SystemZISelLowering.cpp revision 856bf594338567a592086fe782f2f51650e4e294
1//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SystemZTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "systemz-lower"
15
16#include "SystemZISelLowering.h"
17#include "SystemZCallingConv.h"
18#include "SystemZConstantPoolValue.h"
19#include "SystemZMachineFunctionInfo.h"
20#include "SystemZTargetMachine.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25
26using namespace llvm;
27
28// Classify VT as either 32 or 64 bit.
29static bool is32Bit(EVT VT) {
30  switch (VT.getSimpleVT().SimpleTy) {
31  case MVT::i32:
32    return true;
33  case MVT::i64:
34    return false;
35  default:
36    llvm_unreachable("Unsupported type");
37  }
38}
39
40// Return a version of MachineOperand that can be safely used before the
41// final use.
42static MachineOperand earlyUseOperand(MachineOperand Op) {
43  if (Op.isReg())
44    Op.setIsKill(false);
45  return Op;
46}
47
48SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
49  : TargetLowering(tm, new TargetLoweringObjectFileELF()),
50    Subtarget(*tm.getSubtargetImpl()), TM(tm) {
51  MVT PtrVT = getPointerTy();
52
53  // Set up the register classes.
54  addRegisterClass(MVT::i32,  &SystemZ::GR32BitRegClass);
55  addRegisterClass(MVT::i64,  &SystemZ::GR64BitRegClass);
56  addRegisterClass(MVT::f32,  &SystemZ::FP32BitRegClass);
57  addRegisterClass(MVT::f64,  &SystemZ::FP64BitRegClass);
58  addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
59
60  // Compute derived properties from the register classes
61  computeRegisterProperties();
62
63  // Set up special registers.
64  setExceptionPointerRegister(SystemZ::R6D);
65  setExceptionSelectorRegister(SystemZ::R7D);
66  setStackPointerRegisterToSaveRestore(SystemZ::R15D);
67
68  // TODO: It may be better to default to latency-oriented scheduling, however
69  // LLVM's current latency-oriented scheduler can't handle physreg definitions
70  // such as SystemZ has with CC, so set this to the register-pressure
71  // scheduler, because it can.
72  setSchedulingPreference(Sched::RegPressure);
73
74  setBooleanContents(ZeroOrOneBooleanContent);
75  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
76
77  // Instructions are strings of 2-byte aligned 2-byte values.
78  setMinFunctionAlignment(2);
79
80  // Handle operations that are handled in a similar way for all types.
81  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
82       I <= MVT::LAST_FP_VALUETYPE;
83       ++I) {
84    MVT VT = MVT::SimpleValueType(I);
85    if (isTypeLegal(VT)) {
86      // Expand SETCC(X, Y, COND) into SELECT_CC(X, Y, 1, 0, COND).
87      setOperationAction(ISD::SETCC, VT, Expand);
88
89      // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
90      setOperationAction(ISD::SELECT, VT, Expand);
91
92      // Lower SELECT_CC and BR_CC into separate comparisons and branches.
93      setOperationAction(ISD::SELECT_CC, VT, Custom);
94      setOperationAction(ISD::BR_CC,     VT, Custom);
95    }
96  }
97
98  // Expand jump table branches as address arithmetic followed by an
99  // indirect jump.
100  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
101
102  // Expand BRCOND into a BR_CC (see above).
103  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
104
105  // Handle integer types.
106  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
107       I <= MVT::LAST_INTEGER_VALUETYPE;
108       ++I) {
109    MVT VT = MVT::SimpleValueType(I);
110    if (isTypeLegal(VT)) {
111      // Expand individual DIV and REMs into DIVREMs.
112      setOperationAction(ISD::SDIV, VT, Expand);
113      setOperationAction(ISD::UDIV, VT, Expand);
114      setOperationAction(ISD::SREM, VT, Expand);
115      setOperationAction(ISD::UREM, VT, Expand);
116      setOperationAction(ISD::SDIVREM, VT, Custom);
117      setOperationAction(ISD::UDIVREM, VT, Custom);
118
119      // Expand ATOMIC_LOAD and ATOMIC_STORE using ATOMIC_CMP_SWAP.
120      // FIXME: probably much too conservative.
121      setOperationAction(ISD::ATOMIC_LOAD,  VT, Expand);
122      setOperationAction(ISD::ATOMIC_STORE, VT, Expand);
123
124      // No special instructions for these.
125      setOperationAction(ISD::CTPOP,           VT, Expand);
126      setOperationAction(ISD::CTTZ,            VT, Expand);
127      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
128      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
129      setOperationAction(ISD::ROTR,            VT, Expand);
130
131      // Use *MUL_LOHI where possible instead of MULH*.
132      setOperationAction(ISD::MULHS, VT, Expand);
133      setOperationAction(ISD::MULHU, VT, Expand);
134      setOperationAction(ISD::SMUL_LOHI, VT, Custom);
135      setOperationAction(ISD::UMUL_LOHI, VT, Custom);
136
137      // We have instructions for signed but not unsigned FP conversion.
138      setOperationAction(ISD::FP_TO_UINT, VT, Expand);
139    }
140  }
141
142  // Type legalization will convert 8- and 16-bit atomic operations into
143  // forms that operate on i32s (but still keeping the original memory VT).
144  // Lower them into full i32 operations.
145  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
146  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
147  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
148  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
149  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
150  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
151  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
152  setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
153  setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
154  setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
155  setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
156  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
157
158  // We have instructions for signed but not unsigned FP conversion.
159  // Handle unsigned 32-bit types as signed 64-bit types.
160  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
161  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
162
163  // We have native support for a 64-bit CTLZ, via FLOGR.
164  setOperationAction(ISD::CTLZ, MVT::i32, Promote);
165  setOperationAction(ISD::CTLZ, MVT::i64, Legal);
166
167  // Give LowerOperation the chance to replace 64-bit ORs with subregs.
168  setOperationAction(ISD::OR, MVT::i64, Custom);
169
170  // FIXME: Can we support these natively?
171  setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
172  setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
173  setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
174
175  // We have native instructions for i8, i16 and i32 extensions, but not i1.
176  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
177  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
178  setLoadExtAction(ISD::EXTLOAD,  MVT::i1, Promote);
179  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
180
181  // Handle the various types of symbolic address.
182  setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
183  setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
184  setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
185  setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
186  setOperationAction(ISD::JumpTable,        PtrVT, Custom);
187
188  // We need to handle dynamic allocations specially because of the
189  // 160-byte area at the bottom of the stack.
190  setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
191
192  // Use custom expanders so that we can force the function to use
193  // a frame pointer.
194  setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
195  setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
196
197  // Handle prefetches with PFD or PFDRL.
198  setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
199
200  // Handle floating-point types.
201  for (unsigned I = MVT::FIRST_FP_VALUETYPE;
202       I <= MVT::LAST_FP_VALUETYPE;
203       ++I) {
204    MVT VT = MVT::SimpleValueType(I);
205    if (isTypeLegal(VT)) {
206      // We can use FI for FRINT.
207      setOperationAction(ISD::FRINT, VT, Legal);
208
209      // We can use the extended form of FI for other rounding operations.
210      if (Subtarget.hasFPExtension()) {
211        setOperationAction(ISD::FNEARBYINT, VT, Legal);
212        setOperationAction(ISD::FFLOOR, VT, Legal);
213        setOperationAction(ISD::FCEIL, VT, Legal);
214        setOperationAction(ISD::FTRUNC, VT, Legal);
215        setOperationAction(ISD::FROUND, VT, Legal);
216      }
217
218      // No special instructions for these.
219      setOperationAction(ISD::FSIN, VT, Expand);
220      setOperationAction(ISD::FCOS, VT, Expand);
221      setOperationAction(ISD::FREM, VT, Expand);
222    }
223  }
224
225  // We have fused multiply-addition for f32 and f64 but not f128.
226  setOperationAction(ISD::FMA, MVT::f32,  Legal);
227  setOperationAction(ISD::FMA, MVT::f64,  Legal);
228  setOperationAction(ISD::FMA, MVT::f128, Expand);
229
230  // Needed so that we don't try to implement f128 constant loads using
231  // a load-and-extend of a f80 constant (in cases where the constant
232  // would fit in an f80).
233  setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
234
235  // Floating-point truncation and stores need to be done separately.
236  setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
237  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
238  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
239
240  // We have 64-bit FPR<->GPR moves, but need special handling for
241  // 32-bit forms.
242  setOperationAction(ISD::BITCAST, MVT::i32, Custom);
243  setOperationAction(ISD::BITCAST, MVT::f32, Custom);
244
245  // VASTART and VACOPY need to deal with the SystemZ-specific varargs
246  // structure, but VAEND is a no-op.
247  setOperationAction(ISD::VASTART, MVT::Other, Custom);
248  setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
249  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
250
251  // We want to use MVC in preference to even a single load/store pair.
252  MaxStoresPerMemcpy = 0;
253  MaxStoresPerMemcpyOptSize = 0;
254
255  // The main memset sequence is a byte store followed by an MVC.
256  // Two STC or MV..I stores win over that, but the kind of fused stores
257  // generated by target-independent code don't when the byte value is
258  // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
259  // than "STC;MVC".  Handle the choice in target-specific code instead.
260  MaxStoresPerMemset = 0;
261  MaxStoresPerMemsetOptSize = 0;
262}
263
264bool
265SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
266  VT = VT.getScalarType();
267
268  if (!VT.isSimple())
269    return false;
270
271  switch (VT.getSimpleVT().SimpleTy) {
272  case MVT::f32:
273  case MVT::f64:
274    return true;
275  case MVT::f128:
276    return false;
277  default:
278    break;
279  }
280
281  return false;
282}
283
284bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
285  // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
286  return Imm.isZero() || Imm.isNegZero();
287}
288
289bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
290                                                          bool *Fast) const {
291  // Unaligned accesses should never be slower than the expanded version.
292  // We check specifically for aligned accesses in the few cases where
293  // they are required.
294  if (Fast)
295    *Fast = true;
296  return true;
297}
298
299bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
300                                                  Type *Ty) const {
301  // Punt on globals for now, although they can be used in limited
302  // RELATIVE LONG cases.
303  if (AM.BaseGV)
304    return false;
305
306  // Require a 20-bit signed offset.
307  if (!isInt<20>(AM.BaseOffs))
308    return false;
309
310  // Indexing is OK but no scale factor can be applied.
311  return AM.Scale == 0 || AM.Scale == 1;
312}
313
314bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
315  if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
316    return false;
317  unsigned FromBits = FromType->getPrimitiveSizeInBits();
318  unsigned ToBits = ToType->getPrimitiveSizeInBits();
319  return FromBits > ToBits;
320}
321
322bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
323  if (!FromVT.isInteger() || !ToVT.isInteger())
324    return false;
325  unsigned FromBits = FromVT.getSizeInBits();
326  unsigned ToBits = ToVT.getSizeInBits();
327  return FromBits > ToBits;
328}
329
330//===----------------------------------------------------------------------===//
331// Inline asm support
332//===----------------------------------------------------------------------===//
333
334TargetLowering::ConstraintType
335SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
336  if (Constraint.size() == 1) {
337    switch (Constraint[0]) {
338    case 'a': // Address register
339    case 'd': // Data register (equivalent to 'r')
340    case 'f': // Floating-point register
341    case 'r': // General-purpose register
342      return C_RegisterClass;
343
344    case 'Q': // Memory with base and unsigned 12-bit displacement
345    case 'R': // Likewise, plus an index
346    case 'S': // Memory with base and signed 20-bit displacement
347    case 'T': // Likewise, plus an index
348    case 'm': // Equivalent to 'T'.
349      return C_Memory;
350
351    case 'I': // Unsigned 8-bit constant
352    case 'J': // Unsigned 12-bit constant
353    case 'K': // Signed 16-bit constant
354    case 'L': // Signed 20-bit displacement (on all targets we support)
355    case 'M': // 0x7fffffff
356      return C_Other;
357
358    default:
359      break;
360    }
361  }
362  return TargetLowering::getConstraintType(Constraint);
363}
364
365TargetLowering::ConstraintWeight SystemZTargetLowering::
366getSingleConstraintMatchWeight(AsmOperandInfo &info,
367                               const char *constraint) const {
368  ConstraintWeight weight = CW_Invalid;
369  Value *CallOperandVal = info.CallOperandVal;
370  // If we don't have a value, we can't do a match,
371  // but allow it at the lowest weight.
372  if (CallOperandVal == NULL)
373    return CW_Default;
374  Type *type = CallOperandVal->getType();
375  // Look at the constraint type.
376  switch (*constraint) {
377  default:
378    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
379    break;
380
381  case 'a': // Address register
382  case 'd': // Data register (equivalent to 'r')
383  case 'r': // General-purpose register
384    if (CallOperandVal->getType()->isIntegerTy())
385      weight = CW_Register;
386    break;
387
388  case 'f': // Floating-point register
389    if (type->isFloatingPointTy())
390      weight = CW_Register;
391    break;
392
393  case 'I': // Unsigned 8-bit constant
394    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
395      if (isUInt<8>(C->getZExtValue()))
396        weight = CW_Constant;
397    break;
398
399  case 'J': // Unsigned 12-bit constant
400    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
401      if (isUInt<12>(C->getZExtValue()))
402        weight = CW_Constant;
403    break;
404
405  case 'K': // Signed 16-bit constant
406    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
407      if (isInt<16>(C->getSExtValue()))
408        weight = CW_Constant;
409    break;
410
411  case 'L': // Signed 20-bit displacement (on all targets we support)
412    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
413      if (isInt<20>(C->getSExtValue()))
414        weight = CW_Constant;
415    break;
416
417  case 'M': // 0x7fffffff
418    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
419      if (C->getZExtValue() == 0x7fffffff)
420        weight = CW_Constant;
421    break;
422  }
423  return weight;
424}
425
426// Parse a "{tNNN}" register constraint for which the register type "t"
427// has already been verified.  MC is the class associated with "t" and
428// Map maps 0-based register numbers to LLVM register numbers.
