SystemZISelLowering.cpp revision 3237f88882eed8a67fa679f7071a5441c4306ac3
1//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SystemZTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "systemz-lower"
15
16#include "SystemZISelLowering.h"
17#include "SystemZCallingConv.h"
18#include "SystemZConstantPoolValue.h"
19#include "SystemZMachineFunctionInfo.h"
20#include "SystemZTargetMachine.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25
26using namespace llvm;
27
28// Classify VT as either 32 or 64 bit.
29static bool is32Bit(EVT VT) {
30  switch (VT.getSimpleVT().SimpleTy) {
31  case MVT::i32:
32    return true;
33  case MVT::i64:
34    return false;
35  default:
36    llvm_unreachable("Unsupported type");
37  }
38}
39
40// Return a version of MachineOperand that can be safely used before the
41// final use.
42static MachineOperand earlyUseOperand(MachineOperand Op) {
43  if (Op.isReg())
44    Op.setIsKill(false);
45  return Op;
46}
47
48SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
49  : TargetLowering(tm, new TargetLoweringObjectFileELF()),
50    Subtarget(*tm.getSubtargetImpl()), TM(tm) {
51  MVT PtrVT = getPointerTy();
52
53  // Set up the register classes.
54  addRegisterClass(MVT::i32,  &SystemZ::GR32BitRegClass);
55  addRegisterClass(MVT::i64,  &SystemZ::GR64BitRegClass);
56  addRegisterClass(MVT::f32,  &SystemZ::FP32BitRegClass);
57  addRegisterClass(MVT::f64,  &SystemZ::FP64BitRegClass);
58  addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
59
60  // Compute derived properties from the register classes
61  computeRegisterProperties();
62
63  // Set up special registers.
64  setExceptionPointerRegister(SystemZ::R6D);
65  setExceptionSelectorRegister(SystemZ::R7D);
66  setStackPointerRegisterToSaveRestore(SystemZ::R15D);
67
68  // TODO: It may be better to default to latency-oriented scheduling, however
69  // LLVM's current latency-oriented scheduler can't handle physreg definitions
70  // such as SystemZ has with CC, so set this to the register-pressure
71  // scheduler, because it can.
72  setSchedulingPreference(Sched::RegPressure);
73
74  setBooleanContents(ZeroOrOneBooleanContent);
75  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
76
77  // Instructions are strings of 2-byte aligned 2-byte values.
78  setMinFunctionAlignment(2);
79
80  // Handle operations that are handled in a similar way for all types.
81  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
82       I <= MVT::LAST_FP_VALUETYPE;
83       ++I) {
84    MVT VT = MVT::SimpleValueType(I);
85    if (isTypeLegal(VT)) {
86      // Expand SETCC(X, Y, COND) into SELECT_CC(X, Y, 1, 0, COND).
87      setOperationAction(ISD::SETCC, VT, Expand);
88
89      // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
90      setOperationAction(ISD::SELECT, VT, Expand);
91
92      // Lower SELECT_CC and BR_CC into separate comparisons and branches.
93      setOperationAction(ISD::SELECT_CC, VT, Custom);
94      setOperationAction(ISD::BR_CC,     VT, Custom);
95    }
96  }
97
98  // Expand jump table branches as address arithmetic followed by an
99  // indirect jump.
100  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
101
102  // Expand BRCOND into a BR_CC (see above).
103  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
104
105  // Handle integer types.
106  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
107       I <= MVT::LAST_INTEGER_VALUETYPE;
108       ++I) {
109    MVT VT = MVT::SimpleValueType(I);
110    if (isTypeLegal(VT)) {
111      // Expand individual DIV and REMs into DIVREMs.
112      setOperationAction(ISD::SDIV, VT, Expand);
113      setOperationAction(ISD::UDIV, VT, Expand);
114      setOperationAction(ISD::SREM, VT, Expand);
115      setOperationAction(ISD::UREM, VT, Expand);
116      setOperationAction(ISD::SDIVREM, VT, Custom);
117      setOperationAction(ISD::UDIVREM, VT, Custom);
118
119      // Expand ATOMIC_LOAD and ATOMIC_STORE using ATOMIC_CMP_SWAP.
120      // FIXME: probably much too conservative.
121      setOperationAction(ISD::ATOMIC_LOAD,  VT, Expand);
122      setOperationAction(ISD::ATOMIC_STORE, VT, Expand);
123
124      // No special instructions for these.
125      setOperationAction(ISD::CTPOP,           VT, Expand);
126      setOperationAction(ISD::CTTZ,            VT, Expand);
127      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
128      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
129      setOperationAction(ISD::ROTR,            VT, Expand);
130
131      // Use *MUL_LOHI where possible and a wider multiplication otherwise.
132      setOperationAction(ISD::MULHS, VT, Expand);
133      setOperationAction(ISD::MULHU, VT, Expand);
134
135      // We have instructions for signed but not unsigned FP conversion.
136      setOperationAction(ISD::FP_TO_UINT, VT, Expand);
137    }
138  }
139
140  // Type legalization will convert 8- and 16-bit atomic operations into
141  // forms that operate on i32s (but still keeping the original memory VT).
142  // Lower them into full i32 operations.
143  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
144  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
145  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
146  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
147  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
148  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
149  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
150  setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
151  setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
152  setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
153  setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
154  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
155
156  // We have instructions for signed but not unsigned FP conversion.
157  // Handle unsigned 32-bit types as signed 64-bit types.
158  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
159  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
160
161  // We have native support for a 64-bit CTLZ, via FLOGR.
162  setOperationAction(ISD::CTLZ, MVT::i32, Promote);
163  setOperationAction(ISD::CTLZ, MVT::i64, Legal);
164
165  // Give LowerOperation the chance to replace 64-bit ORs with subregs.
166  setOperationAction(ISD::OR, MVT::i64, Custom);
167
168  // The architecture has 32-bit SMUL_LOHI and UMUL_LOHI (MR and MLR),
169  // but they aren't really worth using.  There is no 64-bit SMUL_LOHI,
170  // but there is a 64-bit UMUL_LOHI: MLGR.
171  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
172  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
173  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
174  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Custom);
175
176  // FIXME: Can we support these natively?
177  setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
178  setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
179  setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
180
181  // We have native instructions for i8, i16 and i32 extensions, but not i1.
182  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
183  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
184  setLoadExtAction(ISD::EXTLOAD,  MVT::i1, Promote);
185  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
186
187  // Handle the various types of symbolic address.
188  setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
189  setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
190  setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
191  setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
192  setOperationAction(ISD::JumpTable,        PtrVT, Custom);
193
194  // We need to handle dynamic allocations specially because of the
195  // 160-byte area at the bottom of the stack.
196  setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
197
198  // Use custom expanders so that we can force the function to use
199  // a frame pointer.
200  setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
201  setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
202
203  // Handle floating-point types.
204  for (unsigned I = MVT::FIRST_FP_VALUETYPE;
205       I <= MVT::LAST_FP_VALUETYPE;
206       ++I) {
207    MVT VT = MVT::SimpleValueType(I);
208    if (isTypeLegal(VT)) {
209      // We can use FI for FRINT.
210      setOperationAction(ISD::FRINT, VT, Legal);
211
212      // No special instructions for these.
213      setOperationAction(ISD::FSIN, VT, Expand);
214      setOperationAction(ISD::FCOS, VT, Expand);
215      setOperationAction(ISD::FREM, VT, Expand);
216    }
217  }
218
219  // We have fused multiply-addition for f32 and f64 but not f128.
220  setOperationAction(ISD::FMA, MVT::f32,  Legal);
221  setOperationAction(ISD::FMA, MVT::f64,  Legal);
222  setOperationAction(ISD::FMA, MVT::f128, Expand);
223
224  // Needed so that we don't try to implement f128 constant loads using
225  // a load-and-extend of a f80 constant (in cases where the constant
226  // would fit in an f80).
227  setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
228
229  // Floating-point truncation and stores need to be done separately.
230  setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
231  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
232  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
233
234  // We have 64-bit FPR<->GPR moves, but need special handling for
235  // 32-bit forms.
236  setOperationAction(ISD::BITCAST, MVT::i32, Custom);
237  setOperationAction(ISD::BITCAST, MVT::f32, Custom);
238
239  // VASTART and VACOPY need to deal with the SystemZ-specific varargs
240  // structure, but VAEND is a no-op.
241  setOperationAction(ISD::VASTART, MVT::Other, Custom);
242  setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
243  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
244
245  // We want to use MVC in preference to even a single load/store pair.
246  MaxStoresPerMemcpy = 0;
247  MaxStoresPerMemcpyOptSize = 0;
248
249  // The main memset sequence is a byte store followed by an MVC.
250  // Two STC or MV..I stores win over that, but the kind of fused stores
251  // generated by target-independent code don't when the byte value is
252  // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
253  // than "STC;MVC".  Handle the choice in target-specific code instead.
254  MaxStoresPerMemset = 0;
255  MaxStoresPerMemsetOptSize = 0;
256}
257
258bool
259SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
260  VT = VT.getScalarType();
261
262  if (!VT.isSimple())
263    return false;
264
265  switch (VT.getSimpleVT().SimpleTy) {
266  case MVT::f32:
267  case MVT::f64:
268    return true;
269  case MVT::f128:
270    return false;
271  default:
272    break;
273  }
274
275  return false;
276}
277
278bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
279  // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
280  return Imm.isZero() || Imm.isNegZero();
281}
282
283bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
284                                                          bool *Fast) const {
285  // Unaligned accesses should never be slower than the expanded version.
286  // We check specifically for aligned accesses in the few cases where
287  // they are required.
288  if (Fast)
289    *Fast = true;
290  return true;
291}
292
293bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
294                                                  Type *Ty) const {
295  // Punt on globals for now, although they can be used in limited
296  // RELATIVE LONG cases.
297  if (AM.BaseGV)
298    return false;
299
300  // Require a 20-bit signed offset.
301  if (!isInt<20>(AM.BaseOffs))
302    return false;
303
304  // Indexing is OK but no scale factor can be applied.
305  return AM.Scale == 0 || AM.Scale == 1;
306}
307
308//===----------------------------------------------------------------------===//
309// Inline asm support
310//===----------------------------------------------------------------------===//
311
312TargetLowering::ConstraintType
313SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
314  if (Constraint.size() == 1) {
315    switch (Constraint[0]) {
316    case 'a': // Address register
317    case 'd': // Data register (equivalent to 'r')
318    case 'f': // Floating-point register
319    case 'r': // General-purpose register
320      return C_RegisterClass;
321
322    case 'Q': // Memory with base and unsigned 12-bit displacement
323    case 'R': // Likewise, plus an index
324    case 'S': // Memory with base and signed 20-bit displacement
325    case 'T': // Likewise, plus an index
326    case 'm': // Equivalent to 'T'.
