SystemZISelLowering.cpp revision 80f54784da0bd42fb79176bbf447a31d69287fe3
1//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SystemZTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "systemz-lower"
15
16#include "SystemZISelLowering.h"
17#include "SystemZCallingConv.h"
18#include "SystemZConstantPoolValue.h"
19#include "SystemZMachineFunctionInfo.h"
20#include "SystemZTargetMachine.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25
26using namespace llvm;
27
28// Classify VT as either 32 or 64 bit.
29static bool is32Bit(EVT VT) {
30  switch (VT.getSimpleVT().SimpleTy) {
31  case MVT::i32:
32    return true;
33  case MVT::i64:
34    return false;
35  default:
36    llvm_unreachable("Unsupported type");
37  }
38}
39
40// Return a version of MachineOperand that can be safely used before the
41// final use.
42static MachineOperand earlyUseOperand(MachineOperand Op) {
43  if (Op.isReg())
44    Op.setIsKill(false);
45  return Op;
46}
47
48SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
49  : TargetLowering(tm, new TargetLoweringObjectFileELF()),
50    Subtarget(*tm.getSubtargetImpl()), TM(tm) {
51  MVT PtrVT = getPointerTy();
52
53  // Set up the register classes.
54  addRegisterClass(MVT::i32,  &SystemZ::GR32BitRegClass);
55  addRegisterClass(MVT::i64,  &SystemZ::GR64BitRegClass);
56  addRegisterClass(MVT::f32,  &SystemZ::FP32BitRegClass);
57  addRegisterClass(MVT::f64,  &SystemZ::FP64BitRegClass);
58  addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
59
60  // Compute derived properties from the register classes
61  computeRegisterProperties();
62
63  // Set up special registers.
64  setExceptionPointerRegister(SystemZ::R6D);
65  setExceptionSelectorRegister(SystemZ::R7D);
66  setStackPointerRegisterToSaveRestore(SystemZ::R15D);
67
68  // TODO: It may be better to default to latency-oriented scheduling, however
69  // LLVM's current latency-oriented scheduler can't handle physreg definitions
70  // such as SystemZ has with CC, so set this to the register-pressure
71  // scheduler, because it can.
72  setSchedulingPreference(Sched::RegPressure);
73
74  setBooleanContents(ZeroOrOneBooleanContent);
75  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
76
77  // Instructions are strings of 2-byte aligned 2-byte values.
78  setMinFunctionAlignment(2);
79
80  // Handle operations that are handled in a similar way for all types.
81  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
82       I <= MVT::LAST_FP_VALUETYPE;
83       ++I) {
84    MVT VT = MVT::SimpleValueType(I);
85    if (isTypeLegal(VT)) {
86      // Expand SETCC(X, Y, COND) into SELECT_CC(X, Y, 1, 0, COND).
87      setOperationAction(ISD::SETCC, VT, Expand);
88
89      // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
90      setOperationAction(ISD::SELECT, VT, Expand);
91
92      // Lower SELECT_CC and BR_CC into separate comparisons and branches.
93      setOperationAction(ISD::SELECT_CC, VT, Custom);
94      setOperationAction(ISD::BR_CC,     VT, Custom);
95    }
96  }
97
98  // Expand jump table branches as address arithmetic followed by an
99  // indirect jump.
100  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
101
102  // Expand BRCOND into a BR_CC (see above).
103  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
104
105  // Handle integer types.
106  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
107       I <= MVT::LAST_INTEGER_VALUETYPE;
108       ++I) {
109    MVT VT = MVT::SimpleValueType(I);
110    if (isTypeLegal(VT)) {
111      // Expand individual DIV and REMs into DIVREMs.
112      setOperationAction(ISD::SDIV, VT, Expand);
113      setOperationAction(ISD::UDIV, VT, Expand);
114      setOperationAction(ISD::SREM, VT, Expand);
115      setOperationAction(ISD::UREM, VT, Expand);
116      setOperationAction(ISD::SDIVREM, VT, Custom);
117      setOperationAction(ISD::UDIVREM, VT, Custom);
118
119      // Expand ATOMIC_LOAD and ATOMIC_STORE using ATOMIC_CMP_SWAP.
120      // FIXME: probably much too conservative.
121      setOperationAction(ISD::ATOMIC_LOAD,  VT, Expand);
122      setOperationAction(ISD::ATOMIC_STORE, VT, Expand);
123
124      // No special instructions for these.
125      setOperationAction(ISD::CTPOP,           VT, Expand);
126      setOperationAction(ISD::CTTZ,            VT, Expand);
127      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
128      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
129      setOperationAction(ISD::ROTR,            VT, Expand);
130
131      // Use *MUL_LOHI where possible and a wider multiplication otherwise.
132      setOperationAction(ISD::MULHS, VT, Expand);
133      setOperationAction(ISD::MULHU, VT, Expand);
134
135      // We have instructions for signed but not unsigned FP conversion.
136      setOperationAction(ISD::FP_TO_UINT, VT, Expand);
137    }
138  }
139
140  // Type legalization will convert 8- and 16-bit atomic operations into
141  // forms that operate on i32s (but still keeping the original memory VT).
142  // Lower them into full i32 operations.
143  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
144  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
145  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
146  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
147  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
148  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
149  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
150  setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
151  setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
152  setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
153  setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
154  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
155
156  // We have instructions for signed but not unsigned FP conversion.
157  // Handle unsigned 32-bit types as signed 64-bit types.
158  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
159  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
160
161  // We have native support for a 64-bit CTLZ, via FLOGR.
162  setOperationAction(ISD::CTLZ, MVT::i32, Promote);
163  setOperationAction(ISD::CTLZ, MVT::i64, Legal);
164
165  // Give LowerOperation the chance to replace 64-bit ORs with subregs.
166  setOperationAction(ISD::OR, MVT::i64, Custom);
167
168  // The architecture has 32-bit SMUL_LOHI and UMUL_LOHI (MR and MLR),
169  // but they aren't really worth using.  There is no 64-bit SMUL_LOHI,
170  // but there is a 64-bit UMUL_LOHI: MLGR.
171  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
172  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
173  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
174  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Custom);
175
176  // FIXME: Can we support these natively?
177  setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
178  setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
179  setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
180
181  // We have native instructions for i8, i16 and i32 extensions, but not i1.
182  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
183  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
184  setLoadExtAction(ISD::EXTLOAD,  MVT::i1, Promote);
185  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
186
187  // Handle the various types of symbolic address.
188  setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
189  setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
190  setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
191  setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
192  setOperationAction(ISD::JumpTable,        PtrVT, Custom);
193
194  // We need to handle dynamic allocations specially because of the
195  // 160-byte area at the bottom of the stack.
196  setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
197
198  // Use custom expanders so that we can force the function to use
199  // a frame pointer.
200  setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
201  setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
202
203  // Handle floating-point types.
204  for (unsigned I = MVT::FIRST_FP_VALUETYPE;
205       I <= MVT::LAST_FP_VALUETYPE;
206       ++I) {
207    MVT VT = MVT::SimpleValueType(I);
208    if (isTypeLegal(VT)) {
209      // We can use FI for FRINT.
210      setOperationAction(ISD::FRINT, VT, Legal);
211
212      // No special instructions for these.
213      setOperationAction(ISD::FSIN, VT, Expand);
214      setOperationAction(ISD::FCOS, VT, Expand);
215      setOperationAction(ISD::FREM, VT, Expand);
216    }
217  }
218
219  // We have fused multiply-addition for f32 and f64 but not f128.
220  setOperationAction(ISD::FMA, MVT::f32,  Legal);
221  setOperationAction(ISD::FMA, MVT::f64,  Legal);
222  setOperationAction(ISD::FMA, MVT::f128, Expand);
223
224  // Needed so that we don't try to implement f128 constant loads using
225  // a load-and-extend of a f80 constant (in cases where the constant
226  // would fit in an f80).
227  setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
228
229  // Floating-point truncation and stores need to be done separately.
230  setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
231  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
232  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
233
234  // We have 64-bit FPR<->GPR moves, but need special handling for
235  // 32-bit forms.
236  setOperationAction(ISD::BITCAST, MVT::i32, Custom);
237  setOperationAction(ISD::BITCAST, MVT::f32, Custom);
238
239  // VASTART and VACOPY need to deal with the SystemZ-specific varargs
240  // structure, but VAEND is a no-op.
241  setOperationAction(ISD::VASTART, MVT::Other, Custom);
242  setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
243  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
244
245  // We want to use MVC in preference to even a single load/store pair.
246  MaxStoresPerMemcpy = 0;
247  MaxStoresPerMemcpyOptSize = 0;
248
249  // The main memset sequence is a byte store followed by an MVC.
250  // Two STC or MV..I stores win over that, but the kind of fused stores
251  // generated by target-independent code don't when the byte value is
252  // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
253  // than "STC;MVC".  Handle the choice in target-specific code instead.
254  MaxStoresPerMemset = 0;
255  MaxStoresPerMemsetOptSize = 0;
256}
257
258bool
259SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
260  VT = VT.getScalarType();
261
262  if (!VT.isSimple())
263    return false;
264
265  switch (VT.getSimpleVT().SimpleTy) {
266  case MVT::f32:
267  case MVT::f64:
268    return true;
269  case MVT::f128:
270    return false;
271  default:
272    break;
273  }
274
275  return false;
276}
277
278bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
279  // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
280  return Imm.isZero() || Imm.isNegZero();
281}
282
283bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
284                                                          bool *Fast) const {
285  // Unaligned accesses should never be slower than the expanded version.
286  // We check specifically for aligned accesses in the few cases where
287  // they are required.
288  if (Fast)
289    *Fast = true;
290  return true;
291}
292
293bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
294                                                  Type *Ty) const {
295  // Punt on globals for now, although they can be used in limited
296  // RELATIVE LONG cases.
297  if (AM.BaseGV)
298    return false;
299
300  // Require a 20-bit signed offset.
301  if (!isInt<20>(AM.BaseOffs))
302    return false;
303
304  // Indexing is OK but no scale factor can be applied.
305  return AM.Scale == 0 || AM.Scale == 1;
306}
307
308bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
309  if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
310    return false;
311  unsigned FromBits = FromType->getPrimitiveSizeInBits();
312  unsigned ToBits = ToType->getPrimitiveSizeInBits();
313  return FromBits > ToBits;
314}
315
316bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
317  if (!FromVT.isInteger() || !ToVT.isInteger())
318    return false;
319  unsigned FromBits = FromVT.getSizeInBits();
320  unsigned ToBits = ToVT.getSizeInBits();
321  return FromBits > ToBits;
322}
323
324//===----------------------------------------------------------------------===//
325// Inline asm support
326//===----------------------------------------------------------------------===//
327
328TargetLowering::ConstraintType
329SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
330  if (Constraint.size() == 1) {
331    switch (Constraint[0]) {
332    case 'a': // Address register
333    case 'd': // Data register (equivalent to 'r')
334    case 'f': // Floating-point register
335    case 'r': // General-purpose register
336      return C_RegisterClass;
337
338    case 'Q': // Memory with base and unsigned 12-bit displacement
339    case 'R': // Likewise, plus an index
340    case 'S': // Memory with base and signed 20-bit displacement
341    case 'T': // Likewise, plus an index
342    case 'm': // Equivalent to 'T'.
343      return C_Memory;
344
345    case 'I': // Unsigned 8-bit constant
346    case 'J': // Unsigned 12-bit constant
347    case 'K': // Signed 16-bit constant
348    case 'L': // Signed 20-bit displacement (on all targets we support)
349    case 'M': // 0x7fffffff
350      return C_Other;
351
352    default:
353      break;
354    }
355  }
356  return TargetLowering::getConstraintType(Constraint);
357}
358
359TargetLowering::ConstraintWeight SystemZTargetLowering::
360getSingleConstraintMatchWeight(AsmOperandInfo &info,
361                               const char *constraint) const {
362  ConstraintWeight weight = CW_Invalid;
363  Value *CallOperandVal = info.CallOperandVal;
364  // If we don't have a value, we can't do a match,
365  // but allow it at the lowest weight.