429static std::pair<unsigned, const TargetRegisterClass *>
430parseRegisterNumber(const std::string &Constraint,
431                    const TargetRegisterClass *RC, const unsigned *Map) {
432  assert(*(Constraint.end()-1) == '}' && "Missing '}'");
433  if (isdigit(Constraint[2])) {
434    std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
435    unsigned Index = atoi(Suffix.c_str());
436    if (Index < 16 && Map[Index])
437      return std::make_pair(Map[Index], RC);
438  }
439  return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
440}
441
442std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
443getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
444  if (Constraint.size() == 1) {
445    // GCC Constraint Letters
446    switch (Constraint[0]) {
447    default: break;
448    case 'd': // Data register (equivalent to 'r')
449    case 'r': // General-purpose register
450      if (VT == MVT::i64)
451        return std::make_pair(0U, &SystemZ::GR64BitRegClass);
452      else if (VT == MVT::i128)
453        return std::make_pair(0U, &SystemZ::GR128BitRegClass);
454      return std::make_pair(0U, &SystemZ::GR32BitRegClass);
455
456    case 'a': // Address register
457      if (VT == MVT::i64)
458        return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
459      else if (VT == MVT::i128)
460        return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
461      return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
462
463    case 'f': // Floating-point register
464      if (VT == MVT::f64)
465        return std::make_pair(0U, &SystemZ::FP64BitRegClass);
466      else if (VT == MVT::f128)
467        return std::make_pair(0U, &SystemZ::FP128BitRegClass);
468      return std::make_pair(0U, &SystemZ::FP32BitRegClass);
469    }
470  }
471  if (Constraint[0] == '{') {
472    // We need to override the default register parsing for GPRs and FPRs
473    // because the interpretation depends on VT.  The internal names of
474    // the registers are also different from the external names
475    // (F0D and F0S instead of F0, etc.).
476    if (Constraint[1] == 'r') {
477      if (VT == MVT::i32)
478        return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
479                                   SystemZMC::GR32Regs);
480      if (VT == MVT::i128)
481        return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
482                                   SystemZMC::GR128Regs);
483      return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
484                                 SystemZMC::GR64Regs);
485    }
486    if (Constraint[1] == 'f') {
487      if (VT == MVT::f32)
488        return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
489                                   SystemZMC::FP32Regs);
490      if (VT == MVT::f128)
491        return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
492                                   SystemZMC::FP128Regs);
493      return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
494                                 SystemZMC::FP64Regs);
495    }
496  }
497  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
498}
499
500void SystemZTargetLowering::
501LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
502                             std::vector<SDValue> &Ops,
503                             SelectionDAG &DAG) const {
504  // Only support length 1 constraints for now.
505  if (Constraint.length() == 1) {
506    switch (Constraint[0]) {
507    case 'I': // Unsigned 8-bit constant
508      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
509        if (isUInt<8>(C->getZExtValue()))
510          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
511                                              Op.getValueType()));
512      return;
513
514    case 'J': // Unsigned 12-bit constant
515      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
516        if (isUInt<12>(C->getZExtValue()))
517          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
518                                              Op.getValueType()));
519      return;
520
521    case 'K': // Signed 16-bit constant
522      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
523        if (isInt<16>(C->getSExtValue()))
524          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
525                                              Op.getValueType()));
526      return;
527
528    case 'L': // Signed 20-bit displacement (on all targets we support)
529      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
530        if (isInt<20>(C->getSExtValue()))
531          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
532                                              Op.getValueType()));
533      return;
534
535    case 'M': // 0x7fffffff
536      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
537        if (C->getZExtValue() == 0x7fffffff)
538          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
539                                              Op.getValueType()));
540      return;
541    }
542  }
543  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
544}
545
546//===----------------------------------------------------------------------===//
547// Calling conventions
548//===----------------------------------------------------------------------===//
549
550#include "SystemZGenCallingConv.inc"
551
552bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
553                                                     Type *ToType) const {
554  return isTruncateFree(FromType, ToType);
555}
556
557bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
558  if (!CI->isTailCall())
559    return false;
560  return true;
561}
562
563// Value is a value that has been passed to us in the location described by VA
564// (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
565// any loads onto Chain.
566static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
567                                   CCValAssign &VA, SDValue Chain,
568                                   SDValue Value) {
569  // If the argument has been promoted from a smaller type, insert an
570  // assertion to capture this.
571  if (VA.getLocInfo() == CCValAssign::SExt)
572    Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
573                        DAG.getValueType(VA.getValVT()));
574  else if (VA.getLocInfo() == CCValAssign::ZExt)
575    Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
576                        DAG.getValueType(VA.getValVT()));
577
578  if (VA.isExtInLoc())
579    Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
580  else if (VA.getLocInfo() == CCValAssign::Indirect)
581    Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
582                        MachinePointerInfo(), false, false, false, 0);
583  else
584    assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
585  return Value;
586}
587
588// Value is a value of type VA.getValVT() that we need to copy into
589// the location described by VA.  Return a copy of Value converted to
590// VA.getValVT().  The caller is responsible for handling indirect values.
591static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
592                                   CCValAssign &VA, SDValue Value) {
593  switch (VA.getLocInfo()) {
594  case CCValAssign::SExt:
595    return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
596  case CCValAssign::ZExt:
597    return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
598  case CCValAssign::AExt:
599    return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
600  case CCValAssign::Full:
601    return Value;
602  default:
603    llvm_unreachable("Unhandled getLocInfo()");
604  }
605}
606
607SDValue SystemZTargetLowering::
608LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
609                     const SmallVectorImpl<ISD::InputArg> &Ins,
610                     SDLoc DL, SelectionDAG &DAG,
611                     SmallVectorImpl<SDValue> &InVals) const {
612  MachineFunction &MF = DAG.getMachineFunction();
613  MachineFrameInfo *MFI = MF.getFrameInfo();
614  MachineRegisterInfo &MRI = MF.getRegInfo();
615  SystemZMachineFunctionInfo *FuncInfo =
616    MF.getInfo<SystemZMachineFunctionInfo>();
617  const SystemZFrameLowering *TFL =
618    static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
619
620  // Assign locations to all of the incoming arguments.
621  SmallVector<CCValAssign, 16> ArgLocs;
622  CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
623  CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
624
625  unsigned NumFixedGPRs = 0;
626  unsigned NumFixedFPRs = 0;
627  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
628    SDValue ArgValue;
629    CCValAssign &VA = ArgLocs[I];
630    EVT LocVT = VA.getLocVT();
631    if (VA.isRegLoc()) {
632      // Arguments passed in registers
633      const TargetRegisterClass *RC;
634      switch (LocVT.getSimpleVT().SimpleTy) {
635      default:
636        // Integers smaller than i64 should be promoted to i64.
637        llvm_unreachable("Unexpected argument type");
638      case MVT::i32:
639        NumFixedGPRs += 1;
640        RC = &SystemZ::GR32BitRegClass;
641        break;
642      case MVT::i64:
643        NumFixedGPRs += 1;
644        RC = &SystemZ::GR64BitRegClass;
645        break;
646      case MVT::f32:
647        NumFixedFPRs += 1;
648        RC = &SystemZ::FP32BitRegClass;
649        break;
650      case MVT::f64:
651        NumFixedFPRs += 1;
652        RC = &SystemZ::FP64BitRegClass;
653        break;
654      }
655
656      unsigned VReg = MRI.createVirtualRegister(RC);
657      MRI.addLiveIn(VA.getLocReg(), VReg);
658      ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
659    } else {
660      assert(VA.isMemLoc() && "Argument not register or memory");
661
662      // Create the frame index object for this incoming parameter.
663      int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
664                                      VA.getLocMemOffset(), true);
665
666      // Create the SelectionDAG nodes corresponding to a load
667      // from this parameter.  Unpromoted ints and floats are
668      // passed as right-justified 8-byte values.
669      EVT PtrVT = getPointerTy();
670      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
671      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
672        FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
673      ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
674                             MachinePointerInfo::getFixedStack(FI),
675                             false, false, false, 0);
676    }
677
678    // Convert the value of the argument register into the value that's
679    // being passed.
680    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
681  }
682
683  if (IsVarArg) {
684    // Save the number of non-varargs registers for later use by va_start, etc.
685    FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
686    FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
687
688    // Likewise the address (in the form of a frame index) of where the
689    // first stack vararg would be.  The 1-byte size here is arbitrary.
690    int64_t StackSize = CCInfo.getNextStackOffset();
691    FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
692
693    // ...and a similar frame index for the caller-allocated save area
694    // that will be used to store the incoming registers.
695    int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
696    unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
697    FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
698
699    // Store the FPR varargs in the reserved frame slots.  (We store the
700    // GPRs as part of the prologue.)
701    if (NumFixedFPRs < SystemZ::NumArgFPRs) {
702      SDValue MemOps[SystemZ::NumArgFPRs];
703      for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
704        unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
705        int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
706        SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
707        unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
708                                     &SystemZ::FP64BitRegClass);
709        SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
710        MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
711                                 MachinePointerInfo::getFixedStack(FI),
712                                 false, false, 0);
713
714      }
715      // Join the stores, which are independent of one another.
716      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
717                          &MemOps[NumFixedFPRs],
718                          SystemZ::NumArgFPRs - NumFixedFPRs);
719    }
720  }
721
722  return Chain;
723}
724
725static bool canUseSiblingCall(CCState ArgCCInfo,
726                              SmallVectorImpl<CCValAssign> &ArgLocs) {
727  // Punt if there are any indirect or stack arguments, or if the call
728  // needs the call-saved argument register R6.
729  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
730    CCValAssign &VA = ArgLocs[I];
731    if (VA.getLocInfo() == CCValAssign::Indirect)
732      return false;
733    if (!VA.isRegLoc())
734      return false;
735    unsigned Reg = VA.getLocReg();
736    if (Reg == SystemZ::R6W || Reg == SystemZ::R6D)
737      return false;
738  }
739  return true;
740}
741
742SDValue
743SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
744                                 SmallVectorImpl<SDValue> &InVals) const {
745  SelectionDAG &DAG = CLI.DAG;
746  SDLoc &DL = CLI.DL;
747  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
748  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
749  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
750  SDValue Chain = CLI.Chain;
751  SDValue Callee = CLI.Callee;
752  bool &IsTailCall = CLI.IsTailCall;
753  CallingConv::ID CallConv = CLI.CallConv;
754  bool IsVarArg = CLI.IsVarArg;
755  MachineFunction &MF = DAG.getMachineFunction();
756  EVT PtrVT = getPointerTy();
757
758  // Analyze the operands of the call, assigning locations to each operand.
759  SmallVector<CCValAssign, 16> ArgLocs;
760  CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
761  ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
762
763  // We don't support GuaranteedTailCallOpt, only automatically-detected
764  // sibling calls.
765  if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
766    IsTailCall = false;
767
768  // Get a count of how many bytes are to be pushed on the stack.
769  unsigned NumBytes = ArgCCInfo.getNextStackOffset();
770
771  // Mark the start of the call.
772  if (!IsTailCall)
773    Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
774                                 DL);
775
776  // Copy argument values to their designated locations.
777  SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
778  SmallVector<SDValue, 8> MemOpChains;
779  SDValue StackPtr;
780  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
781    CCValAssign &VA = ArgLocs[I];
782    SDValue ArgValue = OutVals[I];
783
784    if (VA.getLocInfo() == CCValAssign::Indirect) {
785      // Store the argument in a stack slot and pass its address.
786      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
787      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
788      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
789                                         MachinePointerInfo::getFixedStack(FI),
790                                         false, false, 0));
791      ArgValue = SpillSlot;
792    } else
793      ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
794
795    if (VA.isRegLoc())
796      // Queue up the argument copies and emit them at the end.
797      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
798    else {
799      assert(VA.isMemLoc() && "Argument not register or memory");
800
801      // Work out the address of the stack slot.  Unpromoted ints and
802      // floats are passed as right-justified 8-byte values.
803      if (!StackPtr.getNode())
804        StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
805      unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
806      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
807        Offset += 4;
808      SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
809                                    DAG.getIntPtrConstant(Offset));
810
811      // Emit the store.
812      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
813                                         MachinePointerInfo(),
814                                         false, false, 0));
815    }
816  }
817
818  // Join the stores, which are independent of one another.
819  if (!MemOpChains.empty())
820    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
821                        &MemOpChains[0], MemOpChains.size());
822
823  // Accept direct calls by converting symbolic call addresses to the
824  // associated Target* opcodes.  Force %r1 to be used for indirect
825  // tail calls.
826  SDValue Glue;
827  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
828    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
829    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
830  } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
831    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
832    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
833  } else if (IsTailCall) {
834    Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
835    Glue = Chain.getValue(1);
836    Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
837  }
838
839  // Build a sequence of copy-to-reg nodes, chained and glued together.
840  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
841    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
842                             RegsToPass[I].second, Glue);
843    Glue = Chain.getValue(1);
844  }
845
846  // The first call operand is the chain and the second is the target address.
847  SmallVector<SDValue, 8> Ops;
848  Ops.push_back(Chain);
849  Ops.push_back(Callee);
850
851  // Add argument registers to the end of the list so that they are
852  // known live into the call.
853  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
854    Ops.push_back(DAG.getRegister(RegsToPass[I].first,
855                                  RegsToPass[I].second.getValueType()));
856
857  // Glue the call to the argument copies, if any.
858  if (Glue.getNode())
859    Ops.push_back(Glue);
860
861  // Emit the call.
862  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
863  if (IsTailCall)
864    return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, &Ops[0], Ops.size());
865  Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
866  Glue = Chain.getValue(1);
867
868  // Mark the end of the call, which is glued to the call itself.
869  Chain = DAG.getCALLSEQ_END(Chain,
870                             DAG.getConstant(NumBytes, PtrVT, true),
871                             DAG.getConstant(0, PtrVT, true),
872                             Glue, DL);
873  Glue = Chain.getValue(1);
874
875  // Assign locations to each value returned by this call.
876  SmallVector<CCValAssign, 16> RetLocs;
877  CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
878  RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
879
880  // Copy all of the result registers out of their specified physreg.