327      return C_Memory;
328
329    case 'I': // Unsigned 8-bit constant
330    case 'J': // Unsigned 12-bit constant
331    case 'K': // Signed 16-bit constant
332    case 'L': // Signed 20-bit displacement (on all targets we support)
333    case 'M': // 0x7fffffff
334      return C_Other;
335
336    default:
337      break;
338    }
339  }
340  return TargetLowering::getConstraintType(Constraint);
341}
342
343TargetLowering::ConstraintWeight SystemZTargetLowering::
344getSingleConstraintMatchWeight(AsmOperandInfo &info,
345                               const char *constraint) const {
346  ConstraintWeight weight = CW_Invalid;
347  Value *CallOperandVal = info.CallOperandVal;
348  // If we don't have a value, we can't do a match,
349  // but allow it at the lowest weight.
350  if (CallOperandVal == NULL)
351    return CW_Default;
352  Type *type = CallOperandVal->getType();
353  // Look at the constraint type.
354  switch (*constraint) {
355  default:
356    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
357    break;
358
359  case 'a': // Address register
360  case 'd': // Data register (equivalent to 'r')
361  case 'r': // General-purpose register
362    if (CallOperandVal->getType()->isIntegerTy())
363      weight = CW_Register;
364    break;
365
366  case 'f': // Floating-point register
367    if (type->isFloatingPointTy())
368      weight = CW_Register;
369    break;
370
371  case 'I': // Unsigned 8-bit constant
372    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
373      if (isUInt<8>(C->getZExtValue()))
374        weight = CW_Constant;
375    break;
376
377  case 'J': // Unsigned 12-bit constant
378    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
379      if (isUInt<12>(C->getZExtValue()))
380        weight = CW_Constant;
381    break;
382
383  case 'K': // Signed 16-bit constant
384    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
385      if (isInt<16>(C->getSExtValue()))
386        weight = CW_Constant;
387    break;
388
389  case 'L': // Signed 20-bit displacement (on all targets we support)
390    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
391      if (isInt<20>(C->getSExtValue()))
392        weight = CW_Constant;
393    break;
394
395  case 'M': // 0x7fffffff
396    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
397      if (C->getZExtValue() == 0x7fffffff)
398        weight = CW_Constant;
399    break;
400  }
401  return weight;
402}
403
404// Parse a "{tNNN}" register constraint for which the register type "t"
405// has already been verified.  MC is the class associated with "t" and
406// Map maps 0-based register numbers to LLVM register numbers.
407static std::pair<unsigned, const TargetRegisterClass *>
408parseRegisterNumber(const std::string &Constraint,
409                    const TargetRegisterClass *RC, const unsigned *Map) {
410  assert(*(Constraint.end()-1) == '}' && "Missing '}'");
411  if (isdigit(Constraint[2])) {
412    std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
413    unsigned Index = atoi(Suffix.c_str());
414    if (Index < 16 && Map[Index])
415      return std::make_pair(Map[Index], RC);
416  }
417  return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
418}
419
420std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
421getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
422  if (Constraint.size() == 1) {
423    // GCC Constraint Letters
424    switch (Constraint[0]) {
425    default: break;
426    case 'd': // Data register (equivalent to 'r')
427    case 'r': // General-purpose register
428      if (VT == MVT::i64)
429        return std::make_pair(0U, &SystemZ::GR64BitRegClass);
430      else if (VT == MVT::i128)
431        return std::make_pair(0U, &SystemZ::GR128BitRegClass);
432      return std::make_pair(0U, &SystemZ::GR32BitRegClass);
433
434    case 'a': // Address register
435      if (VT == MVT::i64)
436        return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
437      else if (VT == MVT::i128)
438        return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
439      return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
440
441    case 'f': // Floating-point register
442      if (VT == MVT::f64)
443        return std::make_pair(0U, &SystemZ::FP64BitRegClass);
444      else if (VT == MVT::f128)
445        return std::make_pair(0U, &SystemZ::FP128BitRegClass);
446      return std::make_pair(0U, &SystemZ::FP32BitRegClass);
447    }
448  }
449  if (Constraint[0] == '{') {
450    // We need to override the default register parsing for GPRs and FPRs
451    // because the interpretation depends on VT.  The internal names of
452    // the registers are also different from the external names
453    // (F0D and F0S instead of F0, etc.).
454    if (Constraint[1] == 'r') {
455      if (VT == MVT::i32)
456        return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
457                                   SystemZMC::GR32Regs);
458      if (VT == MVT::i128)
459        return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
460                                   SystemZMC::GR128Regs);
461      return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
462                                 SystemZMC::GR64Regs);
463    }
464    if (Constraint[1] == 'f') {
465      if (VT == MVT::f32)
466        return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
467                                   SystemZMC::FP32Regs);
468      if (VT == MVT::f128)
469        return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
470                                   SystemZMC::FP128Regs);
471      return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
472                                 SystemZMC::FP64Regs);
473    }
474  }
475  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
476}
477
478void SystemZTargetLowering::
479LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
480                             std::vector<SDValue> &Ops,
481                             SelectionDAG &DAG) const {
482  // Only support length 1 constraints for now.
483  if (Constraint.length() == 1) {
484    switch (Constraint[0]) {
485    case 'I': // Unsigned 8-bit constant
486      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
487        if (isUInt<8>(C->getZExtValue()))
488          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
489                                              Op.getValueType()));
490      return;
491
492    case 'J': // Unsigned 12-bit constant
493      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
494        if (isUInt<12>(C->getZExtValue()))
495          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
496                                              Op.getValueType()));
497      return;
498
499    case 'K': // Signed 16-bit constant
500      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
501        if (isInt<16>(C->getSExtValue()))
502          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
503                                              Op.getValueType()));
504      return;
505
506    case 'L': // Signed 20-bit displacement (on all targets we support)
507      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
508        if (isInt<20>(C->getSExtValue()))
509          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
510                                              Op.getValueType()));
511      return;
512
513    case 'M': // 0x7fffffff
514      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
515        if (C->getZExtValue() == 0x7fffffff)
516          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
517                                              Op.getValueType()));
518      return;
519    }
520  }
521  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
522}
523
524//===----------------------------------------------------------------------===//
525// Calling conventions
526//===----------------------------------------------------------------------===//
527
528#include "SystemZGenCallingConv.inc"
529
530// Value is a value that has been passed to us in the location described by VA
531// (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
532// any loads onto Chain.
533static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
534                                   CCValAssign &VA, SDValue Chain,
535                                   SDValue Value) {
536  // If the argument has been promoted from a smaller type, insert an
537  // assertion to capture this.
538  if (VA.getLocInfo() == CCValAssign::SExt)
539    Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
540                        DAG.getValueType(VA.getValVT()));
541  else if (VA.getLocInfo() == CCValAssign::ZExt)
542    Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
543                        DAG.getValueType(VA.getValVT()));
544
545  if (VA.isExtInLoc())
546    Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
547  else if (VA.getLocInfo() == CCValAssign::Indirect)
548    Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
549                        MachinePointerInfo(), false, false, false, 0);
550  else
551    assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
552  return Value;
553}
554
555// Value is a value of type VA.getValVT() that we need to copy into
556// the location described by VA.  Return a copy of Value converted to
557// VA.getValVT().  The caller is responsible for handling indirect values.
558static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
559                                   CCValAssign &VA, SDValue Value) {
560  switch (VA.getLocInfo()) {
561  case CCValAssign::SExt:
562    return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
563  case CCValAssign::ZExt:
564    return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
565  case CCValAssign::AExt:
566    return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
567  case CCValAssign::Full:
568    return Value;
569  default:
570    llvm_unreachable("Unhandled getLocInfo()");
571  }
572}
573
574SDValue SystemZTargetLowering::
575LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
576                     const SmallVectorImpl<ISD::InputArg> &Ins,
577                     SDLoc DL, SelectionDAG &DAG,
578                     SmallVectorImpl<SDValue> &InVals) const {
579  MachineFunction &MF = DAG.getMachineFunction();
580  MachineFrameInfo *MFI = MF.getFrameInfo();
581  MachineRegisterInfo &MRI = MF.getRegInfo();
582  SystemZMachineFunctionInfo *FuncInfo =
583    MF.getInfo<SystemZMachineFunctionInfo>();
584  const SystemZFrameLowering *TFL =
585    static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
586
587  // Assign locations to all of the incoming arguments.
588  SmallVector<CCValAssign, 16> ArgLocs;
589  CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
590  CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
591
592  unsigned NumFixedGPRs = 0;
593  unsigned NumFixedFPRs = 0;
594  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
595    SDValue ArgValue;
596    CCValAssign &VA = ArgLocs[I];
597    EVT LocVT = VA.getLocVT();
598    if (VA.isRegLoc()) {
599      // Arguments passed in registers
600      const TargetRegisterClass *RC;
601      switch (LocVT.getSimpleVT().SimpleTy) {
602      default:
603        // Integers smaller than i64 should be promoted to i64.
604        llvm_unreachable("Unexpected argument type");
605      case MVT::i32:
606        NumFixedGPRs += 1;
607        RC = &SystemZ::GR32BitRegClass;
608        break;
609      case MVT::i64:
610        NumFixedGPRs += 1;
611        RC = &SystemZ::GR64BitRegClass;
612        break;
613      case MVT::f32:
614        NumFixedFPRs += 1;
615        RC = &SystemZ::FP32BitRegClass;
616        break;
617      case MVT::f64:
618        NumFixedFPRs += 1;
619        RC = &SystemZ::FP64BitRegClass;
620        break;
621      }
622
623      unsigned VReg = MRI.createVirtualRegister(RC);
624      MRI.addLiveIn(VA.getLocReg(), VReg);
625      ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
626    } else {
627      assert(VA.isMemLoc() && "Argument not register or memory");
628
629      // Create the frame index object for this incoming parameter.
630      int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
631                                      VA.getLocMemOffset(), true);
632
633      // Create the SelectionDAG nodes corresponding to a load
634      // from this parameter.  Unpromoted ints and floats are
635      // passed as right-justified 8-byte values.
636      EVT PtrVT = getPointerTy();
637      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
638      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
639        FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
640      ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
641                             MachinePointerInfo::getFixedStack(FI),
642                             false, false, false, 0);
643    }
644
645    // Convert the value of the argument register into the value that's
646    // being passed.
647    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
648  }
649
650  if (IsVarArg) {
651    // Save the number of non-varargs registers for later use by va_start, etc.
652    FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
653    FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
654
655    // Likewise the address (in the form of a frame index) of where the
656    // first stack vararg would be.  The 1-byte size here is arbitrary.
657    int64_t StackSize = CCInfo.getNextStackOffset();
658    FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
659
660    // ...and a similar frame index for the caller-allocated save area
661    // that will be used to store the incoming registers.
662    int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
663    unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
664    FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
665
666    // Store the FPR varargs in the reserved frame slots.  (We store the
667    // GPRs as part of the prologue.)
668    if (NumFixedFPRs < SystemZ::NumArgFPRs) {
669      SDValue MemOps[SystemZ::NumArgFPRs];
670      for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
671        unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
672        int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
673        SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
674        unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
675                                     &SystemZ::FP64BitRegClass);
676        SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
677        MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
678                                 MachinePointerInfo::getFixedStack(FI),
679                                 false, false, 0);
680
681      }
682      // Join the stores, which are independent of one another.
