              Op.getValueType()));
526      return;
527
528    case 'L': // Signed 20-bit displacement (on all targets we support)
529      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
530        if (isInt<20>(C->getSExtValue()))
531          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
532                                              Op.getValueType()));
533      return;
534
535    case 'M': // 0x7fffffff
536      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
537        if (C->getZExtValue() == 0x7fffffff)
538          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
539                                              Op.getValueType()));
540      return;
541    }
542  }
543  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
544}
545
546//===----------------------------------------------------------------------===//
547// Calling conventions
548//===----------------------------------------------------------------------===//
549
550#include "SystemZGenCallingConv.inc"
551
552bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
553                                                     Type *ToType) const {
554  return isTruncateFree(FromType, ToType);
555}
556
557bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
558  if (!CI->isTailCall())
559    return false;
560  return true;
561}
562
563// Value is a value that has been passed to us in the location described by VA
564// (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
565// any loads onto Chain.
566static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
567                                   CCValAssign &VA, SDValue Chain,
568                                   SDValue Value) {
569  // If the argument has been promoted from a smaller type, insert an
570  // assertion to capture this.
571  if (VA.getLocInfo() == CCValAssign::SExt)
572    Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
573                        DAG.getValueType(VA.getValVT()));
574  else if (VA.getLocInfo() == CCValAssign::ZExt)
575    Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
576                        DAG.getValueType(VA.getValVT()));
577
578  if (VA.isExtInLoc())
579    Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
580  else if (VA.getLocInfo() == CCValAssign::Indirect)
581    Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
582                        MachinePointerInfo(), false, false, false, 0);
583  else
584    assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
585  return Value;
586}
587
588// Value is a value of type VA.getValVT() that we need to copy into
589// the location described by VA.  Return a copy of Value converted to
590// VA.getValVT().  The caller is responsible for handling indirect values.
591static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
592                                   CCValAssign &VA, SDValue Value) {
593  switch (VA.getLocInfo()) {
594  case CCValAssign::SExt:
595    return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
596  case CCValAssign::ZExt:
597    return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
598  case CCValAssign::AExt:
599    return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
600  case CCValAssign::Full:
601    return Value;
602  default:
603    llvm_unreachable("Unhandled getLocInfo()");
604  }
605}
606
607SDValue SystemZTargetLowering::
608LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
609                     const SmallVectorImpl<ISD::InputArg> &Ins,
610                     SDLoc DL, SelectionDAG &DAG,
611                     SmallVectorImpl<SDValue> &InVals) const {
612  MachineFunction &MF = DAG.getMachineFunction();
613  MachineFrameInfo *MFI = MF.getFrameInfo();
614  MachineRegisterInfo &MRI = MF.getRegInfo();
615  SystemZMachineFunctionInfo *FuncInfo =
616    MF.getInfo<SystemZMachineFunctionInfo>();
617  const SystemZFrameLowering *TFL =
618    static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
619
620  // Assign locations to all of the incoming arguments.
621  SmallVector<CCValAssign, 16> ArgLocs;
622  CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
623  CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
624
625  unsigned NumFixedGPRs = 0;
626  unsigned NumFixedFPRs = 0;
627  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
628    SDValue ArgValue;
629    CCValAssign &VA = ArgLocs[I];
630    EVT LocVT = VA.getLocVT();
631    if (VA.isRegLoc()) {
632      // Arguments passed in registers
633      const TargetRegisterClass *RC;
634      switch (LocVT.getSimpleVT().SimpleTy) {
635      default:
636        // Integers smaller than i64 should be promoted to i64.
637        llvm_unreachable("Unexpected argument type");
638      case MVT::i32:
639        NumFixedGPRs += 1;
640        RC = &SystemZ::GR32BitRegClass;
641        break;
642      case MVT::i64:
643        NumFixedGPRs += 1;
644        RC = &SystemZ::GR64BitRegClass;
645        break;
646      case MVT::f32:
647        NumFixedFPRs += 1;
648        RC = &SystemZ::FP32BitRegClass;
649        break;
650      case MVT::f64:
651        NumFixedFPRs += 1;
652        RC = &SystemZ::FP64BitRegClass;
653        break;
654      }
655
656      unsigned VReg = MRI.createVirtualRegister(RC);
657      MRI.addLiveIn(VA.getLocReg(), VReg);
658      ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
659    } else {
660      assert(VA.isMemLoc() && "Argument not register or memory");
661
662      // Create the frame index object for this incoming parameter.
663      int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
664                                      VA.getLocMemOffset(), true);
665
666      // Create the SelectionDAG nodes corresponding to a load
667      // from this parameter.  Unpromoted ints and floats are
668      // passed as right-justified 8-byte values.
669      EVT PtrVT = getPointerTy();
670      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
671      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
672        FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
673      ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
674                             MachinePointerInfo::getFixedStack(FI),
675                             false, false, false, 0);
676    }
677
678    // Convert the value of the argument register into the value that's
679    // being passed.
680    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
681  }
682
683  if (IsVarArg) {
684    // Save the number of non-varargs registers for later use by va_start, etc.
685    FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
686    FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
687
688    // Likewise the address (in the form of a frame index) of where the
689    // first stack vararg would be.  The 1-byte size here is arbitrary.
690    int64_t StackSize = CCInfo.getNextStackOffset();
691    FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
692
693    // ...and a similar frame index for the caller-allocated save area
694    // that will be used to store the incoming registers.
695    int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
696    unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
697    FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
698
699    // Store the FPR varargs in the reserved frame slots.  (We store the
700    // GPRs as part of the prologue.)
701    if (NumFixedFPRs < SystemZ::NumArgFPRs) {
702      SDValue MemOps[SystemZ::NumArgFPRs];
703      for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
704        unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
705        int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
706        SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
707        unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
708                                     &SystemZ::FP64BitRegClass);
709        SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
710        MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
711                                 MachinePointerInfo::getFixedStack(FI),
712                                 false, false, 0);
713
714      }
715      // Join the stores, which are independent of one another.
716      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
717                          &MemOps[NumFixedFPRs],
718                          SystemZ::NumArgFPRs - NumFixedFPRs);
719    }
720  }
721
722  return Chain;
723}
724
725static bool canUseSiblingCall(CCState ArgCCInfo,
726                              SmallVectorImpl<CCValAssign> &ArgLocs) {
727  // Punt if there are any indirect or stack arguments, or if the call
728  // needs the call-saved argument register R6.
729  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
730    CCValAssign &VA = ArgLocs[I];
731    if (VA.getLocInfo() == CCValAssign::Indirect)
732      return false;
733    if (!VA.isRegLoc())
734      return false;
735    unsigned Reg = VA.getLocReg();
736    if (Reg == SystemZ::R6W || Reg == SystemZ::R6D)
737      return false;
738  }
739  return true;
740}
741
742SDValue
743SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
744                                 SmallVectorImpl<SDValue> &InVals) const {
745  SelectionDAG &DAG = CLI.DAG;
746  SDLoc &DL = CLI.DL;
747  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
748  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
749  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
750  SDValue Chain = CLI.Chain;
751  SDValue Callee = CLI.Callee;
752  bool &IsTailCall = CLI.IsTailCall;
753  CallingConv::ID CallConv = CLI.CallConv;
754  bool IsVarArg = CLI.IsVarArg;
755  MachineFunction &MF = DAG.getMachineFunction();
756  EVT PtrVT = getPointerTy();
757
758  // Analyze the operands of the call, assigning locations to each operand.
759  SmallVector<CCValAssign, 16> ArgLocs;
760  CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
761  ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
762
763  // We don't support GuaranteedTailCallOpt, only automatically-detected
764  // sibling calls.
765  if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
766    IsTailCall = false;
767
768  // Get a count of how many bytes are to be pushed on the stack.
769  unsigned NumBytes = ArgCCInfo.getNextStackOffset();
770
771  // Mark the start of the call.
772  if (!IsTailCall)
773    Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
774                                 DL);
775
776  // Copy argument values to their designated locations.
777  SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
778  SmallVector<SDValue, 8> MemOpChains;
779  SDValue StackPtr;
780  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
781    CCValAssign &VA = ArgLocs[I];
782    SDValue ArgValue = OutVals[I];
783
784    if (VA.getLocInfo() == CCValAssign::Indirect) {
785      // Store the argument in a stack slot and pass its address.
786      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
787      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
788      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
789                                         MachinePointerInfo::getFixedStack(FI),
790                                         false, false, 0));
791      ArgValue = SpillSlot;
792    } else
793      ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
794
795    if (VA.isRegLoc())
796      // Queue up the argument copies and emit them at the end.
797      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
798    else {
799      assert(VA.isMemLoc() && "Argument not register or memory");
800
801      // Work out the address of the stack slot.  Unpromoted ints and
802      // floats are passed as right-justified 8-byte values.
803      if (!StackPtr.getNode())
804        StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
805      unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
806      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
807        Offset += 4;
808      SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
809                                    DAG.getIntPtrConstant(Offset));
810
811      // Emit the store.
812      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
813                                         MachinePointerInfo(),
814                                         false, false, 0));
815    }
816  }
817
818  // Join the stores, which are independent of one another.
819  if (!MemOpChains.empty())
820    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
821                        &MemOpChains[0], MemOpChains.size());
822
823  // Accept direct calls by converting symbolic call addresses to the
824  // associated Target* opcodes.  Force %r1 to be used for indirect
825  // tail calls.
826  SDValue Glue;
827  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
828    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
829    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
830  } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
831    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
832    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
833  } else if (IsTailCall) {
834    Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
835    Glue = Chain.getValue(1);
836    Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
837  }
838
839  // Build a sequence of copy-to-reg nodes, chained and glued together.
840  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
841    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
842                             RegsToPass[I].second, Glue);
843    Glue = Chain.getValue(1);
844  }
845
846  // The first call operand is the chain and the second is the target address.
847  SmallVector<SDValue, 8> Ops;
848  Ops.push_back(Chain);
849  Ops.push_back(Callee);
850
851  // Add argument registers to the end of the list so that they are
852  // known live into the call.
853  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
854    Ops.push_back(DAG.getRegister(RegsToPass[I].first,
855                                  RegsToPass[I].second.getValueType()));
856
857  // Glue the call to the argument copies, if any.
858  if (Glue.getNode())
859    Ops.push_back(Glue);
860
861  // Emit the call.
862  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
863  if (IsTailCall)
864    return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, &Ops[0], Ops.size());
865  Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
866  Glue = Chain.getValue(1);
867
868  // Mark the end of the call, which is glued to the call itself.
869  Chain = DAG.getCALLSEQ_END(Chain,
870                             DAG.getConstant(NumBytes, PtrVT, true),
871                             DAG.getConstant(0, PtrVT, true),
872                             Glue, DL);
873  Glue = Chain.getValue(1);
874
875  // Assign locations to each value returned by this call.
876  SmallVector<CCValAssign, 16> RetLocs;
877  CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
878  RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
879
880  // Copy all of the result registers out of their specified physreg.
881  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
882    CCValAssign &VA = RetLocs[I];
883
884    // Copy the value out, gluing the copy to the end of the call sequence.
885    SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
886                                          VA.getLocVT(), Glue);
887    Chain = RetValue.getValue(1);
888    Glue = RetValue.getValue(2);
889
890    // Convert the value of the return register into the value that's
891    // being returned.
892    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
893  }
894
895  return Chain;
896}
897
898SDValue
899SystemZTargetLowering::LowerReturn(SDValue Chain,
900                                   CallingConv::ID CallConv, bool IsVarArg,
901                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
902                                   const SmallVectorImpl<SDValue> &OutVals,
903                                   SDLoc DL, SelectionDAG &DAG) const {
904  MachineFunction &MF = DAG.getMachineFunction();
905
906  // Assign locations to each returned value.