881  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
882    CCValAssign &VA = RetLocs[I];
883
884    // Copy the value out, gluing the copy to the end of the call sequence.
885    SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
886                                          VA.getLocVT(), Glue);
887    Chain = RetValue.getValue(1);
888    Glue = RetValue.getValue(2);
889
890    // Convert the value of the return register into the value that's
891    // being returned.
892    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
893  }
894
895  return Chain;
896}
897
898SDValue
899SystemZTargetLowering::LowerReturn(SDValue Chain,
900                                   CallingConv::ID CallConv, bool IsVarArg,
901                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
902                                   const SmallVectorImpl<SDValue> &OutVals,
903                                   SDLoc DL, SelectionDAG &DAG) const {
904  MachineFunction &MF = DAG.getMachineFunction();
905
906  // Assign locations to each returned value.
907  SmallVector<CCValAssign, 16> RetLocs;
908  CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
909  RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
910
911  // Quick exit for void returns
912  if (RetLocs.empty())
913    return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
914
915  // Copy the result values into the output registers.
916  SDValue Glue;
917  SmallVector<SDValue, 4> RetOps;
918  RetOps.push_back(Chain);
919  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
920    CCValAssign &VA = RetLocs[I];
921    SDValue RetValue = OutVals[I];
922
923    // Make the return register live on exit.
924    assert(VA.isRegLoc() && "Can only return in registers!");
925
926    // Promote the value as required.
927    RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
928
929    // Chain and glue the copies together.
930    unsigned Reg = VA.getLocReg();
931    Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
932    Glue = Chain.getValue(1);
933    RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
934  }
935
936  // Update chain and glue.
937  RetOps[0] = Chain;
938  if (Glue.getNode())
939    RetOps.push_back(Glue);
940
941  return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other,
942                     RetOps.data(), RetOps.size());
943}
944
945// CC is a comparison that will be implemented using an integer or
946// floating-point comparison.  Return the condition code mask for
947// a branch on true.  In the integer case, CCMASK_CMP_UO is set for
948// unsigned comparisons and clear for signed ones.  In the floating-point
949// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
950static unsigned CCMaskForCondCode(ISD::CondCode CC) {
951#define CONV(X) \
952  case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
953  case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
954  case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
955
956  switch (CC) {
957  default:
958    llvm_unreachable("Invalid integer condition!");
959
960  CONV(EQ);
961  CONV(NE);
962  CONV(GT);
963  CONV(GE);
964  CONV(LT);
965  CONV(LE);
966
967  case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
968  case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
969  }
970#undef CONV
971}
972
973// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
974// can be converted to a comparison against zero, adjust the operands
975// as necessary.
976static void adjustZeroCmp(SelectionDAG &DAG, bool &IsUnsigned,
977                          SDValue &CmpOp0, SDValue &CmpOp1,
978                          unsigned &CCMask) {
979  if (IsUnsigned)
980    return;
981
982  ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(CmpOp1.getNode());
983  if (!ConstOp1)
984    return;
985
986  int64_t Value = ConstOp1->getSExtValue();
987  if ((Value == -1 && CCMask == SystemZ::CCMASK_CMP_GT) ||
988      (Value == -1 && CCMask == SystemZ::CCMASK_CMP_LE) ||
989      (Value == 1 && CCMask == SystemZ::CCMASK_CMP_LT) ||
990      (Value == 1 && CCMask == SystemZ::CCMASK_CMP_GE)) {
991    CCMask ^= SystemZ::CCMASK_CMP_EQ;
992    CmpOp1 = DAG.getConstant(0, CmpOp1.getValueType());
993  }
994}
995
996// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
997// is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary.
998static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned,
999                             SDValue &CmpOp0, SDValue &CmpOp1,
1000                             unsigned &CCMask) {
1001  // For us to make any changes, it must a comparison between a single-use
1002  // load and a constant.
1003  if (!CmpOp0.hasOneUse() ||
1004      CmpOp0.getOpcode() != ISD::LOAD ||
1005      CmpOp1.getOpcode() != ISD::Constant)
1006    return;
1007
1008  // We must have an 8- or 16-bit load.
1009  LoadSDNode *Load = cast<LoadSDNode>(CmpOp0);
1010  unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1011  if (NumBits != 8 && NumBits != 16)
1012    return;
1013
1014  // The load must be an extending one and the constant must be within the
1015  // range of the unextended value.
1016  ConstantSDNode *Constant = cast<ConstantSDNode>(CmpOp1);
1017  uint64_t Value = Constant->getZExtValue();
1018  uint64_t Mask = (1 << NumBits) - 1;
1019  if (Load->getExtensionType() == ISD::SEXTLOAD) {
1020    int64_t SignedValue = Constant->getSExtValue();
1021    if (uint64_t(SignedValue) + (1ULL << (NumBits - 1)) > Mask)
1022      return;
1023    // Unsigned comparison between two sign-extended values is equivalent
1024    // to unsigned comparison between two zero-extended values.
1025    if (IsUnsigned)
1026      Value &= Mask;
1027    else if (CCMask == SystemZ::CCMASK_CMP_EQ ||
1028             CCMask == SystemZ::CCMASK_CMP_NE)
1029      // Any choice of IsUnsigned is OK for equality comparisons.
1030      // We could use either CHHSI or CLHHSI for 16-bit comparisons,
1031      // but since we use CLHHSI for zero extensions, it seems better
1032      // to be consistent and do the same here.
1033      Value &= Mask, IsUnsigned = true;
1034    else if (NumBits == 8) {
1035      // Try to treat the comparison as unsigned, so that we can use CLI.
1036      // Adjust CCMask and Value as necessary.
1037      if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT)
1038        // Test whether the high bit of the byte is set.
1039        Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true;
1040      else if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_GE)
1041        // Test whether the high bit of the byte is clear.
1042        Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true;
1043      else
1044        // No instruction exists for this combination.
1045        return;
1046    }
1047  } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1048    if (Value > Mask)
1049      return;
1050    // Signed comparison between two zero-extended values is equivalent
1051    // to unsigned comparison.
1052    IsUnsigned = true;
1053  } else
1054    return;
1055
1056  // Make sure that the first operand is an i32 of the right extension type.
1057  ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD;
1058  if (CmpOp0.getValueType() != MVT::i32 ||
1059      Load->getExtensionType() != ExtType)
1060    CmpOp0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1061                            Load->getChain(), Load->getBasePtr(),
1062                            Load->getPointerInfo(), Load->getMemoryVT(),
1063                            Load->isVolatile(), Load->isNonTemporal(),
1064                            Load->getAlignment());
1065
1066  // Make sure that the second operand is an i32 with the right value.
1067  if (CmpOp1.getValueType() != MVT::i32 ||
1068      Value != Constant->getZExtValue())
1069    CmpOp1 = DAG.getConstant(Value, MVT::i32);
1070}
1071
1072// Return true if Op is either an unextended load, or a load suitable
1073// for integer register-memory comparisons of type ICmpType.
1074static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1075  LoadSDNode *Load = dyn_cast<LoadSDNode>(Op.getNode());
1076  if (Load) {
1077    // There are no instructions to compare a register with a memory byte.
1078    if (Load->getMemoryVT() == MVT::i8)
1079      return false;
1080    // Otherwise decide on extension type.
1081    switch (Load->getExtensionType()) {
1082    case ISD::NON_EXTLOAD:
1083      return true;
1084    case ISD::SEXTLOAD:
1085      return ICmpType != SystemZICMP::UnsignedOnly;
1086    case ISD::ZEXTLOAD:
1087      return ICmpType != SystemZICMP::SignedOnly;
1088    default:
1089      break;
1090    }
1091  }
1092  return false;
1093}
1094
1095// Return true if it is better to swap comparison operands Op0 and Op1.
1096// ICmpType is the type of an integer comparison.
1097static bool shouldSwapCmpOperands(SDValue Op0, SDValue Op1,
1098                                  unsigned ICmpType) {
1099  // Leave f128 comparisons alone, since they have no memory forms.
1100  if (Op0.getValueType() == MVT::f128)
1101    return false;
1102
1103  // Always keep a floating-point constant second, since comparisons with
1104  // zero can use LOAD TEST and comparisons with other constants make a
1105  // natural memory operand.
1106  if (isa<ConstantFPSDNode>(Op1))
1107    return false;
1108
1109  // Never swap comparisons with zero since there are many ways to optimize
1110  // those later.
1111  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
1112  if (COp1 && COp1->getZExtValue() == 0)
1113    return false;
1114
1115  // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1116  // In that case we generally prefer the memory to be second.
1117  if ((isNaturalMemoryOperand(Op0, ICmpType) && Op0.hasOneUse()) &&
1118      !(isNaturalMemoryOperand(Op1, ICmpType) && Op1.hasOneUse())) {
1119    // The only exceptions are when the second operand is a constant and
1120    // we can use things like CHHSI.
1121    if (!COp1)
1122      return true;
1123    // The unsigned memory-immediate instructions can handle 16-bit
1124    // unsigned integers.
1125    if (ICmpType != SystemZICMP::SignedOnly &&
1126        isUInt<16>(COp1->getZExtValue()))
1127      return false;
1128    // The signed memory-immediate instructions can handle 16-bit
1129    // signed integers.
1130    if (ICmpType != SystemZICMP::UnsignedOnly &&
1131        isInt<16>(COp1->getSExtValue()))
1132      return false;
1133    return true;
1134  }
1135  return false;
1136}
1137
1138// Return true if shift operation N has an in-range constant shift value.
1139// Store it in ShiftVal if so.
1140static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1141  ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1142  if (!Shift)
1143    return false;
1144
1145  uint64_t Amount = Shift->getZExtValue();
1146  if (Amount >= N.getValueType().getSizeInBits())
1147    return false;
1148
1149  ShiftVal = Amount;
1150  return true;
1151}
1152
1153// Check whether an AND with Mask is suitable for a TEST UNDER MASK
1154// instruction and whether the CC value is descriptive enough to handle
1155// a comparison of type Opcode between the AND result and CmpVal.
1156// CCMask says which comparison result is being tested and BitSize is
1157// the number of bits in the operands.  If TEST UNDER MASK can be used,
1158// return the corresponding CC mask, otherwise return 0.
1159static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1160                                     uint64_t Mask, uint64_t CmpVal,
1161                                     unsigned ICmpType) {
1162  assert(Mask != 0 && "ANDs with zero should have been removed by now");
1163
1164  // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1165  if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1166      !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1167    return 0;
1168
1169  // Work out the masks for the lowest and highest bits.
1170  unsigned HighShift = 63 - countLeadingZeros(Mask);
1171  uint64_t High = uint64_t(1) << HighShift;
1172  uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1173
1174  // Signed ordered comparisons are effectively unsigned if the sign
1175  // bit is dropped.
1176  bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
1177
1178  // Check for equality comparisons with 0, or the equivalent.
1179  if (CmpVal == 0) {
1180    if (CCMask == SystemZ::CCMASK_CMP_EQ)
1181      return SystemZ::CCMASK_TM_ALL_0;
1182    if (CCMask == SystemZ::CCMASK_CMP_NE)
1183      return SystemZ::CCMASK_TM_SOME_1;
1184  }
1185  if (EffectivelyUnsigned && CmpVal <= Low) {
1186    if (CCMask == SystemZ::CCMASK_CMP_LT)
1187      return SystemZ::CCMASK_TM_ALL_0;
1188    if (CCMask == SystemZ::CCMASK_CMP_GE)
1189      return SystemZ::CCMASK_TM_SOME_1;
1190  }
1191  if (EffectivelyUnsigned && CmpVal < Low) {
1192    if (CCMask == SystemZ::CCMASK_CMP_LE)
1193      return SystemZ::CCMASK_TM_ALL_0;
1194    if (CCMask == SystemZ::CCMASK_CMP_GT)
1195      return SystemZ::CCMASK_TM_SOME_1;
1196  }
1197
1198  // Check for equality comparisons with the mask, or the equivalent.
1199  if (CmpVal == Mask) {
1200    if (CCMask == SystemZ::CCMASK_CMP_EQ)
1201      return SystemZ::CCMASK_TM_ALL_1;
1202    if (CCMask == SystemZ::CCMASK_CMP_NE)
1203      return SystemZ::CCMASK_TM_SOME_0;
1204  }
1205  if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1206    if (CCMask == SystemZ::CCMASK_CMP_GT)
1207      return SystemZ::CCMASK_TM_ALL_1;
1208    if (CCMask == SystemZ::CCMASK_CMP_LE)
1209      return SystemZ::CCMASK_TM_SOME_0;
1210  }
1211  if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1212    if (CCMask == SystemZ::CCMASK_CMP_GE)
1213      return SystemZ::CCMASK_TM_ALL_1;
1214    if (CCMask == SystemZ::CCMASK_CMP_LT)
1215      return SystemZ::CCMASK_TM_SOME_0;
1216  }
1217
1218  // Check for ordered comparisons with the top bit.
1219  if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1220    if (CCMask == SystemZ::CCMASK_CMP_LE)
1221      return SystemZ::CCMASK_TM_MSB_0;
1222    if (CCMask == SystemZ::CCMASK_CMP_GT)
1223      return SystemZ::CCMASK_TM_MSB_1;
1224  }
1225  if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1226    if (CCMask == SystemZ::CCMASK_CMP_LT)
1227      return SystemZ::CCMASK_TM_MSB_0;
1228    if (CCMask == SystemZ::CCMASK_CMP_GE)
1229      return SystemZ::CCMASK_TM_MSB_1;
1230  }
1231
1232  // If there are just two bits, we can do equality checks for Low and High
1233  // as well.
1234  if (Mask == Low + High) {
1235    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1236      return SystemZ::CCMASK_TM_MIXED_MSB_0;
1237    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1238      return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1239    if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1240      return SystemZ::CCMASK_TM_MIXED_MSB_1;
1241    if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1242      return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1243  }
1244
1245  // Looks like we've exhausted our options.