683      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
684                          &MemOps[NumFixedFPRs],
685                          SystemZ::NumArgFPRs - NumFixedFPRs);
686    }
687  }
688
689  return Chain;
690}
691
692SDValue
693SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
694                                 SmallVectorImpl<SDValue> &InVals) const {
695  SelectionDAG &DAG = CLI.DAG;
696  SDLoc &DL = CLI.DL;
697  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
698  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
699  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
700  SDValue Chain = CLI.Chain;
701  SDValue Callee = CLI.Callee;
702  bool &isTailCall = CLI.IsTailCall;
703  CallingConv::ID CallConv = CLI.CallConv;
704  bool IsVarArg = CLI.IsVarArg;
705  MachineFunction &MF = DAG.getMachineFunction();
706  EVT PtrVT = getPointerTy();
707
708  // SystemZ target does not yet support tail call optimization.
709  isTailCall = false;
710
711  // Analyze the operands of the call, assigning locations to each operand.
712  SmallVector<CCValAssign, 16> ArgLocs;
713  CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
714  ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
715
716  // Get a count of how many bytes are to be pushed on the stack.
717  unsigned NumBytes = ArgCCInfo.getNextStackOffset();
718
719  // Mark the start of the call.
720  Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
721                               DL);
722
723  // Copy argument values to their designated locations.
724  SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
725  SmallVector<SDValue, 8> MemOpChains;
726  SDValue StackPtr;
727  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
728    CCValAssign &VA = ArgLocs[I];
729    SDValue ArgValue = OutVals[I];
730
731    if (VA.getLocInfo() == CCValAssign::Indirect) {
732      // Store the argument in a stack slot and pass its address.
733      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
734      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
735      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
736                                         MachinePointerInfo::getFixedStack(FI),
737                                         false, false, 0));
738      ArgValue = SpillSlot;
739    } else
740      ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
741
742    if (VA.isRegLoc())
743      // Queue up the argument copies and emit them at the end.
744      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
745    else {
746      assert(VA.isMemLoc() && "Argument not register or memory");
747
748      // Work out the address of the stack slot.  Unpromoted ints and
749      // floats are passed as right-justified 8-byte values.
750      if (!StackPtr.getNode())
751        StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
752      unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
753      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
754        Offset += 4;
755      SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
756                                    DAG.getIntPtrConstant(Offset));
757
758      // Emit the store.
759      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
760                                         MachinePointerInfo(),
761                                         false, false, 0));
762    }
763  }
764
765  // Join the stores, which are independent of one another.
766  if (!MemOpChains.empty())
767    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
768                        &MemOpChains[0], MemOpChains.size());
769
770  // Build a sequence of copy-to-reg nodes, chained and glued together.
771  SDValue Glue;
772  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
773    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
774                             RegsToPass[I].second, Glue);
775    Glue = Chain.getValue(1);
776  }
777
778  // Accept direct calls by converting symbolic call addresses to the
779  // associated Target* opcodes.
780  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
781    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
782    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
783  } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
784    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
785    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
786  }
787
788  // The first call operand is the chain and the second is the target address.
789  SmallVector<SDValue, 8> Ops;
790  Ops.push_back(Chain);
791  Ops.push_back(Callee);
792
793  // Add argument registers to the end of the list so that they are
794  // known live into the call.
795  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
796    Ops.push_back(DAG.getRegister(RegsToPass[I].first,
797                                  RegsToPass[I].second.getValueType()));
798
799  // Glue the call to the argument copies, if any.
800  if (Glue.getNode())
801    Ops.push_back(Glue);
802
803  // Emit the call.
804  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
805  Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
806  Glue = Chain.getValue(1);
807
808  // Mark the end of the call, which is glued to the call itself.
809  Chain = DAG.getCALLSEQ_END(Chain,
810                             DAG.getConstant(NumBytes, PtrVT, true),
811                             DAG.getConstant(0, PtrVT, true),
812                             Glue, DL);
813  Glue = Chain.getValue(1);
814
815  // Assign locations to each value returned by this call.
816  SmallVector<CCValAssign, 16> RetLocs;
817  CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
818  RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
819
820  // Copy all of the result registers out of their specified physreg.
821  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
822    CCValAssign &VA = RetLocs[I];
823
824    // Copy the value out, gluing the copy to the end of the call sequence.
825    SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
826                                          VA.getLocVT(), Glue);
827    Chain = RetValue.getValue(1);
828    Glue = RetValue.getValue(2);
829
830    // Convert the value of the return register into the value that's
831    // being returned.
832    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
833  }
834
835  return Chain;
836}
837
838SDValue
839SystemZTargetLowering::LowerReturn(SDValue Chain,
840                                   CallingConv::ID CallConv, bool IsVarArg,
841                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
842                                   const SmallVectorImpl<SDValue> &OutVals,
843                                   SDLoc DL, SelectionDAG &DAG) const {
844  MachineFunction &MF = DAG.getMachineFunction();
845
846  // Assign locations to each returned value.
847  SmallVector<CCValAssign, 16> RetLocs;
848  CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
849  RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
850
851  // Quick exit for void returns
852  if (RetLocs.empty())
853    return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
854
855  // Copy the result values into the output registers.
856  SDValue Glue;
857  SmallVector<SDValue, 4> RetOps;
858  RetOps.push_back(Chain);
859  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
860    CCValAssign &VA = RetLocs[I];
861    SDValue RetValue = OutVals[I];
862
863    // Make the return register live on exit.
864    assert(VA.isRegLoc() && "Can only return in registers!");
865
866    // Promote the value as required.
867    RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
868
869    // Chain and glue the copies together.
870    unsigned Reg = VA.getLocReg();
871    Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
872    Glue = Chain.getValue(1);
873    RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
874  }
875
876  // Update chain and glue.
877  RetOps[0] = Chain;
878  if (Glue.getNode())
879    RetOps.push_back(Glue);
880
881  return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other,
882                     RetOps.data(), RetOps.size());
883}
884
885// CC is a comparison that will be implemented using an integer or
886// floating-point comparison.  Return the condition code mask for
887// a branch on true.  In the integer case, CCMASK_CMP_UO is set for
888// unsigned comparisons and clear for signed ones.  In the floating-point
889// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
890static unsigned CCMaskForCondCode(ISD::CondCode CC) {
891#define CONV(X) \
892  case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
893  case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
894  case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
895
896  switch (CC) {
897  default:
898    llvm_unreachable("Invalid integer condition!");
899
900  CONV(EQ);
901  CONV(NE);
902  CONV(GT);
903  CONV(GE);
904  CONV(LT);
905  CONV(LE);
906
907  case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
908  case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
909  }
910#undef CONV
911}
912
913// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
914// can be converted to a comparison against zero, adjust the operands
915// as necessary.
916static void adjustZeroCmp(SelectionDAG &DAG, bool &IsUnsigned,
917                          SDValue &CmpOp0, SDValue &CmpOp1,
918                          unsigned &CCMask) {
919  if (IsUnsigned)
920    return;
921
922  ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(CmpOp1.getNode());
923  if (!ConstOp1)
924    return;
925
926  int64_t Value = ConstOp1->getSExtValue();
927  if ((Value == -1 && CCMask == SystemZ::CCMASK_CMP_GT) ||
928      (Value == -1 && CCMask == SystemZ::CCMASK_CMP_LE) ||
929      (Value == 1 && CCMask == SystemZ::CCMASK_CMP_LT) ||
930      (Value == 1 && CCMask == SystemZ::CCMASK_CMP_GE)) {
931    CCMask ^= SystemZ::CCMASK_CMP_EQ;
932    CmpOp1 = DAG.getConstant(0, CmpOp1.getValueType());
933  }
934}
935
936// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
937// is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary.
938static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned,
939                             SDValue &CmpOp0, SDValue &CmpOp1,
940                             unsigned &CCMask) {
941  // For us to make any changes, it must a comparison between a single-use
942  // load and a constant.
943  if (!CmpOp0.hasOneUse() ||
944      CmpOp0.getOpcode() != ISD::LOAD ||
945      CmpOp1.getOpcode() != ISD::Constant)
946    return;
947
948  // We must have an 8- or 16-bit load.
949  LoadSDNode *Load = cast<LoadSDNode>(CmpOp0);
950  unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
951  if (NumBits != 8 && NumBits != 16)
952    return;
953
954  // The load must be an extending one and the constant must be within the
955  // range of the unextended value.
956  ConstantSDNode *Constant = cast<ConstantSDNode>(CmpOp1);
957  uint64_t Value = Constant->getZExtValue();
958  uint64_t Mask = (1 << NumBits) - 1;
959  if (Load->getExtensionType() == ISD::SEXTLOAD) {
960    int64_t SignedValue = Constant->getSExtValue();
961    if (uint64_t(SignedValue) + (1ULL << (NumBits - 1)) > Mask)
962      return;
963    // Unsigned comparison between two sign-extended values is equivalent
964    // to unsigned comparison between two zero-extended values.
965    if (IsUnsigned)
966      Value &= Mask;
967    else if (CCMask == SystemZ::CCMASK_CMP_EQ ||
968             CCMask == SystemZ::CCMASK_CMP_NE)
969      // Any choice of IsUnsigned is OK for equality comparisons.
970      // We could use either CHHSI or CLHHSI for 16-bit comparisons,
971      // but since we use CLHHSI for zero extensions, it seems better
972      // to be consistent and do the same here.
973      Value &= Mask, IsUnsigned = true;
974    else if (NumBits == 8) {
975      // Try to treat the comparison as unsigned, so that we can use CLI.
976      // Adjust CCMask and Value as necessary.
977      if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT)
978        // Test whether the high bit of the byte is set.
979        Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true;
980      else if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_GE)
981        // Test whether the high bit of the byte is clear.
982        Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true;
983      else
984        // No instruction exists for this combination.
985        return;
986    }
987  } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
988    if (Value > Mask)
989      return;
990    // Signed comparison between two zero-extended values is equivalent
991    // to unsigned comparison.
992    IsUnsigned = true;
993  } else
994    return;
995
996  // Make sure that the first operand is an i32 of the right extension type.
997  ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD;
998  if (CmpOp0.getValueType() != MVT::i32 ||
999      Load->getExtensionType() != ExtType)
1000    CmpOp0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1001                            Load->getChain(), Load->getBasePtr(),
1002                            Load->getPointerInfo(), Load->getMemoryVT(),
1003                            Load->isVolatile(), Load->isNonTemporal(),
1004                            Load->getAlignment());
1005
1006  // Make sure that the second operand is an i32 with the right value.
1007  if (CmpOp1.getValueType() != MVT::i32 ||
1008      Value != Constant->getZExtValue())
1009    CmpOp1 = DAG.getConstant(Value, MVT::i32);
1010}
1011
1012// Return true if a comparison described by CCMask, CmpOp0 and CmpOp1
1013// is an equality comparison that is better implemented using unsigned
1014// rather than signed comparison instructions.
1015static bool preferUnsignedComparison(SelectionDAG &DAG, SDValue CmpOp0,
1016                                     SDValue CmpOp1, unsigned CCMask) {
1017  // The test must be for equality or inequality.