907  SmallVector<CCValAssign, 16> RetLocs;
908  CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
909  RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
910
911  // Quick exit for void returns
912  if (RetLocs.empty())
913    return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
914
915  // Copy the result values into the output registers.
916  SDValue Glue;
917  SmallVector<SDValue, 4> RetOps;
918  RetOps.push_back(Chain);
919  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
920    CCValAssign &VA = RetLocs[I];
921    SDValue RetValue = OutVals[I];
922
923    // Make the return register live on exit.
924    assert(VA.isRegLoc() && "Can only return in registers!");
925
926    // Promote the value as required.
927    RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
928
929    // Chain and glue the copies together.
930    unsigned Reg = VA.getLocReg();
931    Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
932    Glue = Chain.getValue(1);
933    RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
934  }
935
936  // Update chain and glue.
937  RetOps[0] = Chain;
938  if (Glue.getNode())
939    RetOps.push_back(Glue);
940
941  return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other,
942                     RetOps.data(), RetOps.size());
943}
944
945// CC is a comparison that will be implemented using an integer or
946// floating-point comparison.  Return the condition code mask for
947// a branch on true.  In the integer case, CCMASK_CMP_UO is set for
948// unsigned comparisons and clear for signed ones.  In the floating-point
949// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
950static unsigned CCMaskForCondCode(ISD::CondCode CC) {
951#define CONV(X) \
952  case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
953  case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
954  case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
955
956  switch (CC) {
957  default:
958    llvm_unreachable("Invalid integer condition!");
959
960  CONV(EQ);
961  CONV(NE);
962  CONV(GT);
963  CONV(GE);
964  CONV(LT);
965  CONV(LE);
966
967  case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
968  case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
969  }
970#undef CONV
971}
972
973// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
974// can be converted to a comparison against zero, adjust the operands
975// as necessary.
976static void adjustZeroCmp(SelectionDAG &DAG, bool &IsUnsigned,
977                          SDValue &CmpOp0, SDValue &CmpOp1,
978                          unsigned &CCMask) {
979  if (IsUnsigned)
980    return;
981
982  ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(CmpOp1.getNode());
983  if (!ConstOp1)
984    return;
985
986  int64_t Value = ConstOp1->getSExtValue();
987  if ((Value == -1 && CCMask == SystemZ::CCMASK_CMP_GT) ||
988      (Value == -1 && CCMask == SystemZ::CCMASK_CMP_LE) ||
989      (Value == 1 && CCMask == SystemZ::CCMASK_CMP_LT) ||
990      (Value == 1 && CCMask == SystemZ::CCMASK_CMP_GE)) {
991    CCMask ^= SystemZ::CCMASK_CMP_EQ;
992    CmpOp1 = DAG.getConstant(0, CmpOp1.getValueType());
993  }
994}
995
996// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
997// is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary.
998static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned,
999                             SDValue &CmpOp0, SDValue &CmpOp1,
1000                             unsigned &CCMask) {
1001  // For us to make any changes, it must a comparison between a single-use
1002  // load and a constant.
1003  if (!CmpOp0.hasOneUse() ||
1004      CmpOp0.getOpcode() != ISD::LOAD ||
1005      CmpOp1.getOpcode() != ISD::Constant)
1006    return;
1007
1008  // We must have an 8- or 16-bit load.
1009  LoadSDNode *Load = cast<LoadSDNode>(CmpOp0);
1010  unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1011  if (NumBits != 8 && NumBits != 16)
1012    return;
1013
1014  // The load must be an extending one and the constant must be within the
1015  // range of the unextended value.
1016  ConstantSDNode *Constant = cast<ConstantSDNode>(CmpOp1);
1017  uint64_t Value = Constant->getZExtValue();
1018  uint64_t Mask = (1 << NumBits) - 1;
1019  if (Load->getExtensionType() == ISD::SEXTLOAD) {
1020    int64_t SignedValue = Constant->getSExtValue();
1021    if (uint64_t(SignedValue) + (1ULL << (NumBits - 1)) > Mask)
1022      return;
1023    // Unsigned comparison between two sign-extended values is equivalent
1024    // to unsigned comparison between two zero-extended values.
1025    if (IsUnsigned)
1026      Value &= Mask;
1027    else if (CCMask == SystemZ::CCMASK_CMP_EQ ||
1028             CCMask == SystemZ::CCMASK_CMP_NE)
1029      // Any choice of IsUnsigned is OK for equality comparisons.
1030      // We could use either CHHSI or CLHHSI for 16-bit comparisons,
1031      // but since we use CLHHSI for zero extensions, it seems better
1032      // to be consistent and do the same here.
1033      Value &= Mask, IsUnsigned = true;
1034    else if (NumBits == 8) {
1035      // Try to treat the comparison as unsigned, so that we can use CLI.
1036      // Adjust CCMask and Value as necessary.
1037      if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT)
1038        // Test whether the high bit of the byte is set.
1039        Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true;
1040      else if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_GE)
1041        // Test whether the high bit of the byte is clear.
1042        Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true;
1043      else
1044        // No instruction exists for this combination.
1045        return;
1046    }
1047  } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1048    if (Value > Mask)
1049      return;
1050    // Signed comparison between two zero-extended values is equivalent
1051    // to unsigned comparison.
1052    IsUnsigned = true;
1053  } else
1054    return;
1055
1056  // Make sure that the first operand is an i32 of the right extension type.
1057  ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD;
1058  if (CmpOp0.getValueType() != MVT::i32 ||
1059      Load->getExtensionType() != ExtType)
1060    CmpOp0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1061                            Load->getChain(), Load->getBasePtr(),
1062                            Load->getPointerInfo(), Load->getMemoryVT(),
1063                            Load->isVolatile(), Load->isNonTemporal(),
1064                            Load->getAlignment());
1065
1066  // Make sure that the second operand is an i32 with the right value.
1067  if (CmpOp1.getValueType() != MVT::i32 ||
1068      Value != Constant->getZExtValue())
1069    CmpOp1 = DAG.getConstant(Value, MVT::i32);
1070}
1071
1072// Return true if Op is either an unextended load, or a load suitable
1073// for integer register-memory comparisons of type ICmpType.
1074static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1075  LoadSDNode *Load = dyn_cast<LoadSDNode>(Op.getNode());
1076  if (Load) {
1077    // There are no instructions to compare a register with a memory byte.
1078    if (Load->getMemoryVT() == MVT::i8)
1079      return false;
1080    // Otherwise decide on extension type.
1081    switch (Load->getExtensionType()) {
1082    case ISD::NON_EXTLOAD:
1083      return true;
1084    case ISD::SEXTLOAD:
1085      return ICmpType != SystemZICMP::UnsignedOnly;
1086    case ISD::ZEXTLOAD:
1087      return ICmpType != SystemZICMP::SignedOnly;
1088    default:
1089      break;
1090    }
1091  }
1092  return false;
1093}
1094
1095// Return true if it is better to swap comparison operands Op0 and Op1.
1096// ICmpType is the type of an integer comparison.
1097static bool shouldSwapCmpOperands(SDValue Op0, SDValue Op1,
1098                                  unsigned ICmpType) {
1099  // Leave f128 comparisons alone, since they have no memory forms.
1100  if (Op0.getValueType() == MVT::f128)
1101    return false;
1102
1103  // Always keep a floating-point constant second, since comparisons with
1104  // zero can use LOAD TEST and comparisons with other constants make a
1105  // natural memory operand.
1106  if (isa<ConstantFPSDNode>(Op1))
1107    return false;
1108
1109  // Never swap comparisons with zero since there are many ways to optimize
1110  // those later.
1111  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
1112  if (COp1 && COp1->getZExtValue() == 0)
1113    return false;
1114
1115  // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1116  // In that case we generally prefer the memory to be second.
1117  if ((isNaturalMemoryOperand(Op0, ICmpType) && Op0.hasOneUse()) &&
1118      !(isNaturalMemoryOperand(Op1, ICmpType) && Op1.hasOneUse())) {
1119    // The only exceptions are when the second operand is a constant and
1120    // we can use things like CHHSI.
1121    if (!COp1)
1122      return true;
1123    // The unsigned memory-immediate instructions can handle 16-bit
1124    // unsigned integers.
1125    if (ICmpType != SystemZICMP::SignedOnly &&
1126        isUInt<16>(COp1->getZExtValue()))
1127      return false;
1128    // The signed memory-immediate instructions can handle 16-bit
1129    // signed integers.
1130    if (ICmpType != SystemZICMP::UnsignedOnly &&
1131        isInt<16>(COp1->getSExtValue()))
1132      return false;
1133    return true;
1134  }
1135  return false;
1136}
1137
1138// Check whether the CC value produced by TEST UNDER MASK is descriptive
1139// enough to handle an AND with Mask followed by a comparison of type Opcode
1140// with CmpVal.  CCMask says which comparison result is being tested and
1141// BitSize is the number of bits in the operands.  Return the CC mask that
1142// should be used for the TEST UNDER MASK result, or 0 if the condition is
1143// too complex.
1144static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1145                                     uint64_t Mask, uint64_t CmpVal,
1146                                     unsigned ICmpType) {
1147  assert(Mask != 0 && "ANDs with zero should have been removed by now");
1148
1149  // Work out the masks for the lowest and highest bits.
1150  unsigned HighShift = 63 - countLeadingZeros(Mask);
1151  uint64_t High = uint64_t(1) << HighShift;
1152  uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1153
1154  // Signed ordered comparisons are effectively unsigned if the sign
1155  // bit is dropped.
1156  bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
1157
1158  // Check for equality comparisons with 0, or the equivalent.
1159  if (CmpVal == 0) {
1160    if (CCMask == SystemZ::CCMASK_CMP_EQ)
1161      return SystemZ::CCMASK_TM_ALL_0;
1162    if (CCMask == SystemZ::CCMASK_CMP_NE)
1163      return SystemZ::CCMASK_TM_SOME_1;
1164  }
1165  if (EffectivelyUnsigned && CmpVal <= Low) {
1166    if (CCMask == SystemZ::CCMASK_CMP_LT)
1167      return SystemZ::CCMASK_TM_ALL_0;
1168    if (CCMask == SystemZ::CCMASK_CMP_GE)
1169      return SystemZ::CCMASK_TM_SOME_1;
1170  }
1171  if (EffectivelyUnsigned && CmpVal < Low) {
1172    if (CCMask == SystemZ::CCMASK_CMP_LE)
1173      return SystemZ::CCMASK_TM_ALL_0;
1174    if (CCMask == SystemZ::CCMASK_CMP_GT)
1175      return SystemZ::CCMASK_TM_SOME_1;
1176  }
1177
1178  // Check for equality comparisons with the mask, or the equivalent.
1179  if (CmpVal == Mask) {
1180    if (CCMask == SystemZ::CCMASK_CMP_EQ)
1181      return SystemZ::CCMASK_TM_ALL_1;
1182    if (CCMask == SystemZ::CCMASK_CMP_NE)
1183      return SystemZ::CCMASK_TM_SOME_0;
1184  }
1185  if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1186    if (CCMask == SystemZ::CCMASK_CMP_GT)
1187      return SystemZ::CCMASK_TM_ALL_1;
1188    if (CCMask == SystemZ::CCMASK_CMP_LE)
1189      return SystemZ::CCMASK_TM_SOME_0;
1190  }
1191  if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1192    if (CCMask == SystemZ::CCMASK_CMP_GE)
1193      return SystemZ::CCMASK_TM_ALL_1;
1194    if (CCMask == SystemZ::CCMASK_CMP_LT)
1195      return SystemZ::CCMASK_TM_SOME_0;
1196  }
1197
1198  // Check for ordered comparisons with the top bit.