1246  return 0;
1247}
1248
1249// See whether the comparison (Opcode CmpOp0, CmpOp1, ICmpType) can be
1250// implemented as a TEST UNDER MASK instruction when the condition being
1251// tested is as described by CCValid and CCMask.  Update the arguments
1252// with the TM version if so.
1253static void adjustForTestUnderMask(SelectionDAG &DAG, unsigned &Opcode,
1254                                   SDValue &CmpOp0, SDValue &CmpOp1,
1255                                   unsigned &CCValid, unsigned &CCMask,
1256                                   unsigned &ICmpType) {
1257  // Check that we have a comparison with a constant.
1258  ConstantSDNode *ConstCmpOp1 = dyn_cast<ConstantSDNode>(CmpOp1);
1259  if (!ConstCmpOp1)
1260    return;
1261  uint64_t CmpVal = ConstCmpOp1->getZExtValue();
1262
1263  // Check whether the nonconstant input is an AND with a constant mask.
1264  if (CmpOp0.getOpcode() != ISD::AND)
1265    return;
1266  SDValue AndOp0 = CmpOp0.getOperand(0);
1267  SDValue AndOp1 = CmpOp0.getOperand(1);
1268  ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(AndOp1.getNode());
1269  if (!Mask)
1270    return;
1271  uint64_t MaskVal = Mask->getZExtValue();
1272
1273  // Check whether the combination of mask, comparison value and comparison
1274  // type are suitable.
1275  unsigned BitSize = CmpOp0.getValueType().getSizeInBits();
1276  unsigned NewCCMask, ShiftVal;
1277  if (ICmpType != SystemZICMP::SignedOnly &&
1278      AndOp0.getOpcode() == ISD::SHL &&
1279      isSimpleShift(AndOp0, ShiftVal) &&
1280      (NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal >> ShiftVal,
1281                                        CmpVal >> ShiftVal,
1282                                        SystemZICMP::Any))) {
1283    AndOp0 = AndOp0.getOperand(0);
1284    AndOp1 = DAG.getConstant(MaskVal >> ShiftVal, AndOp0.getValueType());
1285  } else if (ICmpType != SystemZICMP::SignedOnly &&
1286             AndOp0.getOpcode() == ISD::SRL &&
1287             isSimpleShift(AndOp0, ShiftVal) &&
1288             (NewCCMask = getTestUnderMaskCond(BitSize, CCMask,
1289                                               MaskVal << ShiftVal,
1290                                               CmpVal << ShiftVal,
1291                                               SystemZICMP::UnsignedOnly))) {
1292    AndOp0 = AndOp0.getOperand(0);
1293    AndOp1 = DAG.getConstant(MaskVal << ShiftVal, AndOp0.getValueType());
1294  } else {
1295    NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal, CmpVal,
1296                                     ICmpType);
1297    if (!NewCCMask)
1298      return;
1299  }
1300
1301  // Go ahead and make the change.
1302  Opcode = SystemZISD::TM;
1303  CmpOp0 = AndOp0;
1304  CmpOp1 = AndOp1;
1305  ICmpType = (bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
1306              bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
1307  CCValid = SystemZ::CCMASK_TM;
1308  CCMask = NewCCMask;
1309}
1310
1311// Return a target node that compares CmpOp0 with CmpOp1 and stores a
1312// 2-bit result in CC.  Set CCValid to the CCMASK_* of all possible
1313// 2-bit results and CCMask to the subset of those results that are
1314// associated with Cond.
1315static SDValue emitCmp(const SystemZTargetMachine &TM, SelectionDAG &DAG,
1316                       SDLoc DL, SDValue CmpOp0, SDValue CmpOp1,
1317                       ISD::CondCode Cond, unsigned &CCValid,
1318                       unsigned &CCMask) {
1319  bool IsUnsigned = false;
1320  CCMask = CCMaskForCondCode(Cond);
1321  unsigned Opcode, ICmpType = 0;
1322  if (CmpOp0.getValueType().isFloatingPoint()) {
1323    CCValid = SystemZ::CCMASK_FCMP;
1324    Opcode = SystemZISD::FCMP;
1325  } else {
1326    IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO;
1327    CCValid = SystemZ::CCMASK_ICMP;
1328    CCMask &= CCValid;
1329    adjustZeroCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
1330    adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
1331    Opcode = SystemZISD::ICMP;
1332    // Choose the type of comparison.  Equality and inequality tests can
1333    // use either signed or unsigned comparisons.  The choice also doesn't
1334    // matter if both sign bits are known to be clear.  In those cases we
1335    // want to give the main isel code the freedom to choose whichever
1336    // form fits best.
1337    if (CCMask == SystemZ::CCMASK_CMP_EQ ||
1338        CCMask == SystemZ::CCMASK_CMP_NE ||
1339        (DAG.SignBitIsZero(CmpOp0) && DAG.SignBitIsZero(CmpOp1)))
1340      ICmpType = SystemZICMP::Any;
1341    else if (IsUnsigned)
1342      ICmpType = SystemZICMP::UnsignedOnly;
1343    else
1344      ICmpType = SystemZICMP::SignedOnly;
1345  }
1346
1347  if (shouldSwapCmpOperands(CmpOp0, CmpOp1, ICmpType)) {
1348    std::swap(CmpOp0, CmpOp1);
1349    CCMask = ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1350              (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1351              (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1352              (CCMask & SystemZ::CCMASK_CMP_UO));
1353  }
1354
1355  adjustForTestUnderMask(DAG, Opcode, CmpOp0, CmpOp1, CCValid, CCMask,
1356                         ICmpType);
1357  if (Opcode == SystemZISD::ICMP || Opcode == SystemZISD::TM)
1358    return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1,
1359                       DAG.getConstant(ICmpType, MVT::i32));
1360  return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1);
1361}
1362
1363// Implement a 32-bit *MUL_LOHI operation by extending both operands to
1364// 64 bits.  Extend is the extension type to use.  Store the high part
1365// in Hi and the low part in Lo.
1366static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
1367                            unsigned Extend, SDValue Op0, SDValue Op1,
1368                            SDValue &Hi, SDValue &Lo) {
1369  Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
1370  Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
1371  SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
1372  Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
1373  Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
1374  Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
1375}
1376
1377// Lower a binary operation that produces two VT results, one in each
1378// half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
1379// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
1380// on the extended Op0 and (unextended) Op1.  Store the even register result
1381// in Even and the odd register result in Odd.
1382static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
1383                             unsigned Extend, unsigned Opcode,
1384                             SDValue Op0, SDValue Op1,
1385                             SDValue &Even, SDValue &Odd) {
1386  SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
1387  SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
1388                               SDValue(In128, 0), Op1);
1389  bool Is32Bit = is32Bit(VT);
1390  SDValue SubReg0 = DAG.getTargetConstant(SystemZ::even128(Is32Bit), VT);
1391  SDValue SubReg1 = DAG.getTargetConstant(SystemZ::odd128(Is32Bit), VT);
1392  SDNode *Reg0 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1393                                    VT, Result, SubReg0);
1394  SDNode *Reg1 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1395                                    VT, Result, SubReg1);
1396  Even = SDValue(Reg0, 0);
1397  Odd = SDValue(Reg1, 0);
1398}
1399
1400SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1401  SDValue Chain    = Op.getOperand(0);
1402  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1403  SDValue CmpOp0   = Op.getOperand(2);
1404  SDValue CmpOp1   = Op.getOperand(3);
1405  SDValue Dest     = Op.getOperand(4);
1406  SDLoc DL(Op);
1407
1408  unsigned CCValid, CCMask;
1409  SDValue Flags = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1410  return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
1411                     Chain, DAG.getConstant(CCValid, MVT::i32),
1412                     DAG.getConstant(CCMask, MVT::i32), Dest, Flags);
1413}
1414
1415SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
1416                                              SelectionDAG &DAG) const {
1417  SDValue CmpOp0   = Op.getOperand(0);
1418  SDValue CmpOp1   = Op.getOperand(1);
1419  SDValue TrueOp   = Op.getOperand(2);
1420  SDValue FalseOp  = Op.getOperand(3);
1421  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1422  SDLoc DL(Op);
1423
1424  unsigned CCValid, CCMask;
1425  SDValue Flags = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1426
1427  SmallVector<SDValue, 5> Ops;
1428  Ops.push_back(TrueOp);
1429  Ops.push_back(FalseOp);
1430  Ops.push_back(DAG.getConstant(CCValid, MVT::i32));
1431  Ops.push_back(DAG.getConstant(CCMask, MVT::i32));
1432  Ops.push_back(Flags);
1433
1434  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1435  return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size());
1436}
1437
1438SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
1439                                                  SelectionDAG &DAG) const {
1440  SDLoc DL(Node);
1441  const GlobalValue *GV = Node->getGlobal();
1442  int64_t Offset = Node->getOffset();
1443  EVT PtrVT = getPointerTy();
1444  Reloc::Model RM = TM.getRelocationModel();
1445  CodeModel::Model CM = TM.getCodeModel();
1446
1447  SDValue Result;
1448  if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
1449    // Make sure that the offset is aligned to a halfword.  If it isn't,
1450    // create an "anchor" at the previous 12-bit boundary.
1451    // FIXME check whether there is a better way of handling this.
1452    if (Offset & 1) {
1453      Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
1454                                          Offset & ~uint64_t(0xfff));
1455      Offset &= 0xfff;
1456    } else {
1457      Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Offset);
1458      Offset = 0;
1459    }
1460    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1461  } else {
1462    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
1463    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1464    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
1465                         MachinePointerInfo::getGOT(), false, false, false, 0);
1466  }
1467
1468  // If there was a non-zero offset that we didn't fold, create an explicit
1469  // addition for it.
1470  if (Offset != 0)
1471    Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
1472                         DAG.getConstant(Offset, PtrVT));
1473
1474  return Result;
1475}
1476
1477SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
1478						     SelectionDAG &DAG) const {
1479  SDLoc DL(Node);
1480  const GlobalValue *GV = Node->getGlobal();
1481  EVT PtrVT = getPointerTy();
1482  TLSModel::Model model = TM.getTLSModel(GV);
1483
1484  if (model != TLSModel::LocalExec)
1485    llvm_unreachable("only local-exec TLS mode supported");
1486
1487  // The high part of the thread pointer is in access register 0.
1488  SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1489                             DAG.getConstant(0, MVT::i32));
1490  TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
1491
1492  // The low part of the thread pointer is in access register 1.
1493  SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1494                             DAG.getConstant(1, MVT::i32));
1495  TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
1496
1497  // Merge them into a single 64-bit address.
1498  SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
1499				    DAG.getConstant(32, PtrVT));
1500  SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
1501
1502  // Get the offset of GA from the thread pointer.
1503  SystemZConstantPoolValue *CPV =
1504    SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
1505
1506  // Force the offset into the constant pool and load it from there.
1507  SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
1508  SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
1509			       CPAddr, MachinePointerInfo::getConstantPool(),
1510			       false, false, false, 0);
1511
1512  // Add the base and offset together.
1513  return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
1514}
1515
1516SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
1517                                                 SelectionDAG &DAG) const {
1518  SDLoc DL(Node);
1519  const BlockAddress *BA = Node->getBlockAddress();
1520  int64_t Offset = Node->getOffset();
1521  EVT PtrVT = getPointerTy();
1522
1523  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
1524  Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1525  return Result;
1526}
1527
1528SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
1529                                              SelectionDAG &DAG) const {
1530  SDLoc DL(JT);
1531  EVT PtrVT = getPointerTy();
1532  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1533
1534  // Use LARL to load the address of the table.
1535  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1536}
1537
1538SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
1539                                                 SelectionDAG &DAG) const {
1540  SDLoc DL(CP);
1541  EVT PtrVT = getPointerTy();
1542
1543  SDValue Result;
1544  if (CP->isMachineConstantPoolEntry())
1545    Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1546				       CP->getAlignment());
1547  else
1548    Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1549				       CP->getAlignment(), CP->getOffset());
1550
1551  // Use LARL to load the address of the constant pool entry.
1552  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1553}
1554
1555SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
1556                                            SelectionDAG &DAG) const {
1557  SDLoc DL(Op);
1558  SDValue In = Op.getOperand(0);
1559  EVT InVT = In.getValueType();
1560  EVT ResVT = Op.getValueType();
1561
1562  SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
1563  SDValue Shift32 = DAG.getConstant(32, MVT::i64);
1564  if (InVT == MVT::i32 && ResVT == MVT::f32) {
1565    SDValue In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
1566    SDValue Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, Shift32);
1567    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Shift);
1568    SDNode *Out = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1569                                     MVT::f32, Out64, SubReg32);
1570    return SDValue(Out, 0);
1571  }
1572  if (InVT == MVT::f32 && ResVT == MVT::i32) {
1573    SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
1574    SDNode *In64 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
1575                                      MVT::f64, SDValue(U64, 0), In, SubReg32);
1576    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, SDValue(In64, 0));
1577    SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, Shift32);
1578    SDValue Out = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
1579    return Out;
1580  }
1581  llvm_unreachable("Unexpected bitcast combination");
1582}
1583
1584SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
1585                                            SelectionDAG &DAG) const {
1586  MachineFunction &MF = DAG.getMachineFunction();
1587  SystemZMachineFunctionInfo *FuncInfo =
1588    MF.getInfo<SystemZMachineFunctionInfo>();
1589  EVT PtrVT = getPointerTy();
1590
1591  SDValue Chain   = Op.getOperand(0);
1592  SDValue Addr    = Op.getOperand(1);
1593  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1594  SDLoc DL(Op);
1595
1596  // The initial values of each field.
1597  const unsigned NumFields = 4;
1598  SDValue Fields[NumFields] = {
1599    DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
1600    DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
1601    DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
1602    DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
1603  };
1604
1605  // Store each field into its respective slot.