1018  if (CCMask != SystemZ::CCMASK_CMP_EQ && CCMask != SystemZ::CCMASK_CMP_NE)
1019    return false;
1020
1021  if (CmpOp1.getOpcode() == ISD::Constant) {
1022    uint64_t Value = cast<ConstantSDNode>(CmpOp1)->getSExtValue();
1023
1024    // If we're comparing with memory, prefer unsigned comparisons for
1025    // values that are in the unsigned 16-bit range but not the signed
1026    // 16-bit range.  We want to use CLFHSI and CLGHSI.
1027    if (CmpOp0.hasOneUse() &&
1028        ISD::isNormalLoad(CmpOp0.getNode()) &&
1029        (Value >= 32768 && Value < 65536))
1030      return true;
1031
1032    // Use unsigned comparisons for values that are in the CLGFI range
1033    // but not in the CGFI range.
1034    if (CmpOp0.getValueType() == MVT::i64 && (Value >> 31) == 1)
1035      return true;
1036
1037    return false;
1038  }
1039
1040  // Prefer CL for zero-extended loads.
1041  if (CmpOp1.getOpcode() == ISD::ZERO_EXTEND ||
1042      ISD::isZEXTLoad(CmpOp1.getNode()))
1043    return true;
1044
1045  // ...and for "in-register" zero extensions.
1046  if (CmpOp1.getOpcode() == ISD::AND && CmpOp1.getValueType() == MVT::i64) {
1047    SDValue Mask = CmpOp1.getOperand(1);
1048    if (Mask.getOpcode() == ISD::Constant &&
1049        cast<ConstantSDNode>(Mask)->getZExtValue() == 0xffffffff)
1050      return true;
1051  }
1052
1053  return false;
1054}
1055
1056// Return a target node that compares CmpOp0 with CmpOp1 and stores a
1057// 2-bit result in CC.  Set CCValid to the CCMASK_* of all possible
1058// 2-bit results and CCMask to the subset of those results that are
1059// associated with Cond.
1060static SDValue emitCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
1061                       ISD::CondCode Cond, unsigned &CCValid,
1062                       unsigned &CCMask) {
1063  bool IsUnsigned = false;
1064  CCMask = CCMaskForCondCode(Cond);
1065  if (CmpOp0.getValueType().isFloatingPoint())
1066    CCValid = SystemZ::CCMASK_FCMP;
1067  else {
1068    IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO;
1069    CCValid = SystemZ::CCMASK_ICMP;
1070    CCMask &= CCValid;
1071    adjustZeroCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
1072    adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
1073    if (preferUnsignedComparison(DAG, CmpOp0, CmpOp1, CCMask))
1074      IsUnsigned = true;
1075  }
1076
1077  SDLoc DL(CmpOp0);
1078  return DAG.getNode((IsUnsigned ? SystemZISD::UCMP : SystemZISD::CMP),
1079                     DL, MVT::Glue, CmpOp0, CmpOp1);
1080}
1081
1082// Lower a binary operation that produces two VT results, one in each
1083// half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
1084// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
1085// on the extended Op0 and (unextended) Op1.  Store the even register result
1086// in Even and the odd register result in Odd.
1087static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
1088                             unsigned Extend, unsigned Opcode,
1089                             SDValue Op0, SDValue Op1,
1090                             SDValue &Even, SDValue &Odd) {
1091  SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
1092  SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
1093                               SDValue(In128, 0), Op1);
1094  bool Is32Bit = is32Bit(VT);
1095  SDValue SubReg0 = DAG.getTargetConstant(SystemZ::even128(Is32Bit), VT);
1096  SDValue SubReg1 = DAG.getTargetConstant(SystemZ::odd128(Is32Bit), VT);
1097  SDNode *Reg0 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1098                                    VT, Result, SubReg0);
1099  SDNode *Reg1 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1100                                    VT, Result, SubReg1);
1101  Even = SDValue(Reg0, 0);
1102  Odd = SDValue(Reg1, 0);
1103}
1104
1105SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1106  SDValue Chain    = Op.getOperand(0);
1107  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1108  SDValue CmpOp0   = Op.getOperand(2);
1109  SDValue CmpOp1   = Op.getOperand(3);
1110  SDValue Dest     = Op.getOperand(4);
1111  SDLoc DL(Op);
1112
1113  unsigned CCValid, CCMask;
1114  SDValue Flags = emitCmp(DAG, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1115  return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
1116                     Chain, DAG.getConstant(CCValid, MVT::i32),
1117                     DAG.getConstant(CCMask, MVT::i32), Dest, Flags);
1118}
1119
1120SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
1121                                              SelectionDAG &DAG) const {
1122  SDValue CmpOp0   = Op.getOperand(0);
1123  SDValue CmpOp1   = Op.getOperand(1);
1124  SDValue TrueOp   = Op.getOperand(2);
1125  SDValue FalseOp  = Op.getOperand(3);
1126  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1127  SDLoc DL(Op);
1128
1129  unsigned CCValid, CCMask;
1130  SDValue Flags = emitCmp(DAG, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1131
1132  SmallVector<SDValue, 5> Ops;
1133  Ops.push_back(TrueOp);
1134  Ops.push_back(FalseOp);
1135  Ops.push_back(DAG.getConstant(CCValid, MVT::i32));
1136  Ops.push_back(DAG.getConstant(CCMask, MVT::i32));
1137  Ops.push_back(Flags);
1138
1139  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1140  return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size());
1141}
1142
1143SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
1144                                                  SelectionDAG &DAG) const {
1145  SDLoc DL(Node);
1146  const GlobalValue *GV = Node->getGlobal();
1147  int64_t Offset = Node->getOffset();
1148  EVT PtrVT = getPointerTy();
1149  Reloc::Model RM = TM.getRelocationModel();
1150  CodeModel::Model CM = TM.getCodeModel();
1151
1152  SDValue Result;
1153  if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
1154    // Make sure that the offset is aligned to a halfword.  If it isn't,
1155    // create an "anchor" at the previous 12-bit boundary.
1156    // FIXME check whether there is a better way of handling this.
1157    if (Offset & 1) {
1158      Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
1159                                          Offset & ~uint64_t(0xfff));
1160      Offset &= 0xfff;
1161    } else {
1162      Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Offset);
1163      Offset = 0;
1164    }
1165    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1166  } else {
1167    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
1168    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1169    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
1170                         MachinePointerInfo::getGOT(), false, false, false, 0);
1171  }
1172
1173  // If there was a non-zero offset that we didn't fold, create an explicit
1174  // addition for it.
1175  if (Offset != 0)
1176    Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
1177                         DAG.getConstant(Offset, PtrVT));
1178
1179  return Result;
1180}
1181
1182SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
1183						     SelectionDAG &DAG) const {
1184  SDLoc DL(Node);
1185  const GlobalValue *GV = Node->getGlobal();
1186  EVT PtrVT = getPointerTy();
1187  TLSModel::Model model = TM.getTLSModel(GV);
1188
1189  if (model != TLSModel::LocalExec)
1190    llvm_unreachable("only local-exec TLS mode supported");
1191
1192  // The high part of the thread pointer is in access register 0.
1193  SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1194                             DAG.getConstant(0, MVT::i32));
1195  TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
1196
1197  // The low part of the thread pointer is in access register 1.
1198  SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1199                             DAG.getConstant(1, MVT::i32));
1200  TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
1201
1202  // Merge them into a single 64-bit address.
1203  SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
1204				    DAG.getConstant(32, PtrVT));
1205  SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
1206
1207  // Get the offset of GA from the thread pointer.
1208  SystemZConstantPoolValue *CPV =
1209    SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
1210
1211  // Force the offset into the constant pool and load it from there.
1212  SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
1213  SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
1214			       CPAddr, MachinePointerInfo::getConstantPool(),
1215			       false, false, false, 0);
1216
1217  // Add the base and offset together.
1218  return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
1219}
1220
1221SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
1222                                                 SelectionDAG &DAG) const {
1223  SDLoc DL(Node);
1224  const BlockAddress *BA = Node->getBlockAddress();
1225  int64_t Offset = Node->getOffset();
1226  EVT PtrVT = getPointerTy();
1227
1228  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
1229  Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1230  return Result;
1231}
1232
1233SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
1234                                              SelectionDAG &DAG) const {
1235  SDLoc DL(JT);
1236  EVT PtrVT = getPointerTy();
1237  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1238
1239  // Use LARL to load the address of the table.
1240  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1241}
1242
1243SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
1244                                                 SelectionDAG &DAG) const {
1245  SDLoc DL(CP);
1246  EVT PtrVT = getPointerTy();
1247
1248  SDValue Result;
1249  if (CP->isMachineConstantPoolEntry())
1250    Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1251				       CP->getAlignment());
1252  else
1253    Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1254				       CP->getAlignment(), CP->getOffset());
1255
1256  // Use LARL to load the address of the constant pool entry.
1257  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1258}
1259
1260SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
1261                                            SelectionDAG &DAG) const {
1262  SDLoc DL(Op);
1263  SDValue In = Op.getOperand(0);
1264  EVT InVT = In.getValueType();
1265  EVT ResVT = Op.getValueType();
1266
1267  SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
1268  SDValue Shift32 = DAG.getConstant(32, MVT::i64);
1269  if (InVT == MVT::i32 && ResVT == MVT::f32) {
1270    SDValue In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
1271    SDValue Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, Shift32);
1272    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Shift);
1273    SDNode *Out = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1274                                     MVT::f32, Out64, SubReg32);
1275    return SDValue(Out, 0);
1276  }
1277  if (InVT == MVT::f32 && ResVT == MVT::i32) {
1278    SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
1279    SDNode *In64 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
1280                                      MVT::f64, SDValue(U64, 0), In, SubReg32);
1281    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, SDValue(In64, 0));
1282    SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, Shift32);
1283    SDValue Out = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
1284    return Out;
1285  }
1286  llvm_unreachable("Unexpected bitcast combination");
1287}
1288
1289SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
1290                                            SelectionDAG &DAG) const {
1291  MachineFunction &MF = DAG.getMachineFunction();
1292  SystemZMachineFunctionInfo *FuncInfo =
1293    MF.getInfo<SystemZMachineFunctionInfo>();
1294  EVT PtrVT = getPointerTy();
1295
1296  SDValue Chain   = Op.getOperand(0);
1297  SDValue Addr    = Op.getOperand(1);
1298  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1299  SDLoc DL(Op);
1300
1301  // The initial values of each field.
1302  const unsigned NumFields = 4;
1303  SDValue Fields[NumFields] = {
1304    DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
1305    DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
1306    DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
1307    DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
1308  };
1309
1310  // Store each field into its respective slot.
1311  SDValue MemOps[NumFields];
1312  unsigned Offset = 0;
1313  for (unsigned I = 0; I < NumFields; ++I) {
1314    SDValue FieldAddr = Addr;
1315    if (Offset != 0)
1316      FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
1317                              DAG.getIntPtrConstant(Offset));
1318    MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
1319                             MachinePointerInfo(SV, Offset),
1320                             false, false, 0);
1321    Offset += 8;
1322  }
1323  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields);
1324}
1325
1326SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
1327                                           SelectionDAG &DAG) const {
1328  SDValue Chain      = Op.getOperand(0);
1329  SDValue DstPtr     = Op.getOperand(1);
1330  SDValue SrcPtr     = Op.getOperand(2);
1331  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1332  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1333  SDLoc DL(Op);
1334
1335  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
1336                       /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
1337                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
1338}
1339
1340SDValue SystemZTargetLowering::
1341lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
1342  SDValue Chain = Op.getOperand(0);
1343  SDValue Size  = Op.getOperand(1);
1344  SDLoc DL(Op);
1345
1346  unsigned SPReg = getStackPointerRegisterToSaveRestore();
1347
1348  // Get a reference to the stack pointer.