366  if (CallOperandVal == NULL)
367    return CW_Default;
368  Type *type = CallOperandVal->getType();
369  // Look at the constraint type.
370  switch (*constraint) {
371  default:
372    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
373    break;
374
375  case 'a': // Address register
376  case 'd': // Data register (equivalent to 'r')
377  case 'r': // General-purpose register
378    if (CallOperandVal->getType()->isIntegerTy())
379      weight = CW_Register;
380    break;
381
382  case 'f': // Floating-point register
383    if (type->isFloatingPointTy())
384      weight = CW_Register;
385    break;
386
387  case 'I': // Unsigned 8-bit constant
388    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
389      if (isUInt<8>(C->getZExtValue()))
390        weight = CW_Constant;
391    break;
392
393  case 'J': // Unsigned 12-bit constant
394    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
395      if (isUInt<12>(C->getZExtValue()))
396        weight = CW_Constant;
397    break;
398
399  case 'K': // Signed 16-bit constant
400    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
401      if (isInt<16>(C->getSExtValue()))
402        weight = CW_Constant;
403    break;
404
405  case 'L': // Signed 20-bit displacement (on all targets we support)
406    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
407      if (isInt<20>(C->getSExtValue()))
408        weight = CW_Constant;
409    break;
410
411  case 'M': // 0x7fffffff
412    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
413      if (C->getZExtValue() == 0x7fffffff)
414        weight = CW_Constant;
415    break;
416  }
417  return weight;
418}
419
420// Parse a "{tNNN}" register constraint for which the register type "t"
421// has already been verified.  MC is the class associated with "t" and
422// Map maps 0-based register numbers to LLVM register numbers.
423static std::pair<unsigned, const TargetRegisterClass *>
424parseRegisterNumber(const std::string &Constraint,
425                    const TargetRegisterClass *RC, const unsigned *Map) {
426  assert(*(Constraint.end()-1) == '}' && "Missing '}'");
427  if (isdigit(Constraint[2])) {
428    std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
429    unsigned Index = atoi(Suffix.c_str());
430    if (Index < 16 && Map[Index])
431      return std::make_pair(Map[Index], RC);
432  }
433  return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
434}
435
436std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
437getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
438  if (Constraint.size() == 1) {
439    // GCC Constraint Letters
440    switch (Constraint[0]) {
441    default: break;
442    case 'd': // Data register (equivalent to 'r')
443    case 'r': // General-purpose register
444      if (VT == MVT::i64)
445        return std::make_pair(0U, &SystemZ::GR64BitRegClass);
446      else if (VT == MVT::i128)
447        return std::make_pair(0U, &SystemZ::GR128BitRegClass);
448      return std::make_pair(0U, &SystemZ::GR32BitRegClass);
449
450    case 'a': // Address register
451      if (VT == MVT::i64)
452        return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
453      else if (VT == MVT::i128)
454        return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
455      return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
456
457    case 'f': // Floating-point register
458      if (VT == MVT::f64)
459        return std::make_pair(0U, &SystemZ::FP64BitRegClass);
460      else if (VT == MVT::f128)
461        return std::make_pair(0U, &SystemZ::FP128BitRegClass);
462      return std::make_pair(0U, &SystemZ::FP32BitRegClass);
463    }
464  }
465  if (Constraint[0] == '{') {
466    // We need to override the default register parsing for GPRs and FPRs
467    // because the interpretation depends on VT.  The internal names of
468    // the registers are also different from the external names
469    // (F0D and F0S instead of F0, etc.).
470    if (Constraint[1] == 'r') {
471      if (VT == MVT::i32)
472        return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
473                                   SystemZMC::GR32Regs);
474      if (VT == MVT::i128)
475        return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
476                                   SystemZMC::GR128Regs);
477      return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
478                                 SystemZMC::GR64Regs);
479    }
480    if (Constraint[1] == 'f') {
481      if (VT == MVT::f32)
482        return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
483                                   SystemZMC::FP32Regs);
484      if (VT == MVT::f128)
485        return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
486                                   SystemZMC::FP128Regs);
487      return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
488                                 SystemZMC::FP64Regs);
489    }
490  }
491  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
492}
493
494void SystemZTargetLowering::
495LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
496                             std::vector<SDValue> &Ops,
497                             SelectionDAG &DAG) const {
498  // Only support length 1 constraints for now.
499  if (Constraint.length() == 1) {
500    switch (Constraint[0]) {
501    case 'I': // Unsigned 8-bit constant
502      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
503        if (isUInt<8>(C->getZExtValue()))
504          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
505                                              Op.getValueType()));
506      return;
507
508    case 'J': // Unsigned 12-bit constant
509      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
510        if (isUInt<12>(C->getZExtValue()))
511          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
512                                              Op.getValueType()));
513      return;
514
515    case 'K': // Signed 16-bit constant
516      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
517        if (isInt<16>(C->getSExtValue()))
518          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
519                                              Op.getValueType()));
520      return;
521
522    case 'L': // Signed 20-bit displacement (on all targets we support)
523      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
524        if (isInt<20>(C->getSExtValue()))
525          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
526                                              Op.getValueType()));
527      return;
528
529    case 'M': // 0x7fffffff
530      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
531        if (C->getZExtValue() == 0x7fffffff)
532          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
533                                              Op.getValueType()));
534      return;
535    }
536  }
537  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
538}
539
540//===----------------------------------------------------------------------===//
541// Calling conventions
542//===----------------------------------------------------------------------===//
543
544#include "SystemZGenCallingConv.inc"
545
546bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
547                                                     Type *ToType) const {
548  return isTruncateFree(FromType, ToType);
549}
550
551bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
552  if (!CI->isTailCall())
553    return false;
554  return true;
555}
556
557// Value is a value that has been passed to us in the location described by VA
558// (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
559// any loads onto Chain.
560static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
561                                   CCValAssign &VA, SDValue Chain,
562                                   SDValue Value) {
563  // If the argument has been promoted from a smaller type, insert an
564  // assertion to capture this.
565  if (VA.getLocInfo() == CCValAssign::SExt)
566    Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
567                        DAG.getValueType(VA.getValVT()));
568  else if (VA.getLocInfo() == CCValAssign::ZExt)
569    Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
570                        DAG.getValueType(VA.getValVT()));
571
572  if (VA.isExtInLoc())
573    Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
574  else if (VA.getLocInfo() == CCValAssign::Indirect)
575    Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
576                        MachinePointerInfo(), false, false, false, 0);
577  else
578    assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
579  return Value;
580}
581
582// Value is a value of type VA.getValVT() that we need to copy into
583// the location described by VA.  Return a copy of Value converted to
584// VA.getValVT().  The caller is responsible for handling indirect values.
585static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
586                                   CCValAssign &VA, SDValue Value) {
587  switch (VA.getLocInfo()) {
588  case CCValAssign::SExt:
589    return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
590  case CCValAssign::ZExt:
591    return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
592  case CCValAssign::AExt:
593    return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
594  case CCValAssign::Full:
595    return Value;
596  default:
597    llvm_unreachable("Unhandled getLocInfo()");
598  }
599}
600
601SDValue SystemZTargetLowering::
602LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
603                     const SmallVectorImpl<ISD::InputArg> &Ins,
604                     SDLoc DL, SelectionDAG &DAG,
605                     SmallVectorImpl<SDValue> &InVals) const {
606  MachineFunction &MF = DAG.getMachineFunction();
607  MachineFrameInfo *MFI = MF.getFrameInfo();
608  MachineRegisterInfo &MRI = MF.getRegInfo();
609  SystemZMachineFunctionInfo *FuncInfo =
610    MF.getInfo<SystemZMachineFunctionInfo>();
611  const SystemZFrameLowering *TFL =
612    static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
613
614  // Assign locations to all of the incoming arguments.
615  SmallVector<CCValAssign, 16> ArgLocs;
616  CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
617  CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
618
619  unsigned NumFixedGPRs = 0;
620  unsigned NumFixedFPRs = 0;
621  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
622    SDValue ArgValue;
623    CCValAssign &VA = ArgLocs[I];
624    EVT LocVT = VA.getLocVT();
625    if (VA.isRegLoc()) {
626      // Arguments passed in registers
627      const TargetRegisterClass *RC;
628      switch (LocVT.getSimpleVT().SimpleTy) {
629      default:
630        // Integers smaller than i64 should be promoted to i64.
631        llvm_unreachable("Unexpected argument type");
632      case MVT::i32:
633        NumFixedGPRs += 1;
634        RC = &SystemZ::GR32BitRegClass;
635        break;
636      case MVT::i64:
637        NumFixedGPRs += 1;
638        RC = &SystemZ::GR64BitRegClass;
639        break;
640      case MVT::f32:
641        NumFixedFPRs += 1;
642        RC = &SystemZ::FP32BitRegClass;
643        break;
644      case MVT::f64:
645        NumFixedFPRs += 1;
646        RC = &SystemZ::FP64BitRegClass;
647        break;
648      }
649
650      unsigned VReg = MRI.createVirtualRegister(RC);
651      MRI.addLiveIn(VA.getLocReg(), VReg);
652      ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
653    } else {
654      assert(VA.isMemLoc() && "Argument not register or memory");
655
656      // Create the frame index object for this incoming parameter.
657      int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
658                                      VA.getLocMemOffset(), true);
659
660      // Create the SelectionDAG nodes corresponding to a load
661      // from this parameter.  Unpromoted ints and floats are
662      // passed as right-justified 8-byte values.
663      EVT PtrVT = getPointerTy();
664      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
665      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
666        FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
667      ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
668                             MachinePointerInfo::getFixedStack(FI),
669                             false, false, false, 0);
670    }
671
672    // Convert the value of the argument register into the value that's
673    // being passed.
674    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
675  }
676
677  if (IsVarArg) {
678    // Save the number of non-varargs registers for later use by va_start, etc.
679    FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
680    FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
681
682    // Likewise the address (in the form of a frame index) of where the
683    // first stack vararg would be.  The 1-byte size here is arbitrary.
684    int64_t StackSize = CCInfo.getNextStackOffset();
685    FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
686
687    // ...and a similar frame index for the caller-allocated save area
688    // that will be used to store the incoming registers.
689    int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
690    unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
691    FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
692
693    // Store the FPR varargs in the reserved frame slots.  (We store the
694    // GPRs as part of the prologue.)
695    if (NumFixedFPRs < SystemZ::NumArgFPRs) {
696      SDValue MemOps[SystemZ::NumArgFPRs];
697      for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
698        unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
699        int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
700        SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
701        unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
702                                     &SystemZ::FP64BitRegClass);
703        SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
704        MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
705                                 MachinePointerInfo::getFixedStack(FI),
706                                 false, false, 0);
707
708      }
709      // Join the stores, which are independent of one another.
710      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
711                          &MemOps[NumFixedFPRs],
712                          SystemZ::NumArgFPRs - NumFixedFPRs);
713    }
714  }
715
716  return Chain;
717}
718
719static bool canUseSiblingCall(CCState ArgCCInfo,
720                              SmallVectorImpl<CCValAssign> &ArgLocs) {
721  // Punt if there are any indirect or stack arguments, or if the call
722  // needs the call-saved argument register R6.