1606  SDValue MemOps[NumFields];
1607  unsigned Offset = 0;
1608  for (unsigned I = 0; I < NumFields; ++I) {
1609    SDValue FieldAddr = Addr;
1610    if (Offset != 0)
1611      FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
1612                              DAG.getIntPtrConstant(Offset));
1613    MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
1614                             MachinePointerInfo(SV, Offset),
1615                             false, false, 0);
1616    Offset += 8;
1617  }
1618  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields);
1619}
1620
1621SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
1622                                           SelectionDAG &DAG) const {
1623  SDValue Chain      = Op.getOperand(0);
1624  SDValue DstPtr     = Op.getOperand(1);
1625  SDValue SrcPtr     = Op.getOperand(2);
1626  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1627  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1628  SDLoc DL(Op);
1629
1630  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
1631                       /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
1632                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
1633}
1634
1635SDValue SystemZTargetLowering::
1636lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
1637  SDValue Chain = Op.getOperand(0);
1638  SDValue Size  = Op.getOperand(1);
1639  SDLoc DL(Op);
1640
1641  unsigned SPReg = getStackPointerRegisterToSaveRestore();
1642
1643  // Get a reference to the stack pointer.
1644  SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
1645
1646  // Get the new stack pointer value.
1647  SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
1648
1649  // Copy the new stack pointer back.
1650  Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
1651
1652  // The allocated data lives above the 160 bytes allocated for the standard
1653  // frame, plus any outgoing stack arguments.  We don't know how much that
1654  // amounts to yet, so emit a special ADJDYNALLOC placeholder.
1655  SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
1656  SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
1657
1658  SDValue Ops[2] = { Result, Chain };
1659  return DAG.getMergeValues(Ops, 2, DL);
1660}
1661
1662SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
1663                                              SelectionDAG &DAG) const {
1664  EVT VT = Op.getValueType();
1665  SDLoc DL(Op);
1666  SDValue Ops[2];
1667  if (is32Bit(VT))
1668    // Just do a normal 64-bit multiplication and extract the results.
1669    // We define this so that it can be used for constant division.
1670    lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
1671                    Op.getOperand(1), Ops[1], Ops[0]);
1672  else {
1673    // Do a full 128-bit multiplication based on UMUL_LOHI64:
1674    //
1675    //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
1676    //
1677    // but using the fact that the upper halves are either all zeros
1678    // or all ones:
1679    //
1680    //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
1681    //
1682    // and grouping the right terms together since they are quicker than the
1683    // multiplication:
1684    //
1685    //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
1686    SDValue C63 = DAG.getConstant(63, MVT::i64);
1687    SDValue LL = Op.getOperand(0);
1688    SDValue RL = Op.getOperand(1);
1689    SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
1690    SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
1691    // UMUL_LOHI64 returns the low result in the odd register and the high
1692    // result in the even register.  SMUL_LOHI is defined to return the
1693    // low half first, so the results are in reverse order.
1694    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
1695                     LL, RL, Ops[1], Ops[0]);
1696    SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
1697    SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
1698    SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
1699    Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
1700  }
1701  return DAG.getMergeValues(Ops, 2, DL);
1702}
1703
1704SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
1705                                              SelectionDAG &DAG) const {
1706  EVT VT = Op.getValueType();
1707  SDLoc DL(Op);
1708  SDValue Ops[2];
1709  if (is32Bit(VT))
1710    // Just do a normal 64-bit multiplication and extract the results.
1711    // We define this so that it can be used for constant division.
1712    lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
1713                    Op.getOperand(1), Ops[1], Ops[0]);
1714  else
1715    // UMUL_LOHI64 returns the low result in the odd register and the high
1716    // result in the even register.  UMUL_LOHI is defined to return the
1717    // low half first, so the results are in reverse order.
1718    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
1719                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1720  return DAG.getMergeValues(Ops, 2, DL);
1721}
1722
1723SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
1724                                            SelectionDAG &DAG) const {
1725  SDValue Op0 = Op.getOperand(0);
1726  SDValue Op1 = Op.getOperand(1);
1727  EVT VT = Op.getValueType();
1728  SDLoc DL(Op);
1729  unsigned Opcode;
1730
1731  // We use DSGF for 32-bit division.
1732  if (is32Bit(VT)) {
1733    Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
1734    Opcode = SystemZISD::SDIVREM32;
1735  } else if (DAG.ComputeNumSignBits(Op1) > 32) {
1736    Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
1737    Opcode = SystemZISD::SDIVREM32;
1738  } else
1739    Opcode = SystemZISD::SDIVREM64;
1740
1741  // DSG(F) takes a 64-bit dividend, so the even register in the GR128
1742  // input is "don't care".  The instruction returns the remainder in
1743  // the even register and the quotient in the odd register.
1744  SDValue Ops[2];
1745  lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
1746                   Op0, Op1, Ops[1], Ops[0]);
1747  return DAG.getMergeValues(Ops, 2, DL);
1748}
1749
1750SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
1751                                            SelectionDAG &DAG) const {
1752  EVT VT = Op.getValueType();
1753  SDLoc DL(Op);
1754
1755  // DL(G) uses a double-width dividend, so we need to clear the even
1756  // register in the GR128 input.  The instruction returns the remainder
1757  // in the even register and the quotient in the odd register.
1758  SDValue Ops[2];
1759  if (is32Bit(VT))
1760    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
1761                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1762  else
1763    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
1764                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1765  return DAG.getMergeValues(Ops, 2, DL);
1766}
1767
1768SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
1769  assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
1770
1771  // Get the known-zero masks for each operand.
1772  SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
1773  APInt KnownZero[2], KnownOne[2];
1774  DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]);
1775  DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]);
1776
1777  // See if the upper 32 bits of one operand and the lower 32 bits of the
1778  // other are known zero.  They are the low and high operands respectively.
1779  uint64_t Masks[] = { KnownZero[0].getZExtValue(),
1780                       KnownZero[1].getZExtValue() };
1781  unsigned High, Low;
1782  if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
1783    High = 1, Low = 0;
1784  else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
1785    High = 0, Low = 1;
1786  else
1787    return Op;
1788
1789  SDValue LowOp = Ops[Low];
1790  SDValue HighOp = Ops[High];
1791
1792  // If the high part is a constant, we're better off using IILH.
1793  if (HighOp.getOpcode() == ISD::Constant)
1794    return Op;
1795
1796  // If the low part is a constant that is outside the range of LHI,
1797  // then we're better off using IILF.
1798  if (LowOp.getOpcode() == ISD::Constant) {
1799    int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
1800    if (!isInt<16>(Value))
1801      return Op;
1802  }
1803
1804  // Check whether the high part is an AND that doesn't change the
1805  // high 32 bits and just masks out low bits.  We can skip it if so.
1806  if (HighOp.getOpcode() == ISD::AND &&
1807      HighOp.getOperand(1).getOpcode() == ISD::Constant) {
1808    ConstantSDNode *MaskNode = cast<ConstantSDNode>(HighOp.getOperand(1));
1809    uint64_t Mask = MaskNode->getZExtValue() | Masks[High];
1810    if ((Mask >> 32) == 0xffffffff)
1811      HighOp = HighOp.getOperand(0);
1812  }
1813
1814  // Take advantage of the fact that all GR32 operations only change the
1815  // low 32 bits by truncating Low to an i32 and inserting it directly
1816  // using a subreg.  The interesting cases are those where the truncation
1817  // can be folded.
1818  SDLoc DL(Op);
1819  SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
1820  SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
1821  SDNode *Result = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
1822                                      MVT::i64, HighOp, Low32, SubReg32);
1823  return SDValue(Result, 0);
1824}
1825
1826// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
1827// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
1828SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
1829                                                SelectionDAG &DAG,
1830                                                unsigned Opcode) const {
1831  AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
1832
1833  // 32-bit operations need no code outside the main loop.
1834  EVT NarrowVT = Node->getMemoryVT();
1835  EVT WideVT = MVT::i32;
1836  if (NarrowVT == WideVT)
1837    return Op;
1838
1839  int64_t BitSize = NarrowVT.getSizeInBits();
1840  SDValue ChainIn = Node->getChain();
1841  SDValue Addr = Node->getBasePtr();
1842  SDValue Src2 = Node->getVal();
1843  MachineMemOperand *MMO = Node->getMemOperand();
1844  SDLoc DL(Node);
1845  EVT PtrVT = Addr.getValueType();
1846
1847  // Convert atomic subtracts of constants into additions.
1848  if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
1849    if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) {
1850      Opcode = SystemZISD::ATOMIC_LOADW_ADD;
1851      Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
1852    }
1853
1854  // Get the address of the containing word.
1855  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
1856                                    DAG.getConstant(-4, PtrVT));
1857
1858  // Get the number of bits that the word must be rotated left in order
1859  // to bring the field to the top bits of a GR32.
1860  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
1861                                 DAG.getConstant(3, PtrVT));
1862  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
1863
1864  // Get the complementing shift amount, for rotating a field in the top
1865  // bits back to its proper position.
1866  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
1867                                    DAG.getConstant(0, WideVT), BitShift);
1868
1869  // Extend the source operand to 32 bits and prepare it for the inner loop.
1870  // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
1871  // operations require the source to be shifted in advance.  (This shift
1872  // can be folded if the source is constant.)  For AND and NAND, the lower
1873  // bits must be set, while for other opcodes they should be left clear.
1874  if (Opcode != SystemZISD::ATOMIC_SWAPW)
1875    Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
1876                       DAG.getConstant(32 - BitSize, WideVT));
1877  if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
1878      Opcode == SystemZISD::ATOMIC_LOADW_NAND)
1879    Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
1880                       DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
1881
1882  // Construct the ATOMIC_LOADW_* node.
1883  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
1884  SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
1885                    DAG.getConstant(BitSize, WideVT) };
1886  SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
1887                                             array_lengthof(Ops),
1888                                             NarrowVT, MMO);
1889
1890  // Rotate the result of the final CS so that the field is in the lower
1891  // bits of a GR32, then truncate it.
1892  SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
1893                                    DAG.getConstant(BitSize, WideVT));
1894  SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
1895
1896  SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
1897  return DAG.getMergeValues(RetOps, 2, DL);
1898}
1899
1900// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
1901// into a fullword ATOMIC_CMP_SWAPW operation.
1902SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
1903                                                    SelectionDAG &DAG) const {
1904  AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
1905
1906  // We have native support for 32-bit compare and swap.
1907  EVT NarrowVT = Node->getMemoryVT();
1908  EVT WideVT = MVT::i32;
1909  if (NarrowVT == WideVT)
1910    return Op;
1911
1912  int64_t BitSize = NarrowVT.getSizeInBits();
1913  SDValue ChainIn = Node->getOperand(0);
1914  SDValue Addr = Node->getOperand(1);
1915  SDValue CmpVal = Node->getOperand(2);
1916  SDValue SwapVal = Node->getOperand(3);
1917  MachineMemOperand *MMO = Node->getMemOperand();
1918  SDLoc DL(Node);
1919  EVT PtrVT = Addr.getValueType();
1920
1921  // Get the address of the containing word.
1922  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
1923                                    DAG.getConstant(-4, PtrVT));
1924
1925  // Get the number of bits that the word must be rotated left in order
1926  // to bring the field to the top bits of a GR32.
1927  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
1928                                 DAG.getConstant(3, PtrVT));
1929  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
1930
1931  // Get the complementing shift amount, for rotating a field in the top
1932  // bits back to its proper position.
1933  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
1934                                    DAG.getConstant(0, WideVT), BitShift);
1935
1936  // Construct the ATOMIC_CMP_SWAPW node.
1937  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
1938  SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
1939                    NegBitShift, DAG.getConstant(BitSize, WideVT) };
1940  SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
1941                                             VTList, Ops, array_lengthof(Ops),
1942                                             NarrowVT, MMO);
1943  return AtomicOp;
1944}
1945
1946SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
1947                                              SelectionDAG &DAG) const {
1948  MachineFunction &MF = DAG.getMachineFunction();
1949  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
1950  return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
1951                            SystemZ::R15D, Op.getValueType());
1952}
1953
1954SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
1955                                                 SelectionDAG &DAG) const {
1956  MachineFunction &MF = DAG.getMachineFunction();
1957  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
1958  return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
1959                          SystemZ::R15D, Op.getOperand(1));
1960}
1961
1962SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
1963                                             SelectionDAG &DAG) const {
1964  bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
1965  if (!IsData)
1966    // Just preserve the chain.