1349  SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
1350
1351  // Get the new stack pointer value.
1352  SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
1353
1354  // Copy the new stack pointer back.
1355  Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
1356
1357  // The allocated data lives above the 160 bytes allocated for the standard
1358  // frame, plus any outgoing stack arguments.  We don't know how much that
1359  // amounts to yet, so emit a special ADJDYNALLOC placeholder.
1360  SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
1361  SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
1362
1363  SDValue Ops[2] = { Result, Chain };
1364  return DAG.getMergeValues(Ops, 2, DL);
1365}
1366
1367SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
1368                                              SelectionDAG &DAG) const {
1369  EVT VT = Op.getValueType();
1370  SDLoc DL(Op);
1371  assert(!is32Bit(VT) && "Only support 64-bit UMUL_LOHI");
1372
1373  // UMUL_LOHI64 returns the low result in the odd register and the high
1374  // result in the even register.  UMUL_LOHI is defined to return the
1375  // low half first, so the results are in reverse order.
1376  SDValue Ops[2];
1377  lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
1378                   Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1379  return DAG.getMergeValues(Ops, 2, DL);
1380}
1381
1382SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
1383                                            SelectionDAG &DAG) const {
1384  SDValue Op0 = Op.getOperand(0);
1385  SDValue Op1 = Op.getOperand(1);
1386  EVT VT = Op.getValueType();
1387  SDLoc DL(Op);
1388  unsigned Opcode;
1389
1390  // We use DSGF for 32-bit division.
1391  if (is32Bit(VT)) {
1392    Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
1393    Opcode = SystemZISD::SDIVREM32;
1394  } else if (DAG.ComputeNumSignBits(Op1) > 32) {
1395    Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
1396    Opcode = SystemZISD::SDIVREM32;
1397  } else
1398    Opcode = SystemZISD::SDIVREM64;
1399
1400  // DSG(F) takes a 64-bit dividend, so the even register in the GR128
1401  // input is "don't care".  The instruction returns the remainder in
1402  // the even register and the quotient in the odd register.
1403  SDValue Ops[2];
1404  lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
1405                   Op0, Op1, Ops[1], Ops[0]);
1406  return DAG.getMergeValues(Ops, 2, DL);
1407}
1408
1409SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
1410                                            SelectionDAG &DAG) const {
1411  EVT VT = Op.getValueType();
1412  SDLoc DL(Op);
1413
1414  // DL(G) uses a double-width dividend, so we need to clear the even
1415  // register in the GR128 input.  The instruction returns the remainder
1416  // in the even register and the quotient in the odd register.
1417  SDValue Ops[2];
1418  if (is32Bit(VT))
1419    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
1420                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1421  else
1422    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
1423                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1424  return DAG.getMergeValues(Ops, 2, DL);
1425}
1426
1427SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
1428  assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
1429
1430  // Get the known-zero masks for each operand.
1431  SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
1432  APInt KnownZero[2], KnownOne[2];
1433  DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]);
1434  DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]);
1435
1436  // See if the upper 32 bits of one operand and the lower 32 bits of the
1437  // other are known zero.  They are the low and high operands respectively.
1438  uint64_t Masks[] = { KnownZero[0].getZExtValue(),
1439                       KnownZero[1].getZExtValue() };
1440  unsigned High, Low;
1441  if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
1442    High = 1, Low = 0;
1443  else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
1444    High = 0, Low = 1;
1445  else
1446    return Op;
1447
1448  SDValue LowOp = Ops[Low];
1449  SDValue HighOp = Ops[High];
1450
1451  // If the high part is a constant, we're better off using IILH.
1452  if (HighOp.getOpcode() == ISD::Constant)
1453    return Op;
1454
1455  // If the low part is a constant that is outside the range of LHI,
1456  // then we're better off using IILF.
1457  if (LowOp.getOpcode() == ISD::Constant) {
1458    int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
1459    if (!isInt<16>(Value))
1460      return Op;
1461  }
1462
1463  // Check whether the high part is an AND that doesn't change the
1464  // high 32 bits and just masks out low bits.  We can skip it if so.
1465  if (HighOp.getOpcode() == ISD::AND &&
1466      HighOp.getOperand(1).getOpcode() == ISD::Constant) {
1467    ConstantSDNode *MaskNode = cast<ConstantSDNode>(HighOp.getOperand(1));
1468    uint64_t Mask = MaskNode->getZExtValue() | Masks[High];
1469    if ((Mask >> 32) == 0xffffffff)
1470      HighOp = HighOp.getOperand(0);
1471  }
1472
1473  // Take advantage of the fact that all GR32 operations only change the
1474  // low 32 bits by truncating Low to an i32 and inserting it directly
1475  // using a subreg.  The interesting cases are those where the truncation
1476  // can be folded.
1477  SDLoc DL(Op);
1478  SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
1479  SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
1480  SDNode *Result = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
1481                                      MVT::i64, HighOp, Low32, SubReg32);
1482  return SDValue(Result, 0);
1483}
1484
1485// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
1486// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
1487SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
1488                                                SelectionDAG &DAG,
1489                                                unsigned Opcode) const {
1490  AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
1491
1492  // 32-bit operations need no code outside the main loop.
1493  EVT NarrowVT = Node->getMemoryVT();
1494  EVT WideVT = MVT::i32;
1495  if (NarrowVT == WideVT)
1496    return Op;
1497
1498  int64_t BitSize = NarrowVT.getSizeInBits();
1499  SDValue ChainIn = Node->getChain();
1500  SDValue Addr = Node->getBasePtr();
1501  SDValue Src2 = Node->getVal();
1502  MachineMemOperand *MMO = Node->getMemOperand();
1503  SDLoc DL(Node);
1504  EVT PtrVT = Addr.getValueType();
1505
1506  // Convert atomic subtracts of constants into additions.
1507  if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
1508    if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) {
1509      Opcode = SystemZISD::ATOMIC_LOADW_ADD;
1510      Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
1511    }
1512
1513  // Get the address of the containing word.
1514  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
1515                                    DAG.getConstant(-4, PtrVT));
1516
1517  // Get the number of bits that the word must be rotated left in order
1518  // to bring the field to the top bits of a GR32.
1519  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
1520                                 DAG.getConstant(3, PtrVT));
1521  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
1522
1523  // Get the complementing shift amount, for rotating a field in the top
1524  // bits back to its proper position.
1525  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
1526                                    DAG.getConstant(0, WideVT), BitShift);
1527
1528  // Extend the source operand to 32 bits and prepare it for the inner loop.
1529  // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
1530  // operations require the source to be shifted in advance.  (This shift
1531  // can be folded if the source is constant.)  For AND and NAND, the lower
1532  // bits must be set, while for other opcodes they should be left clear.
1533  if (Opcode != SystemZISD::ATOMIC_SWAPW)
1534    Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
1535                       DAG.getConstant(32 - BitSize, WideVT));
1536  if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
1537      Opcode == SystemZISD::ATOMIC_LOADW_NAND)
1538    Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
1539                       DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
1540
1541  // Construct the ATOMIC_LOADW_* node.
1542  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
1543  SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
1544                    DAG.getConstant(BitSize, WideVT) };
1545  SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
1546                                             array_lengthof(Ops),
1547                                             NarrowVT, MMO);
1548
1549  // Rotate the result of the final CS so that the field is in the lower
1550  // bits of a GR32, then truncate it.
1551  SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
1552                                    DAG.getConstant(BitSize, WideVT));
1553  SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
1554
1555  SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
1556  return DAG.getMergeValues(RetOps, 2, DL);
1557}
1558
1559// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
1560// into a fullword ATOMIC_CMP_SWAPW operation.
1561SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
1562                                                    SelectionDAG &DAG) const {
1563  AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
1564
1565  // We have native support for 32-bit compare and swap.
1566  EVT NarrowVT = Node->getMemoryVT();
1567  EVT WideVT = MVT::i32;
1568  if (NarrowVT == WideVT)
1569    return Op;
1570
1571  int64_t BitSize = NarrowVT.getSizeInBits();
1572  SDValue ChainIn = Node->getOperand(0);
1573  SDValue Addr = Node->getOperand(1);
1574  SDValue CmpVal = Node->getOperand(2);
1575  SDValue SwapVal = Node->getOperand(3);
1576  MachineMemOperand *MMO = Node->getMemOperand();
1577  SDLoc DL(Node);
1578  EVT PtrVT = Addr.getValueType();
1579
1580  // Get the address of the containing word.
1581  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
1582                                    DAG.getConstant(-4, PtrVT));
1583
1584  // Get the number of bits that the word must be rotated left in order
1585  // to bring the field to the top bits of a GR32.
1586  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
1587                                 DAG.getConstant(3, PtrVT));
1588  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
1589
1590  // Get the complementing shift amount, for rotating a field in the top
1591  // bits back to its proper position.
1592  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
1593                                    DAG.getConstant(0, WideVT), BitShift);
1594
1595  // Construct the ATOMIC_CMP_SWAPW node.