723  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
724    CCValAssign &VA = ArgLocs[I];
725    if (VA.getLocInfo() == CCValAssign::Indirect)
726      return false;
727    if (!VA.isRegLoc())
728      return false;
729    unsigned Reg = VA.getLocReg();
730    if (Reg == SystemZ::R6W || Reg == SystemZ::R6D)
731      return false;
732  }
733  return true;
734}
735
736SDValue
737SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
738                                 SmallVectorImpl<SDValue> &InVals) const {
739  SelectionDAG &DAG = CLI.DAG;
740  SDLoc &DL = CLI.DL;
741  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
742  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
743  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
744  SDValue Chain = CLI.Chain;
745  SDValue Callee = CLI.Callee;
746  bool &IsTailCall = CLI.IsTailCall;
747  CallingConv::ID CallConv = CLI.CallConv;
748  bool IsVarArg = CLI.IsVarArg;
749  MachineFunction &MF = DAG.getMachineFunction();
750  EVT PtrVT = getPointerTy();
751
752  // Analyze the operands of the call, assigning locations to each operand.
753  SmallVector<CCValAssign, 16> ArgLocs;
754  CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
755  ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
756
757  // We don't support GuaranteedTailCallOpt, only automatically-detected
758  // sibling calls.
759  if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
760    IsTailCall = false;
761
762  // Get a count of how many bytes are to be pushed on the stack.
763  unsigned NumBytes = ArgCCInfo.getNextStackOffset();
764
765  // Mark the start of the call.
766  if (!IsTailCall)
767    Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
768                                 DL);
769
770  // Copy argument values to their designated locations.
771  SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
772  SmallVector<SDValue, 8> MemOpChains;
773  SDValue StackPtr;
774  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
775    CCValAssign &VA = ArgLocs[I];
776    SDValue ArgValue = OutVals[I];
777
778    if (VA.getLocInfo() == CCValAssign::Indirect) {
779      // Store the argument in a stack slot and pass its address.
780      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
781      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
782      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
783                                         MachinePointerInfo::getFixedStack(FI),
784                                         false, false, 0));
785      ArgValue = SpillSlot;
786    } else
787      ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
788
789    if (VA.isRegLoc())
790      // Queue up the argument copies and emit them at the end.
791      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
792    else {
793      assert(VA.isMemLoc() && "Argument not register or memory");
794
795      // Work out the address of the stack slot.  Unpromoted ints and
796      // floats are passed as right-justified 8-byte values.
797      if (!StackPtr.getNode())
798        StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
799      unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
800      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
801        Offset += 4;
802      SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
803                                    DAG.getIntPtrConstant(Offset));
804
805      // Emit the store.
806      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
807                                         MachinePointerInfo(),
808                                         false, false, 0));
809    }
810  }
811
812  // Join the stores, which are independent of one another.
813  if (!MemOpChains.empty())
814    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
815                        &MemOpChains[0], MemOpChains.size());
816
817  // Accept direct calls by converting symbolic call addresses to the
818  // associated Target* opcodes.  Force %r1 to be used for indirect
819  // tail calls.
820  SDValue Glue;
821  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
822    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
823    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
824  } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
825    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
826    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
827  } else if (IsTailCall) {
828    Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
829    Glue = Chain.getValue(1);
830    Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
831  }
832
833  // Build a sequence of copy-to-reg nodes, chained and glued together.
834  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
835    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
836                             RegsToPass[I].second, Glue);
837    Glue = Chain.getValue(1);
838  }
839
840  // The first call operand is the chain and the second is the target address.
841  SmallVector<SDValue, 8> Ops;
842  Ops.push_back(Chain);
843  Ops.push_back(Callee);
844
845  // Add argument registers to the end of the list so that they are
846  // known live into the call.
847  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
848    Ops.push_back(DAG.getRegister(RegsToPass[I].first,
849                                  RegsToPass[I].second.getValueType()));
850
851  // Glue the call to the argument copies, if any.
852  if (Glue.getNode())
853    Ops.push_back(Glue);
854
855  // Emit the call.
856  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
857  if (IsTailCall)
858    return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, &Ops[0], Ops.size());
859  Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
860  Glue = Chain.getValue(1);
861
862  // Mark the end of the call, which is glued to the call itself.
863  Chain = DAG.getCALLSEQ_END(Chain,
864                             DAG.getConstant(NumBytes, PtrVT, true),
865                             DAG.getConstant(0, PtrVT, true),
866                             Glue, DL);
867  Glue = Chain.getValue(1);
868
869  // Assign locations to each value returned by this call.
870  SmallVector<CCValAssign, 16> RetLocs;
871  CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
872  RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
873
874  // Copy all of the result registers out of their specified physreg.
875  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
876    CCValAssign &VA = RetLocs[I];
877
878    // Copy the value out, gluing the copy to the end of the call sequence.
879    SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
880                                          VA.getLocVT(), Glue);
881    Chain = RetValue.getValue(1);
882    Glue = RetValue.getValue(2);
883
884    // Convert the value of the return register into the value that's
885    // being returned.
886    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
887  }
888
889  return Chain;
890}
891
892SDValue
893SystemZTargetLowering::LowerReturn(SDValue Chain,
894                                   CallingConv::ID CallConv, bool IsVarArg,
895                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
896                                   const SmallVectorImpl<SDValue> &OutVals,
897                                   SDLoc DL, SelectionDAG &DAG) const {
898  MachineFunction &MF = DAG.getMachineFunction();
899
900  // Assign locations to each returned value.
901  SmallVector<CCValAssign, 16> RetLocs;
902  CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
903  RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
904
905  // Quick exit for void returns
906  if (RetLocs.empty())
907    return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
908
909  // Copy the result values into the output registers.
910  SDValue Glue;
911  SmallVector<SDValue, 4> RetOps;
912  RetOps.push_back(Chain);
913  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
914    CCValAssign &VA = RetLocs[I];
915    SDValue RetValue = OutVals[I];
916
917    // Make the return register live on exit.
918    assert(VA.isRegLoc() && "Can only return in registers!");
919
920    // Promote the value as required.
921    RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
922
923    // Chain and glue the copies together.
924    unsigned Reg = VA.getLocReg();
925    Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
926    Glue = Chain.getValue(1);
927    RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
928  }
929
930  // Update chain and glue.
931  RetOps[0] = Chain;
932  if (Glue.getNode())
933    RetOps.push_back(Glue);
934
935  return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other,
936                     RetOps.data(), RetOps.size());
937}
938
939// CC is a comparison that will be implemented using an integer or
940// floating-point comparison.  Return the condition code mask for
941// a branch on true.  In the integer case, CCMASK_CMP_UO is set for
942// unsigned comparisons and clear for signed ones.  In the floating-point
943// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
944static unsigned CCMaskForCondCode(ISD::CondCode CC) {
945#define CONV(X) \
946  case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
947  case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
948  case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
949
950  switch (CC) {
951  default:
952    llvm_unreachable("Invalid integer condition!");
953
954  CONV(EQ);
955  CONV(NE);
956  CONV(GT);
957  CONV(GE);
958  CONV(LT);
959  CONV(LE);
960
961  case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
962  case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
963  }
964#undef CONV
965}
966
967// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
968// can be converted to a comparison against zero, adjust the operands
969// as necessary.
970static void adjustZeroCmp(SelectionDAG &DAG, bool &IsUnsigned,
971                          SDValue &CmpOp0, SDValue &CmpOp1,
972                          unsigned &CCMask) {
973  if (IsUnsigned)
974    return;
975
976  ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(CmpOp1.getNode());
977  if (!ConstOp1)
978    return;
979
980  int64_t Value = ConstOp1->getSExtValue();
981  if ((Value == -1 && CCMask == SystemZ::CCMASK_CMP_GT) ||
982      (Value == -1 && CCMask == SystemZ::CCMASK_CMP_LE) ||
983      (Value == 1 && CCMask == SystemZ::CCMASK_CMP_LT) ||
984      (Value == 1 && CCMask == SystemZ::CCMASK_CMP_GE)) {
985    CCMask ^= SystemZ::CCMASK_CMP_EQ;
986    CmpOp1 = DAG.getConstant(0, CmpOp1.getValueType());
987  }
988}
989
990// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
991// is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary.
992static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned,
993                             SDValue &CmpOp0, SDValue &CmpOp1,
994                             unsigned &CCMask) {
995  // For us to make any changes, it must a comparison between a single-use
996  // load and a constant.
997  if (!CmpOp0.hasOneUse() ||
998      CmpOp0.getOpcode() != ISD::LOAD ||
999      CmpOp1.getOpcode() != ISD::Constant)
1000    return;
1001
1002  // We must have an 8- or 16-bit load.
1003  LoadSDNode *Load = cast<LoadSDNode>(CmpOp0);
1004  unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1005  if (NumBits != 8 && NumBits != 16)
1006    return;
1007
1008  // The load must be an extending one and the constant must be within the
1009  // range of the unextended value.
1010  ConstantSDNode *Constant = cast<ConstantSDNode>(CmpOp1);
1011  uint64_t Value = Constant->getZExtValue();
1012  uint64_t Mask = (1 << NumBits) - 1;
1013  if (Load->getExtensionType() == ISD::SEXTLOAD) {
1014    int64_t SignedValue = Constant->getSExtValue();
1015    if (uint64_t(SignedValue) + (1ULL << (NumBits - 1)) > Mask)
1016      return;
1017    // Unsigned comparison between two sign-extended values is equivalent
1018    // to unsigned comparison between two zero-extended values.
1019    if (IsUnsigned)
1020      Value &= Mask;
1021    else if (CCMask == SystemZ::CCMASK_CMP_EQ ||
1022             CCMask == SystemZ::CCMASK_CMP_NE)
1023      // Any choice of IsUnsigned is OK for equality comparisons.
1024      // We could use either CHHSI or CLHHSI for 16-bit comparisons,
1025      // but since we use CLHHSI for zero extensions, it seems better
1026      // to be consistent and do the same here.
1027      Value &= Mask, IsUnsigned = true;
1028    else if (NumBits == 8) {
1029      // Try to treat the comparison as unsigned, so that we can use CLI.
1030      // Adjust CCMask and Value as necessary.
1031      if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT)
1032        // Test whether the high bit of the byte is set.
1033        Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true;
1034      else if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_GE)
1035        // Test whether the high bit of the byte is clear.
1036        Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true;
1037      else
1038        // No instruction exists for this combination.
1039        return;
1040    }
1041  } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1042    if (Value > Mask)
1043      return;
1044    // Signed comparison between two zero-extended values is equivalent
1045    // to unsigned comparison.
1046    IsUnsigned = true;
1047  } else
1048    return;
1049
1050  // Make sure that the first operand is an i32 of the right extension type.
1051  ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD;
1052  if (CmpOp0.getValueType() != MVT::i32 ||
1053      Load->getExtensionType() != ExtType)
1054    CmpOp0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1055                            Load->getChain(), Load->getBasePtr(),
1056                            Load->getPointerInfo(), Load->getMemoryVT(),
1057                            Load->isVolatile(), Load->isNonTemporal(),
1058                            Load->getAlignment());
1059
1060  // Make sure that the second operand is an i32 with the right value.
1061  if (CmpOp1.getValueType() != MVT::i32 ||
1062      Value != Constant->getZExtValue())
1063    CmpOp1 = DAG.getConstant(Value, MVT::i32);
1064}
1065
1066// Return true if a comparison described by CCMask, CmpOp0 and CmpOp1
1067// is an equality comparison that is better implemented using unsigned
1068// rather than signed comparison instructions.
1069static bool preferUnsignedComparison(SelectionDAG &DAG, SDValue CmpOp0,
1070                                     SDValue CmpOp1, unsigned CCMask) {
1071  // The test must be for equality or inequality.