1967    return Op.getOperand(0);
1968
1969  bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1970  unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
1971  MemIntrinsicSDNode *Node = cast<MemIntrinsicSDNode>(Op.getNode());
1972  SDValue Ops[] = {
1973    Op.getOperand(0),
1974    DAG.getConstant(Code, MVT::i32),
1975    Op.getOperand(1)
1976  };
1977  return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
1978                                 Node->getVTList(), Ops, array_lengthof(Ops),
1979                                 Node->getMemoryVT(), Node->getMemOperand());
1980}
1981
1982SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
1983                                              SelectionDAG &DAG) const {
1984  switch (Op.getOpcode()) {
1985  case ISD::BR_CC:
1986    return lowerBR_CC(Op, DAG);
1987  case ISD::SELECT_CC:
1988    return lowerSELECT_CC(Op, DAG);
1989  case ISD::GlobalAddress:
1990    return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
1991  case ISD::GlobalTLSAddress:
1992    return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
1993  case ISD::BlockAddress:
1994    return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
1995  case ISD::JumpTable:
1996    return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
1997  case ISD::ConstantPool:
1998    return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
1999  case ISD::BITCAST:
2000    return lowerBITCAST(Op, DAG);
2001  case ISD::VASTART:
2002    return lowerVASTART(Op, DAG);
2003  case ISD::VACOPY:
2004    return lowerVACOPY(Op, DAG);
2005  case ISD::DYNAMIC_STACKALLOC:
2006    return lowerDYNAMIC_STACKALLOC(Op, DAG);
2007  case ISD::SMUL_LOHI:
2008    return lowerSMUL_LOHI(Op, DAG);
2009  case ISD::UMUL_LOHI:
2010    return lowerUMUL_LOHI(Op, DAG);
2011  case ISD::SDIVREM:
2012    return lowerSDIVREM(Op, DAG);
2013  case ISD::UDIVREM:
2014    return lowerUDIVREM(Op, DAG);
2015  case ISD::OR:
2016    return lowerOR(Op, DAG);
2017  case ISD::ATOMIC_SWAP:
2018    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_SWAPW);
2019  case ISD::ATOMIC_LOAD_ADD:
2020    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
2021  case ISD::ATOMIC_LOAD_SUB:
2022    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
2023  case ISD::ATOMIC_LOAD_AND:
2024    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
2025  case ISD::ATOMIC_LOAD_OR:
2026    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
2027  case ISD::ATOMIC_LOAD_XOR:
2028    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
2029  case ISD::ATOMIC_LOAD_NAND:
2030    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
2031  case ISD::ATOMIC_LOAD_MIN:
2032    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
2033  case ISD::ATOMIC_LOAD_MAX:
2034    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
2035  case ISD::ATOMIC_LOAD_UMIN:
2036    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
2037  case ISD::ATOMIC_LOAD_UMAX:
2038    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
2039  case ISD::ATOMIC_CMP_SWAP:
2040    return lowerATOMIC_CMP_SWAP(Op, DAG);
2041  case ISD::STACKSAVE:
2042    return lowerSTACKSAVE(Op, DAG);
2043  case ISD::STACKRESTORE:
2044    return lowerSTACKRESTORE(Op, DAG);
2045  case ISD::PREFETCH:
2046    return lowerPREFETCH(Op, DAG);
2047  default:
2048    llvm_unreachable("Unexpected node to lower");
2049  }
2050}
2051
2052const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
2053#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
2054  switch (Opcode) {
2055    OPCODE(RET_FLAG);
2056    OPCODE(CALL);
2057    OPCODE(SIBCALL);
2058    OPCODE(PCREL_WRAPPER);
2059    OPCODE(ICMP);
2060    OPCODE(FCMP);
2061    OPCODE(TM);
2062    OPCODE(BR_CCMASK);
2063    OPCODE(SELECT_CCMASK);
2064    OPCODE(ADJDYNALLOC);
2065    OPCODE(EXTRACT_ACCESS);
2066    OPCODE(UMUL_LOHI64);
2067    OPCODE(SDIVREM64);
2068    OPCODE(UDIVREM32);
2069    OPCODE(UDIVREM64);
2070    OPCODE(MVC);
2071    OPCODE(MVC_LOOP);
2072    OPCODE(NC);
2073    OPCODE(NC_LOOP);
2074    OPCODE(OC);
2075    OPCODE(OC_LOOP);
2076    OPCODE(XC);
2077    OPCODE(XC_LOOP);
2078    OPCODE(CLC);
2079    OPCODE(CLC_LOOP);
2080    OPCODE(STRCMP);
2081    OPCODE(STPCPY);
2082    OPCODE(SEARCH_STRING);
2083    OPCODE(IPM);
2084    OPCODE(ATOMIC_SWAPW);
2085    OPCODE(ATOMIC_LOADW_ADD);
2086    OPCODE(ATOMIC_LOADW_SUB);
2087    OPCODE(ATOMIC_LOADW_AND);
2088    OPCODE(ATOMIC_LOADW_OR);
2089    OPCODE(ATOMIC_LOADW_XOR);
2090    OPCODE(ATOMIC_LOADW_NAND);
2091    OPCODE(ATOMIC_LOADW_MIN);
2092    OPCODE(ATOMIC_LOADW_MAX);
2093    OPCODE(ATOMIC_LOADW_UMIN);
2094    OPCODE(ATOMIC_LOADW_UMAX);
2095    OPCODE(ATOMIC_CMP_SWAPW);
2096    OPCODE(PREFETCH);
2097  }
2098  return NULL;
2099#undef OPCODE
2100}
2101
2102//===----------------------------------------------------------------------===//
2103// Custom insertion
2104//===----------------------------------------------------------------------===//
2105
2106// Create a new basic block after MBB.
2107static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
2108  MachineFunction &MF = *MBB->getParent();
2109  MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
2110  MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB);
2111  return NewMBB;
2112}
2113
2114// Split MBB after MI and return the new block (the one that contains
2115// instructions after MI).
2116static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
2117                                          MachineBasicBlock *MBB) {
2118  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2119  NewMBB->splice(NewMBB->begin(), MBB,
2120                 llvm::next(MachineBasicBlock::iterator(MI)),
2121                 MBB->end());
2122  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2123  return NewMBB;
2124}
2125
2126// Split MBB before MI and return the new block (the one that contains MI).
2127static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
2128                                           MachineBasicBlock *MBB) {
2129  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2130  NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
2131  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2132  return NewMBB;
2133}
2134
2135// Force base value Base into a register before MI.  Return the register.
2136static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
2137                         const SystemZInstrInfo *TII) {
2138  if (Base.isReg())
2139    return Base.getReg();
2140
2141  MachineBasicBlock *MBB = MI->getParent();
2142  MachineFunction &MF = *MBB->getParent();
2143  MachineRegisterInfo &MRI = MF.getRegInfo();
2144
2145  unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2146  BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
2147    .addOperand(Base).addImm(0).addReg(0);
2148  return Reg;
2149}
2150
2151// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
2152MachineBasicBlock *
2153SystemZTargetLowering::emitSelect(MachineInstr *MI,
2154                                  MachineBasicBlock *MBB) const {
2155  const SystemZInstrInfo *TII = TM.getInstrInfo();
2156
2157  unsigned DestReg  = MI->getOperand(0).getReg();
2158  unsigned TrueReg  = MI->getOperand(1).getReg();
2159  unsigned FalseReg = MI->getOperand(2).getReg();
2160  unsigned CCValid  = MI->getOperand(3).getImm();
2161  unsigned CCMask   = MI->getOperand(4).getImm();
2162  DebugLoc DL       = MI->getDebugLoc();
2163
2164  MachineBasicBlock *StartMBB = MBB;
2165  MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
2166  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2167
2168  //  StartMBB:
2169  //   BRC CCMask, JoinMBB
2170  //   # fallthrough to FalseMBB
2171  MBB = StartMBB;
2172  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2173    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2174  MBB->addSuccessor(JoinMBB);
2175  MBB->addSuccessor(FalseMBB);
2176
2177  //  FalseMBB:
2178  //   # fallthrough to JoinMBB
2179  MBB = FalseMBB;
2180  MBB->addSuccessor(JoinMBB);
2181
2182  //  JoinMBB:
2183  //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
2184  //  ...
2185  MBB = JoinMBB;
2186  BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
2187    .addReg(TrueReg).addMBB(StartMBB)
2188    .addReg(FalseReg).addMBB(FalseMBB);
2189
2190  MI->eraseFromParent();
2191  return JoinMBB;
2192}
2193
2194// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
2195// StoreOpcode is the store to use and Invert says whether the store should
2196// happen when the condition is false rather than true.  If a STORE ON
2197// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
2198MachineBasicBlock *
2199SystemZTargetLowering::emitCondStore(MachineInstr *MI,
2200                                     MachineBasicBlock *MBB,
2201                                     unsigned StoreOpcode, unsigned STOCOpcode,
2202                                     bool Invert) const {
2203  const SystemZInstrInfo *TII = TM.getInstrInfo();
2204
2205  unsigned SrcReg     = MI->getOperand(0).getReg();
2206  MachineOperand Base = MI->getOperand(1);
2207  int64_t Disp        = MI->getOperand(2).getImm();
2208  unsigned IndexReg   = MI->getOperand(3).getReg();
2209  unsigned CCValid    = MI->getOperand(4).getImm();
2210  unsigned CCMask     = MI->getOperand(5).getImm();
2211  DebugLoc DL         = MI->getDebugLoc();
2212
2213  StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
2214
2215  // Use STOCOpcode if possible.  We could use different store patterns in
2216  // order to avoid matching the index register, but the performance trade-offs
2217  // might be more complicated in that case.
2218  if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
2219    if (Invert)
2220      CCMask ^= CCValid;
2221    BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
2222      .addReg(SrcReg).addOperand(Base).addImm(Disp)
2223      .addImm(CCValid).addImm(CCMask);
2224    MI->eraseFromParent();
2225    return MBB;
2226  }
2227
2228  // Get the condition needed to branch around the store.
2229  if (!Invert)
2230    CCMask ^= CCValid;
2231
2232  MachineBasicBlock *StartMBB = MBB;
2233  MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
2234  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2235
2236  //  StartMBB:
2237  //   BRC CCMask, JoinMBB
2238  //   # fallthrough to FalseMBB
2239  MBB = StartMBB;
2240  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2241    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2242  MBB->addSuccessor(JoinMBB);
2243  MBB->addSuccessor(FalseMBB);
2244
2245  //  FalseMBB:
2246  //   store %SrcReg, %Disp(%Index,%Base)
2247  //   # fallthrough to JoinMBB
2248  MBB = FalseMBB;
2249  BuildMI(MBB, DL, TII->get(StoreOpcode))
2250    .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
2251  MBB->addSuccessor(JoinMBB);
2252
2253  MI->eraseFromParent();
2254  return JoinMBB;
2255}
2256
2257// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
2258// or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
2259// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
2260// BitSize is the width of the field in bits, or 0 if this is a partword
2261// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
2262// is one of the operands.  Invert says whether the field should be
2263// inverted after performing BinOpcode (e.g. for NAND).
2264MachineBasicBlock *
2265SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
2266                                            MachineBasicBlock *MBB,
2267                                            unsigned BinOpcode,
2268                                            unsigned BitSize,
2269                                            bool Invert) const {
2270  const SystemZInstrInfo *TII = TM.getInstrInfo();
2271  MachineFunction &MF = *MBB->getParent();
2272  MachineRegisterInfo &MRI = MF.getRegInfo();
2273  bool IsSubWord = (BitSize < 32);
2274
2275  // Extract the operands.  Base can be a register or a frame index.
2276  // Src2 can be a register or immediate.
2277  unsigned Dest        = MI->getOperand(0).getReg();
2278  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2279  int64_t Disp         = MI->getOperand(2).getImm();
2280  MachineOperand Src2  = earlyUseOperand(MI->getOperand(3));
2281  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2282  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2283  DebugLoc DL          = MI->getDebugLoc();
2284  if (IsSubWord)
2285    BitSize = MI->getOperand(6).getImm();
2286
2287  // Subword operations use 32-bit registers.
2288  const TargetRegisterClass *RC = (BitSize <= 32 ?
2289                                   &SystemZ::GR32BitRegClass :
2290                                   &SystemZ::GR64BitRegClass);
2291  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2292  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2293
2294  // Get the right opcodes for the displacement.
2295  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2296  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2297  assert(LOpcode && CSOpcode && "Displacement out of range");
2298
2299  // Create virtual registers for temporary results.
2300  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2301  unsigned OldVal        = MRI.createVirtualRegister(RC);
2302  unsigned NewVal        = (BinOpcode || IsSubWord ?
2303                            MRI.createVirtualRegister(RC) : Src2.getReg());
2304  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2305  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2306
2307  // Insert a basic block for the main loop.
2308  MachineBasicBlock *StartMBB = MBB;
2309  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
2310  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2311
2312  //  StartMBB:
2313  //   ...
2314  //   %OrigVal = L Disp(%Base)
2315  //   # fall through to LoopMMB
2316  MBB = StartMBB;
2317  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2318    .addOperand(Base).addImm(Disp).addReg(0);
2319  MBB->addSuccessor(LoopMBB);
2320
2321  //  LoopMBB:
2322  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
2323  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2324  //   %RotatedNewVal = OP %RotatedOldVal, %Src2
2325  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2326  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2327  //   JNE LoopMBB
2328  //   # fall through to DoneMMB
2329  MBB = LoopMBB;
2330  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2331    .addReg(OrigVal).addMBB(StartMBB)
2332    .addReg(Dest).addMBB(LoopMBB);
2333  if (IsSubWord)
2334    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2335      .addReg(OldVal).addReg(BitShift).addImm(0);
2336  if (Invert) {
2337    // Perform the operation normally and then invert every bit of the field.
2338    unsigned Tmp = MRI.createVirtualRegister(RC);
2339    BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
2340      .addReg(RotatedOldVal).addOperand(Src2);
2341    if (BitSize < 32)
2342      // XILF with the upper BitSize bits set.
2343      BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
2344        .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
2345    else if (BitSize == 32)
2346      // XILF with every bit set.
2347      BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
2348        .addReg(Tmp).addImm(~uint32_t(0));
2349    else {
2350      // Use LCGR and add -1 to the result, which is more compact than
2351      // an XILF, XILH pair.
2352      unsigned Tmp2 = MRI.createVirtualRegister(RC);
2353      BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
2354      BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
2355        .addReg(Tmp2).addImm(-1);
2356    }
2357  } else if (BinOpcode)
2358    // A simply binary operation.
2359    BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
2360      .addReg(RotatedOldVal).addOperand(Src2);
2361  else if (IsSubWord)
2362    // Use RISBG to rotate Src2 into position and use it to replace the
2363    // field in RotatedOldVal.
2364    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
2365      .addReg(RotatedOldVal).addReg(Src2.getReg())
2366      .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
2367  if (IsSubWord)
2368    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2369      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2370  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2371    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2372  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2373    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2374  MBB->addSuccessor(LoopMBB);
2375  MBB->addSuccessor(DoneMBB);
2376
2377  MI->eraseFromParent();
2378  return DoneMBB;
2379}
2380
2381// Implement EmitInstrWithCustomInserter for pseudo
2382// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
2383// instruction that should be used to compare the current field with the
2384// minimum or maximum value.  KeepOldMask is the BRC condition-code mask
2385// for when the current field should be kept.  BitSize is the width of
2386// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
2387MachineBasicBlock *
2388SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
2389                                            MachineBasicBlock *MBB,
2390                                            unsigned CompareOpcode,
2391                                            unsigned KeepOldMask,
2392                                            unsigned BitSize) const {
2393  const SystemZInstrInfo *TII = TM.getInstrInfo();
2394  MachineFunction &MF = *MBB->getParent();
2395  MachineRegisterInfo &MRI = MF.getRegInfo();
2396  bool IsSubWord = (BitSize < 32);
2397
2398  // Extract the operands.  Base can be a register or a frame index.