1596  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
1597  SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
1598                    NegBitShift, DAG.getConstant(BitSize, WideVT) };
1599  SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
1600                                             VTList, Ops, array_lengthof(Ops),
1601                                             NarrowVT, MMO);
1602  return AtomicOp;
1603}
1604
1605SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
1606                                              SelectionDAG &DAG) const {
1607  MachineFunction &MF = DAG.getMachineFunction();
1608  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
1609  return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
1610                            SystemZ::R15D, Op.getValueType());
1611}
1612
1613SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
1614                                                 SelectionDAG &DAG) const {
1615  MachineFunction &MF = DAG.getMachineFunction();
1616  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
1617  return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
1618                          SystemZ::R15D, Op.getOperand(1));
1619}
1620
1621SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
1622                                              SelectionDAG &DAG) const {
1623  switch (Op.getOpcode()) {
1624  case ISD::BR_CC:
1625    return lowerBR_CC(Op, DAG);
1626  case ISD::SELECT_CC:
1627    return lowerSELECT_CC(Op, DAG);
1628  case ISD::GlobalAddress:
1629    return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
1630  case ISD::GlobalTLSAddress:
1631    return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
1632  case ISD::BlockAddress:
1633    return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
1634  case ISD::JumpTable:
1635    return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
1636  case ISD::ConstantPool:
1637    return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
1638  case ISD::BITCAST:
1639    return lowerBITCAST(Op, DAG);
1640  case ISD::VASTART:
1641    return lowerVASTART(Op, DAG);
1642  case ISD::VACOPY:
1643    return lowerVACOPY(Op, DAG);
1644  case ISD::DYNAMIC_STACKALLOC:
1645    return lowerDYNAMIC_STACKALLOC(Op, DAG);
1646  case ISD::UMUL_LOHI:
1647    return lowerUMUL_LOHI(Op, DAG);
1648  case ISD::SDIVREM:
1649    return lowerSDIVREM(Op, DAG);
1650  case ISD::UDIVREM:
1651    return lowerUDIVREM(Op, DAG);
1652  case ISD::OR:
1653    return lowerOR(Op, DAG);
1654  case ISD::ATOMIC_SWAP:
1655    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_SWAPW);
1656  case ISD::ATOMIC_LOAD_ADD:
1657    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
1658  case ISD::ATOMIC_LOAD_SUB:
1659    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
1660  case ISD::ATOMIC_LOAD_AND:
1661    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
1662  case ISD::ATOMIC_LOAD_OR:
1663    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
1664  case ISD::ATOMIC_LOAD_XOR:
1665    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
1666  case ISD::ATOMIC_LOAD_NAND:
1667    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
1668  case ISD::ATOMIC_LOAD_MIN:
1669    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
1670  case ISD::ATOMIC_LOAD_MAX:
1671    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
1672  case ISD::ATOMIC_LOAD_UMIN:
1673    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
1674  case ISD::ATOMIC_LOAD_UMAX:
1675    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
1676  case ISD::ATOMIC_CMP_SWAP:
1677    return lowerATOMIC_CMP_SWAP(Op, DAG);
1678  case ISD::STACKSAVE:
1679    return lowerSTACKSAVE(Op, DAG);
1680  case ISD::STACKRESTORE:
1681    return lowerSTACKRESTORE(Op, DAG);
1682  default:
1683    llvm_unreachable("Unexpected node to lower");
1684  }
1685}
1686
1687const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
1688#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
1689  switch (Opcode) {
1690    OPCODE(RET_FLAG);
1691    OPCODE(CALL);
1692    OPCODE(PCREL_WRAPPER);
1693    OPCODE(CMP);
1694    OPCODE(UCMP);
1695    OPCODE(BR_CCMASK);
1696    OPCODE(SELECT_CCMASK);
1697    OPCODE(ADJDYNALLOC);
1698    OPCODE(EXTRACT_ACCESS);
1699    OPCODE(UMUL_LOHI64);
1700    OPCODE(SDIVREM64);
1701    OPCODE(UDIVREM32);
1702    OPCODE(UDIVREM64);
1703    OPCODE(MVC);
1704    OPCODE(ATOMIC_SWAPW);
1705    OPCODE(ATOMIC_LOADW_ADD);
1706    OPCODE(ATOMIC_LOADW_SUB);
1707    OPCODE(ATOMIC_LOADW_AND);
1708    OPCODE(ATOMIC_LOADW_OR);
1709    OPCODE(ATOMIC_LOADW_XOR);
1710    OPCODE(ATOMIC_LOADW_NAND);
1711    OPCODE(ATOMIC_LOADW_MIN);
1712    OPCODE(ATOMIC_LOADW_MAX);
1713    OPCODE(ATOMIC_LOADW_UMIN);
1714    OPCODE(ATOMIC_LOADW_UMAX);
1715    OPCODE(ATOMIC_CMP_SWAPW);
1716  }
1717  return NULL;
1718#undef OPCODE
1719}
1720
1721//===----------------------------------------------------------------------===//
1722// Custom insertion
1723//===----------------------------------------------------------------------===//
1724
1725// Create a new basic block after MBB.
1726static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
1727  MachineFunction &MF = *MBB->getParent();
1728  MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
1729  MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB);
1730  return NewMBB;
1731}
1732
1733// Split MBB after MI and return the new block (the one that contains
1734// instructions after MI).
1735static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
1736                                          MachineBasicBlock *MBB) {
1737  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
1738  NewMBB->splice(NewMBB->begin(), MBB,
1739                 llvm::next(MachineBasicBlock::iterator(MI)),
1740                 MBB->end());
1741  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
1742  return NewMBB;
1743}
1744
1745// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
1746MachineBasicBlock *
1747SystemZTargetLowering::emitSelect(MachineInstr *MI,
1748                                  MachineBasicBlock *MBB) const {
1749  const SystemZInstrInfo *TII = TM.getInstrInfo();
1750
1751  unsigned DestReg  = MI->getOperand(0).getReg();
1752  unsigned TrueReg  = MI->getOperand(1).getReg();
1753  unsigned FalseReg = MI->getOperand(2).getReg();
1754  unsigned CCValid  = MI->getOperand(3).getImm();
1755  unsigned CCMask   = MI->getOperand(4).getImm();
1756  DebugLoc DL       = MI->getDebugLoc();
1757
1758  MachineBasicBlock *StartMBB = MBB;
1759  MachineBasicBlock *JoinMBB  = splitBlockAfter(MI, MBB);
1760  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
1761
1762  //  StartMBB:
1763  //   BRC CCMask, JoinMBB
1764  //   # fallthrough to FalseMBB
1765  MBB = StartMBB;
1766  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
1767    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
1768  MBB->addSuccessor(JoinMBB);
1769  MBB->addSuccessor(FalseMBB);
1770
1771  //  FalseMBB:
1772  //   # fallthrough to JoinMBB
1773  MBB = FalseMBB;
1774  MBB->addSuccessor(JoinMBB);
1775
1776  //  JoinMBB:
1777  //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
1778  //  ...
1779  MBB = JoinMBB;
1780  BuildMI(*MBB, MBB->begin(), DL, TII->get(SystemZ::PHI), DestReg)
1781    .addReg(TrueReg).addMBB(StartMBB)
1782    .addReg(FalseReg).addMBB(FalseMBB);
1783
1784  MI->eraseFromParent();
1785  return JoinMBB;
1786}
1787
1788// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
1789// StoreOpcode is the store to use and Invert says whether the store should
1790// happen when the condition is false rather than true.  If a STORE ON
1791// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
1792MachineBasicBlock *
1793SystemZTargetLowering::emitCondStore(MachineInstr *MI,
1794                                     MachineBasicBlock *MBB,
1795                                     unsigned StoreOpcode, unsigned STOCOpcode,
1796                                     bool Invert) const {
1797  const SystemZInstrInfo *TII = TM.getInstrInfo();
1798
1799  unsigned SrcReg     = MI->getOperand(0).getReg();
1800  MachineOperand Base = MI->getOperand(1);
1801  int64_t Disp        = MI->getOperand(2).getImm();
1802  unsigned IndexReg   = MI->getOperand(3).getReg();
1803  unsigned CCValid    = MI->getOperand(4).getImm();
1804  unsigned CCMask     = MI->getOperand(5).getImm();
1805  DebugLoc DL         = MI->getDebugLoc();
1806
1807  StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
1808
1809  // Use STOCOpcode if possible.  We could use different store patterns in
1810  // order to avoid matching the index register, but the performance trade-offs
1811  // might be more complicated in that case.
1812  if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
1813    if (Invert)
1814      CCMask ^= CCValid;
1815    BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
1816      .addReg(SrcReg).addOperand(Base).addImm(Disp).addImm(CCMask);
1817    MI->eraseFromParent();
1818    return MBB;
1819  }
1820
1821  // Get the condition needed to branch around the store.
1822  if (!Invert)
1823    CCMask ^= CCValid;
1824
1825  MachineBasicBlock *StartMBB = MBB;
1826  MachineBasicBlock *JoinMBB  = splitBlockAfter(MI, MBB);
1827  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
1828
1829  //  StartMBB:
1830  //   BRC CCMask, JoinMBB
1831  //   # fallthrough to FalseMBB
1832  MBB = StartMBB;
1833  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
1834    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
1835  MBB->addSuccessor(JoinMBB);
1836  MBB->addSuccessor(FalseMBB);
1837
1838  //  FalseMBB:
1839  //   store %SrcReg, %Disp(%Index,%Base)
1840  //   # fallthrough to JoinMBB
1841  MBB = FalseMBB;
1842  BuildMI(MBB, DL, TII->get(StoreOpcode))
1843    .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
1844  MBB->addSuccessor(JoinMBB);
1845
1846  MI->eraseFromParent();
1847  return JoinMBB;
1848}
1849
1850// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
1851// or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
1852// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
1853// BitSize is the width of the field in bits, or 0 if this is a partword
1854// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
1855// is one of the operands.  Invert says whether the field should be
1856// inverted after performing BinOpcode (e.g. for NAND).
1857MachineBasicBlock *
1858SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
1859                                            MachineBasicBlock *MBB,
1860                                            unsigned BinOpcode,
1861                                            unsigned BitSize,
1862                                            bool Invert) const {
1863  const SystemZInstrInfo *TII = TM.getInstrInfo();
1864  MachineFunction &MF = *MBB->getParent();
1865  MachineRegisterInfo &MRI = MF.getRegInfo();
1866  bool IsSubWord = (BitSize < 32);
1867
1868  // Extract the operands.  Base can be a register or a frame index.
1869  // Src2 can be a register or immediate.
1870  unsigned Dest        = MI->getOperand(0).getReg();
1871  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
1872  int64_t Disp         = MI->getOperand(2).getImm();
1873  MachineOperand Src2  = earlyUseOperand(MI->getOperand(3));
1874  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
1875  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
1876  DebugLoc DL          = MI->getDebugLoc();
1877  if (IsSubWord)
1878    BitSize = MI->getOperand(6).getImm();
1879
1880  // Subword operations use 32-bit registers.
1881  const TargetRegisterClass *RC = (BitSize <= 32 ?
1882                                   &SystemZ::GR32BitRegClass :
1883                                   &SystemZ::GR64BitRegClass);
1884  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
1885  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
1886
1887  // Get the right opcodes for the displacement.
1888  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
1889  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
1890  assert(LOpcode && CSOpcode && "Displacement out of range");
1891
1892  // Create virtual registers for temporary results.
1893  unsigned OrigVal       = MRI.createVirtualRegister(RC);
1894  unsigned OldVal        = MRI.createVirtualRegister(RC);
1895  unsigned NewVal        = (BinOpcode || IsSubWord ?
1896                            MRI.createVirtualRegister(RC) : Src2.getReg());
1897  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
1898  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
1899
1900  // Insert a basic block for the main loop.
1901  MachineBasicBlock *StartMBB = MBB;
1902  MachineBasicBlock *DoneMBB  = splitBlockAfter(MI, MBB);
1903  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
1904
1905  //  StartMBB:
1906  //   ...
1907  //   %OrigVal = L Disp(%Base)
1908  //   # fall through to LoopMMB
1909  MBB = StartMBB;
1910  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
1911    .addOperand(Base).addImm(Disp).addReg(0);
1912  MBB->addSuccessor(LoopMBB);
1913
1914  //  LoopMBB:
1915  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
1916  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
1917  //   %RotatedNewVal = OP %RotatedOldVal, %Src2
1918  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
1919  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
1920  //   JNE LoopMBB
1921  //   # fall through to DoneMMB
1922  MBB = LoopMBB;
1923  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
1924    .addReg(OrigVal).addMBB(StartMBB)
1925    .addReg(Dest).addMBB(LoopMBB);
1926  if (IsSubWord)
1927    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
1928      .addReg(OldVal).addReg(BitShift).addImm(0);
1929  if (Invert) {
1930    // Perform the operation normally and then invert every bit of the field.