1072  if (CCMask != SystemZ::CCMASK_CMP_EQ && CCMask != SystemZ::CCMASK_CMP_NE)
1073    return false;
1074
1075  if (CmpOp1.getOpcode() == ISD::Constant) {
1076    uint64_t Value = cast<ConstantSDNode>(CmpOp1)->getSExtValue();
1077
1078    // If we're comparing with memory, prefer unsigned comparisons for
1079    // values that are in the unsigned 16-bit range but not the signed
1080    // 16-bit range.  We want to use CLFHSI and CLGHSI.
1081    if (CmpOp0.hasOneUse() &&
1082        ISD::isNormalLoad(CmpOp0.getNode()) &&
1083        (Value >= 32768 && Value < 65536))
1084      return true;
1085
1086    // Use unsigned comparisons for values that are in the CLGFI range
1087    // but not in the CGFI range.
1088    if (CmpOp0.getValueType() == MVT::i64 && (Value >> 31) == 1)
1089      return true;
1090
1091    return false;
1092  }
1093
1094  // Prefer CL for zero-extended loads.
1095  if (CmpOp1.getOpcode() == ISD::ZERO_EXTEND ||
1096      ISD::isZEXTLoad(CmpOp1.getNode()))
1097    return true;
1098
1099  // ...and for "in-register" zero extensions.
1100  if (CmpOp1.getOpcode() == ISD::AND && CmpOp1.getValueType() == MVT::i64) {
1101    SDValue Mask = CmpOp1.getOperand(1);
1102    if (Mask.getOpcode() == ISD::Constant &&
1103        cast<ConstantSDNode>(Mask)->getZExtValue() == 0xffffffff)
1104      return true;
1105  }
1106
1107  return false;
1108}
1109
1110// Return a target node that compares CmpOp0 with CmpOp1 and stores a
1111// 2-bit result in CC.  Set CCValid to the CCMASK_* of all possible
1112// 2-bit results and CCMask to the subset of those results that are
1113// associated with Cond.
1114static SDValue emitCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
1115                       ISD::CondCode Cond, unsigned &CCValid,
1116                       unsigned &CCMask) {
1117  bool IsUnsigned = false;
1118  CCMask = CCMaskForCondCode(Cond);
1119  if (CmpOp0.getValueType().isFloatingPoint())
1120    CCValid = SystemZ::CCMASK_FCMP;
1121  else {
1122    IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO;
1123    CCValid = SystemZ::CCMASK_ICMP;
1124    CCMask &= CCValid;
1125    adjustZeroCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
1126    adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
1127    if (preferUnsignedComparison(DAG, CmpOp0, CmpOp1, CCMask))
1128      IsUnsigned = true;
1129  }
1130
1131  SDLoc DL(CmpOp0);
1132  return DAG.getNode((IsUnsigned ? SystemZISD::UCMP : SystemZISD::CMP),
1133                     DL, MVT::Glue, CmpOp0, CmpOp1);
1134}
1135
1136// Lower a binary operation that produces two VT results, one in each
1137// half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
1138// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
1139// on the extended Op0 and (unextended) Op1.  Store the even register result
1140// in Even and the odd register result in Odd.
1141static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
1142                             unsigned Extend, unsigned Opcode,
1143                             SDValue Op0, SDValue Op1,
1144                             SDValue &Even, SDValue &Odd) {
1145  SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
1146  SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
1147                               SDValue(In128, 0), Op1);
1148  bool Is32Bit = is32Bit(VT);
1149  SDValue SubReg0 = DAG.getTargetConstant(SystemZ::even128(Is32Bit), VT);
1150  SDValue SubReg1 = DAG.getTargetConstant(SystemZ::odd128(Is32Bit), VT);
1151  SDNode *Reg0 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1152                                    VT, Result, SubReg0);
1153  SDNode *Reg1 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1154                                    VT, Result, SubReg1);
1155  Even = SDValue(Reg0, 0);
1156  Odd = SDValue(Reg1, 0);
1157}
1158
1159SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1160  SDValue Chain    = Op.getOperand(0);
1161  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1162  SDValue CmpOp0   = Op.getOperand(2);
1163  SDValue CmpOp1   = Op.getOperand(3);
1164  SDValue Dest     = Op.getOperand(4);
1165  SDLoc DL(Op);
1166
1167  unsigned CCValid, CCMask;
1168  SDValue Flags = emitCmp(DAG, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1169  return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
1170                     Chain, DAG.getConstant(CCValid, MVT::i32),
1171                     DAG.getConstant(CCMask, MVT::i32), Dest, Flags);
1172}
1173
1174SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
1175                                              SelectionDAG &DAG) const {
1176  SDValue CmpOp0   = Op.getOperand(0);
1177  SDValue CmpOp1   = Op.getOperand(1);
1178  SDValue TrueOp   = Op.getOperand(2);
1179  SDValue FalseOp  = Op.getOperand(3);
1180  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1181  SDLoc DL(Op);
1182
1183  unsigned CCValid, CCMask;
1184  SDValue Flags = emitCmp(DAG, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1185
1186  SmallVector<SDValue, 5> Ops;
1187  Ops.push_back(TrueOp);
1188  Ops.push_back(FalseOp);
1189  Ops.push_back(DAG.getConstant(CCValid, MVT::i32));
1190  Ops.push_back(DAG.getConstant(CCMask, MVT::i32));
1191  Ops.push_back(Flags);
1192
1193  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1194  return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size());
1195}
1196
1197SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
1198                                                  SelectionDAG &DAG) const {
1199  SDLoc DL(Node);
1200  const GlobalValue *GV = Node->getGlobal();
1201  int64_t Offset = Node->getOffset();
1202  EVT PtrVT = getPointerTy();
1203  Reloc::Model RM = TM.getRelocationModel();
1204  CodeModel::Model CM = TM.getCodeModel();
1205
1206  SDValue Result;
1207  if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
1208    // Make sure that the offset is aligned to a halfword.  If it isn't,
1209    // create an "anchor" at the previous 12-bit boundary.
1210    // FIXME check whether there is a better way of handling this.
1211    if (Offset & 1) {
1212      Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
1213                                          Offset & ~uint64_t(0xfff));
1214      Offset &= 0xfff;
1215    } else {
1216      Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Offset);
1217      Offset = 0;
1218    }
1219    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1220  } else {
1221    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
1222    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1223    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
1224                         MachinePointerInfo::getGOT(), false, false, false, 0);
1225  }
1226
1227  // If there was a non-zero offset that we didn't fold, create an explicit
1228  // addition for it.
1229  if (Offset != 0)
1230    Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
1231                         DAG.getConstant(Offset, PtrVT));
1232
1233  return Result;
1234}
1235
1236SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
1237						     SelectionDAG &DAG) const {
1238  SDLoc DL(Node);
1239  const GlobalValue *GV = Node->getGlobal();
1240  EVT PtrVT = getPointerTy();
1241  TLSModel::Model model = TM.getTLSModel(GV);
1242
1243  if (model != TLSModel::LocalExec)
1244    llvm_unreachable("only local-exec TLS mode supported");
1245
1246  // The high part of the thread pointer is in access register 0.
1247  SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1248                             DAG.getConstant(0, MVT::i32));
1249  TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
1250
1251  // The low part of the thread pointer is in access register 1.
1252  SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1253                             DAG.getConstant(1, MVT::i32));
1254  TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
1255
1256  // Merge them into a single 64-bit address.
1257  SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
1258				    DAG.getConstant(32, PtrVT));
1259  SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
1260
1261  // Get the offset of GA from the thread pointer.
1262  SystemZConstantPoolValue *CPV =
1263    SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
1264
1265  // Force the offset into the constant pool and load it from there.
1266  SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
1267  SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
1268			       CPAddr, MachinePointerInfo::getConstantPool(),
1269			       false, false, false, 0);
1270
1271  // Add the base and offset together.
1272  return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
1273}
1274
1275SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
1276                                                 SelectionDAG &DAG) const {
1277  SDLoc DL(Node);
1278  const BlockAddress *BA = Node->getBlockAddress();
1279  int64_t Offset = Node->getOffset();
1280  EVT PtrVT = getPointerTy();
1281
1282  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
1283  Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1284  return Result;
1285}
1286
1287SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
1288                                              SelectionDAG &DAG) const {
1289  SDLoc DL(JT);
1290  EVT PtrVT = getPointerTy();
1291  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1292
1293  // Use LARL to load the address of the table.
1294  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1295}
1296
1297SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
1298                                                 SelectionDAG &DAG) const {
1299  SDLoc DL(CP);
1300  EVT PtrVT = getPointerTy();
1301
1302  SDValue Result;
1303  if (CP->isMachineConstantPoolEntry())
1304    Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1305				       CP->getAlignment());
1306  else
1307    Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1308				       CP->getAlignment(), CP->getOffset());
1309
1310  // Use LARL to load the address of the constant pool entry.
1311  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1312}
1313
1314SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
1315                                            SelectionDAG &DAG) const {
1316  SDLoc DL(Op);
1317  SDValue In = Op.getOperand(0);
1318  EVT InVT = In.getValueType();
1319  EVT ResVT = Op.getValueType();
1320
1321  SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
1322  SDValue Shift32 = DAG.getConstant(32, MVT::i64);
1323  if (InVT == MVT::i32 && ResVT == MVT::f32) {
1324    SDValue In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
1325    SDValue Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, Shift32);
1326    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Shift);
1327    SDNode *Out = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1328                                     MVT::f32, Out64, SubReg32);
1329    return SDValue(Out, 0);
1330  }
1331  if (InVT == MVT::f32 && ResVT == MVT::i32) {
1332    SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
1333    SDNode *In64 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
1334                                      MVT::f64, SDValue(U64, 0), In, SubReg32);
1335    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, SDValue(In64, 0));
1336    SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, Shift32);
1337    SDValue Out = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
1338    return Out;
1339  }
1340  llvm_unreachable("Unexpected bitcast combination");
1341}
1342
1343SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
1344                                            SelectionDAG &DAG) const {
1345  MachineFunction &MF = DAG.getMachineFunction();
1346  SystemZMachineFunctionInfo *FuncInfo =
1347    MF.getInfo<SystemZMachineFunctionInfo>();
1348  EVT PtrVT = getPointerTy();
1349
1350  SDValue Chain   = Op.getOperand(0);
1351  SDValue Addr    = Op.getOperand(1);
1352  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1353  SDLoc DL(Op);
1354
1355  // The initial values of each field.
1356  const unsigned NumFields = 4;
1357  SDValue Fields[NumFields] = {
1358    DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
1359    DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
1360    DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
1361    DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
1362  };
1363
1364  // Store each field into its respective slot.
1365  SDValue MemOps[NumFields];
1366  unsigned Offset = 0;
1367  for (unsigned I = 0; I < NumFields; ++I) {
1368    SDValue FieldAddr = Addr;
1369    if (Offset != 0)
1370      FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
1371                              DAG.getIntPtrConstant(Offset));
1372    MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
1373                             MachinePointerInfo(SV, Offset),
1374                             false, false, 0);
1375    Offset += 8;
1376  }
1377  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields);
1378}
1379
1380SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
1381                                           SelectionDAG &DAG) const {
1382  SDValue Chain      = Op.getOperand(0);
1383  SDValue DstPtr     = Op.getOperand(1);
1384  SDValue SrcPtr     = Op.getOperand(2);
1385  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1386  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1387  SDLoc DL(Op);
1388
1389  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
1390                       /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
1391                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
1392}
1393
1394SDValue SystemZTargetLowering::
1395lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
1396  SDValue Chain = Op.getOperand(0);
1397  SDValue Size  = Op.getOperand(1);
1398  SDLoc DL(Op);
1399
1400  unsigned SPReg = getStackPointerRegisterToSaveRestore();
1401
1402  // Get a reference to the stack pointer.
1403  SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
1404
1405  // Get the new stack pointer value.