2399  unsigned Dest        = MI->getOperand(0).getReg();
2400  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2401  int64_t  Disp        = MI->getOperand(2).getImm();
2402  unsigned Src2        = MI->getOperand(3).getReg();
2403  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2404  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2405  DebugLoc DL          = MI->getDebugLoc();
2406  if (IsSubWord)
2407    BitSize = MI->getOperand(6).getImm();
2408
2409  // Subword operations use 32-bit registers.
2410  const TargetRegisterClass *RC = (BitSize <= 32 ?
2411                                   &SystemZ::GR32BitRegClass :
2412                                   &SystemZ::GR64BitRegClass);
2413  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2414  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2415
2416  // Get the right opcodes for the displacement.
2417  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2418  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2419  assert(LOpcode && CSOpcode && "Displacement out of range");
2420
2421  // Create virtual registers for temporary results.
2422  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2423  unsigned OldVal        = MRI.createVirtualRegister(RC);
2424  unsigned NewVal        = MRI.createVirtualRegister(RC);
2425  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2426  unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
2427  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2428
2429  // Insert 3 basic blocks for the loop.
2430  MachineBasicBlock *StartMBB  = MBB;
2431  MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
2432  MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
2433  MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
2434  MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
2435
2436  //  StartMBB:
2437  //   ...
2438  //   %OrigVal     = L Disp(%Base)
2439  //   # fall through to LoopMMB
2440  MBB = StartMBB;
2441  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2442    .addOperand(Base).addImm(Disp).addReg(0);
2443  MBB->addSuccessor(LoopMBB);
2444
2445  //  LoopMBB:
2446  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
2447  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2448  //   CompareOpcode %RotatedOldVal, %Src2
2449  //   BRC KeepOldMask, UpdateMBB
2450  MBB = LoopMBB;
2451  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2452    .addReg(OrigVal).addMBB(StartMBB)
2453    .addReg(Dest).addMBB(UpdateMBB);
2454  if (IsSubWord)
2455    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2456      .addReg(OldVal).addReg(BitShift).addImm(0);
2457  BuildMI(MBB, DL, TII->get(CompareOpcode))
2458    .addReg(RotatedOldVal).addReg(Src2);
2459  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2460    .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
2461  MBB->addSuccessor(UpdateMBB);
2462  MBB->addSuccessor(UseAltMBB);
2463
2464  //  UseAltMBB:
2465  //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
2466  //   # fall through to UpdateMMB
2467  MBB = UseAltMBB;
2468  if (IsSubWord)
2469    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
2470      .addReg(RotatedOldVal).addReg(Src2)
2471      .addImm(32).addImm(31 + BitSize).addImm(0);
2472  MBB->addSuccessor(UpdateMBB);
2473
2474  //  UpdateMBB:
2475  //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
2476  //                        [ %RotatedAltVal, UseAltMBB ]
2477  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2478  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2479  //   JNE LoopMBB
2480  //   # fall through to DoneMMB
2481  MBB = UpdateMBB;
2482  BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
2483    .addReg(RotatedOldVal).addMBB(LoopMBB)
2484    .addReg(RotatedAltVal).addMBB(UseAltMBB);
2485  if (IsSubWord)
2486    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2487      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2488  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2489    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2490  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2491    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2492  MBB->addSuccessor(LoopMBB);
2493  MBB->addSuccessor(DoneMBB);
2494
2495  MI->eraseFromParent();
2496  return DoneMBB;
2497}
2498
2499// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
2500// instruction MI.
2501MachineBasicBlock *
2502SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
2503                                          MachineBasicBlock *MBB) const {
2504  const SystemZInstrInfo *TII = TM.getInstrInfo();
2505  MachineFunction &MF = *MBB->getParent();
2506  MachineRegisterInfo &MRI = MF.getRegInfo();
2507
2508  // Extract the operands.  Base can be a register or a frame index.
2509  unsigned Dest        = MI->getOperand(0).getReg();
2510  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2511  int64_t  Disp        = MI->getOperand(2).getImm();
2512  unsigned OrigCmpVal  = MI->getOperand(3).getReg();
2513  unsigned OrigSwapVal = MI->getOperand(4).getReg();
2514  unsigned BitShift    = MI->getOperand(5).getReg();
2515  unsigned NegBitShift = MI->getOperand(6).getReg();
2516  int64_t  BitSize     = MI->getOperand(7).getImm();
2517  DebugLoc DL          = MI->getDebugLoc();
2518
2519  const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
2520
2521  // Get the right opcodes for the displacement.
2522  unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
2523  unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
2524  assert(LOpcode && CSOpcode && "Displacement out of range");
2525
2526  // Create virtual registers for temporary results.
2527  unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
2528  unsigned OldVal       = MRI.createVirtualRegister(RC);
2529  unsigned CmpVal       = MRI.createVirtualRegister(RC);
2530  unsigned SwapVal      = MRI.createVirtualRegister(RC);
2531  unsigned StoreVal     = MRI.createVirtualRegister(RC);
2532  unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
2533  unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
2534  unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
2535
2536  // Insert 2 basic blocks for the loop.
2537  MachineBasicBlock *StartMBB = MBB;
2538  MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
2539  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2540  MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
2541
2542  //  StartMBB:
2543  //   ...
2544  //   %OrigOldVal     = L Disp(%Base)
2545  //   # fall through to LoopMMB
2546  MBB = StartMBB;
2547  BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
2548    .addOperand(Base).addImm(Disp).addReg(0);
2549  MBB->addSuccessor(LoopMBB);
2550
2551  //  LoopMBB:
2552  //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
2553  //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
2554  //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
2555  //   %Dest          = RLL %OldVal, BitSize(%BitShift)
2556  //                      ^^ The low BitSize bits contain the field
2557  //                         of interest.
2558  //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
2559  //                      ^^ Replace the upper 32-BitSize bits of the
2560  //                         comparison value with those that we loaded,
2561  //                         so that we can use a full word comparison.
2562  //   CR %Dest, %RetryCmpVal
2563  //   JNE DoneMBB
2564  //   # Fall through to SetMBB
2565  MBB = LoopMBB;
2566  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2567    .addReg(OrigOldVal).addMBB(StartMBB)
2568    .addReg(RetryOldVal).addMBB(SetMBB);
2569  BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
2570    .addReg(OrigCmpVal).addMBB(StartMBB)
2571    .addReg(RetryCmpVal).addMBB(SetMBB);
2572  BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
2573    .addReg(OrigSwapVal).addMBB(StartMBB)
2574    .addReg(RetrySwapVal).addMBB(SetMBB);
2575  BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
2576    .addReg(OldVal).addReg(BitShift).addImm(BitSize);
2577  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
2578    .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
2579  BuildMI(MBB, DL, TII->get(SystemZ::CR))
2580    .addReg(Dest).addReg(RetryCmpVal);
2581  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2582    .addImm(SystemZ::CCMASK_ICMP)
2583    .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
2584  MBB->addSuccessor(DoneMBB);
2585  MBB->addSuccessor(SetMBB);
2586
2587  //  SetMBB:
2588  //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
2589  //                      ^^ Replace the upper 32-BitSize bits of the new
2590  //                         value with those that we loaded.
2591  //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
2592  //                      ^^ Rotate the new field to its proper position.
2593  //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
2594  //   JNE LoopMBB
2595  //   # fall through to ExitMMB
2596  MBB = SetMBB;
2597  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
2598    .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
2599  BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
2600    .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
2601  BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
2602    .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
2603  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2604    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2605  MBB->addSuccessor(LoopMBB);
2606  MBB->addSuccessor(DoneMBB);
2607
2608  MI->eraseFromParent();
2609  return DoneMBB;
2610}
2611
2612// Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
2613// if the high register of the GR128 value must be cleared or false if
2614// it's "don't care".  SubReg is subreg_odd32 when extending a GR32
2615// and subreg_odd when extending a GR64.
2616MachineBasicBlock *
2617SystemZTargetLowering::emitExt128(MachineInstr *MI,
2618                                  MachineBasicBlock *MBB,
2619                                  bool ClearEven, unsigned SubReg) const {
2620  const SystemZInstrInfo *TII = TM.getInstrInfo();
2621  MachineFunction &MF = *MBB->getParent();
2622  MachineRegisterInfo &MRI = MF.getRegInfo();
2623  DebugLoc DL = MI->getDebugLoc();
2624
2625  unsigned Dest  = MI->getOperand(0).getReg();
2626  unsigned Src   = MI->getOperand(1).getReg();
2627  unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2628
2629  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
2630  if (ClearEven) {
2631    unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2632    unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
2633
2634    BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
2635      .addImm(0);
2636    BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
2637      .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_high);
2638    In128 = NewIn128;
2639  }
2640  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
2641    .addReg(In128).addReg(Src).addImm(SubReg);
2642
2643  MI->eraseFromParent();
2644  return MBB;
2645}
2646
2647MachineBasicBlock *
2648SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
2649                                         MachineBasicBlock *MBB,
2650                                         unsigned Opcode) const {
2651  const SystemZInstrInfo *TII = TM.getInstrInfo();
2652  MachineFunction &MF = *MBB->getParent();
2653  MachineRegisterInfo &MRI = MF.getRegInfo();
2654  DebugLoc DL = MI->getDebugLoc();
2655
2656  MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
2657  uint64_t       DestDisp = MI->getOperand(1).getImm();
2658  MachineOperand SrcBase  = earlyUseOperand(MI->getOperand(2));
2659  uint64_t       SrcDisp  = MI->getOperand(3).getImm();
2660  uint64_t       Length   = MI->getOperand(4).getImm();
2661
2662  // When generating more than one CLC, all but the last will need to
2663  // branch to the end when a difference is found.
2664  MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
2665                               splitBlockAfter(MI, MBB) : 0);
2666
2667  // Check for the loop form, in which operand 5 is the trip count.
2668  if (MI->getNumExplicitOperands() > 5) {
2669    bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
2670
2671    uint64_t StartCountReg = MI->getOperand(5).getReg();
2672    uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
2673    uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
2674                              forceReg(MI, DestBase, TII));
2675
2676    const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
2677    uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
2678    uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
2679                            MRI.createVirtualRegister(RC));
2680    uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
2681    uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
2682                            MRI.createVirtualRegister(RC));
2683
2684    RC = &SystemZ::GR64BitRegClass;
2685    uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
2686    uint64_t NextCountReg = MRI.createVirtualRegister(RC);
2687
2688    MachineBasicBlock *StartMBB = MBB;
2689    MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
2690    MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2691    MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
2692
2693    //  StartMBB:
2694    //   # fall through to LoopMMB
2695    MBB->addSuccessor(LoopMBB);
2696
2697    //  LoopMBB:
2698    //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
2699    //                      [ %NextDestReg, NextMBB ]
2700    //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
2701    //                     [ %NextSrcReg, NextMBB ]
2702    //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
2703    //                       [ %NextCountReg, NextMBB ]
2704    //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
2705    //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
2706    //   ( JLH EndMBB )
2707    //
2708    // The prefetch is used only for MVC.  The JLH is used only for CLC.
2709    MBB = LoopMBB;
2710
2711    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
2712      .addReg(StartDestReg).addMBB(StartMBB)
2713      .addReg(NextDestReg).addMBB(NextMBB);
2714    if (!HaveSingleBase)
2715      BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
2716        .addReg(StartSrcReg).addMBB(StartMBB)
2717        .addReg(NextSrcReg).addMBB(NextMBB);
2718    BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
2719      .addReg(StartCountReg).addMBB(StartMBB)
2720      .addReg(NextCountReg).addMBB(NextMBB);
2721    if (Opcode == SystemZ::MVC)
2722      BuildMI(MBB, DL, TII->get(SystemZ::PFD))
2723        .addImm(SystemZ::PFD_WRITE)
2724        .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
2725    BuildMI(MBB, DL, TII->get(Opcode))
2726      .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
2727      .addReg(ThisSrcReg).addImm(SrcDisp);
2728    if (EndMBB) {
2729      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2730        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
2731        .addMBB(EndMBB);
2732      MBB->addSuccessor(EndMBB);
2733      MBB->addSuccessor(NextMBB);
2734    }
2735
2736    // NextMBB:
2737    //   %NextDestReg = LA 256(%ThisDestReg)
2738    //   %NextSrcReg = LA 256(%ThisSrcReg)
2739    //   %NextCountReg = AGHI %ThisCountReg, -1
2740    //   CGHI %NextCountReg, 0
2741    //   JLH LoopMBB
2742    //   # fall through to DoneMMB
2743    //
2744    // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
2745    MBB = NextMBB;
2746
2747    BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
2748      .addReg(ThisDestReg).addImm(256).addReg(0);
2749    if (!HaveSingleBase)
2750      BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
2751        .addReg(ThisSrcReg).addImm(256).addReg(0);
2752    BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
2753      .addReg(ThisCountReg).addImm(-1);
2754    BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
2755      .addReg(NextCountReg).addImm(0);
2756    BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2757      .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
2758      .addMBB(LoopMBB);
2759    MBB->addSuccessor(LoopMBB);
2760    MBB->addSuccessor(DoneMBB);
2761
2762    DestBase = MachineOperand::CreateReg(NextDestReg, false);
2763    SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
2764    Length &= 255;
2765    MBB = DoneMBB;
2766  }
2767  // Handle any remaining bytes with straight-line code.
2768  while (Length > 0) {
2769    uint64_t ThisLength = std::min(Length, uint64_t(256));
2770    // The previous iteration might have created out-of-range displacements.
2771    // Apply them using LAY if so.
2772    if (!isUInt<12>(DestDisp)) {
2773      unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2774      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
2775        .addOperand(DestBase).addImm(DestDisp).addReg(0);
2776      DestBase = MachineOperand::CreateReg(Reg, false);
2777      DestDisp = 0;
2778    }
2779    if (!isUInt<12>(SrcDisp)) {
2780      unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2781      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
2782        .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
2783      SrcBase = MachineOperand::CreateReg(Reg, false);
2784      SrcDisp = 0;
2785    }
2786    BuildMI(*MBB, MI, DL, TII->get(Opcode))
2787      .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
2788      .addOperand(SrcBase).addImm(SrcDisp);
2789    DestDisp += ThisLength;
2790    SrcDisp += ThisLength;
2791    Length -= ThisLength;
2792    // If there's another CLC to go, branch to the end if a difference
2793    // was found.