1199  if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1200    if (CCMask == SystemZ::CCMASK_CMP_LE)
1201      return SystemZ::CCMASK_TM_MSB_0;
1202    if (CCMask == SystemZ::CCMASK_CMP_GT)
1203      return SystemZ::CCMASK_TM_MSB_1;
1204  }
1205  if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1206    if (CCMask == SystemZ::CCMASK_CMP_LT)
1207      return SystemZ::CCMASK_TM_MSB_0;
1208    if (CCMask == SystemZ::CCMASK_CMP_GE)
1209      return SystemZ::CCMASK_TM_MSB_1;
1210  }
1211
1212  // If there are just two bits, we can do equality checks for Low and High
1213  // as well.
1214  if (Mask == Low + High) {
1215    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1216      return SystemZ::CCMASK_TM_MIXED_MSB_0;
1217    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1218      return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1219    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1220      return SystemZ::CCMASK_TM_MIXED_MSB_1;
1221    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1222      return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1223  }
1224
1225  // Looks like we've exhausted our options.
1226  return 0;
1227}
1228
1229// See whether the comparison (Opcode CmpOp0, CmpOp1, ICmpType) can be
1230// implemented as a TEST UNDER MASK instruction when the condition being
1231// tested is as described by CCValid and CCMask.  Update the arguments
1232// with the TM version if so.
1233static void adjustForTestUnderMask(unsigned &Opcode, SDValue &CmpOp0,
1234                                   SDValue &CmpOp1, unsigned &CCValid,
1235                                   unsigned &CCMask, unsigned &ICmpType) {
1236  // Check that we have a comparison with a constant.
1237  ConstantSDNode *ConstCmpOp1 = dyn_cast<ConstantSDNode>(CmpOp1);
1238  if (!ConstCmpOp1)
1239    return;
1240
1241  // Check whether the nonconstant input is an AND with a constant mask.
1242  if (CmpOp0.getOpcode() != ISD::AND)
1243    return;
1244  SDValue AndOp0 = CmpOp0.getOperand(0);
1245  SDValue AndOp1 = CmpOp0.getOperand(1);
1246  ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(AndOp1.getNode());
1247  if (!Mask)
1248    return;
1249
1250  // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1251  uint64_t MaskVal = Mask->getZExtValue();
1252  if (!SystemZ::isImmLL(MaskVal) && !SystemZ::isImmLH(MaskVal) &&
1253      !SystemZ::isImmHL(MaskVal) && !SystemZ::isImmHH(MaskVal))
1254    return;
1255
1256  // Check whether the combination of mask, comparison value and comparison
1257  // type are suitable.
1258  unsigned BitSize = CmpOp0.getValueType().getSizeInBits();
1259  unsigned NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal,
1260                                            ConstCmpOp1->getZExtValue(),
1261                                            ICmpType);
1262  if (!NewCCMask)
1263    return;
1264
1265  // Go ahead and make the change.
1266  Opcode = SystemZISD::TM;
1267  CmpOp0 = AndOp0;
1268  CmpOp1 = AndOp1;
1269  ICmpType = (bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
1270              bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
1271  CCValid = SystemZ::CCMASK_TM;
1272  CCMask = NewCCMask;
1273}
1274
1275// Return a target node that compares CmpOp0 with CmpOp1 and stores a
1276// 2-bit result in CC.  Set CCValid to the CCMASK_* of all possible
1277// 2-bit results and CCMask to the subset of those results that are
1278// associated with Cond.
1279static SDValue emitCmp(const SystemZTargetMachine &TM, SelectionDAG &DAG,
1280                       SDLoc DL, SDValue CmpOp0, SDValue CmpOp1,
1281                       ISD::CondCode Cond, unsigned &CCValid,
1282                       unsigned &CCMask) {
1283  bool IsUnsigned = false;
1284  CCMask = CCMaskForCondCode(Cond);
1285  unsigned Opcode, ICmpType = 0;
1286  if (CmpOp0.getValueType().isFloatingPoint()) {
1287    CCValid = SystemZ::CCMASK_FCMP;
1288    Opcode = SystemZISD::FCMP;
1289  } else {
1290    IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO;
1291    CCValid = SystemZ::CCMASK_ICMP;
1292    CCMask &= CCValid;
1293    adjustZeroCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
1294    adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
1295    Opcode = SystemZISD::ICMP;
1296    // Choose the type of comparison.  Equality and inequality tests can
1297    // use either signed or unsigned comparisons.  The choice also doesn't
1298    // matter if both sign bits are known to be clear.  In those cases we
1299    // want to give the main isel code the freedom to choose whichever
1300    // form fits best.
1301    if (CCMask == SystemZ::CCMASK_CMP_EQ ||
1302        CCMask == SystemZ::CCMASK_CMP_NE ||
1303        (DAG.SignBitIsZero(CmpOp0) && DAG.SignBitIsZero(CmpOp1)))
1304      ICmpType = SystemZICMP::Any;
1305    else if (IsUnsigned)
1306      ICmpType = SystemZICMP::UnsignedOnly;
1307    else
1308      ICmpType = SystemZICMP::SignedOnly;
1309  }
1310
1311  if (shouldSwapCmpOperands(CmpOp0, CmpOp1, ICmpType)) {
1312    std::swap(CmpOp0, CmpOp1);
1313    CCMask = ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1314              (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1315              (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1316              (CCMask & SystemZ::CCMASK_CMP_UO));
1317  }
1318
1319  adjustForTestUnderMask(Opcode, CmpOp0, CmpOp1, CCValid, CCMask, ICmpType);
1320  if (Opcode == SystemZISD::ICMP || Opcode == SystemZISD::TM)
1321    return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1,
1322                       DAG.getConstant(ICmpType, MVT::i32));
1323  return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1);
1324}
1325
1326// Implement a 32-bit *MUL_LOHI operation by extending both operands to
1327// 64 bits.  Extend is the extension type to use.  Store the high part
1328// in Hi and the low part in Lo.
1329static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
1330                            unsigned Extend, SDValue Op0, SDValue Op1,
1331                            SDValue &Hi, SDValue &Lo) {
1332  Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
1333  Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
1334  SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
1335  Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
1336  Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
1337  Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
1338}
1339
1340// Lower a binary operation that produces two VT results, one in each
1341// half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
1342// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
1343// on the extended Op0 and (unextended) Op1.  Store the even register result
1344// in Even and the odd register result in Odd.
1345static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
1346                             unsigned Extend, unsigned Opcode,
1347                             SDValue Op0, SDValue Op1,
1348                             SDValue &Even, SDValue &Odd) {
1349  SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
1350  SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
1351                               SDValue(In128, 0), Op1);
1352  bool Is32Bit = is32Bit(VT);
1353  SDValue SubReg0 = DAG.getTargetConstant(SystemZ::even128(Is32Bit), VT);
1354  SDValue SubReg1 = DAG.getTargetConstant(SystemZ::odd128(Is32Bit), VT);
1355  SDNode *Reg0 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1356                                    VT, Result, SubReg0);
1357  SDNode *Reg1 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1358                                    VT, Result, SubReg1);
1359  Even = SDValue(Reg0, 0);
1360  Odd = SDValue(Reg1, 0);
1361}
1362
1363SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1364  SDValue Chain    = Op.getOperand(0);
1365  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1366  SDValue CmpOp0   = Op.getOperand(2);
1367  SDValue CmpOp1   = Op.getOperand(3);
1368  SDValue Dest     = Op.getOperand(4);
1369  SDLoc DL(Op);
1370
1371  unsigned CCValid, CCMask;
1372  SDValue Flags = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1373  return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
1374                     Chain, DAG.getConstant(CCValid, MVT::i32),
1375                     DAG.getConstant(CCMask, MVT::i32), Dest, Flags);
1376}
1377
1378SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
1379                                              SelectionDAG &DAG) const {
1380  SDValue CmpOp0   = Op.getOperand(0);
1381  SDValue CmpOp1   = Op.getOperand(1);
1382  SDValue TrueOp   = Op.getOperand(2);
1383  SDValue FalseOp  = Op.getOperand(3);
1384  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1385  SDLoc DL(Op);
1386
1387  unsigned CCValid, CCMask;
1388  SDValue Flags = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1389
1390  SmallVector<SDValue, 5> Ops;
1391  Ops.push_back(TrueOp);
1392  Ops.push_back(FalseOp);
1393  Ops.push_back(DAG.getConstant(CCValid, MVT::i32));
1394  Ops.push_back(DAG.getConstant(CCMask, MVT::i32));
1395  Ops.push_back(Flags);
1396
1397  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1398  return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size());
1399}
1400
1401SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
1402                                                  SelectionDAG &DAG) const {
1403  SDLoc DL(Node);
1404  const GlobalValue *GV = Node->getGlobal();
1405  int64_t Offset = Node->getOffset();
1406  EVT PtrVT = getPointerTy();
1407  Reloc::Model RM = TM.getRelocationModel();
1408  CodeModel::Model CM = TM.getCodeModel();
1409
1410  SDValue Result;
1411  if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
1412    // Make sure that the offset is aligned to a halfword.  If it isn't,
1413    // create an "anchor" at the previous 12-bit boundary.
1414    // FIXME check whether there is a better way of handling this.
1415    if (Offset & 1) {
1416      Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
1417                                          Offset & ~uint64_t(0xfff));
1418      Offset &= 0xfff;
1419    } else {
1420      Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Offset);
1421      Offset = 0;
1422    }
1423    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1424  } else {
1425    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
1426    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1427    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
1428                         MachinePointerInfo::getGOT(), false, false, false, 0);
1429  }
1430
1431  // If there was a non-zero offset that we didn't fold, create an explicit
1432  // addition for it.
1433  if (Offset != 0)
1434    Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
1435                         DAG.getConstant(Offset, PtrVT));
1436
1437  return Result;
1438}
1439
1440SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
1441						     SelectionDAG &DAG) const {
1442  SDLoc DL(Node);
1443  const GlobalValue *GV = Node->getGlobal();
1444  EVT PtrVT = getPointerTy();
1445  TLSModel::Model model = TM.getTLSModel(GV);
1446
1447  if (model != TLSModel::LocalExec)
1448    llvm_unreachable("only local-exec TLS mode supported");
1449
1450  // The high part of the thread pointer is in access register 0.
1451  SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1452                             DAG.getConstant(0, MVT::i32));
1453  TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
1454
1455  // The low part of the thread pointer is in access register 1.
1456  SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1457                             DAG.getConstant(1, MVT::i32));
1458  TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
1459
1460  // Merge them into a single 64-bit address.
1461  SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
1462				    DAG.getConstant(32, PtrVT));
1463  SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
1464
1465  // Get the offset of GA from the thread pointer.
1466  SystemZConstantPoolValue *CPV =
1467    SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
1468
1469  // Force the offset into the constant pool and load it from there.
1470  SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
1471  SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
1472			       CPAddr, MachinePointerInfo::getConstantPool(),
1473			       false, false, false, 0);
1474
1475  // Add the base and offset together.
1476  return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
1477}
1478
1479SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
1480                                                 SelectionDAG &DAG) const {
1481  SDLoc DL(Node);
1482  const BlockAddress *BA = Node->getBlockAddress();
1483  int64_t Offset = Node->getOffset();
1484  EVT PtrVT = getPointerTy();
1485
1486  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
1487  Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1488  return Result;
1489}
1490
1491SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
1492                                              SelectionDAG &DAG) const {
1493  SDLoc DL(JT);
1494  EVT PtrVT = getPointerTy();
1495  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1496
1497  // Use LARL to load the address of the table.
1498  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1499}
1500
1501SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
1502                                                 SelectionDAG &DAG) const {
1503  SDLoc DL(CP);
1504  EVT PtrVT = getPointerTy();
1505
1506  SDValue Result;
1507  if (CP->isMachineConstantPoolEntry())
1508    Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1509				       CP->getAlignment());
1510  else
1511    Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1512				       CP->getAlignment(), CP->getOffset());
1513
1514  // Use LARL to load the address of the constant pool entry.