1406  SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
1407
1408  // Copy the new stack pointer back.
1409  Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
1410
1411  // The allocated data lives above the 160 bytes allocated for the standard
1412  // frame, plus any outgoing stack arguments.  We don't know how much that
1413  // amounts to yet, so emit a special ADJDYNALLOC placeholder.
1414  SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
1415  SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
1416
1417  SDValue Ops[2] = { Result, Chain };
1418  return DAG.getMergeValues(Ops, 2, DL);
1419}
1420
1421SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
1422                                              SelectionDAG &DAG) const {
1423  EVT VT = Op.getValueType();
1424  SDLoc DL(Op);
1425  assert(!is32Bit(VT) && "Only support 64-bit UMUL_LOHI");
1426
1427  // UMUL_LOHI64 returns the low result in the odd register and the high
1428  // result in the even register.  UMUL_LOHI is defined to return the
1429  // low half first, so the results are in reverse order.
1430  SDValue Ops[2];
1431  lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
1432                   Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1433  return DAG.getMergeValues(Ops, 2, DL);
1434}
1435
1436SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
1437                                            SelectionDAG &DAG) const {
1438  SDValue Op0 = Op.getOperand(0);
1439  SDValue Op1 = Op.getOperand(1);
1440  EVT VT = Op.getValueType();
1441  SDLoc DL(Op);
1442  unsigned Opcode;
1443
1444  // We use DSGF for 32-bit division.
1445  if (is32Bit(VT)) {
1446    Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
1447    Opcode = SystemZISD::SDIVREM32;
1448  } else if (DAG.ComputeNumSignBits(Op1) > 32) {
1449    Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
1450    Opcode = SystemZISD::SDIVREM32;
1451  } else
1452    Opcode = SystemZISD::SDIVREM64;
1453
1454  // DSG(F) takes a 64-bit dividend, so the even register in the GR128
1455  // input is "don't care".  The instruction returns the remainder in
1456  // the even register and the quotient in the odd register.
1457  SDValue Ops[2];
1458  lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
1459                   Op0, Op1, Ops[1], Ops[0]);
1460  return DAG.getMergeValues(Ops, 2, DL);
1461}
1462
1463SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
1464                                            SelectionDAG &DAG) const {
1465  EVT VT = Op.getValueType();
1466  SDLoc DL(Op);
1467
1468  // DL(G) uses a double-width dividend, so we need to clear the even
1469  // register in the GR128 input.  The instruction returns the remainder
1470  // in the even register and the quotient in the odd register.
1471  SDValue Ops[2];
1472  if (is32Bit(VT))
1473    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
1474                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1475  else
1476    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
1477                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1478  return DAG.getMergeValues(Ops, 2, DL);
1479}
1480
1481SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
1482  assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
1483
1484  // Get the known-zero masks for each operand.
1485  SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
1486  APInt KnownZero[2], KnownOne[2];
1487  DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]);
1488  DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]);
1489
1490  // See if the upper 32 bits of one operand and the lower 32 bits of the
1491  // other are known zero.  They are the low and high operands respectively.
1492  uint64_t Masks[] = { KnownZero[0].getZExtValue(),
1493                       KnownZero[1].getZExtValue() };
1494  unsigned High, Low;
1495  if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
1496    High = 1, Low = 0;
1497  else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
1498    High = 0, Low = 1;
1499  else
1500    return Op;
1501
1502  SDValue LowOp = Ops[Low];
1503  SDValue HighOp = Ops[High];
1504
1505  // If the high part is a constant, we're better off using IILH.
1506  if (HighOp.getOpcode() == ISD::Constant)
1507    return Op;
1508
1509  // If the low part is a constant that is outside the range of LHI,
1510  // then we're better off using IILF.
1511  if (LowOp.getOpcode() == ISD::Constant) {
1512    int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
1513    if (!isInt<16>(Value))
1514      return Op;
1515  }
1516
1517  // Check whether the high part is an AND that doesn't change the
1518  // high 32 bits and just masks out low bits.  We can skip it if so.
1519  if (HighOp.getOpcode() == ISD::AND &&
1520      HighOp.getOperand(1).getOpcode() == ISD::Constant) {
1521    ConstantSDNode *MaskNode = cast<ConstantSDNode>(HighOp.getOperand(1));
1522    uint64_t Mask = MaskNode->getZExtValue() | Masks[High];
1523    if ((Mask >> 32) == 0xffffffff)
1524      HighOp = HighOp.getOperand(0);
1525  }
1526
1527  // Take advantage of the fact that all GR32 operations only change the
1528  // low 32 bits by truncating Low to an i32 and inserting it directly
1529  // using a subreg.  The interesting cases are those where the truncation
1530  // can be folded.
1531  SDLoc DL(Op);
1532  SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
1533  SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
1534  SDNode *Result = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
1535                                      MVT::i64, HighOp, Low32, SubReg32);
1536  return SDValue(Result, 0);
1537}
1538
1539// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
1540// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
1541SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
1542                                                SelectionDAG &DAG,
1543                                                unsigned Opcode) const {
1544  AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
1545
1546  // 32-bit operations need no code outside the main loop.
1547  EVT NarrowVT = Node->getMemoryVT();
1548  EVT WideVT = MVT::i32;
1549  if (NarrowVT == WideVT)
1550    return Op;
1551
1552  int64_t BitSize = NarrowVT.getSizeInBits();
1553  SDValue ChainIn = Node->getChain();
1554  SDValue Addr = Node->getBasePtr();
1555  SDValue Src2 = Node->getVal();
1556  MachineMemOperand *MMO = Node->getMemOperand();
1557  SDLoc DL(Node);
1558  EVT PtrVT = Addr.getValueType();
1559
1560  // Convert atomic subtracts of constants into additions.
1561  if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
1562    if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) {
1563      Opcode = SystemZISD::ATOMIC_LOADW_ADD;
1564      Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
1565    }
1566
1567  // Get the address of the containing word.
1568  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
1569                                    DAG.getConstant(-4, PtrVT));
1570
1571  // Get the number of bits that the word must be rotated left in order
1572  // to bring the field to the top bits of a GR32.
1573  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
1574                                 DAG.getConstant(3, PtrVT));
1575  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
1576
1577  // Get the complementing shift amount, for rotating a field in the top
1578  // bits back to its proper position.
1579  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
1580                                    DAG.getConstant(0, WideVT), BitShift);
1581
1582  // Extend the source operand to 32 bits and prepare it for the inner loop.
1583  // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
1584  // operations require the source to be shifted in advance.  (This shift
1585  // can be folded if the source is constant.)  For AND and NAND, the lower
1586  // bits must be set, while for other opcodes they should be left clear.
1587  if (Opcode != SystemZISD::ATOMIC_SWAPW)
1588    Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
1589                       DAG.getConstant(32 - BitSize, WideVT));
1590  if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
1591      Opcode == SystemZISD::ATOMIC_LOADW_NAND)
1592    Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
1593                       DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
1594
1595  // Construct the ATOMIC_LOADW_* node.
1596  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
1597  SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
1598                    DAG.getConstant(BitSize, WideVT) };
1599  SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
1600                                             array_lengthof(Ops),
1601                                             NarrowVT, MMO);
1602
1603  // Rotate the result of the final CS so that the field is in the lower
1604  // bits of a GR32, then truncate it.
1605  SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
1606                                    DAG.getConstant(BitSize, WideVT));
1607  SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
1608
1609  SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
1610  return DAG.getMergeValues(RetOps, 2, DL);
1611}
1612
1613// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
1614// into a fullword ATOMIC_CMP_SWAPW operation.
1615SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
1616                                                    SelectionDAG &DAG) const {
1617  AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
1618
1619  // We have native support for 32-bit compare and swap.
1620  EVT NarrowVT = Node->getMemoryVT();
1621  EVT WideVT = MVT::i32;
1622  if (NarrowVT == WideVT)
1623    return Op;
1624
1625  int64_t BitSize = NarrowVT.getSizeInBits();
1626  SDValue ChainIn = Node->getOperand(0);
1627  SDValue Addr = Node->getOperand(1);
1628  SDValue CmpVal = Node->getOperand(2);
1629  SDValue SwapVal = Node->getOperand(3);
1630  MachineMemOperand *MMO = Node->getMemOperand();
1631  SDLoc DL(Node);
1632  EVT PtrVT = Addr.getValueType();
1633
1634  // Get the address of the containing word.
1635  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
1636                                    DAG.getConstant(-4, PtrVT));
1637
1638  // Get the number of bits that the word must be rotated left in order
1639  // to bring the field to the top bits of a GR32.
1640  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
1641                                 DAG.getConstant(3, PtrVT));
1642  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
1643
1644  // Get the complementing shift amount, for rotating a field in the top
1645  // bits back to its proper position.
1646  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
1647                                    DAG.getConstant(0, WideVT), BitShift);
1648
1649  // Construct the ATOMIC_CMP_SWAPW node.
1650  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
1651  SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
1652                    NegBitShift, DAG.getConstant(BitSize, WideVT) };
1653  SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
1654                                             VTList, Ops, array_lengthof(Ops),
1655                                             NarrowVT, MMO);
1656  return AtomicOp;
1657}
1658
1659SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
1660                                              SelectionDAG &DAG) const {
1661  MachineFunction &MF = DAG.getMachineFunction();
1662  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
1663  return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
1664                            SystemZ::R15D, Op.getValueType());
1665}
1666
1667SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
1668                                                 SelectionDAG &DAG) const {
1669  MachineFunction &MF = DAG.getMachineFunction();
1670  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
1671  return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
1672                          SystemZ::R15D, Op.getOperand(1));
1673}
1674
1675SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
1676                                              SelectionDAG &DAG) const {
1677  switch (Op.getOpcode()) {
1678  case ISD::BR_CC:
1679    return lowerBR_CC(Op, DAG);
1680  case ISD::SELECT_CC:
1681    return lowerSELECT_CC(Op, DAG);
1682  case ISD::GlobalAddress:
1683    return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
1684  case ISD::GlobalTLSAddress:
1685    return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
1686  case ISD::BlockAddress:
1687    return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
1688  case ISD::JumpTable:
1689    return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
1690  case ISD::ConstantPool:
1691    return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
1692  case ISD::BITCAST:
1693    return lowerBITCAST(Op, DAG);
1694  case ISD::VASTART:
1695    return lowerVASTART(Op, DAG);
1696  case ISD::VACOPY:
1697    return lowerVACOPY(Op, DAG);
1698  case ISD::DYNAMIC_STACKALLOC:
1699    return lowerDYNAMIC_STACKALLOC(Op, DAG);
1700  case ISD::UMUL_LOHI:
1701    return lowerUMUL_LOHI(Op, DAG);
1702  case ISD::SDIVREM:
1703    return lowerSDIVREM(Op, DAG);
1704  case ISD::UDIVREM:
1705    return lowerUDIVREM(Op, DAG);
1706  case ISD::OR:
1707    return lowerOR(Op, DAG);
1708  case ISD::ATOMIC_SWAP:
1709    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_SWAPW);
1710  case ISD::ATOMIC_LOAD_ADD:
1711    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
1712  case ISD::ATOMIC_LOAD_SUB:
1713    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
1714  case ISD::ATOMIC_LOAD_AND:
1715    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
1716  case ISD::ATOMIC_LOAD_OR:
1717    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
1718  case ISD::ATOMIC_LOAD_XOR:
1719    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
1720  case ISD::ATOMIC_LOAD_NAND:
1721    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
1722  case ISD::ATOMIC_LOAD_MIN:
1723    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
1724  case ISD::ATOMIC_LOAD_MAX:
1725    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
1726  case ISD::ATOMIC_LOAD_UMIN:
1727    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
1728  case ISD::ATOMIC_LOAD_UMAX:
1729    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
1730  case ISD::ATOMIC_CMP_SWAP:
1731    return lowerATOMIC_CMP_SWAP(Op, DAG);
1732  case ISD::STACKSAVE:
1733    return lowerSTACKSAVE(Op, DAG);
1734  case ISD::STACKRESTORE:
1735    return lowerSTACKRESTORE(Op, DAG);
1736  default:
1737    llvm_unreachable("Unexpected node to lower");
1738  }
1739}
1740
1741const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
1742#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
1743  switch (Opcode) {
1744    OPCODE(RET_FLAG);
1745    OPCODE(CALL);
1746    OPCODE(SIBCALL);
1747    OPCODE(PCREL_WRAPPER);
1748    OPCODE(CMP);
1749    OPCODE(UCMP);
1750    OPCODE(BR_CCMASK);
1751    OPCODE(SELECT_CCMASK);
1752    OPCODE(ADJDYNALLOC);
1753    OPCODE(EXTRACT_ACCESS);
1754    OPCODE(UMUL_LOHI64);
1755    OPCODE(SDIVREM64);
1756    OPCODE(UDIVREM32);
1757    OPCODE(UDIVREM64);
1758    OPCODE(MVC);
1759    OPCODE(CLC);
1760    OPCODE(STRCMP);
1761    OPCODE(STPCPY);
1762    OPCODE(SEARCH_STRING);
1763    OPCODE(IPM);
1764    OPCODE(ATOMIC_SWAPW);
1765    OPCODE(ATOMIC_LOADW_ADD);
1766    OPCODE(ATOMIC_LOADW_SUB);
1767    OPCODE(ATOMIC_LOADW_AND);
1768    OPCODE(ATOMIC_LOADW_OR);
1769    OPCODE(ATOMIC_LOADW_XOR);
1770    OPCODE(ATOMIC_LOADW_NAND);
1771    OPCODE(ATOMIC_LOADW_MIN);
1772    OPCODE(ATOMIC_LOADW_MAX);
1773    OPCODE(ATOMIC_LOADW_UMIN);
1774    OPCODE(ATOMIC_LOADW_UMAX);
1775    OPCODE(ATOMIC_CMP_SWAPW);
1776  }
1777  return NULL;
1778#undef OPCODE
1779}
1780
1781//===----------------------------------------------------------------------===//
1782// Custom insertion
1783//===----------------------------------------------------------------------===//
1784
1785// Create a new basic block after MBB.