2794    if (EndMBB && Length > 0) {
2795      MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
2796      BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2797        .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
2798        .addMBB(EndMBB);
2799      MBB->addSuccessor(EndMBB);
2800      MBB->addSuccessor(NextMBB);
2801      MBB = NextMBB;
2802    }
2803  }
2804  if (EndMBB) {
2805    MBB->addSuccessor(EndMBB);
2806    MBB = EndMBB;
2807    MBB->addLiveIn(SystemZ::CC);
2808  }
2809
2810  MI->eraseFromParent();
2811  return MBB;
2812}
2813
2814// Decompose string pseudo-instruction MI into a loop that continually performs
2815// Opcode until CC != 3.
2816MachineBasicBlock *
2817SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
2818                                         MachineBasicBlock *MBB,
2819                                         unsigned Opcode) const {
2820  const SystemZInstrInfo *TII = TM.getInstrInfo();
2821  MachineFunction &MF = *MBB->getParent();
2822  MachineRegisterInfo &MRI = MF.getRegInfo();
2823  DebugLoc DL = MI->getDebugLoc();
2824
2825  uint64_t End1Reg   = MI->getOperand(0).getReg();
2826  uint64_t Start1Reg = MI->getOperand(1).getReg();
2827  uint64_t Start2Reg = MI->getOperand(2).getReg();
2828  uint64_t CharReg   = MI->getOperand(3).getReg();
2829
2830  const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
2831  uint64_t This1Reg = MRI.createVirtualRegister(RC);
2832  uint64_t This2Reg = MRI.createVirtualRegister(RC);
2833  uint64_t End2Reg  = MRI.createVirtualRegister(RC);
2834
2835  MachineBasicBlock *StartMBB = MBB;
2836  MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
2837  MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2838
2839  //  StartMBB:
2840  //   # fall through to LoopMMB
2841  MBB->addSuccessor(LoopMBB);
2842
2843  //  LoopMBB:
2844  //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
2845  //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
2846  //   R0W = %CharReg
2847  //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0W
2848  //   JO LoopMBB
2849  //   # fall through to DoneMMB
2850  //
2851  // The load of R0W can be hoisted by post-RA LICM.
2852  MBB = LoopMBB;
2853
2854  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
2855    .addReg(Start1Reg).addMBB(StartMBB)
2856    .addReg(End1Reg).addMBB(LoopMBB);
2857  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
2858    .addReg(Start2Reg).addMBB(StartMBB)
2859    .addReg(End2Reg).addMBB(LoopMBB);
2860  BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0W).addReg(CharReg);
2861  BuildMI(MBB, DL, TII->get(Opcode))
2862    .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
2863    .addReg(This1Reg).addReg(This2Reg);
2864  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2865    .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
2866  MBB->addSuccessor(LoopMBB);
2867  MBB->addSuccessor(DoneMBB);
2868
2869  DoneMBB->addLiveIn(SystemZ::CC);
2870
2871  MI->eraseFromParent();
2872  return DoneMBB;
2873}
2874
2875MachineBasicBlock *SystemZTargetLowering::
2876EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
2877  switch (MI->getOpcode()) {
2878  case SystemZ::Select32:
2879  case SystemZ::SelectF32:
2880  case SystemZ::Select64:
2881  case SystemZ::SelectF64:
2882  case SystemZ::SelectF128:
2883    return emitSelect(MI, MBB);
2884
2885  case SystemZ::CondStore8_32:
2886    return emitCondStore(MI, MBB, SystemZ::STC32, 0, false);
2887  case SystemZ::CondStore8_32Inv:
2888    return emitCondStore(MI, MBB, SystemZ::STC32, 0, true);
2889  case SystemZ::CondStore16_32:
2890    return emitCondStore(MI, MBB, SystemZ::STH32, 0, false);
2891  case SystemZ::CondStore16_32Inv:
2892    return emitCondStore(MI, MBB, SystemZ::STH32, 0, true);
2893  case SystemZ::CondStore32_32:
2894    return emitCondStore(MI, MBB, SystemZ::ST32, SystemZ::STOC32, false);
2895  case SystemZ::CondStore32_32Inv:
2896    return emitCondStore(MI, MBB, SystemZ::ST32, SystemZ::STOC32, true);
2897  case SystemZ::CondStore8:
2898    return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
2899  case SystemZ::CondStore8Inv:
2900    return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
2901  case SystemZ::CondStore16:
2902    return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
2903  case SystemZ::CondStore16Inv:
2904    return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
2905  case SystemZ::CondStore32:
2906    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
2907  case SystemZ::CondStore32Inv:
2908    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
2909  case SystemZ::CondStore64:
2910    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
2911  case SystemZ::CondStore64Inv:
2912    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
2913  case SystemZ::CondStoreF32:
2914    return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
2915  case SystemZ::CondStoreF32Inv:
2916    return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
2917  case SystemZ::CondStoreF64:
2918    return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
2919  case SystemZ::CondStoreF64Inv:
2920    return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
2921
2922  case SystemZ::AEXT128_64:
2923    return emitExt128(MI, MBB, false, SystemZ::subreg_low);
2924  case SystemZ::ZEXT128_32:
2925    return emitExt128(MI, MBB, true, SystemZ::subreg_low32);
2926  case SystemZ::ZEXT128_64:
2927    return emitExt128(MI, MBB, true, SystemZ::subreg_low);
2928
2929  case SystemZ::ATOMIC_SWAPW:
2930    return emitAtomicLoadBinary(MI, MBB, 0, 0);
2931  case SystemZ::ATOMIC_SWAP_32:
2932    return emitAtomicLoadBinary(MI, MBB, 0, 32);
2933  case SystemZ::ATOMIC_SWAP_64:
2934    return emitAtomicLoadBinary(MI, MBB, 0, 64);
2935
2936  case SystemZ::ATOMIC_LOADW_AR:
2937    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
2938  case SystemZ::ATOMIC_LOADW_AFI:
2939    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
2940  case SystemZ::ATOMIC_LOAD_AR:
2941    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
2942  case SystemZ::ATOMIC_LOAD_AHI:
2943    return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
2944  case SystemZ::ATOMIC_LOAD_AFI:
2945    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
2946  case SystemZ::ATOMIC_LOAD_AGR:
2947    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
2948  case SystemZ::ATOMIC_LOAD_AGHI:
2949    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
2950  case SystemZ::ATOMIC_LOAD_AGFI:
2951    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
2952
2953  case SystemZ::ATOMIC_LOADW_SR:
2954    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
2955  case SystemZ::ATOMIC_LOAD_SR:
2956    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
2957  case SystemZ::ATOMIC_LOAD_SGR:
2958    return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
2959
2960  case SystemZ::ATOMIC_LOADW_NR:
2961    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
2962  case SystemZ::ATOMIC_LOADW_NILH:
2963    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0);
2964  case SystemZ::ATOMIC_LOAD_NR:
2965    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
2966  case SystemZ::ATOMIC_LOAD_NILL32:
2967    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32);
2968  case SystemZ::ATOMIC_LOAD_NILH32:
2969    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32);
2970  case SystemZ::ATOMIC_LOAD_NILF32:
2971    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32);
2972  case SystemZ::ATOMIC_LOAD_NGR:
2973    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
2974  case SystemZ::ATOMIC_LOAD_NILL:
2975    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64);
2976  case SystemZ::ATOMIC_LOAD_NILH:
2977    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64);
2978  case SystemZ::ATOMIC_LOAD_NIHL:
2979    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64);
2980  case SystemZ::ATOMIC_LOAD_NIHH:
2981    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64);
2982  case SystemZ::ATOMIC_LOAD_NILF:
2983    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64);
2984  case SystemZ::ATOMIC_LOAD_NIHF:
2985    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64);
2986
2987  case SystemZ::ATOMIC_LOADW_OR:
2988    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
2989  case SystemZ::ATOMIC_LOADW_OILH:
2990    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 0);
2991  case SystemZ::ATOMIC_LOAD_OR:
2992    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
2993  case SystemZ::ATOMIC_LOAD_OILL32:
2994    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL32, 32);
2995  case SystemZ::ATOMIC_LOAD_OILH32:
2996    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 32);
2997  case SystemZ::ATOMIC_LOAD_OILF32:
2998    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF32, 32);
2999  case SystemZ::ATOMIC_LOAD_OGR:
3000    return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
3001  case SystemZ::ATOMIC_LOAD_OILL:
3002    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 64);
3003  case SystemZ::ATOMIC_LOAD_OILH:
3004    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 64);
3005  case SystemZ::ATOMIC_LOAD_OIHL:
3006    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL, 64);
3007  case SystemZ::ATOMIC_LOAD_OIHH:
3008    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH, 64);
3009  case SystemZ::ATOMIC_LOAD_OILF:
3010    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 64);
3011  case SystemZ::ATOMIC_LOAD_OIHF:
3012    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF, 64);
3013
3014  case SystemZ::ATOMIC_LOADW_XR:
3015    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
3016  case SystemZ::ATOMIC_LOADW_XILF:
3017    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 0);
3018  case SystemZ::ATOMIC_LOAD_XR:
3019    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
3020  case SystemZ::ATOMIC_LOAD_XILF32:
3021    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 32);
3022  case SystemZ::ATOMIC_LOAD_XGR:
3023    return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
3024  case SystemZ::ATOMIC_LOAD_XILF:
3025    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 64);
3026  case SystemZ::ATOMIC_LOAD_XIHF:
3027    return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF, 64);
3028
3029  case SystemZ::ATOMIC_LOADW_NRi:
3030    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
3031  case SystemZ::ATOMIC_LOADW_NILHi:
3032    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0, true);
3033  case SystemZ::ATOMIC_LOAD_NRi:
3034    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
3035  case SystemZ::ATOMIC_LOAD_NILL32i:
3036    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32, true);
3037  case SystemZ::ATOMIC_LOAD_NILH32i:
3038    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32, true);
3039  case SystemZ::ATOMIC_LOAD_NILF32i:
3040    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32, true);
3041  case SystemZ::ATOMIC_LOAD_NGRi:
3042    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
3043  case SystemZ::ATOMIC_LOAD_NILLi:
3044    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64, true);
3045  case SystemZ::ATOMIC_LOAD_NILHi:
3046    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64, true);
3047  case SystemZ::ATOMIC_LOAD_NIHLi:
3048    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64, true);
3049  case SystemZ::ATOMIC_LOAD_NIHHi:
3050    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64, true);
3051  case SystemZ::ATOMIC_LOAD_NILFi:
3052    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64, true);
3053  case SystemZ::ATOMIC_LOAD_NIHFi:
3054    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64, true);
3055
3056  case SystemZ::ATOMIC_LOADW_MIN:
3057    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3058                                SystemZ::CCMASK_CMP_LE, 0);
3059  case SystemZ::ATOMIC_LOAD_MIN_32:
3060    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3061                                SystemZ::CCMASK_CMP_LE, 32);
3062  case SystemZ::ATOMIC_LOAD_MIN_64:
3063    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3064                                SystemZ::CCMASK_CMP_LE, 64);
3065
3066  case SystemZ::ATOMIC_LOADW_MAX:
3067    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3068                                SystemZ::CCMASK_CMP_GE, 0);
3069  case SystemZ::ATOMIC_LOAD_MAX_32:
3070    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3071                                SystemZ::CCMASK_CMP_GE, 32);
3072  case SystemZ::ATOMIC_LOAD_MAX_64:
3073    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3074                                SystemZ::CCMASK_CMP_GE, 64);
3075
3076  case SystemZ::ATOMIC_LOADW_UMIN:
3077    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3078                                SystemZ::CCMASK_CMP_LE, 0);
3079  case SystemZ::ATOMIC_LOAD_UMIN_32:
3080    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3081                                SystemZ::CCMASK_CMP_LE, 32);
3082  case SystemZ::ATOMIC_LOAD_UMIN_64:
3083    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3084                                SystemZ::CCMASK_CMP_LE, 64);
3085
3086  case SystemZ::ATOMIC_LOADW_UMAX:
3087    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3088                                SystemZ::CCMASK_CMP_GE, 0);
3089  case SystemZ::ATOMIC_LOAD_UMAX_32:
3090    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3091                                SystemZ::CCMASK_CMP_GE, 32);
3092  case SystemZ::ATOMIC_LOAD_UMAX_64:
3093    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3094                                SystemZ::CCMASK_CMP_GE, 64);
3095
3096  case SystemZ::ATOMIC_CMP_SWAPW:
3097    return emitAtomicCmpSwapW(MI, MBB);
3098  case SystemZ::MVCSequence:
3099  case SystemZ::MVCLoop:
3100    return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
3101  case SystemZ::NCSequence:
3102  case SystemZ::NCLoop:
3103    return emitMemMemWrapper(MI, MBB, SystemZ::NC);
3104  case SystemZ::OCSequence:
3105  case SystemZ::OCLoop:
3106    return emitMemMemWrapper(MI, MBB, SystemZ::OC);
3107  case SystemZ::XCSequence:
3108  case SystemZ::XCLoop:
3109    return emitMemMemWrapper(MI, MBB, SystemZ::XC);
3110  case SystemZ::CLCSequence:
3111  case SystemZ::CLCLoop:
3112    return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
3113  case SystemZ::CLSTLoop:
3114    return emitStringWrapper(MI, MBB, SystemZ::CLST);
3115  case SystemZ::MVSTLoop:
3116    return emitStringWrapper(MI, MBB, SystemZ::MVST);
3117  case SystemZ::SRSTLoop:
3118    return emitStringWrapper(MI, MBB, SystemZ::SRST);
3119  default:
3120    llvm_unreachable("Unexpected instr type to insert");
3121  }
3122}
3123