1515  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1516}
1517
1518SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
1519                                            SelectionDAG &DAG) const {
1520  SDLoc DL(Op);
1521  SDValue In = Op.getOperand(0);
1522  EVT InVT = In.getValueType();
1523  EVT ResVT = Op.getValueType();
1524
1525  SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
1526  SDValue Shift32 = DAG.getConstant(32, MVT::i64);
1527  if (InVT == MVT::i32 && ResVT == MVT::f32) {
1528    SDValue In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
1529    SDValue Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, Shift32);
1530    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Shift);
1531    SDNode *Out = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1532                                     MVT::f32, Out64, SubReg32);
1533    return SDValue(Out, 0);
1534  }
1535  if (InVT == MVT::f32 && ResVT == MVT::i32) {
1536    SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
1537    SDNode *In64 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
1538                                      MVT::f64, SDValue(U64, 0), In, SubReg32);
1539    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, SDValue(In64, 0));
1540    SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, Shift32);
1541    SDValue Out = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
1542    return Out;
1543  }
1544  llvm_unreachable("Unexpected bitcast combination");
1545}
1546
1547SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
1548                                            SelectionDAG &DAG) const {
1549  MachineFunction &MF = DAG.getMachineFunction();
1550  SystemZMachineFunctionInfo *FuncInfo =
1551    MF.getInfo<SystemZMachineFunctionInfo>();
1552  EVT PtrVT = getPointerTy();
1553
1554  SDValue Chain   = Op.getOperand(0);
1555  SDValue Addr    = Op.getOperand(1);
1556  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1557  SDLoc DL(Op);
1558
1559  // The initial values of each field.
1560  const unsigned NumFields = 4;
1561  SDValue Fields[NumFields] = {
1562    DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
1563    DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
1564    DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
1565    DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
1566  };
1567
1568  // Store each field into its respective slot.
1569  SDValue MemOps[NumFields];
1570  unsigned Offset = 0;
1571  for (unsigned I = 0; I < NumFields; ++I) {
1572    SDValue FieldAddr = Addr;
1573    if (Offset != 0)
1574      FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
1575                              DAG.getIntPtrConstant(Offset));
1576    MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
1577                             MachinePointerInfo(SV, Offset),
1578                             false, false, 0);
1579    Offset += 8;
1580  }
1581  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields);
1582}
1583
1584SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
1585                                           SelectionDAG &DAG) const {
1586  SDValue Chain      = Op.getOperand(0);
1587  SDValue DstPtr     = Op.getOperand(1);
1588  SDValue SrcPtr     = Op.getOperand(2);
1589  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1590  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1591  SDLoc DL(Op);
1592
1593  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
1594                       /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
1595                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
1596}
1597
1598SDValue SystemZTargetLowering::
1599lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
1600  SDValue Chain = Op.getOperand(0);
1601  SDValue Size  = Op.getOperand(1);
1602  SDLoc DL(Op);
1603
1604  unsigned SPReg = getStackPointerRegisterToSaveRestore();
1605
1606  // Get a reference to the stack pointer.
1607  SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
1608
1609  // Get the new stack pointer value.
1610  SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
1611
1612  // Copy the new stack pointer back.
1613  Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
1614
1615  // The allocated data lives above the 160 bytes allocated for the standard
1616  // frame, plus any outgoing stack arguments.  We don't know how much that
1617  // amounts to yet, so emit a special ADJDYNALLOC placeholder.
1618  SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
1619  SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
1620
1621  SDValue Ops[2] = { Result, Chain };
1622  return DAG.getMergeValues(Ops, 2, DL);
1623}
1624
1625SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
1626                                              SelectionDAG &DAG) const {
1627  EVT VT = Op.getValueType();
1628  SDLoc DL(Op);
1629  SDValue Ops[2];
1630  if (is32Bit(VT))
1631    // Just do a normal 64-bit multiplication and extract the results.
1632    // We define this so that it can be used for constant division.
1633    lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
1634                    Op.getOperand(1), Ops[1], Ops[0]);
1635  else {
1636    // Do a full 128-bit multiplication based on UMUL_LOHI64:
1637    //
1638    //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
1639    //
1640    // but using the fact that the upper halves are either all zeros
1641    // or all ones:
1642    //
1643    //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
1644    //
1645    // and grouping the right terms together since they are quicker than the
1646    // multiplication:
1647    //
1648    //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
1649    SDValue C63 = DAG.getConstant(63, MVT::i64);
1650    SDValue LL = Op.getOperand(0);
1651    SDValue RL = Op.getOperand(1);
1652    SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
1653    SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
1654    // UMUL_LOHI64 returns the low result in the odd register and the high
1655    // result in the even register.  SMUL_LOHI is defined to return the
1656    // low half first, so the results are in reverse order.
1657    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
1658                     LL, RL, Ops[1], Ops[0]);
1659    SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
1660    SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
1661    SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
1662    Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
1663  }
1664  return DAG.getMergeValues(Ops, 2, DL);
1665}
1666
1667SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
1668                                              SelectionDAG &DAG) const {
1669  EVT VT = Op.getValueType();
1670  SDLoc DL(Op);
1671  SDValue Ops[2];
1672  if (is32Bit(VT))
1673    // Just do a normal 64-bit multiplication and extract the results.
1674    // We define this so that it can be used for constant division.
1675    lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
1676                    Op.getOperand(1), Ops[1], Ops[0]);
1677  else
1678    // UMUL_LOHI64 returns the low result in the odd register and the high
1679    // result in the even register.  UMUL_LOHI is defined to return the
1680    // low half first, so the results are in reverse order.
1681    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
1682                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1683  return DAG.getMergeValues(Ops, 2, DL);
1684}
1685
1686SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
1687                                            SelectionDAG &DAG) const {
1688  SDValue Op0 = Op.getOperand(0);
1689  SDValue Op1 = Op.getOperand(1);
1690  EVT VT = Op.getValueType();
1691  SDLoc DL(Op);
1692  unsigned Opcode;
1693
1694  // We use DSGF for 32-bit division.
1695  if (is32Bit(VT)) {
1696    Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
1697    Opcode = SystemZISD::SDIVREM32;
1698  } else if (DAG.ComputeNumSignBits(Op1) > 32) {
1699    Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
1700    Opcode = SystemZISD::SDIVREM32;
1701  } else
1702    Opcode = SystemZISD::SDIVREM64;
1703
1704  // DSG(F) takes a 64-bit dividend, so the even register in the GR128
1705  // input is "don't care".  The instruction returns the remainder in
1706  // the even register and the quotient in the odd register.
1707  SDValue Ops[2];
1708  lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
1709                   Op0, Op1, Ops[1], Ops[0]);
1710  return DAG.getMergeValues(Ops, 2, DL);
1711}
1712
1713SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
1714                                            SelectionDAG &DAG) const {
1715  EVT VT = Op.getValueType();
1716  SDLoc DL(Op);
1717
1718  // DL(G) uses a double-width dividend, so we need to clear the even
1719  // register in the GR128 input.  The instruction returns the remainder
1720  // in the even register and the quotient in the odd register.
1721  SDValue Ops[2];
1722  if (is32Bit(VT))
1723    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
1724                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1725  else
1726    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
1727                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1728  return DAG.getMergeValues(Ops, 2, DL);
1729}
1730
1731SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
1732  assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
1733
1734  // Get the known-zero masks for each operand.
1735  SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
1736  APInt KnownZero[2], KnownOne[2];
1737  DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]);
1738  DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]);
1739
1740  // See if the upper 32 bits of one operand and the lower 32 bits of the
1741  // other are known zero.  They are the low and high operands respectively.
1742  uint64_t Masks[] = { KnownZero[0].getZExtValue(),
1743                       KnownZero[1].getZExtValue() };
1744  unsigned High, Low;
1745  if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
1746    High = 1, Low = 0;
1747  else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
1748    High = 0, Low = 1;
1749  else
1750    return Op;
1751
1752  SDValue LowOp = Ops[Low];
1753  SDValue HighOp = Ops[High];
1754
1755  // If the high part is a constant, we're better off using IILH.
1756  if (HighOp.getOpcode() == ISD::Constant)
1757    return Op;
1758
1759  // If the low part is a constant that is outside the range of LHI,
1760  // then we're better off using IILF.
1761  if (LowOp.getOpcode() == ISD::Constant) {
1762    int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
1763    if (!isInt<16>(Value))
1764      return Op;
1765  }
1766
1767  // Check whether the high part is an AND that doesn't change the
1768  // high 32 bits and just masks out low bits.  We can skip it if so.
1769  if (HighOp.getOpcode() == ISD::AND &&
1770      HighOp.getOperand(1).getOpcode() == ISD::Constant) {
1771    ConstantSDNode *MaskNode = cast<ConstantSDNode>(HighOp.getOperand(1));
1772    uint64_t Mask = MaskNode->getZExtValue() | Masks[High];
1773    if ((Mask >> 32) == 0xffffffff)
1774      HighOp = HighOp.getOperand(0);
1775  }
1776
1777  // Take advantage of the fact that all GR32 operations only change the
1778  // low 32 bits by truncating Low to an i32 and inserting it directly
1779  // using a subreg.  The interesting cases are those where the truncation
1780  // can be folded.
1781  SDLoc DL(Op);
1782  SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
1783  SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
1784  SDNode *Result = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
1785                                      MVT::i64, HighOp, Low32, SubReg32);
1786  return SDValue(Result, 0);
1787}
1788
1789// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
1790// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
1791SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
1792                                                SelectionDAG &DAG,
1793                                                unsigned Opcode) const {
1794  AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
1795
1796  // 32-bit operations need no code outside the main loop.
1797  EVT NarrowVT = Node->getMemoryVT();
1798  EVT WideVT = MVT::i32;
1799  if (NarrowVT == WideVT)
1800    return Op;
1801
1802  int64_t BitSize = NarrowVT.getSizeInBits();
1803  SDValue ChainIn = Node->getChain();
1804  SDValue Addr = Node->getBasePtr();
1805  SDValue Src2 = Node->getVal();
1806  MachineMemOperand *MMO = Node->getMemOperand();
1807  SDLoc DL(Node);
1808  EVT PtrVT = Addr.getValueType();
1809
1810  // Convert atomic subtracts of constants into additions.
1811  if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
1812    if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) {
1813      Opcode = SystemZISD::ATOMIC_LOADW_ADD;
1814      Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
1815    }
1816
1817  // Get the address of the containing word.
1818  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
1819                                    DAG.getConstant(-4, PtrVT));
1820
1821  // Get the number of bits that the word must be rotated left in order
1822  // to bring the field to the top bits of a GR32.
1823  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
1824                                 DAG.getConstant(3, PtrVT));
1825  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
1826
1827  // Get the complementing shift amount, for rotating a field in the top
1828  // bits back to its proper position.
1829  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
1830                                    DAG.getConstant(0, WideVT), BitShift);
1831
1832  // Extend the source operand to 32 bits and prepare it for the inner loop.
1833  // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
1834  // operations require the source to be shifted in advance.  (This shift
1835  // can be folded if the source is constant.)  For AND and NAND, the lower
1836  // bits must be set, while for other opcodes they should be left clear.
1837  if (Opcode != SystemZISD::ATOMIC_SWAPW)
1838    Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
1839                       DAG.getConstant(32 - BitSize, WideVT));
1840  if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
1841      Opcode == SystemZISD::ATOMIC_LOADW_NAND)
1842    Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
1843                       DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
1844
1845  // Construct the ATOMIC_LOADW_* node.