1786static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
1787  MachineFunction &MF = *MBB->getParent();
1788  MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
1789  MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB);
1790  return NewMBB;
1791}
1792
1793// Split MBB after MI and return the new block (the one that contains
1794// instructions after MI).
1795static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
1796                                          MachineBasicBlock *MBB) {
1797  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
1798  NewMBB->splice(NewMBB->begin(), MBB,
1799                 llvm::next(MachineBasicBlock::iterator(MI)),
1800                 MBB->end());
1801  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
1802  return NewMBB;
1803}
1804
1805// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
1806MachineBasicBlock *
1807SystemZTargetLowering::emitSelect(MachineInstr *MI,
1808                                  MachineBasicBlock *MBB) const {
1809  const SystemZInstrInfo *TII = TM.getInstrInfo();
1810
1811  unsigned DestReg  = MI->getOperand(0).getReg();
1812  unsigned TrueReg  = MI->getOperand(1).getReg();
1813  unsigned FalseReg = MI->getOperand(2).getReg();
1814  unsigned CCValid  = MI->getOperand(3).getImm();
1815  unsigned CCMask   = MI->getOperand(4).getImm();
1816  DebugLoc DL       = MI->getDebugLoc();
1817
1818  MachineBasicBlock *StartMBB = MBB;
1819  MachineBasicBlock *JoinMBB  = splitBlockAfter(MI, MBB);
1820  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
1821
1822  //  StartMBB:
1823  //   BRC CCMask, JoinMBB
1824  //   # fallthrough to FalseMBB
1825  MBB = StartMBB;
1826  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
1827    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
1828  MBB->addSuccessor(JoinMBB);
1829  MBB->addSuccessor(FalseMBB);
1830
1831  //  FalseMBB:
1832  //   # fallthrough to JoinMBB
1833  MBB = FalseMBB;
1834  MBB->addSuccessor(JoinMBB);
1835
1836  //  JoinMBB:
1837  //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
1838  //  ...
1839  MBB = JoinMBB;
1840  BuildMI(*MBB, MBB->begin(), DL, TII->get(SystemZ::PHI), DestReg)
1841    .addReg(TrueReg).addMBB(StartMBB)
1842    .addReg(FalseReg).addMBB(FalseMBB);
1843
1844  MI->eraseFromParent();
1845  return JoinMBB;
1846}
1847
1848// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
1849// StoreOpcode is the store to use and Invert says whether the store should
1850// happen when the condition is false rather than true.  If a STORE ON
1851// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
1852MachineBasicBlock *
1853SystemZTargetLowering::emitCondStore(MachineInstr *MI,
1854                                     MachineBasicBlock *MBB,
1855                                     unsigned StoreOpcode, unsigned STOCOpcode,
1856                                     bool Invert) const {
1857  const SystemZInstrInfo *TII = TM.getInstrInfo();
1858
1859  unsigned SrcReg     = MI->getOperand(0).getReg();
1860  MachineOperand Base = MI->getOperand(1);
1861  int64_t Disp        = MI->getOperand(2).getImm();
1862  unsigned IndexReg   = MI->getOperand(3).getReg();
1863  unsigned CCValid    = MI->getOperand(4).getImm();
1864  unsigned CCMask     = MI->getOperand(5).getImm();
1865  DebugLoc DL         = MI->getDebugLoc();
1866
1867  StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
1868
1869  // Use STOCOpcode if possible.  We could use different store patterns in
1870  // order to avoid matching the index register, but the performance trade-offs
1871  // might be more complicated in that case.
1872  if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
1873    if (Invert)
1874      CCMask ^= CCValid;
1875    BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
1876      .addReg(SrcReg).addOperand(Base).addImm(Disp)
1877      .addImm(CCValid).addImm(CCMask);
1878    MI->eraseFromParent();
1879    return MBB;
1880  }
1881
1882  // Get the condition needed to branch around the store.
1883  if (!Invert)
1884    CCMask ^= CCValid;
1885
1886  MachineBasicBlock *StartMBB = MBB;
1887  MachineBasicBlock *JoinMBB  = splitBlockAfter(MI, MBB);
1888  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
1889
1890  //  StartMBB:
1891  //   BRC CCMask, JoinMBB
1892  //   # fallthrough to FalseMBB
1893  MBB = StartMBB;
1894  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
1895    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
1896  MBB->addSuccessor(JoinMBB);
1897  MBB->addSuccessor(FalseMBB);
1898
1899  //  FalseMBB:
1900  //   store %SrcReg, %Disp(%Index,%Base)
1901  //   # fallthrough to JoinMBB
1902  MBB = FalseMBB;
1903  BuildMI(MBB, DL, TII->get(StoreOpcode))
1904    .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
1905  MBB->addSuccessor(JoinMBB);
1906
1907  MI->eraseFromParent();
1908  return JoinMBB;
1909}
1910
1911// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
1912// or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
1913// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
1914// BitSize is the width of the field in bits, or 0 if this is a partword
1915// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
1916// is one of the operands.  Invert says whether the field should be
1917// inverted after performing BinOpcode (e.g. for NAND).
1918MachineBasicBlock *
1919SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
1920                                            MachineBasicBlock *MBB,
1921                                            unsigned BinOpcode,
1922                                            unsigned BitSize,
1923                                            bool Invert) const {
1924  const SystemZInstrInfo *TII = TM.getInstrInfo();
1925  MachineFunction &MF = *MBB->getParent();
1926  MachineRegisterInfo &MRI = MF.getRegInfo();
1927  bool IsSubWord = (BitSize < 32);
1928
1929  // Extract the operands.  Base can be a register or a frame index.
1930  // Src2 can be a register or immediate.
1931  unsigned Dest        = MI->getOperand(0).getReg();
1932  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
1933  int64_t Disp         = MI->getOperand(2).getImm();
1934  MachineOperand Src2  = earlyUseOperand(MI->getOperand(3));
1935  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
1936  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
1937  DebugLoc DL          = MI->getDebugLoc();
1938  if (IsSubWord)
1939    BitSize = MI->getOperand(6).getImm();
1940
1941  // Subword operations use 32-bit registers.
1942  const TargetRegisterClass *RC = (BitSize <= 32 ?
1943                                   &SystemZ::GR32BitRegClass :
1944                                   &SystemZ::GR64BitRegClass);
1945  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
1946  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
1947
1948  // Get the right opcodes for the displacement.
1949  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
1950  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
1951  assert(LOpcode && CSOpcode && "Displacement out of range");
1952
1953  // Create virtual registers for temporary results.
1954  unsigned OrigVal       = MRI.createVirtualRegister(RC);
1955  unsigned OldVal        = MRI.createVirtualRegister(RC);
1956  unsigned NewVal        = (BinOpcode || IsSubWord ?
1957                            MRI.createVirtualRegister(RC) : Src2.getReg());
1958  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
1959  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
1960
1961  // Insert a basic block for the main loop.
1962  MachineBasicBlock *StartMBB = MBB;
1963  MachineBasicBlock *DoneMBB  = splitBlockAfter(MI, MBB);
1964  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
1965
1966  //  StartMBB:
1967  //   ...
1968  //   %OrigVal = L Disp(%Base)
1969  //   # fall through to LoopMMB
1970  MBB = StartMBB;
1971  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
1972    .addOperand(Base).addImm(Disp).addReg(0);
1973  MBB->addSuccessor(LoopMBB);
1974
1975  //  LoopMBB:
1976  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
1977  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
1978  //   %RotatedNewVal = OP %RotatedOldVal, %Src2
1979  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
1980  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
1981  //   JNE LoopMBB
1982  //   # fall through to DoneMMB
1983  MBB = LoopMBB;
1984  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
1985    .addReg(OrigVal).addMBB(StartMBB)
1986    .addReg(Dest).addMBB(LoopMBB);
1987  if (IsSubWord)
1988    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
1989      .addReg(OldVal).addReg(BitShift).addImm(0);
1990  if (Invert) {
1991    // Perform the operation normally and then invert every bit of the field.
1992    unsigned Tmp = MRI.createVirtualRegister(RC);
1993    BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
1994      .addReg(RotatedOldVal).addOperand(Src2);
1995    if (BitSize < 32)
1996      // XILF with the upper BitSize bits set.
1997      BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
1998        .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
1999    else if (BitSize == 32)
2000      // XILF with every bit set.
2001      BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
2002        .addReg(Tmp).addImm(~uint32_t(0));
2003    else {
2004      // Use LCGR and add -1 to the result, which is more compact than
2005      // an XILF, XILH pair.
2006      unsigned Tmp2 = MRI.createVirtualRegister(RC);
2007      BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
2008      BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
2009        .addReg(Tmp2).addImm(-1);
2010    }
2011  } else if (BinOpcode)
2012    // A simply binary operation.
2013    BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
2014      .addReg(RotatedOldVal).addOperand(Src2);
2015  else if (IsSubWord)
2016    // Use RISBG to rotate Src2 into position and use it to replace the
2017    // field in RotatedOldVal.