1931    unsigned Tmp = MRI.createVirtualRegister(RC);
1932    BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
1933      .addReg(RotatedOldVal).addOperand(Src2);
1934    if (BitSize < 32)
1935      // XILF with the upper BitSize bits set.
1936      BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
1937        .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
1938    else if (BitSize == 32)
1939      // XILF with every bit set.
1940      BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
1941        .addReg(Tmp).addImm(~uint32_t(0));
1942    else {
1943      // Use LCGR and add -1 to the result, which is more compact than
1944      // an XILF, XILH pair.
1945      unsigned Tmp2 = MRI.createVirtualRegister(RC);
1946      BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
1947      BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
1948        .addReg(Tmp2).addImm(-1);
1949    }
1950  } else if (BinOpcode)
1951    // A simply binary operation.
1952    BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
1953      .addReg(RotatedOldVal).addOperand(Src2);
1954  else if (IsSubWord)
1955    // Use RISBG to rotate Src2 into position and use it to replace the
1956    // field in RotatedOldVal.
1957    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
1958      .addReg(RotatedOldVal).addReg(Src2.getReg())
1959      .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
1960  if (IsSubWord)
1961    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
1962      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
1963  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
1964    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
1965  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
1966    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
1967  MBB->addSuccessor(LoopMBB);
1968  MBB->addSuccessor(DoneMBB);
1969
1970  MI->eraseFromParent();
1971  return DoneMBB;
1972}
1973
1974// Implement EmitInstrWithCustomInserter for pseudo
1975// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
1976// instruction that should be used to compare the current field with the
1977// minimum or maximum value.  KeepOldMask is the BRC condition-code mask
1978// for when the current field should be kept.  BitSize is the width of
1979// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
1980MachineBasicBlock *
1981SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
1982                                            MachineBasicBlock *MBB,
1983                                            unsigned CompareOpcode,
1984                                            unsigned KeepOldMask,
1985                                            unsigned BitSize) const {
1986  const SystemZInstrInfo *TII = TM.getInstrInfo();
1987  MachineFunction &MF = *MBB->getParent();
1988  MachineRegisterInfo &MRI = MF.getRegInfo();
1989  bool IsSubWord = (BitSize < 32);
1990
1991  // Extract the operands.  Base can be a register or a frame index.
1992  unsigned Dest        = MI->getOperand(0).getReg();
1993  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
1994  int64_t  Disp        = MI->getOperand(2).getImm();
1995  unsigned Src2        = MI->getOperand(3).getReg();
1996  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
1997  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
1998  DebugLoc DL          = MI->getDebugLoc();
1999  if (IsSubWord)
2000    BitSize = MI->getOperand(6).getImm();
2001
2002  // Subword operations use 32-bit registers.
2003  const TargetRegisterClass *RC = (BitSize <= 32 ?
2004                                   &SystemZ::GR32BitRegClass :
2005                                   &SystemZ::GR64BitRegClass);
2006  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2007  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2008
2009  // Get the right opcodes for the displacement.
2010  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2011  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2012  assert(LOpcode && CSOpcode && "Displacement out of range");
2013
2014  // Create virtual registers for temporary results.
2015  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2016  unsigned OldVal        = MRI.createVirtualRegister(RC);
2017  unsigned NewVal        = MRI.createVirtualRegister(RC);
2018  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2019  unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
2020  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2021
2022  // Insert 3 basic blocks for the loop.
2023  MachineBasicBlock *StartMBB  = MBB;
2024  MachineBasicBlock *DoneMBB   = splitBlockAfter(MI, MBB);
2025  MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
2026  MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
2027  MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
2028
2029  //  StartMBB:
2030  //   ...
2031  //   %OrigVal     = L Disp(%Base)
2032  //   # fall through to LoopMMB
2033  MBB = StartMBB;
2034  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2035    .addOperand(Base).addImm(Disp).addReg(0);
2036  MBB->addSuccessor(LoopMBB);
2037
2038  //  LoopMBB:
2039  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
2040  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2041  //   CompareOpcode %RotatedOldVal, %Src2
2042  //   BRC KeepOldMask, UpdateMBB
2043  MBB = LoopMBB;
2044  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2045    .addReg(OrigVal).addMBB(StartMBB)
2046    .addReg(Dest).addMBB(UpdateMBB);
2047  if (IsSubWord)
2048    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2049      .addReg(OldVal).addReg(BitShift).addImm(0);
2050  BuildMI(MBB, DL, TII->get(CompareOpcode))
2051    .addReg(RotatedOldVal).addReg(Src2);
2052  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2053    .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
2054  MBB->addSuccessor(UpdateMBB);
2055  MBB->addSuccessor(UseAltMBB);
2056
2057  //  UseAltMBB:
2058  //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
2059  //   # fall through to UpdateMMB
2060  MBB = UseAltMBB;
2061  if (IsSubWord)
2062    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
2063      .addReg(RotatedOldVal).addReg(Src2)
2064      .addImm(32).addImm(31 + BitSize).addImm(0);
2065  MBB->addSuccessor(UpdateMBB);
2066
2067  //  UpdateMBB:
2068  //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
2069  //                        [ %RotatedAltVal, UseAltMBB ]
2070  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2071  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2072  //   JNE LoopMBB
2073  //   # fall through to DoneMMB
2074  MBB = UpdateMBB;
2075  BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
2076    .addReg(RotatedOldVal).addMBB(LoopMBB)
2077    .addReg(RotatedAltVal).addMBB(UseAltMBB);
2078  if (IsSubWord)
2079    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2080      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2081  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2082    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2083  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2084    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2085  MBB->addSuccessor(LoopMBB);
2086  MBB->addSuccessor(DoneMBB);
2087
2088  MI->eraseFromParent();
2089  return DoneMBB;
2090}
2091
2092// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
2093// instruction MI.
2094MachineBasicBlock *
2095SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
2096                                          MachineBasicBlock *MBB) const {
2097  const SystemZInstrInfo *TII = TM.getInstrInfo();
2098  MachineFunction &MF = *MBB->getParent();
2099  MachineRegisterInfo &MRI = MF.getRegInfo();
2100
2101  // Extract the operands.  Base can be a register or a frame index.
2102  unsigned Dest        = MI->getOperand(0).getReg();
2103  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2104  int64_t  Disp        = MI->getOperand(2).getImm();
2105  unsigned OrigCmpVal  = MI->getOperand(3).getReg();
2106  unsigned OrigSwapVal = MI->getOperand(4).getReg();
2107  unsigned BitShift    = MI->getOperand(5).getReg();
2108  unsigned NegBitShift = MI->getOperand(6).getReg();
2109  int64_t  BitSize     = MI->getOperand(7).getImm();
2110  DebugLoc DL          = MI->getDebugLoc();
2111
2112  const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
2113
2114  // Get the right opcodes for the displacement.
2115  unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
2116  unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
2117  assert(LOpcode && CSOpcode && "Displacement out of range");
2118
2119  // Create virtual registers for temporary results.
2120  unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
2121  unsigned OldVal       = MRI.createVirtualRegister(RC);
2122  unsigned CmpVal       = MRI.createVirtualRegister(RC);
2123  unsigned SwapVal      = MRI.createVirtualRegister(RC);
2124  unsigned StoreVal     = MRI.createVirtualRegister(RC);
2125  unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
2126  unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
2127  unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
2128
2129  // Insert 2 basic blocks for the loop.
2130  MachineBasicBlock *StartMBB = MBB;
2131  MachineBasicBlock *DoneMBB  = splitBlockAfter(MI, MBB);
2132  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2133  MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
2134
2135  //  StartMBB:
2136  //   ...
2137  //   %OrigOldVal     = L Disp(%Base)
2138  //   # fall through to LoopMMB
2139  MBB = StartMBB;
2140  BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
2141    .addOperand(Base).addImm(Disp).addReg(0);
2142  MBB->addSuccessor(LoopMBB);
2143
2144  //  LoopMBB:
2145  //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
2146  //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
2147  //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
2148  //   %Dest          = RLL %OldVal, BitSize(%BitShift)
2149  //                      ^^ The low BitSize bits contain the field
2150  //                         of interest.
2151  //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
2152  //                      ^^ Replace the upper 32-BitSize bits of the
2153  //                         comparison value with those that we loaded,
2154  //                         so that we can use a full word comparison.
2155  //   CR %Dest, %RetryCmpVal
2156  //   JNE DoneMBB
2157  //   # Fall through to SetMBB
2158  MBB = LoopMBB;
2159  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2160    .addReg(OrigOldVal).addMBB(StartMBB)
2161    .addReg(RetryOldVal).addMBB(SetMBB);
2162  BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
2163    .addReg(OrigCmpVal).addMBB(StartMBB)
2164    .addReg(RetryCmpVal).addMBB(SetMBB);
2165  BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
2166    .addReg(OrigSwapVal).addMBB(StartMBB)
2167    .addReg(RetrySwapVal).addMBB(SetMBB);
2168  BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
2169    .addReg(OldVal).addReg(BitShift).addImm(BitSize);
2170  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
2171    .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
2172  BuildMI(MBB, DL, TII->get(SystemZ::CR))
2173    .addReg(Dest).addReg(RetryCmpVal);
2174  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2175    .addImm(SystemZ::CCMASK_ICMP)
2176    .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
2177  MBB->addSuccessor(DoneMBB);
2178  MBB->addSuccessor(SetMBB);
2179
2180  //  SetMBB:
2181  //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
2182  //                      ^^ Replace the upper 32-BitSize bits of the new
2183  //                         value with those that we loaded.
2184  //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
2185  //                      ^^ Rotate the new field to its proper position.
2186  //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
2187  //   JNE LoopMBB
2188  //   # fall through to ExitMMB
2189  MBB = SetMBB;
2190  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
2191    .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
2192  BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
2193    .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
2194  BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
2195    .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
2196  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2197    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2198  MBB->addSuccessor(LoopMBB);
2199  MBB->addSuccessor(DoneMBB);
2200
2201  MI->eraseFromParent();
2202  return DoneMBB;
2203}
2204
2205// Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
2206// if the high register of the GR128 value must be cleared or false if
2207// it's "don't care".  SubReg is subreg_odd32 when extending a GR32
2208// and subreg_odd when extending a GR64.