1846  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
1847  SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
1848                    DAG.getConstant(BitSize, WideVT) };
1849  SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
1850                                             array_lengthof(Ops),
1851                                             NarrowVT, MMO);
1852
1853  // Rotate the result of the final CS so that the field is in the lower
1854  // bits of a GR32, then truncate it.
1855  SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
1856                                    DAG.getConstant(BitSize, WideVT));
1857  SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
1858
1859  SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
1860  return DAG.getMergeValues(RetOps, 2, DL);
1861}
1862
1863// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
1864// into a fullword ATOMIC_CMP_SWAPW operation.
1865SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
1866                                                    SelectionDAG &DAG) const {
1867  AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
1868
1869  // We have native support for 32-bit compare and swap.
1870  EVT NarrowVT = Node->getMemoryVT();
1871  EVT WideVT = MVT::i32;
1872  if (NarrowVT == WideVT)
1873    return Op;
1874
1875  int64_t BitSize = NarrowVT.getSizeInBits();
1876  SDValue ChainIn = Node->getOperand(0);
1877  SDValue Addr = Node->getOperand(1);
1878  SDValue CmpVal = Node->getOperand(2);
1879  SDValue SwapVal = Node->getOperand(3);
1880  MachineMemOperand *MMO = Node->getMemOperand();
1881  SDLoc DL(Node);
1882  EVT PtrVT = Addr.getValueType();
1883
1884  // Get the address of the containing word.
1885  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
1886                                    DAG.getConstant(-4, PtrVT));
1887
1888  // Get the number of bits that the word must be rotated left in order
1889  // to bring the field to the top bits of a GR32.
1890  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
1891                                 DAG.getConstant(3, PtrVT));
1892  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
1893
1894  // Get the complementing shift amount, for rotating a field in the top
1895  // bits back to its proper position.
1896  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
1897                                    DAG.getConstant(0, WideVT), BitShift);
1898
1899  // Construct the ATOMIC_CMP_SWAPW node.
1900  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
1901  SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
1902                    NegBitShift, DAG.getConstant(BitSize, WideVT) };
1903  SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
1904                                             VTList, Ops, array_lengthof(Ops),
1905                                             NarrowVT, MMO);
1906  return AtomicOp;
1907}
1908
1909SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
1910                                              SelectionDAG &DAG) const {
1911  MachineFunction &MF = DAG.getMachineFunction();
1912  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
1913  return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
1914                            SystemZ::R15D, Op.getValueType());
1915}
1916
1917SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
1918                                                 SelectionDAG &DAG) const {
1919  MachineFunction &MF = DAG.getMachineFunction();
1920  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
1921  return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
1922                          SystemZ::R15D, Op.getOperand(1));
1923}
1924
1925SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
1926                                             SelectionDAG &DAG) const {
1927  bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
1928  if (!IsData)
1929    // Just preserve the chain.
1930    return Op.getOperand(0);
1931
1932  bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1933  unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
1934  MemIntrinsicSDNode *Node = cast<MemIntrinsicSDNode>(Op.getNode());
1935  SDValue Ops[] = {
1936    Op.getOperand(0),
1937    DAG.getConstant(Code, MVT::i32),
1938    Op.getOperand(1)
1939  };
1940  return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
1941                                 Node->getVTList(), Ops, array_lengthof(Ops),
1942                                 Node->getMemoryVT(), Node->getMemOperand());
1943}
1944
1945SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
1946                                              SelectionDAG &DAG) const {
1947  switch (Op.getOpcode()) {
1948  case ISD::BR_CC:
1949    return lowerBR_CC(Op, DAG);
1950  case ISD::SELECT_CC:
1951    return lowerSELECT_CC(Op, DAG);
1952  case ISD::GlobalAddress:
1953    return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
1954  case ISD::GlobalTLSAddress:
1955    return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
1956  case ISD::BlockAddress:
1957    return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
1958  case ISD::JumpTable:
1959    return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
1960  case ISD::ConstantPool:
1961    return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
1962  case ISD::BITCAST:
1963    return lowerBITCAST(Op, DAG);
1964  case ISD::VASTART:
1965    return lowerVASTART(Op, DAG);
1966  case ISD::VACOPY:
1967    return lowerVACOPY(Op, DAG);
1968  case ISD::DYNAMIC_STACKALLOC:
1969    return lowerDYNAMIC_STACKALLOC(Op, DAG);
1970  case ISD::SMUL_LOHI:
1971    return lowerSMUL_LOHI(Op, DAG);
1972  case ISD::UMUL_LOHI:
1973    return lowerUMUL_LOHI(Op, DAG);
1974  case ISD::SDIVREM:
1975    return lowerSDIVREM(Op, DAG);
1976  case ISD::UDIVREM:
1977    return lowerUDIVREM(Op, DAG);
1978  case ISD::OR:
1979    return lowerOR(Op, DAG);
1980  case ISD::ATOMIC_SWAP:
1981    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_SWAPW);
1982  case ISD::ATOMIC_LOAD_ADD:
1983    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
1984  case ISD::ATOMIC_LOAD_SUB:
1985    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
1986  case ISD::ATOMIC_LOAD_AND:
1987    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
1988  case ISD::ATOMIC_LOAD_OR:
1989    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
1990  case ISD::ATOMIC_LOAD_XOR:
1991    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
1992  case ISD::ATOMIC_LOAD_NAND:
1993    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
1994  case ISD::ATOMIC_LOAD_MIN:
1995    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
1996  case ISD::ATOMIC_LOAD_MAX:
1997    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
1998  case ISD::ATOMIC_LOAD_UMIN:
1999    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
2000  case ISD::ATOMIC_LOAD_UMAX:
2001    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
2002  case ISD::ATOMIC_CMP_SWAP:
2003    return lowerATOMIC_CMP_SWAP(Op, DAG);
2004  case ISD::STACKSAVE:
2005    return lowerSTACKSAVE(Op, DAG);
2006  case ISD::STACKRESTORE:
2007    return lowerSTACKRESTORE(Op, DAG);
2008  case ISD::PREFETCH:
2009    return lowerPREFETCH(Op, DAG);
2010  default:
2011    llvm_unreachable("Unexpected node to lower");
2012  }
2013}
2014
2015const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
2016#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
2017  switch (Opcode) {
2018    OPCODE(RET_FLAG);
2019    OPCODE(CALL);
2020    OPCODE(SIBCALL);
2021    OPCODE(PCREL_WRAPPER);
2022    OPCODE(ICMP);
2023    OPCODE(FCMP);
2024    OPCODE(TM);
2025    OPCODE(BR_CCMASK);
2026    OPCODE(SELECT_CCMASK);
2027    OPCODE(ADJDYNALLOC);
2028    OPCODE(EXTRACT_ACCESS);
2029    OPCODE(UMUL_LOHI64);
2030    OPCODE(SDIVREM64);
2031    OPCODE(UDIVREM32);
2032    OPCODE(UDIVREM64);
2033    OPCODE(MVC);
2034    OPCODE(MVC_LOOP);
2035    OPCODE(NC);
2036    OPCODE(NC_LOOP);
2037    OPCODE(OC);
2038    OPCODE(OC_LOOP);
2039    OPCODE(XC);
2040    OPCODE(XC_LOOP);
2041    OPCODE(CLC);
2042    OPCODE(CLC_LOOP);
2043    OPCODE(STRCMP);
2044    OPCODE(STPCPY);
2045    OPCODE(SEARCH_STRING);
2046    OPCODE(IPM);
2047    OPCODE(ATOMIC_SWAPW);
2048    OPCODE(ATOMIC_LOADW_ADD);
2049    OPCODE(ATOMIC_LOADW_SUB);
2050    OPCODE(ATOMIC_LOADW_AND);
2051    OPCODE(ATOMIC_LOADW_OR);
2052    OPCODE(ATOMIC_LOADW_XOR);
2053    OPCODE(ATOMIC_LOADW_NAND);
2054    OPCODE(ATOMIC_LOADW_MIN);
2055    OPCODE(ATOMIC_LOADW_MAX);
2056    OPCODE(ATOMIC_LOADW_UMIN);
2057    OPCODE(ATOMIC_LOADW_UMAX);
2058    OPCODE(ATOMIC_CMP_SWAPW);
2059    OPCODE(PREFETCH);
2060  }
2061  return NULL;
2062#undef OPCODE
2063}
2064
2065//===----------------------------------------------------------------------===//
2066// Custom insertion
2067//===----------------------------------------------------------------------===//
2068
2069// Create a new basic block after MBB.
2070static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
2071  MachineFunction &MF = *MBB->getParent();
2072  MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
2073  MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB);
2074  return NewMBB;
2075}
2076
2077// Split MBB after MI and return the new block (the one that contains
2078// instructions after MI).
2079static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
2080                                          MachineBasicBlock *MBB) {
2081  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2082  NewMBB->splice(NewMBB->begin(), MBB,
2083                 llvm::next(MachineBasicBlock::iterator(MI)),
2084                 MBB->end());
2085  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2086  return NewMBB;
2087}
2088
2089// Split MBB before MI and return the new block (the one that contains MI).
2090static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
2091                                           MachineBasicBlock *MBB) {
2092  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2093  NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
2094  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2095  return NewMBB;
2096}
2097
2098// Force base value Base into a register before MI.  Return the register.
2099static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
2100                         const SystemZInstrInfo *TII) {
2101  if (Base.isReg())
2102    return Base.getReg();
2103
2104  MachineBasicBlock *MBB = MI->getParent();
2105  MachineFunction &MF = *MBB->getParent();
2106  MachineRegisterInfo &MRI = MF.getRegInfo();
2107
2108  unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2109  BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
2110    .addOperand(Base).addImm(0).addReg(0);
2111  return Reg;
2112}
2113
2114// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
2115MachineBasicBlock *
2116SystemZTargetLowering::emitSelect(MachineInstr *MI,
2117                                  MachineBasicBlock *MBB) const {
2118  const SystemZInstrInfo *TII = TM.getInstrInfo();
2119
2120  unsigned DestReg  = MI->getOperand(0).getReg();
2121  unsigned TrueReg  = MI->getOperand(1).getReg();
2122  unsigned FalseReg = MI->getOperand(2).getReg();
2123  unsigned CCValid  = MI->getOperand(3).getImm();
2124  unsigned CCMask   = MI->getOperand(4).getImm();
2125  DebugLoc DL       = MI->getDebugLoc();
2126
2127  MachineBasicBlock *StartMBB = MBB;
2128  MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
2129  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2130
2131  //  StartMBB:
2132  //   BRC CCMask, JoinMBB
2133  //   # fallthrough to FalseMBB
2134  MBB = StartMBB;
2135  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2136    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2137  MBB->addSuccessor(JoinMBB);
2138  MBB->addSuccessor(FalseMBB);
2139
2140  //  FalseMBB:
2141  //   # fallthrough to JoinMBB
2142  MBB = FalseMBB;
2143  MBB->addSuccessor(JoinMBB);
2144
2145  //  JoinMBB:
2146  //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
2147  //  ...
2148  MBB = JoinMBB;
2149  BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
2150    .addReg(TrueReg).addMBB(StartMBB)
2151    .addReg(FalseReg).addMBB(FalseMBB);
2152
2153  MI->eraseFromParent();
2154  return JoinMBB;
2155}
2156
2157// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
2158// StoreOpcode is the store to use and Invert says whether the store should
2159// happen when the condition is false rather than true.  If a STORE ON
2160// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
2161MachineBasicBlock *
2162SystemZTargetLowering::emitCondStore(MachineInstr *MI,
2163                                     MachineBasicBlock *MBB,
2164                                     unsigned StoreOpcode, unsigned STOCOpcode,
2165                                     bool Invert) const {
2166  const SystemZInstrInfo *TII = TM.getInstrInfo();
2167
2168  unsigned SrcReg     = MI->getOperand(0).getReg();
2169  MachineOperand Base = MI->getOperand(1);
2170  int64_t Disp        = MI->getOperand(2).getImm();
2171  unsigned IndexReg   = MI->getOperand(3).getReg();
2172  unsigned CCValid    = MI->getOperand(4).getImm();
2173  unsigned CCMask     = MI->getOperand(5).getImm();
2174  DebugLoc DL         = MI->getDebugLoc();
2175
2176  StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
2177
2178  // Use STOCOpcode if possible.  We could use different store patterns in
2179  // order to avoid matching the index register, but the performance trade-offs
2180  // might be more complicated in that case.