2018    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
2019      .addReg(RotatedOldVal).addReg(Src2.getReg())
2020      .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
2021  if (IsSubWord)
2022    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2023      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2024  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2025    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2026  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2027    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2028  MBB->addSuccessor(LoopMBB);
2029  MBB->addSuccessor(DoneMBB);
2030
2031  MI->eraseFromParent();
2032  return DoneMBB;
2033}
2034
2035// Implement EmitInstrWithCustomInserter for pseudo
2036// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
2037// instruction that should be used to compare the current field with the
2038// minimum or maximum value.  KeepOldMask is the BRC condition-code mask
2039// for when the current field should be kept.  BitSize is the width of
2040// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
2041MachineBasicBlock *
2042SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
2043                                            MachineBasicBlock *MBB,
2044                                            unsigned CompareOpcode,
2045                                            unsigned KeepOldMask,
2046                                            unsigned BitSize) const {
2047  const SystemZInstrInfo *TII = TM.getInstrInfo();
2048  MachineFunction &MF = *MBB->getParent();
2049  MachineRegisterInfo &MRI = MF.getRegInfo();
2050  bool IsSubWord = (BitSize < 32);
2051
2052  // Extract the operands.  Base can be a register or a frame index.
2053  unsigned Dest        = MI->getOperand(0).getReg();
2054  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2055  int64_t  Disp        = MI->getOperand(2).getImm();
2056  unsigned Src2        = MI->getOperand(3).getReg();
2057  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2058  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2059  DebugLoc DL          = MI->getDebugLoc();
2060  if (IsSubWord)
2061    BitSize = MI->getOperand(6).getImm();
2062
2063  // Subword operations use 32-bit registers.
2064  const TargetRegisterClass *RC = (BitSize <= 32 ?
2065                                   &SystemZ::GR32BitRegClass :
2066                                   &SystemZ::GR64BitRegClass);
2067  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2068  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2069
2070  // Get the right opcodes for the displacement.
2071  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2072  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2073  assert(LOpcode && CSOpcode && "Displacement out of range");
2074
2075  // Create virtual registers for temporary results.
2076  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2077  unsigned OldVal        = MRI.createVirtualRegister(RC);
2078  unsigned NewVal        = MRI.createVirtualRegister(RC);
2079  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2080  unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
2081  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2082
2083  // Insert 3 basic blocks for the loop.
2084  MachineBasicBlock *StartMBB  = MBB;
2085  MachineBasicBlock *DoneMBB   = splitBlockAfter(MI, MBB);
2086  MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
2087  MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
2088  MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
2089
2090  //  StartMBB:
2091  //   ...
2092  //   %OrigVal     = L Disp(%Base)
2093  //   # fall through to LoopMMB
2094  MBB = StartMBB;
2095  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2096    .addOperand(Base).addImm(Disp).addReg(0);
2097  MBB->addSuccessor(LoopMBB);
2098
2099  //  LoopMBB:
2100  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
2101  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2102  //   CompareOpcode %RotatedOldVal, %Src2
2103  //   BRC KeepOldMask, UpdateMBB
2104  MBB = LoopMBB;
2105  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2106    .addReg(OrigVal).addMBB(StartMBB)
2107    .addReg(Dest).addMBB(UpdateMBB);
2108  if (IsSubWord)
2109    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2110      .addReg(OldVal).addReg(BitShift).addImm(0);
2111  BuildMI(MBB, DL, TII->get(CompareOpcode))
2112    .addReg(RotatedOldVal).addReg(Src2);
2113  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2114    .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
2115  MBB->addSuccessor(UpdateMBB);
2116  MBB->addSuccessor(UseAltMBB);
2117
2118  //  UseAltMBB:
2119  //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
2120  //   # fall through to UpdateMMB
2121  MBB = UseAltMBB;
2122  if (IsSubWord)
2123    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
2124      .addReg(RotatedOldVal).addReg(Src2)
2125      .addImm(32).addImm(31 + BitSize).addImm(0);
2126  MBB->addSuccessor(UpdateMBB);
2127
2128  //  UpdateMBB:
2129  //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
2130  //                        [ %RotatedAltVal, UseAltMBB ]
2131  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2132  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2133  //   JNE LoopMBB
2134  //   # fall through to DoneMMB
2135  MBB = UpdateMBB;
2136  BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
2137    .addReg(RotatedOldVal).addMBB(LoopMBB)
2138    .addReg(RotatedAltVal).addMBB(UseAltMBB);
2139  if (IsSubWord)
2140    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2141      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2142  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2143    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2144  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2145    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2146  MBB->addSuccessor(LoopMBB);
2147  MBB->addSuccessor(DoneMBB);
2148
2149  MI->eraseFromParent();
2150  return DoneMBB;
2151}
2152
2153// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
2154// instruction MI.
2155MachineBasicBlock *
2156SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
2157                                          MachineBasicBlock *MBB) const {
2158  const SystemZInstrInfo *TII = TM.getInstrInfo();
2159  MachineFunction &MF = *MBB->getParent();
2160  MachineRegisterInfo &MRI = MF.getRegInfo();
2161
2162  // Extract the operands.  Base can be a register or a frame index.
2163  unsigned Dest        = MI->getOperand(0).getReg();
2164  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2165  int64_t  Disp        = MI->getOperand(2).getImm();
2166  unsigned OrigCmpVal  = MI->getOperand(3).getReg();
2167  unsigned OrigSwapVal = MI->getOperand(4).getReg();
2168  unsigned BitShift    = MI->getOperand(5).getReg();
2169  unsigned NegBitShift = MI->getOperand(6).getReg();
2170  int64_t  BitSize     = MI->getOperand(7).getImm();
2171  DebugLoc DL          = MI->getDebugLoc();
2172
2173  const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
2174
2175  // Get the right opcodes for the displacement.
2176  unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
2177  unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
2178  assert(LOpcode && CSOpcode && "Displacement out of range");
2179
2180  // Create virtual registers for temporary results.
2181  unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
2182  unsigned OldVal       = MRI.createVirtualRegister(RC);
2183  unsigned CmpVal       = MRI.createVirtualRegister(RC);
2184  unsigned SwapVal      = MRI.createVirtualRegister(RC);
2185  unsigned StoreVal     = MRI.createVirtualRegister(RC);
2186  unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
2187  unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
2188  unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
2189
2190  // Insert 2 basic blocks for the loop.
2191  MachineBasicBlock *StartMBB = MBB;
2192  MachineBasicBlock *DoneMBB  = splitBlockAfter(MI, MBB);
2193  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2194  MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
2195
2196  //  StartMBB:
2197  //   ...
2198  //   %OrigOldVal     = L Disp(%Base)
2199  //   # fall through to LoopMMB
2200  MBB = StartMBB;
2201  BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
2202    .addOperand(Base).addImm(Disp).addReg(0);
2203  MBB->addSuccessor(LoopMBB);
2204
2205  //  LoopMBB:
2206  //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
2207  //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
2208  //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
2209  //   %Dest          = RLL %OldVal, BitSize(%BitShift)
2210  //                      ^^ The low BitSize bits contain the field
2211  //                         of interest.
2212  //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
2213  //                      ^^ Replace the upper 32-BitSize bits of the
2214  //                         comparison value with those that we loaded,
2215  //                         so that we can use a full word comparison.
2216  //   CR %Dest, %RetryCmpVal
2217  //   JNE DoneMBB
2218  //   # Fall through to SetMBB
2219  MBB = LoopMBB;
2220  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2221    .addReg(OrigOldVal).addMBB(StartMBB)
2222    .addReg(RetryOldVal).addMBB(SetMBB);
2223  BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
2224    .addReg(OrigCmpVal).addMBB(StartMBB)
2225    .addReg(RetryCmpVal).addMBB(SetMBB);
2226  BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
2227    .addReg(OrigSwapVal).addMBB(StartMBB)
2228    .addReg(RetrySwapVal).addMBB(SetMBB);
2229  BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
2230    .addReg(OldVal).addReg(BitShift).addImm(BitSize);
2231  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
2232    .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
2233  BuildMI(MBB, DL, TII->get(SystemZ::CR))
2234    .addReg(Dest).addReg(RetryCmpVal);
2235  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2236    .addImm(SystemZ::CCMASK_ICMP)
2237    .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
2238  MBB->addSuccessor(DoneMBB);
2239  MBB->addSuccessor(SetMBB);
2240
2241  //  SetMBB:
2242  //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
2243  //                      ^^ Replace the upper 32-BitSize bits of the new
2244  //                         value with those that we loaded.
2245  //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
2246  //                      ^^ Rotate the new field to its proper position.
2247  //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
2248  //   JNE LoopMBB
2249  //   # fall through to ExitMMB
2250  MBB = SetMBB;
2251  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
2252    .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
2253  BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
2254    .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
2255  BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
2256    .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
2257  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2258    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2259  MBB->addSuccessor(LoopMBB);
2260  MBB->addSuccessor(DoneMBB);
2261
2262  MI->eraseFromParent();
2263  return DoneMBB;
2264}
2265
2266// Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
2267// if the high register of the GR128 value must be cleared or false if
2268// it's "don't care".  SubReg is subreg_odd32 when extending a GR32
2269// and subreg_odd when extending a GR64.
2270MachineBasicBlock *
2271SystemZTargetLowering::emitExt128(MachineInstr *MI,
2272                                  MachineBasicBlock *MBB,
2273                                  bool ClearEven, unsigned SubReg) const {
2274  const SystemZInstrInfo *TII = TM.getInstrInfo();
2275  MachineFunction &MF = *MBB->getParent();
2276  MachineRegisterInfo &MRI = MF.getRegInfo();
2277  DebugLoc DL = MI->getDebugLoc();
2278
2279  unsigned Dest  = MI->getOperand(0).getReg();
2280  unsigned Src   = MI->getOperand(1).getReg();
2281  unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2282
2283  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
2284  if (ClearEven) {
2285    unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2286    unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
2287
2288    BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
2289      .addImm(0);
2290    BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
2291      .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_high);
2292    In128 = NewIn128;
2293  }
2294  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
2295    .addReg(In128).addReg(Src).addImm(SubReg);
2296
2297  MI->eraseFromParent();
2298  return MBB;
2299}
2300
2301MachineBasicBlock *
2302SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
2303                                         MachineBasicBlock *MBB,
2304                                         unsigned Opcode) const {
2305  const SystemZInstrInfo *TII = TM.getInstrInfo();
2306  DebugLoc DL = MI->getDebugLoc();
2307
2308  MachineOperand DestBase = MI->getOperand(0);
2309  uint64_t       DestDisp = MI->getOperand(1).getImm();
2310  MachineOperand SrcBase  = MI->getOperand(2);
2311  uint64_t       SrcDisp  = MI->getOperand(3).getImm();
2312  uint64_t       Length   = MI->getOperand(4).getImm();
2313
2314  BuildMI(*MBB, MI, DL, TII->get(Opcode))
2315    .addOperand(DestBase).addImm(DestDisp).addImm(Length)
2316    .addOperand(SrcBase).addImm(SrcDisp);
2317
2318  MI->eraseFromParent();
2319  return MBB;
2320}
2321
2322// Decompose string pseudo-instruction MI into a loop that continually performs
2323// Opcode until CC != 3.