2209MachineBasicBlock *
2210SystemZTargetLowering::emitExt128(MachineInstr *MI,
2211                                  MachineBasicBlock *MBB,
2212                                  bool ClearEven, unsigned SubReg) const {
2213  const SystemZInstrInfo *TII = TM.getInstrInfo();
2214  MachineFunction &MF = *MBB->getParent();
2215  MachineRegisterInfo &MRI = MF.getRegInfo();
2216  DebugLoc DL = MI->getDebugLoc();
2217
2218  unsigned Dest  = MI->getOperand(0).getReg();
2219  unsigned Src   = MI->getOperand(1).getReg();
2220  unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2221
2222  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
2223  if (ClearEven) {
2224    unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2225    unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
2226
2227    BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
2228      .addImm(0);
2229    BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
2230      .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_high);
2231    In128 = NewIn128;
2232  }
2233  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
2234    .addReg(In128).addReg(Src).addImm(SubReg);
2235
2236  MI->eraseFromParent();
2237  return MBB;
2238}
2239
2240MachineBasicBlock *
2241SystemZTargetLowering::emitMVCWrapper(MachineInstr *MI,
2242                                      MachineBasicBlock *MBB) const {
2243  const SystemZInstrInfo *TII = TM.getInstrInfo();
2244  DebugLoc DL = MI->getDebugLoc();
2245
2246  MachineOperand DestBase = MI->getOperand(0);
2247  uint64_t       DestDisp = MI->getOperand(1).getImm();
2248  MachineOperand SrcBase  = MI->getOperand(2);
2249  uint64_t       SrcDisp  = MI->getOperand(3).getImm();
2250  uint64_t       Length   = MI->getOperand(4).getImm();
2251
2252  BuildMI(*MBB, MI, DL, TII->get(SystemZ::MVC))
2253    .addOperand(DestBase).addImm(DestDisp).addImm(Length)
2254    .addOperand(SrcBase).addImm(SrcDisp);
2255
2256  MI->eraseFromParent();
2257  return MBB;
2258}
2259
2260MachineBasicBlock *SystemZTargetLowering::
2261EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
2262  switch (MI->getOpcode()) {
2263  case SystemZ::Select32:
2264  case SystemZ::SelectF32:
2265  case SystemZ::Select64:
2266  case SystemZ::SelectF64:
2267  case SystemZ::SelectF128:
2268    return emitSelect(MI, MBB);
2269
2270  case SystemZ::CondStore8_32:
2271    return emitCondStore(MI, MBB, SystemZ::STC32, 0, false);
2272  case SystemZ::CondStore8_32Inv:
2273    return emitCondStore(MI, MBB, SystemZ::STC32, 0, true);
2274  case SystemZ::CondStore16_32:
2275    return emitCondStore(MI, MBB, SystemZ::STH32, 0, false);
2276  case SystemZ::CondStore16_32Inv:
2277    return emitCondStore(MI, MBB, SystemZ::STH32, 0, true);
2278  case SystemZ::CondStore32_32:
2279    return emitCondStore(MI, MBB, SystemZ::ST32, SystemZ::STOC32, false);
2280  case SystemZ::CondStore32_32Inv:
2281    return emitCondStore(MI, MBB, SystemZ::ST32, SystemZ::STOC32, true);
2282  case SystemZ::CondStore8:
2283    return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
2284  case SystemZ::CondStore8Inv:
2285    return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
2286  case SystemZ::CondStore16:
2287    return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
2288  case SystemZ::CondStore16Inv:
2289    return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
2290  case SystemZ::CondStore32:
2291    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
2292  case SystemZ::CondStore32Inv:
2293    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
2294  case SystemZ::CondStore64:
2295    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
2296  case SystemZ::CondStore64Inv:
2297    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
2298  case SystemZ::CondStoreF32:
2299    return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
2300  case SystemZ::CondStoreF32Inv:
2301    return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
2302  case SystemZ::CondStoreF64:
2303    return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
2304  case SystemZ::CondStoreF64Inv:
2305    return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
2306
2307  case SystemZ::AEXT128_64:
2308    return emitExt128(MI, MBB, false, SystemZ::subreg_low);
2309  case SystemZ::ZEXT128_32:
2310    return emitExt128(MI, MBB, true, SystemZ::subreg_low32);
2311  case SystemZ::ZEXT128_64:
2312    return emitExt128(MI, MBB, true, SystemZ::subreg_low);
2313
2314  case SystemZ::ATOMIC_SWAPW:
2315    return emitAtomicLoadBinary(MI, MBB, 0, 0);
2316  case SystemZ::ATOMIC_SWAP_32:
2317    return emitAtomicLoadBinary(MI, MBB, 0, 32);
2318  case SystemZ::ATOMIC_SWAP_64:
2319    return emitAtomicLoadBinary(MI, MBB, 0, 64);
2320
2321  case SystemZ::ATOMIC_LOADW_AR:
2322    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
2323  case SystemZ::ATOMIC_LOADW_AFI:
2324    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
2325  case SystemZ::ATOMIC_LOAD_AR:
2326    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
2327  case SystemZ::ATOMIC_LOAD_AHI:
2328    return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
2329  case SystemZ::ATOMIC_LOAD_AFI:
2330    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
2331  case SystemZ::ATOMIC_LOAD_AGR:
2332    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
2333  case SystemZ::ATOMIC_LOAD_AGHI:
2334    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
2335  case SystemZ::ATOMIC_LOAD_AGFI:
2336    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
2337
2338  case SystemZ::ATOMIC_LOADW_SR:
2339    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
2340  case SystemZ::ATOMIC_LOAD_SR:
2341    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
2342  case SystemZ::ATOMIC_LOAD_SGR:
2343    return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
2344
2345  case SystemZ::ATOMIC_LOADW_NR:
2346    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
2347  case SystemZ::ATOMIC_LOADW_NILH:
2348    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0);
2349  case SystemZ::ATOMIC_LOAD_NR:
2350    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
2351  case SystemZ::ATOMIC_LOAD_NILL32:
2352    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32);
2353  case SystemZ::ATOMIC_LOAD_NILH32:
2354    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32);
2355  case SystemZ::ATOMIC_LOAD_NILF32:
2356    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32);
2357  case SystemZ::ATOMIC_LOAD_NGR:
2358    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
2359  case SystemZ::ATOMIC_LOAD_NILL:
2360    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64);
2361  case SystemZ::ATOMIC_LOAD_NILH:
2362    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64);
2363  case SystemZ::ATOMIC_LOAD_NIHL:
2364    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64);
2365  case SystemZ::ATOMIC_LOAD_NIHH:
2366    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64);
2367  case SystemZ::ATOMIC_LOAD_NILF:
2368    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64);
2369  case SystemZ::ATOMIC_LOAD_NIHF:
2370    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64);
2371
2372  case SystemZ::ATOMIC_LOADW_OR:
2373    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
2374  case SystemZ::ATOMIC_LOADW_OILH:
2375    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 0);
2376  case SystemZ::ATOMIC_LOAD_OR:
2377    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
2378  case SystemZ::ATOMIC_LOAD_OILL32:
2379    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL32, 32);
2380  case SystemZ::ATOMIC_LOAD_OILH32:
2381    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 32);
2382  case SystemZ::ATOMIC_LOAD_OILF32:
2383    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF32, 32);
2384  case SystemZ::ATOMIC_LOAD_OGR:
2385    return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
2386  case SystemZ::ATOMIC_LOAD_OILL:
2387    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 64);
2388  case SystemZ::ATOMIC_LOAD_OILH:
2389    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 64);
2390  case SystemZ::ATOMIC_LOAD_OIHL:
2391    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL, 64);
2392  case SystemZ::ATOMIC_LOAD_OIHH:
2393    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH, 64);
2394  case SystemZ::ATOMIC_LOAD_OILF:
2395    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 64);
2396  case SystemZ::ATOMIC_LOAD_OIHF:
2397    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF, 64);
2398
2399  case SystemZ::ATOMIC_LOADW_XR:
2400    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
2401  case SystemZ::ATOMIC_LOADW_XILF:
2402    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 0);
2403  case SystemZ::ATOMIC_LOAD_XR:
2404    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
2405  case SystemZ::ATOMIC_LOAD_XILF32:
2406    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 32);
2407  case SystemZ::ATOMIC_LOAD_XGR:
2408    return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
2409  case SystemZ::ATOMIC_LOAD_XILF:
2410    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 64);
2411  case SystemZ::ATOMIC_LOAD_XIHF:
2412    return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF, 64);
2413
2414  case SystemZ::ATOMIC_LOADW_NRi:
2415    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
2416  case SystemZ::ATOMIC_LOADW_NILHi:
2417    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0, true);
2418  case SystemZ::ATOMIC_LOAD_NRi:
2419    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
2420  case SystemZ::ATOMIC_LOAD_NILL32i:
2421    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32, true);
2422  case SystemZ::ATOMIC_LOAD_NILH32i:
2423    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32, true);
2424  case SystemZ::ATOMIC_LOAD_NILF32i:
2425    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32, true);
2426  case SystemZ::ATOMIC_LOAD_NGRi:
2427    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
2428  case SystemZ::ATOMIC_LOAD_NILLi:
2429    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64, true);
2430  case SystemZ::ATOMIC_LOAD_NILHi:
2431    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64, true);
2432  case SystemZ::ATOMIC_LOAD_NIHLi:
2433    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64, true);
2434  case SystemZ::ATOMIC_LOAD_NIHHi:
2435    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64, true);
2436  case SystemZ::ATOMIC_LOAD_NILFi:
2437    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64, true);
2438  case SystemZ::ATOMIC_LOAD_NIHFi:
2439    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64, true);
2440
2441  case SystemZ::ATOMIC_LOADW_MIN:
2442    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
2443                                SystemZ::CCMASK_CMP_LE, 0);
2444  case SystemZ::ATOMIC_LOAD_MIN_32:
2445    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
2446                                SystemZ::CCMASK_CMP_LE, 32);
2447  case SystemZ::ATOMIC_LOAD_MIN_64:
2448    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
2449                                SystemZ::CCMASK_CMP_LE, 64);
2450
2451  case SystemZ::ATOMIC_LOADW_MAX:
2452    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
2453                                SystemZ::CCMASK_CMP_GE, 0);
2454  case SystemZ::ATOMIC_LOAD_MAX_32:
2455    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
2456                                SystemZ::CCMASK_CMP_GE, 32);
2457  case SystemZ::ATOMIC_LOAD_MAX_64:
2458    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
2459                                SystemZ::CCMASK_CMP_GE, 64);
2460
2461  case SystemZ::ATOMIC_LOADW_UMIN:
2462    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
2463                                SystemZ::CCMASK_CMP_LE, 0);
2464  case SystemZ::ATOMIC_LOAD_UMIN_32:
2465    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
2466                                SystemZ::CCMASK_CMP_LE, 32);
2467  case SystemZ::ATOMIC_LOAD_UMIN_64:
2468    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
2469                                SystemZ::CCMASK_CMP_LE, 64);
2470
2471  case SystemZ::ATOMIC_LOADW_UMAX:
2472    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
2473                                SystemZ::CCMASK_CMP_GE, 0);
2474  case SystemZ::ATOMIC_LOAD_UMAX_32:
2475    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
2476                                SystemZ::CCMASK_CMP_GE, 32);
2477  case SystemZ::ATOMIC_LOAD_UMAX_64:
2478    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
2479                                SystemZ::CCMASK_CMP_GE, 64);
2480
2481  case SystemZ::ATOMIC_CMP_SWAPW:
2482    return emitAtomicCmpSwapW(MI, MBB);
2483  case SystemZ::MVCWrapper:
2484    return emitMVCWrapper(MI, MBB);
2485  default:
2486    llvm_unreachable("Unexpected instr type to insert");
2487  }
2488}
2489