2181  if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
2182    if (Invert)
2183      CCMask ^= CCValid;
2184    BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
2185      .addReg(SrcReg).addOperand(Base).addImm(Disp)
2186      .addImm(CCValid).addImm(CCMask);
2187    MI->eraseFromParent();
2188    return MBB;
2189  }
2190
2191  // Get the condition needed to branch around the store.
2192  if (!Invert)
2193    CCMask ^= CCValid;
2194
2195  MachineBasicBlock *StartMBB = MBB;
2196  MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
2197  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2198
2199  //  StartMBB:
2200  //   BRC CCMask, JoinMBB
2201  //   # fallthrough to FalseMBB
2202  MBB = StartMBB;
2203  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2204    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2205  MBB->addSuccessor(JoinMBB);
2206  MBB->addSuccessor(FalseMBB);
2207
2208  //  FalseMBB:
2209  //   store %SrcReg, %Disp(%Index,%Base)
2210  //   # fallthrough to JoinMBB
2211  MBB = FalseMBB;
2212  BuildMI(MBB, DL, TII->get(StoreOpcode))
2213    .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
2214  MBB->addSuccessor(JoinMBB);
2215
2216  MI->eraseFromParent();
2217  return JoinMBB;
2218}
2219
2220// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
2221// or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
2222// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
2223// BitSize is the width of the field in bits, or 0 if this is a partword
2224// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
2225// is one of the operands.  Invert says whether the field should be
2226// inverted after performing BinOpcode (e.g. for NAND).
2227MachineBasicBlock *
2228SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
2229                                            MachineBasicBlock *MBB,
2230                                            unsigned BinOpcode,
2231                                            unsigned BitSize,
2232                                            bool Invert) const {
2233  const SystemZInstrInfo *TII = TM.getInstrInfo();
2234  MachineFunction &MF = *MBB->getParent();
2235  MachineRegisterInfo &MRI = MF.getRegInfo();
2236  bool IsSubWord = (BitSize < 32);
2237
2238  // Extract the operands.  Base can be a register or a frame index.
2239  // Src2 can be a register or immediate.
2240  unsigned Dest        = MI->getOperand(0).getReg();
2241  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2242  int64_t Disp         = MI->getOperand(2).getImm();
2243  MachineOperand Src2  = earlyUseOperand(MI->getOperand(3));
2244  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2245  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2246  DebugLoc DL          = MI->getDebugLoc();
2247  if (IsSubWord)
2248    BitSize = MI->getOperand(6).getImm();
2249
2250  // Subword operations use 32-bit registers.
2251  const TargetRegisterClass *RC = (BitSize <= 32 ?
2252                                   &SystemZ::GR32BitRegClass :
2253                                   &SystemZ::GR64BitRegClass);
2254  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2255  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2256
2257  // Get the right opcodes for the displacement.
2258  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2259  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2260  assert(LOpcode && CSOpcode && "Displacement out of range");
2261
2262  // Create virtual registers for temporary results.
2263  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2264  unsigned OldVal        = MRI.createVirtualRegister(RC);
2265  unsigned NewVal        = (BinOpcode || IsSubWord ?
2266                            MRI.createVirtualRegister(RC) : Src2.getReg());
2267  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2268  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2269
2270  // Insert a basic block for the main loop.
2271  MachineBasicBlock *StartMBB = MBB;
2272  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
2273  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2274
2275  //  StartMBB:
2276  //   ...
2277  //   %OrigVal = L Disp(%Base)
2278  //   # fall through to LoopMMB
2279  MBB = StartMBB;
2280  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2281    .addOperand(Base).addImm(Disp).addReg(0);
2282  MBB->addSuccessor(LoopMBB);
2283
2284  //  LoopMBB:
2285  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
2286  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2287  //   %RotatedNewVal = OP %RotatedOldVal, %Src2
2288  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2289  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2290  //   JNE LoopMBB
2291  //   # fall through to DoneMMB
2292  MBB = LoopMBB;
2293  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2294    .addReg(OrigVal).addMBB(StartMBB)
2295    .addReg(Dest).addMBB(LoopMBB);
2296  if (IsSubWord)
2297    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2298      .addReg(OldVal).addReg(BitShift).addImm(0);
2299  if (Invert) {
2300    // Perform the operation normally and then invert every bit of the field.
2301    unsigned Tmp = MRI.createVirtualRegister(RC);
2302    BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
2303      .addReg(RotatedOldVal).addOperand(Src2);
2304    if (BitSize < 32)
2305      // XILF with the upper BitSize bits set.
2306      BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
2307        .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
2308    else if (BitSize == 32)
2309      // XILF with every bit set.
2310      BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
2311        .addReg(Tmp).addImm(~uint32_t(0));
2312    else {
2313      // Use LCGR and add -1 to the result, which is more compact than
2314      // an XILF, XILH pair.
2315      unsigned Tmp2 = MRI.createVirtualRegister(RC);
2316      BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
2317      BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
2318        .addReg(Tmp2).addImm(-1);
2319    }
2320  } else if (BinOpcode)
2321    // A simply binary operation.
2322    BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
2323      .addReg(RotatedOldVal).addOperand(Src2);
2324  else if (IsSubWord)
2325    // Use RISBG to rotate Src2 into position and use it to replace the
2326    // field in RotatedOldVal.
2327    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
2328      .addReg(RotatedOldVal).addReg(Src2.getReg())
2329      .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
2330  if (IsSubWord)
2331    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2332      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2333  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2334    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2335  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2336    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2337  MBB->addSuccessor(LoopMBB);
2338  MBB->addSuccessor(DoneMBB);
2339
2340  MI->eraseFromParent();
2341  return DoneMBB;
2342}
2343
2344// Implement EmitInstrWithCustomInserter for pseudo
2345// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
2346// instruction that should be used to compare the current field with the
2347// minimum or maximum value.  KeepOldMask is the BRC condition-code mask
2348// for when the current field should be kept.  BitSize is the width of
2349// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
2350MachineBasicBlock *
2351SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
2352                                            MachineBasicBlock *MBB,
2353                                            unsigned CompareOpcode,
2354                                            unsigned KeepOldMask,
2355                                            unsigned BitSize) const {
2356  const SystemZInstrInfo *TII = TM.getInstrInfo();
2357  MachineFunction &MF = *MBB->getParent();
2358  MachineRegisterInfo &MRI = MF.getRegInfo();
2359  bool IsSubWord = (BitSize < 32);
2360
2361  // Extract the operands.  Base can be a register or a frame index.
2362  unsigned Dest        = MI->getOperand(0).getReg();
2363  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2364  int64_t  Disp        = MI->getOperand(2).getImm();
2365  unsigned Src2        = MI->getOperand(3).getReg();
2366  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2367  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2368  DebugLoc DL          = MI->getDebugLoc();
2369  if (IsSubWord)
2370    BitSize = MI->getOperand(6).getImm();
2371
2372  // Subword operations use 32-bit registers.
2373  const TargetRegisterClass *RC = (BitSize <= 32 ?
2374                                   &SystemZ::GR32BitRegClass :
2375                                   &SystemZ::GR64BitRegClass);
2376  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2377  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2378
2379  // Get the right opcodes for the displacement.
2380  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2381  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2382  assert(LOpcode && CSOpcode && "Displacement out of range");
2383
2384  // Create virtual registers for temporary results.
2385  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2386  unsigned OldVal        = MRI.createVirtualRegister(RC);
2387  unsigned NewVal        = MRI.createVirtualRegister(RC);
2388  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2389  unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
2390  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2391
2392  // Insert 3 basic blocks for the loop.
2393  MachineBasicBlock *StartMBB  = MBB;
2394  MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
2395  MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
2396  MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
2397  MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
2398
2399  //  StartMBB:
2400  //   ...
2401  //   %OrigVal     = L Disp(%Base)
2402  //   # fall through to LoopMMB
2403  MBB = StartMBB;
2404  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2405    .addOperand(Base).addImm(Disp).addReg(0);
2406  MBB->addSuccessor(LoopMBB);
2407
2408  //  LoopMBB:
2409  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
2410  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2411  //   CompareOpcode %RotatedOldVal, %Src2
2412  //   BRC KeepOldMask, UpdateMBB
2413  MBB = LoopMBB;
2414  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2415    .addReg(OrigVal).addMBB(StartMBB)
2416    .addReg(Dest).addMBB(UpdateMBB);
2417  if (IsSubWord)
2418    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2419      .addReg(OldVal).addReg(BitShift).addImm(0);
2420  BuildMI(MBB, DL, TII->get(CompareOpcode))
2421    .addReg(RotatedOldVal).addReg(Src2);
2422  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2423    .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
2424  MBB->addSuccessor(UpdateMBB);
2425  MBB->addSuccessor(UseAltMBB);
2426
2427  //  UseAltMBB:
2428  //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
2429  //   # fall through to UpdateMMB
2430  MBB = UseAltMBB;
2431  if (IsSubWord)
2432    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
2433      .addReg(RotatedOldVal).addReg(Src2)
2434      .addImm(32).addImm(31 + BitSize).addImm(0);
2435  MBB->addSuccessor(UpdateMBB);
2436
2437  //  UpdateMBB:
2438  //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
2439  //                        [ %RotatedAltVal, UseAltMBB ]
2440  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2441  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2442  //   JNE LoopMBB
2443  //   # fall through to DoneMMB
2444  MBB = UpdateMBB;
2445  BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
2446    .addReg(RotatedOldVal).addMBB(LoopMBB)
2447    .addReg(RotatedAltVal).addMBB(UseAltMBB);
2448  if (IsSubWord)
2449    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2450      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2451  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2452    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2453  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2454    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2455  MBB->addSuccessor(LoopMBB);
2456  MBB->addSuccessor(DoneMBB);
2457
2458  MI->eraseFromParent();
2459  return DoneMBB;
2460}
2461
2462// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
2463// instruction MI.
2464MachineBasicBlock *
2465SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
2466                                          MachineBasicBlock *MBB) const {
2467  const SystemZInstrInfo *TII = TM.getInstrInfo();
2468  MachineFunction &MF = *MBB->getParent();
2469  MachineRegisterInfo &MRI = MF.getRegInfo();
2470
2471  // Extract the operands.  Base can be a register or a frame index.
2472  unsigned Dest        = MI->getOperand(0).getReg();
2473  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2474  int64_t  Disp        = MI->getOperand(2).getImm();
2475  unsigned OrigCmpVal  = MI->getOperand(3).getReg();
2476  unsigned OrigSwapVal = MI->getOperand(4).getReg();
2477  unsigned BitShift    = MI->getOperand(5).getReg();
2478  unsigned NegBitShift = MI->getOperand(6).getReg();
2479  int64_t  BitSize     = MI->getOperand(7).getImm();
2480  DebugLoc DL          = MI->getDebugLoc();
2481
2482  const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
2483
2484  // Get the right opcodes for the displacement.
2485  unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
2486  unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
2487  assert(LOpcode && CSOpcode && "Displacement out of range");
2488
2489  // Create virtual registers for temporary results.