2324MachineBasicBlock *
2325SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
2326                                         MachineBasicBlock *MBB,
2327                                         unsigned Opcode) const {
2328  const SystemZInstrInfo *TII = TM.getInstrInfo();
2329  MachineFunction &MF = *MBB->getParent();
2330  MachineRegisterInfo &MRI = MF.getRegInfo();
2331  DebugLoc DL = MI->getDebugLoc();
2332
2333  uint64_t End1Reg   = MI->getOperand(0).getReg();
2334  uint64_t Start1Reg = MI->getOperand(1).getReg();
2335  uint64_t Start2Reg = MI->getOperand(2).getReg();
2336  uint64_t CharReg   = MI->getOperand(3).getReg();
2337
2338  const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
2339  uint64_t This1Reg = MRI.createVirtualRegister(RC);
2340  uint64_t This2Reg = MRI.createVirtualRegister(RC);
2341  uint64_t End2Reg  = MRI.createVirtualRegister(RC);
2342
2343  MachineBasicBlock *StartMBB = MBB;
2344  MachineBasicBlock *DoneMBB = splitBlockAfter(MI, MBB);
2345  MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2346
2347  //  StartMBB:
2348  //   R0W = %CharReg
2349  //   # fall through to LoopMMB
2350  BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0W).addReg(CharReg);
2351  MBB->addSuccessor(LoopMBB);
2352
2353  //  LoopMBB:
2354  //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
2355  //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
2356  //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0W
2357  //   JO LoopMBB
2358  //   # fall through to DoneMMB
2359  MBB = LoopMBB;
2360  MBB->addLiveIn(SystemZ::R0W);
2361
2362  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
2363    .addReg(Start1Reg).addMBB(StartMBB)
2364    .addReg(End1Reg).addMBB(LoopMBB);
2365  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
2366    .addReg(Start2Reg).addMBB(StartMBB)
2367    .addReg(End2Reg).addMBB(LoopMBB);
2368  BuildMI(MBB, DL, TII->get(Opcode))
2369    .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
2370    .addReg(This1Reg).addReg(This2Reg);
2371  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2372    .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
2373  MBB->addSuccessor(LoopMBB);
2374  MBB->addSuccessor(DoneMBB);
2375
2376  DoneMBB->addLiveIn(SystemZ::CC);
2377
2378  MI->eraseFromParent();
2379  return DoneMBB;
2380}
2381
2382MachineBasicBlock *SystemZTargetLowering::
2383EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
2384  switch (MI->getOpcode()) {
2385  case SystemZ::Select32:
2386  case SystemZ::SelectF32:
2387  case SystemZ::Select64:
2388  case SystemZ::SelectF64:
2389  case SystemZ::SelectF128:
2390    return emitSelect(MI, MBB);
2391
2392  case SystemZ::CondStore8_32:
2393    return emitCondStore(MI, MBB, SystemZ::STC32, 0, false);
2394  case SystemZ::CondStore8_32Inv:
2395    return emitCondStore(MI, MBB, SystemZ::STC32, 0, true);
2396  case SystemZ::CondStore16_32:
2397    return emitCondStore(MI, MBB, SystemZ::STH32, 0, false);
2398  case SystemZ::CondStore16_32Inv:
2399    return emitCondStore(MI, MBB, SystemZ::STH32, 0, true);
2400  case SystemZ::CondStore32_32:
2401    return emitCondStore(MI, MBB, SystemZ::ST32, SystemZ::STOC32, false);
2402  case SystemZ::CondStore32_32Inv:
2403    return emitCondStore(MI, MBB, SystemZ::ST32, SystemZ::STOC32, true);
2404  case SystemZ::CondStore8:
2405    return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
2406  case SystemZ::CondStore8Inv:
2407    return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
2408  case SystemZ::CondStore16:
2409    return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
2410  case SystemZ::CondStore16Inv:
2411    return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
2412  case SystemZ::CondStore32:
2413    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
2414  case SystemZ::CondStore32Inv:
2415    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
2416  case SystemZ::CondStore64:
2417    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
2418  case SystemZ::CondStore64Inv:
2419    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
2420  case SystemZ::CondStoreF32:
2421    return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
2422  case SystemZ::CondStoreF32Inv:
2423    return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
2424  case SystemZ::CondStoreF64:
2425    return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
2426  case SystemZ::CondStoreF64Inv:
2427    return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
2428
2429  case SystemZ::AEXT128_64:
2430    return emitExt128(MI, MBB, false, SystemZ::subreg_low);
2431  case SystemZ::ZEXT128_32:
2432    return emitExt128(MI, MBB, true, SystemZ::subreg_low32);
2433  case SystemZ::ZEXT128_64:
2434    return emitExt128(MI, MBB, true, SystemZ::subreg_low);
2435
2436  case SystemZ::ATOMIC_SWAPW:
2437    return emitAtomicLoadBinary(MI, MBB, 0, 0);
2438  case SystemZ::ATOMIC_SWAP_32:
2439    return emitAtomicLoadBinary(MI, MBB, 0, 32);
2440  case SystemZ::ATOMIC_SWAP_64:
2441    return emitAtomicLoadBinary(MI, MBB, 0, 64);
2442
2443  case SystemZ::ATOMIC_LOADW_AR:
2444    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
2445  case SystemZ::ATOMIC_LOADW_AFI:
2446    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
2447  case SystemZ::ATOMIC_LOAD_AR:
2448    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
2449  case SystemZ::ATOMIC_LOAD_AHI:
2450    return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
2451  case SystemZ::ATOMIC_LOAD_AFI:
2452    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
2453  case SystemZ::ATOMIC_LOAD_AGR:
2454    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
2455  case SystemZ::ATOMIC_LOAD_AGHI:
2456    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
2457  case SystemZ::ATOMIC_LOAD_AGFI:
2458    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
2459
2460  case SystemZ::ATOMIC_LOADW_SR:
2461    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
2462  case SystemZ::ATOMIC_LOAD_SR:
2463    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
2464  case SystemZ::ATOMIC_LOAD_SGR:
2465    return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
2466
2467  case SystemZ::ATOMIC_LOADW_NR:
2468    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
2469  case SystemZ::ATOMIC_LOADW_NILH:
2470    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0);
2471  case SystemZ::ATOMIC_LOAD_NR:
2472    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
2473  case SystemZ::ATOMIC_LOAD_NILL32:
2474    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32);
2475  case SystemZ::ATOMIC_LOAD_NILH32:
2476    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32);
2477  case SystemZ::ATOMIC_LOAD_NILF32:
2478    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32);
2479  case SystemZ::ATOMIC_LOAD_NGR:
2480    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
2481  case SystemZ::ATOMIC_LOAD_NILL:
2482    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64);
2483  case SystemZ::ATOMIC_LOAD_NILH:
2484    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64);
2485  case SystemZ::ATOMIC_LOAD_NIHL:
2486    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64);
2487  case SystemZ::ATOMIC_LOAD_NIHH:
2488    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64);
2489  case SystemZ::ATOMIC_LOAD_NILF:
2490    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64);
2491  case SystemZ::ATOMIC_LOAD_NIHF:
2492    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64);
2493
2494  case SystemZ::ATOMIC_LOADW_OR:
2495    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
2496  case SystemZ::ATOMIC_LOADW_OILH:
2497    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 0);
2498  case SystemZ::ATOMIC_LOAD_OR:
2499    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
2500  case SystemZ::ATOMIC_LOAD_OILL32:
2501    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL32, 32);
2502  case SystemZ::ATOMIC_LOAD_OILH32:
2503    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 32);
2504  case SystemZ::ATOMIC_LOAD_OILF32:
2505    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF32, 32);
2506  case SystemZ::ATOMIC_LOAD_OGR:
2507    return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
2508  case SystemZ::ATOMIC_LOAD_OILL:
2509    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 64);
2510  case SystemZ::ATOMIC_LOAD_OILH:
2511    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 64);
2512  case SystemZ::ATOMIC_LOAD_OIHL:
2513    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL, 64);
2514  case SystemZ::ATOMIC_LOAD_OIHH:
2515    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH, 64);
2516  case SystemZ::ATOMIC_LOAD_OILF:
2517    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 64);
2518  case SystemZ::ATOMIC_LOAD_OIHF:
2519    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF, 64);
2520
2521  case SystemZ::ATOMIC_LOADW_XR:
2522    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
2523  case SystemZ::ATOMIC_LOADW_XILF:
2524    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 0);
2525  case SystemZ::ATOMIC_LOAD_XR:
2526    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
2527  case SystemZ::ATOMIC_LOAD_XILF32:
2528    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 32);
2529  case SystemZ::ATOMIC_LOAD_XGR:
2530    return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
2531  case SystemZ::ATOMIC_LOAD_XILF:
2532    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 64);
2533  case SystemZ::ATOMIC_LOAD_XIHF:
2534    return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF, 64);
2535
2536  case SystemZ::ATOMIC_LOADW_NRi:
2537    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
2538  case SystemZ::ATOMIC_LOADW_NILHi:
2539    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0, true);
2540  case SystemZ::ATOMIC_LOAD_NRi:
2541    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
2542  case SystemZ::ATOMIC_LOAD_NILL32i:
2543    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32, true);
2544  case SystemZ::ATOMIC_LOAD_NILH32i:
2545    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32, true);
2546  case SystemZ::ATOMIC_LOAD_NILF32i:
2547    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32, true);
2548  case SystemZ::ATOMIC_LOAD_NGRi:
2549    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
2550  case SystemZ::ATOMIC_LOAD_NILLi:
2551    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64, true);
2552  case SystemZ::ATOMIC_LOAD_NILHi:
2553    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64, true);
2554  case SystemZ::ATOMIC_LOAD_NIHLi:
2555    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64, true);
2556  case SystemZ::ATOMIC_LOAD_NIHHi:
2557    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64, true);
2558  case SystemZ::ATOMIC_LOAD_NILFi:
2559    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64, true);
2560  case SystemZ::ATOMIC_LOAD_NIHFi:
2561    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64, true);
2562
2563  case SystemZ::ATOMIC_LOADW_MIN:
2564    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
2565                                SystemZ::CCMASK_CMP_LE, 0);
2566  case SystemZ::ATOMIC_LOAD_MIN_32:
2567    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
2568                                SystemZ::CCMASK_CMP_LE, 32);
2569  case SystemZ::ATOMIC_LOAD_MIN_64:
2570    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
2571                                SystemZ::CCMASK_CMP_LE, 64);
2572
2573  case SystemZ::ATOMIC_LOADW_MAX:
2574    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
2575                                SystemZ::CCMASK_CMP_GE, 0);
2576  case SystemZ::ATOMIC_LOAD_MAX_32:
2577    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
2578                                SystemZ::CCMASK_CMP_GE, 32);
2579  case SystemZ::ATOMIC_LOAD_MAX_64:
2580    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
2581                                SystemZ::CCMASK_CMP_GE, 64);
2582
2583  case SystemZ::ATOMIC_LOADW_UMIN:
2584    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
2585                                SystemZ::CCMASK_CMP_LE, 0);
2586  case SystemZ::ATOMIC_LOAD_UMIN_32:
2587    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
2588                                SystemZ::CCMASK_CMP_LE, 32);
2589  case SystemZ::ATOMIC_LOAD_UMIN_64:
2590    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
2591                                SystemZ::CCMASK_CMP_LE, 64);
2592
2593  case SystemZ::ATOMIC_LOADW_UMAX:
2594    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
2595                                SystemZ::CCMASK_CMP_GE, 0);
2596  case SystemZ::ATOMIC_LOAD_UMAX_32:
2597    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
2598                                SystemZ::CCMASK_CMP_GE, 32);
2599  case SystemZ::ATOMIC_LOAD_UMAX_64:
2600    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
2601                                SystemZ::CCMASK_CMP_GE, 64);
2602
2603  case SystemZ::ATOMIC_CMP_SWAPW:
2604    return emitAtomicCmpSwapW(MI, MBB);
2605  case SystemZ::MVCWrapper:
2606    return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
2607  case SystemZ::CLCWrapper:
2608    return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
2609  case SystemZ::CLSTLoop:
2610    return emitStringWrapper(MI, MBB, SystemZ::CLST);
2611  case SystemZ::MVSTLoop:
2612    return emitStringWrapper(MI, MBB, SystemZ::MVST);
2613  case SystemZ::SRSTLoop:
2614    return emitStringWrapper(MI, MBB, SystemZ::SRST);
2615  default:
2616    llvm_unreachable("Unexpected instr type to insert");
2617  }
2618}
2619