2490  unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
2491  unsigned OldVal       = MRI.createVirtualRegister(RC);
2492  unsigned CmpVal       = MRI.createVirtualRegister(RC);
2493  unsigned SwapVal      = MRI.createVirtualRegister(RC);
2494  unsigned StoreVal     = MRI.createVirtualRegister(RC);
2495  unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
2496  unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
2497  unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
2498
2499  // Insert 2 basic blocks for the loop.
2500  MachineBasicBlock *StartMBB = MBB;
2501  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
2502  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2503  MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
2504
2505  //  StartMBB:
2506  //   ...
2507  //   %OrigOldVal     = L Disp(%Base)
2508  //   # fall through to LoopMMB
2509  MBB = StartMBB;
2510  BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
2511    .addOperand(Base).addImm(Disp).addReg(0);
2512  MBB->addSuccessor(LoopMBB);
2513
2514  //  LoopMBB:
2515  //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
2516  //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
2517  //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
2518  //   %Dest          = RLL %OldVal, BitSize(%BitShift)
2519  //                      ^^ The low BitSize bits contain the field
2520  //                         of interest.
2521  //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
2522  //                      ^^ Replace the upper 32-BitSize bits of the
2523  //                         comparison value with those that we loaded,
2524  //                         so that we can use a full word comparison.
2525  //   CR %Dest, %RetryCmpVal
2526  //   JNE DoneMBB
2527  //   # Fall through to SetMBB
2528  MBB = LoopMBB;
2529  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2530    .addReg(OrigOldVal).addMBB(StartMBB)
2531    .addReg(RetryOldVal).addMBB(SetMBB);
2532  BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
2533    .addReg(OrigCmpVal).addMBB(StartMBB)
2534    .addReg(RetryCmpVal).addMBB(SetMBB);
2535  BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
2536    .addReg(OrigSwapVal).addMBB(StartMBB)
2537    .addReg(RetrySwapVal).addMBB(SetMBB);
2538  BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
2539    .addReg(OldVal).addReg(BitShift).addImm(BitSize);
2540  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
2541    .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
2542  BuildMI(MBB, DL, TII->get(SystemZ::CR))
2543    .addReg(Dest).addReg(RetryCmpVal);
2544  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2545    .addImm(SystemZ::CCMASK_ICMP)
2546    .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
2547  MBB->addSuccessor(DoneMBB);
2548  MBB->addSuccessor(SetMBB);
2549
2550  //  SetMBB:
2551  //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
2552  //                      ^^ Replace the upper 32-BitSize bits of the new
2553  //                         value with those that we loaded.
2554  //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
2555  //                      ^^ Rotate the new field to its proper position.
2556  //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
2557  //   JNE LoopMBB
2558  //   # fall through to ExitMMB
2559  MBB = SetMBB;
2560  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
2561    .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
2562  BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
2563    .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
2564  BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
2565    .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
2566  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2567    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2568  MBB->addSuccessor(LoopMBB);
2569  MBB->addSuccessor(DoneMBB);
2570
2571  MI->eraseFromParent();
2572  return DoneMBB;
2573}
2574
2575// Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
2576// if the high register of the GR128 value must be cleared or false if
2577// it's "don't care".  SubReg is subreg_odd32 when extending a GR32
2578// and subreg_odd when extending a GR64.
2579MachineBasicBlock *
2580SystemZTargetLowering::emitExt128(MachineInstr *MI,
2581                                  MachineBasicBlock *MBB,
2582                                  bool ClearEven, unsigned SubReg) const {
2583  const SystemZInstrInfo *TII = TM.getInstrInfo();
2584  MachineFunction &MF = *MBB->getParent();
2585  MachineRegisterInfo &MRI = MF.getRegInfo();
2586  DebugLoc DL = MI->getDebugLoc();
2587
2588  unsigned Dest  = MI->getOperand(0).getReg();
2589  unsigned Src   = MI->getOperand(1).getReg();
2590  unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2591
2592  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
2593  if (ClearEven) {
2594    unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2595    unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
2596
2597    BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
2598      .addImm(0);
2599    BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
2600      .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_high);
2601    In128 = NewIn128;
2602  }
2603  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
2604    .addReg(In128).addReg(Src).addImm(SubReg);
2605
2606  MI->eraseFromParent();
2607  return MBB;
2608}
2609
2610MachineBasicBlock *
2611SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
2612                                         MachineBasicBlock *MBB,
2613                                         unsigned Opcode) const {
2614  const SystemZInstrInfo *TII = TM.getInstrInfo();
2615  MachineFunction &MF = *MBB->getParent();
2616  MachineRegisterInfo &MRI = MF.getRegInfo();
2617  DebugLoc DL = MI->getDebugLoc();
2618
2619  MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
2620  uint64_t       DestDisp = MI->getOperand(1).getImm();
2621  MachineOperand SrcBase  = earlyUseOperand(MI->getOperand(2));
2622  uint64_t       SrcDisp  = MI->getOperand(3).getImm();
2623  uint64_t       Length   = MI->getOperand(4).getImm();
2624
2625  // When generating more than one CLC, all but the last will need to
2626  // branch to the end when a difference is found.
2627  MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
2628                               splitBlockAfter(MI, MBB) : 0);
2629
2630  // Check for the loop form, in which operand 5 is the trip count.
2631  if (MI->getNumExplicitOperands() > 5) {
2632    bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
2633
2634    uint64_t StartCountReg = MI->getOperand(5).getReg();
2635    uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
2636    uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
2637                              forceReg(MI, DestBase, TII));
2638
2639    const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
2640    uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
2641    uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
2642                            MRI.createVirtualRegister(RC));
2643    uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
2644    uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
2645                            MRI.createVirtualRegister(RC));
2646
2647    RC = &SystemZ::GR64BitRegClass;
2648    uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
2649    uint64_t NextCountReg = MRI.createVirtualRegister(RC);
2650
2651    MachineBasicBlock *StartMBB = MBB;
2652    MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
2653    MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2654    MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
2655
2656    //  StartMBB:
2657    //   # fall through to LoopMMB
2658    MBB->addSuccessor(LoopMBB);
2659
2660    //  LoopMBB:
2661    //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
2662    //                      [ %NextDestReg, NextMBB ]
2663    //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
2664    //                     [ %NextSrcReg, NextMBB ]
2665    //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
2666    //                       [ %NextCountReg, NextMBB ]
2667    //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
2668    //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
2669    //   ( JLH EndMBB )
2670    //
2671    // The prefetch is used only for MVC.  The JLH is used only for CLC.
2672    MBB = LoopMBB;
2673
2674    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
2675      .addReg(StartDestReg).addMBB(StartMBB)
2676      .addReg(NextDestReg).addMBB(NextMBB);
2677    if (!HaveSingleBase)
2678      BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
2679        .addReg(StartSrcReg).addMBB(StartMBB)
2680        .addReg(NextSrcReg).addMBB(NextMBB);
2681    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
2682      .addReg(StartCountReg).addMBB(StartMBB)
2683      .addReg(NextCountReg).addMBB(NextMBB);
2684    if (Opcode == SystemZ::MVC)
2685      BuildMI(MBB, DL, TII->get(SystemZ::PFD))
2686        .addImm(SystemZ::PFD_WRITE)
2687        .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
2688    BuildMI(MBB, DL, TII->get(Opcode))
2689      .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
2690      .addReg(ThisSrcReg).addImm(SrcDisp);
2691    if (EndMBB) {
2692      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2693        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
2694        .addMBB(EndMBB);
2695      MBB->addSuccessor(EndMBB);
2696      MBB->addSuccessor(NextMBB);
2697    }
2698
2699    // NextMBB:
2700    //   %NextDestReg = LA 256(%ThisDestReg)
2701    //   %NextSrcReg = LA 256(%ThisSrcReg)
2702    //   %NextCountReg = AGHI %ThisCountReg, -1
2703    //   CGHI %NextCountReg, 0
2704    //   JLH LoopMBB
2705    //   # fall through to DoneMMB
2706    //
2707    // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
2708    MBB = NextMBB;
2709
2710    BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
2711      .addReg(ThisDestReg).addImm(256).addReg(0);
2712    if (!HaveSingleBase)
2713      BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
2714        .addReg(ThisSrcReg).addImm(256).addReg(0);
2715    BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
2716      .addReg(ThisCountReg).addImm(-1);
2717    BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
2718      .addReg(NextCountReg).addImm(0);
2719    BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2720      .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
2721      .addMBB(LoopMBB);
2722    MBB->addSuccessor(LoopMBB);
2723    MBB->addSuccessor(DoneMBB);
2724
2725    DestBase = MachineOperand::CreateReg(NextDestReg, false);
2726    SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
2727    Length &= 255;
2728    MBB = DoneMBB;
2729  }
2730  // Handle any remaining bytes with straight-line code.
2731  while (Length > 0) {
2732    uint64_t ThisLength = std::min(Length, uint64_t(256));
2733    // The previous iteration might have created out-of-range displacements.
2734    // Apply them using LAY if so.
2735    if (!isUInt<12>(DestDisp)) {
2736      unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2737      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
2738        .addOperand(DestBase).addImm(DestDisp).addReg(0);
2739      DestBase = MachineOperand::CreateReg(Reg, false);
2740      DestDisp = 0;
2741    }
2742    if (!isUInt<12>(SrcDisp)) {
2743      unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2744      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
2745        .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
2746      SrcBase = MachineOperand::CreateReg(Reg, false);
2747      SrcDisp = 0;
2748    }
2749    BuildMI(*MBB, MI, DL, TII->get(Opcode))
2750      .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
2751      .addOperand(SrcBase).addImm(SrcDisp);
2752    DestDisp += ThisLength;
2753    SrcDisp += ThisLength;
2754    Length -= ThisLength;
2755    // If there's another CLC to go, branch to the end if a difference
2756    // was found.
2757    if (EndMBB && Length > 0) {
2758      MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
2759      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2760        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
2761        .addMBB(EndMBB);
2762      MBB->addSuccessor(EndMBB);
2763      MBB->addSuccessor(NextMBB);
2764      MBB = NextMBB;
2765    }
2766  }
2767  if (EndMBB) {
2768    MBB->addSuccessor(EndMBB);
2769    MBB = EndMBB;
2770    MBB->addLiveIn(SystemZ::CC);
2771  }
2772
2773  MI->eraseFromParent();
2774  return MBB;
2775}
2776
2777// Decompose string pseudo-instruction MI into a loop that continually performs
2778// Opcode until CC != 3.
2779MachineBasicBlock *
2780SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
2781                                         MachineBasicBlock *MBB,
2782                                         unsigned Opcode) const {
2783  const SystemZInstrInfo *TII = TM.getInstrInfo();
2784  MachineFunction &MF = *MBB->getParent();
2785  MachineRegisterInfo &MRI = MF.getRegInfo();
2786  DebugLoc DL = MI->getDebugLoc();
2787
2788  uint64_t End1Reg   = MI->getOperand(0).getReg();
2789  uint64_t Start1Reg = MI->getOperand(1).getReg();
2790  uint64_t Start2Reg = MI->getOperand(2).getReg();
2791  uint64_t CharReg   = MI->getOperand(3).getReg();
2792
2793  const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
2794  uint64_t This1Reg = MRI.createVirtualRegister(RC);
2795  uint64_t This2Reg = MRI.createVirtualRegister(RC);
2796  uint64_t End2Reg  = MRI.createVirtualRegister(RC);
2797
2798  MachineBasicBlock *StartMBB = MBB;
2799  MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
2800  MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2801
2802  //  StartMBB:
2803  //   # fall through to LoopMMB
2804  MBB->addSuccessor(LoopMBB);
2805
2806  //  LoopMBB:
2807  //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
2808  //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
2809  //   R0W = %CharReg
2810  //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0W
2811  //   JO LoopMBB
2812  //   # fall through to DoneMMB
2813  //
2814  // The load of R0W can be hoisted by post-RA LICM.
2815  MBB = LoopMBB;
2816
2817  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
2818    .addReg(Start1Reg).addMBB(StartMBB)
2819    .addReg(End1Reg).addMBB(LoopMBB);
2820  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
2821    .addReg(Start2Reg).addMBB(StartMBB)
2822    .addReg(End2Reg).addMBB(LoopMBB);
2823  BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0W).addReg(CharReg);
2824  BuildMI(MBB, DL, TII->get(Opcode))
2825    .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
2826    .addReg(This1Reg).addReg(This2Reg);
2827  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2828    .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
2829  MBB->addSuccessor(LoopMBB);
2830  MBB->addSuccessor(DoneMBB);
2831
2832  DoneMBB->addLiveIn(SystemZ::CC);
2833
2834  MI->eraseFromParent();
2835  return DoneMBB;
2836}
2837
2838MachineBasicBlock *SystemZTargetLowering::
2839EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
2840  switch (MI->getOpcode()) {
2841  case SystemZ::Select32:
2842  case SystemZ::SelectF32:
2843  case SystemZ::Select64:
2844  case SystemZ::SelectF64:
2845  case SystemZ::SelectF128:
2846    return emitSelect(MI, MBB);
2847
2848  case SystemZ::CondStore8_32:
2849    return emitCondStore(MI, MBB, SystemZ::STC32, 0, false);
2850  case SystemZ::CondStore8_32Inv:
2851    return emitCondStore(MI, MBB, SystemZ::STC32, 0, true);
2852  case SystemZ::CondStore16_32:
2853    return emitCondStore(MI, MBB, SystemZ::STH32, 0, false);
2854  case SystemZ::CondStore16_32Inv:
2855    return emitCondStore(MI, MBB, SystemZ::STH32, 0, true);
2856  case SystemZ::CondStore32_32:
2857    return emitCondStore(MI, MBB, SystemZ::ST32, SystemZ::STOC32, false);
2858  case SystemZ::CondStore32_32Inv:
2859    return emitCondStore(MI, MBB, SystemZ::ST32, SystemZ::STOC32, true);
2860  case SystemZ::CondStore8:
2861    return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
2862  case SystemZ::CondStore8Inv:
2863    return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
2864  case SystemZ::CondStore16:
2865    return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
2866  case SystemZ::CondStore16Inv:
2867    return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
2868  case SystemZ::CondStore32:
2869    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
2870  case SystemZ::CondStore32Inv:
2871    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
2872  case SystemZ::CondStore64:
2873    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
2874  case SystemZ::CondStore64Inv:
2875    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
2876  case SystemZ::CondStoreF32:
2877    return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
2878  case SystemZ::CondStoreF32Inv:
2879    return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
2880  case SystemZ::CondStoreF64:
2881    return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
2882  case SystemZ::CondStoreF64Inv:
2883    return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
2884
2885  case SystemZ::AEXT128_64:
2886    return emitExt128(MI, MBB, false, SystemZ::subreg_low);
2887  case SystemZ::ZEXT128_32:
2888    return emitExt128(MI, MBB, true, SystemZ::subreg_low32);
2889  case SystemZ::ZEXT128_64:
2890    return emitExt128(MI, MBB, true, SystemZ::subreg_low);
2891
2892  case SystemZ::ATOMIC_SWAPW:
2893    return emitAtomicLoadBinary(MI, MBB, 0, 0);
2894  case SystemZ::ATOMIC_SWAP_32:
2895    return emitAtomicLoadBinary(MI, MBB, 0, 32);
2896  case SystemZ::ATOMIC_SWAP_64:
2897    return emitAtomicLoadBinary(MI, MBB, 0, 64);
2898
2899  case SystemZ::ATOMIC_LOADW_AR:
2900    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
2901  case SystemZ::ATOMIC_LOADW_AFI:
2902    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
2903  case SystemZ::ATOMIC_LOAD_AR:
2904    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
2905  case SystemZ::ATOMIC_LOAD_AHI:
2906    return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
2907  case SystemZ::ATOMIC_LOAD_AFI:
2908    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
2909  case SystemZ::ATOMIC_LOAD_AGR:
2910    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
2911  case SystemZ::ATOMIC_LOAD_AGHI:
2912    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
2913  case SystemZ::ATOMIC_LOAD_AGFI:
2914    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
2915
2916  case SystemZ::ATOMIC_LOADW_SR:
2917    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
2918  case SystemZ::ATOMIC_LOAD_SR:
2919    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
2920  case SystemZ::ATOMIC_LOAD_SGR:
2921    return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
2922
2923  case SystemZ::ATOMIC_LOADW_NR:
2924    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
2925  case SystemZ::ATOMIC_LOADW_NILH:
2926    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0);
2927  case SystemZ::ATOMIC_LOAD_NR:
2928    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
2929  case SystemZ::ATOMIC_LOAD_NILL32:
2930    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32);
2931  case SystemZ::ATOMIC_LOAD_NILH32:
2932    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32);
2933  case SystemZ::ATOMIC_LOAD_NILF32:
2934    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32);
2935  case SystemZ::ATOMIC_LOAD_NGR:
2936    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
2937  case SystemZ::ATOMIC_LOAD_NILL:
2938    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64);
2939  case SystemZ::ATOMIC_LOAD_NILH:
2940    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64);
2941  case SystemZ::ATOMIC_LOAD_NIHL:
2942    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64);
2943  case SystemZ::ATOMIC_LOAD_NIHH:
2944    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64);
2945  case SystemZ::ATOMIC_LOAD_NILF:
2946    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64);
2947  case SystemZ::ATOMIC_LOAD_NIHF:
2948    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64);
2949
2950  case SystemZ::ATOMIC_LOADW_OR:
2951    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
2952  case SystemZ::ATOMIC_LOADW_OILH:
2953    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 0);
2954  case SystemZ::ATOMIC_LOAD_OR:
2955    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
2956  case SystemZ::ATOMIC_LOAD_OILL32:
2957    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL32, 32);
2958  case SystemZ::ATOMIC_LOAD_OILH32:
2959    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 32);
2960  case SystemZ::ATOMIC_LOAD_OILF32:
2961    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF32, 32);
2962  case SystemZ::ATOMIC_LOAD_OGR:
2963    return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
2964  case SystemZ::ATOMIC_LOAD_OILL:
2965    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 64);
2966  case SystemZ::ATOMIC_LOAD_OILH:
2967    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 64);
2968  case SystemZ::ATOMIC_LOAD_OIHL:
2969    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL, 64);
2970  case SystemZ::ATOMIC_LOAD_OIHH:
2971    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH, 64);
2972  case SystemZ::ATOMIC_LOAD_OILF:
2973    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 64);
2974  case SystemZ::ATOMIC_LOAD_OIHF:
2975    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF, 64);
2976
2977  case SystemZ::ATOMIC_LOADW_XR:
2978    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
2979  case SystemZ::ATOMIC_LOADW_XILF:
2980    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 0);
2981  case SystemZ::ATOMIC_LOAD_XR:
2982    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
2983  case SystemZ::ATOMIC_LOAD_XILF32:
2984    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 32);
2985  case SystemZ::ATOMIC_LOAD_XGR:
2986    return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
2987  case SystemZ::ATOMIC_LOAD_XILF:
2988    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 64);
2989  case SystemZ::ATOMIC_LOAD_XIHF:
2990    return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF, 64);
2991
2992  case SystemZ::ATOMIC_LOADW_NRi:
2993    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
2994  case SystemZ::ATOMIC_LOADW_NILHi:
2995    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0, true);
2996  case SystemZ::ATOMIC_LOAD_NRi:
2997    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
2998  case SystemZ::ATOMIC_LOAD_NILL32i:
2999    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32, true);
3000  case SystemZ::ATOMIC_LOAD_NILH32i:
3001    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32, true);
3002  case SystemZ::ATOMIC_LOAD_NILF32i:
3003    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32, true);
3004  case SystemZ::ATOMIC_LOAD_NGRi:
3005    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
3006  case SystemZ::ATOMIC_LOAD_NILLi:
3007    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64, true);
3008  case SystemZ::ATOMIC_LOAD_NILHi:
3009    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64, true);
3010  case SystemZ::ATOMIC_LOAD_NIHLi:
3011    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64, true);
3012  case SystemZ::ATOMIC_LOAD_NIHHi:
3013    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64, true);
3014  case SystemZ::ATOMIC_LOAD_NILFi:
3015    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64, true);
3016  case SystemZ::ATOMIC_LOAD_NIHFi:
3017    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64, true);
3018
3019  case SystemZ::ATOMIC_LOADW_MIN:
3020    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3021                                SystemZ::CCMASK_CMP_LE, 0);
3022  case SystemZ::ATOMIC_LOAD_MIN_32:
3023    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3024                                SystemZ::CCMASK_CMP_LE, 32);
3025  case SystemZ::ATOMIC_LOAD_MIN_64:
3026    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3027                                SystemZ::CCMASK_CMP_LE, 64);
3028
3029  case SystemZ::ATOMIC_LOADW_MAX:
3030    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3031                                SystemZ::CCMASK_CMP_GE, 0);
3032  case SystemZ::ATOMIC_LOAD_MAX_32:
3033    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3034                                SystemZ::CCMASK_CMP_GE, 32);
3035  case SystemZ::ATOMIC_LOAD_MAX_64:
3036    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3037                                SystemZ::CCMASK_CMP_GE, 64);
3038
3039  case SystemZ::ATOMIC_LOADW_UMIN:
3040    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3041                                SystemZ::CCMASK_CMP_LE, 0);
3042  case SystemZ::ATOMIC_LOAD_UMIN_32:
3043    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3044                                SystemZ::CCMASK_CMP_LE, 32);
3045  case SystemZ::ATOMIC_LOAD_UMIN_64:
3046    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3047                                SystemZ::CCMASK_CMP_LE, 64);
3048
3049  case SystemZ::ATOMIC_LOADW_UMAX:
3050    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3051                                SystemZ::CCMASK_CMP_GE, 0);
3052  case SystemZ::ATOMIC_LOAD_UMAX_32:
3053    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3054                                SystemZ::CCMASK_CMP_GE, 32);
3055  case SystemZ::ATOMIC_LOAD_UMAX_64:
3056    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3057                                SystemZ::CCMASK_CMP_GE, 64);
3058
3059  case SystemZ::ATOMIC_CMP_SWAPW:
3060    return emitAtomicCmpSwapW(MI, MBB);
3061  case SystemZ::MVCSequence:
3062  case SystemZ::MVCLoop:
3063    return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
3064  case SystemZ::NCSequence:
3065  case SystemZ::NCLoop:
3066    return emitMemMemWrapper(MI, MBB, SystemZ::NC);
3067  case SystemZ::OCSequence:
3068  case SystemZ::OCLoop:
3069    return emitMemMemWrapper(MI, MBB, SystemZ::OC);
3070  case SystemZ::XCSequence:
3071  case SystemZ::XCLoop:
3072    return emitMemMemWrapper(MI, MBB, SystemZ::XC);
3073  case SystemZ::CLCSequence:
3074  case SystemZ::CLCLoop:
3075    return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
3076  case SystemZ::CLSTLoop:
3077    return emitStringWrapper(MI, MBB, SystemZ::CLST);
3078  case SystemZ::MVSTLoop:
3079    return emitStringWrapper(MI, MBB, SystemZ::MVST);
3080  case SystemZ::SRSTLoop:
3081    return emitStringWrapper(MI, MBB, SystemZ::SRST);
3082  default:
3083    llvm_unreachable("Unexpected instr type to insert");
3084  }
3085}
3086